Detection and Characterization of Non-Transiting Extra-Solar Planets in Kepler Data using Reflected Light Variations
Document Type
Article
Publication Date
Fall 10-2012
DOI
10.1109/CIDU.2012.6382198
Abstract
Orbiting planets reflect light, and from the perspective of a distant observer an illuminated planet undergoes phases resulting in a periodically-varying reflected light flux. While such reflected light is generally expected to be weak with the magnitude of the flux being well below noise level, in some cases reflected light variations are detectable with today's technology in the Kepler dataset. For example, a sinusoidal variation is visibly apparent along with a secondary eclipse in the HAT-P-7 light curve recorded by Kepler. In this paper we consider the problem of detecting extra-solar planets in Kepler data by modeling reflected light variations within a Bayesian estimation paradigm. We demonstrate that such detections are possible for a class of non-transiting planets using data from the Kepler Data Archive. The development of this computational technology could significantly increase the number of detectable planets within the Kepler dataset. Furthermore, understanding the potential capabilities of this technology could influence the design of future missions.
Recommended Citation
Knuth K.H., Placek B., Richards Z. 2012. Detection and characterization of non-transiting extra-solar planets in Kepler data using reflected light variations. N. Chawla and A.N. Srivastava (eds.) Proceedings of the Conference on Intelligent Data Understanding 2012, IEEE Explore, 31 - 38. doi: 10.1109/CIDU.2012.6382198
Terms of Use
This work is made available under the Scholars Archive Terms of Use.