Date of Award




Document Type


Degree Name

Doctor of Philosophy (PhD)


Department of Nanoscale Science and Engineering


Nanoscale Sciences

Content Description

1 online resource (ii, 89 pages) : illustrations (some color)

Dissertation/Thesis Chair

Carl Ventrice

Committee Members

Hassaram Bahkru, James LLoyd, Vincent Labella, Byounghak Lee


catalysis, fuel cells, Platinum, strong metal support interaction, titanium dioxide, Titanium dioxide, Fuel cells, Atomic layer deposition, Chemical vapor deposition, Platinum catalysts

Subject Categories

Nanoscience and Nanotechnology


Several roadblocks prevent the large-scale commercialization of hydrogen fuel cells, including the stability of the Pt catalysts and their substrates, as well as the high cost of Pt. This is particularly true for the cathode, which requires a higher Pt loading because of the slow kinetics of the oxygen reduction reaction (ORR). The problem with the stability of the substrate can be solved by replacing the traditional carbon support with a conductive metal oxide such as reduced TiO2, which will not easily corrode and should result in longer lasting fuel cells. In this study, Pt was deposited either by atomic layer deposition (ALD) or physical vapor deposition (PVD). The typical size of the Pt islands that were grown using these deposition techniques was 3-8 nm. One factor that can inhibit the catalytic activity of a metal catalyst on a metal oxide is the strong metal support interaction (SMSI). This is where a metal on a reducible metal oxide can be encapsulated by a layer of the metal oxide support material at elevated temperatures. The processing of materials through atomic layer deposition can exceed this temperature. The TiO2 substrates used in this study were either grown by ALD, which results in a polycrystalline anatase film, or were single-crystal rutile TiO2(110) samples prepared in ultra-high vacuum (UHV). The Pt/TiO2 samples were tested electrochemically using cyclic voltammetry (CV) to determine the level of catalytic activity. To determine the effect of the SMSI interaction on the catalytic activity of the PVD grown samples, CV was performed on samples that were annealed in high vacuum after Pt deposition. Additional characterization was performed with scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS), Rutherford backscattering spectrometry (RBS), and four point probe analysis.