Date of Award
1-1-2020
Language
English
Document Type
Dissertation
Degree Name
Doctor of Philosophy (PhD)
College/School/Department
Department of Mathematics and Statistics
Content Description
1 online resource (v, 88 pages)
Dissertation/Thesis Chair
Antun Milas
Committee Members
Michael Penn, Cristian Lenart, Alexandre Tchernev
Keywords
Vertex Algebra, W-Algebras, Vertex operator algebras, Orbifolds, Fermions, Interacting boson-fermion models
Subject Categories
Physical Sciences and Mathematics
Abstract
We investigate the structure of the permuation orbifolds for the rank three free fermion vertex superalgebra $\mathcal{F}(3)$ (of central charge $\frac{3}{2}$) and the rank three symplectic fermion vertex superalgebra $\mathcal{SF}(3)$ (of central charge -6). We give minimal strong generating sets for the orbifolds $\mathcal{F}(3)^{S_3}$, $\mathcal{F}(3)^{\mathbb{Z}_3}$, $\mathcal{SF}(3)^{S_3}$ and $\mathcal{SF}(3)^{\mathbb{Z}_3}$. In particular, we show the orbifold $\mathcal{F}(3)^{S_3}$ is isomorphic to $\mathcal{F}(1) \otimes W$, where $W$ is $W$-superalgebra of type $(2,4,\frac{9}{2})$. Additionally, we give a bosonic description of the orbifold $\mathcal{F}(3)^{S_3}$. We find analogous isomorphisms for the orbifolds $\mathcal{F}(3)^{\mathbb{Z}_3}$, $\mathcal{SF}(3)^{S_3}$ and $\mathcal{SF}(3)^{\mathbb{Z}_3}$, where the $W$-algebras are type $(1,\frac{9}{2}, \frac{9}{2})$, $(2,3^3,4^3,5^5,6^4)$ and $(2^4,3^4,4^4,5^4)$, respectively. We compute the characters for the orbifolds as well.
Recommended Citation
Wauchope, Joshua Andrew, "Permutation orbifolds of fermionic vertex algebras" (2020). Legacy Theses & Dissertations (2009 - 2024). 2607.
https://scholarsarchive.library.albany.edu/legacy-etd/2607