Date of Award




Document Type


Degree Name

Doctor of Philosophy (PhD)


Department of Nanoscale Science and Engineering


Nanoscale Engineering

Content Description

1 online resource (xvi, 120 pages) : color illustrations.

Dissertation/Thesis Chair

Bin Yu

Committee Members

Ernest Levine, Carl Ventrice Jr., Vincent LaBella, Sergey Rumyantsev


Carrier density, Graphene, Heterostructures, Hexagonal Boron Nitride, Resistivity, Two-dimensional, Boron nitride, Dielectrics, Nanoelectronics

Subject Categories

Nanoscience and Nanotechnology


Hexagonal boron nitride (h-BN), a layer-structured dielectric with very similar crystalline lattice to that of graphene, has been studied as a ubiquitous dielectric for two-dimensional electronics. While 2D materials may lead to future platform for electronics, traditional thin-film dielectrics (e.g., various oxides) make highly invasive interface with graphene. Multiple key roles of h-BN in graphene electronics are explored in this thesis. 2D graphene/h-BN heterostructures are designed and implemented in diverse configurations in which h-BN is evaluated as a supporting substrate, a gate dielectric, a passivation layer, or an interposing barrier in “3D graphene” superlattice. First, CVD-grown graphene on h-BN substrate shows improved conductivity and resilience to thermally induced breakdown, as compared with graphene on SiO2, potentially useful for high-speed graphene devices and on-chip interconnects. h-BN is also explored as a gate dielectric for graphene field-effect transistor with 2D heterostructure design. The dielectric strength and tunneling behavior of h-BN are investigated, confirming its robust nature. Next, h-BN is studied as a passivation layer for graphene electronics. In addition to significant improvement in current density and breakdown threshold, fully encapsulated graphene exhibits minimal environmental sensitivity, a key benefit to 2D materials which have only surfaces. Lastly, reduction in interlayer carrier scattering is observed in a double-layered graphene setup with ultrathin h-BN multilayer as an interposing layer. The DFT simulation and Raman spectral analysis indicate reduction in interlayer scattering. The decoupling of the two graphene monolayers is further confirmed by electrical characterization, as compared with other referencing mono- and multilayer configurations. The heterostructure serves as the building element in “3D graphene”, a versatile platform for future electronics.