Date of Award




Document Type


Degree Name

Doctor of Philosophy (PhD)


Department of Nanoscale Science and Engineering


Nanoscale Engineering

Content Description

1 online resource (ii, viii, 91 pages) : illustrations (some color)

Dissertation/Thesis Chair

James Castracane

Committee Members

Nathaniel Cady, Yubing Xie, Hassaram Bakhru


Engineering, Impedance, Nanotechnology, Polymers, Sensors, Tissue, Salivary glands, Tissue scaffolds, Cells, Growth factors, Nanobiotechnology

Subject Categories

Chemical Engineering | Nanoscience and Nanotechnology


The salivary gland is a complex, branching organ whose primary biological function is the production of the fluid critical to alimentary function and the lubrication and maintenance of the oral cavity, saliva. The most frequent disruption of the salivary organ system is one in which the rate of supply of saliva into the oral cavity is diminished, and this may vary from a minor reduction, to near cessation. Regenerative medicine is a field which seeks to find ways to overcome the symptoms of organ malfunction or damage by inducing regrowth, repair and replacement of partial or whole organ function. Historically, the only methods available to medical experts were certain chemical drugs and transplantation, each of which suffers from significant risks and drawbacks. Tissue Engineering arose in the past few decades thanks to the seminal work of Robert Langer with the charter mission of finding new biomaterials and techniques to achieve these ends. The original concept of tissue engineering was the cell or tissue scaffold, which is supports the regrowth of cells by making intimate contact with adherent cells, and induces improved regrowth in vitro or in vivo by providing mechanical or chemical signaling cues. Epithelial cell types such as salivary glands have structural functional polarity at the cellular level, an apical side which faces a void, and a basal side which faces the support substrate. While 3D scaffolds such as hydrogels maximize interaction area between cells and substrate, they struggle to develop cohesive tissues beyond the scale of small cellular clusters . 2D scaffolds enforce a defined polarity by allowing cell interaction at only one side of the cell. Langer pioneered the use of polymer nanofibers as the premier synthetic 2D scaffold biomaterial, due to their exceptionally high nano-scale surface area, and collagen-imitating structure. Prior work has established PLGA nanofibers, which allow salivary cells to attach, proliferate, and generate a thicker cobblestone-style cellular monolayer. In addition, providing shallow depressions in the nanofiber scaffold allows the salivary gland cells to experience a biomimetic substrate curvature, which further increases cell height, but not to the level of matching the height along the apico-basal vector of in vivo or 3D gels . This work endeavors to increase the depth of the depressions, in order to allow for an increase in substrate curvature and a maximization of cell height. It was also undertaken to develop an alternative method to grading the effectiveness of our scaffolds compared with one another. Analyzing protein structural localization with immunofluorescence and protein bulk concentration with western blot have some limitations. An electrochemical detection technique was developed to nondestructively assess the performance of scaffolds, specifically in inducing stronger resistance to fluid diffusion across the cell monolayer on a 2D pseudo-planar scaffold. This impedance spectroscopy technique, called trans-epithelial electrical resistance spectroscopy, requires the cells be suspended in media, with opposing electrodes above and below, generating an alternating current which drives free ions in the cell media across the scaffold membrane and cell layer, measuring the resistance that the membrane generates. Ions traverse the cell junctions preferentially, thus reporting on the junction barrier effectiveness. This method can be used to run large parallel experiments with multiple scaffold conditions, permitted that the scaffolds can be mounted within the apparatus. This research was able to eliminate once necessitated glass and polymer scaffold under layers, increasing scaffold perfusivity and allowing for a TEER analysis. Results show that salivary gland cells behave similarly on these thinned PLGA nanofiber scaffolds as on the control membrane.