I play therefore I am : deconstructing ludic identities

Joseph Matthew Wozlonis

University at Albany, State University of New York, joewozlonis@gmail.com

The University at Albany community has made this article openly available. Please share how this access benefits you.

Follow this and additional works at: https://scholarsarchive.library.albany.edu/legacy-etd

Part of the English Language and Literature Commons

Recommended Citation

https://scholarsarchive.library.albany.edu/legacy-etd/2413

This Master's Thesis is brought to you for free and open access by the The Graduate School at Scholars Archive. It has been accepted for inclusion in Legacy Theses & Dissertations (2009 - 2024) by an authorized administrator of Scholars Archive.
Please see Terms of Use. For more information, please contact scholarsarchive@albany.edu.
I PLAY THEREFORE I AM:
DECONSTRUCTING LUDIC IDENTITIES

by

Joseph Wozlonis

A Thesis
Submitted to the University at Albany, State University of New York
in Partial Fulfillment of
the Requirements for the Degree of
Master of Arts

College of Arts & Sciences
Department of English
2019
Abstract

My project, a critical thesis titled “I Play Therefore I Am: Deconstructing Ludic Identities,” investigates the relationship between ludic entanglement and the human subjective experience in video games. By using Gilles Deleuze’s cinematic interpretation of movement and time, I establish that video games manipulate virtual time and space to map agency onto the subjective experience of the player, thereby creating ludic entanglement. Ludic entanglement is the process by which the player can function in virtuality through a video game’s avatar. My project culminates in an analysis of Rockstar Game’s *Red Dead Redemption 2*, a video game that refigures ludic entanglement in order to rehabilitate the historical trauma of Native Americans. In my analyses, I synthesize the fields of games studies, neuroscientific theory, film studies, and computation theory to conclude that video games can entangle the human subjectivity to reenact historical trauma, resituate textuality onto the human subjective experience, and transform virtual reality into a universal consciousness. I argue that in order to understand how video games successfully manipulate ludic space and time, we must first understand how they entangle the human subjective experience. Investigating the implications of ludic entanglement will allow games scholars to be clear about a potentially troubling subject matter: what effects do video games have on people’s lives? For literature scholars, this project hopes to demonstrate the value of a variable textuality in video games like *Red Dead Redemption 2*, and this project also hopes to see more literature scholars play more games.
Introduction

The relationship people have with video games is unique: why do people invest so much time in virtual spaces? They seek to escape the real world around them, and video games offer the perfect solution for escaping one’s responsibilities and troubles in the real world. However, people don’t mind taking up another person’s problems at all. For some, dealing with the end of the world as Lara Croft is a far more reasonable task to take up than one’s ordinary problems. As such, this project aims to better understand the relationship between gamers and video games.

Video games are an interactive media, not in competition with other popular media such as novels, poetry, television, or movies, but rather as *complementary to them*. This is to say, one of the ways in which this project aims to better understand the relationship between gamers and video games is to deconstruct the interactive processes through which gamers play games. My previous work in *Respawn, Relearn: How Video Games Build and Destroy Emergent Languages* deconstructed several ways in which video games teach people how to play them through emergent literacy processes. While working on that project made me conscious of the ways in which games are in fact textual experiences, it also made me aware of facets of textuality about games that I left unexplored. Furthermore, it made me realize the limitations of interpreting games as purely textual experiences.

The first chapter of this project will challenge my previous critical assumption claiming that we should interpret games primarily as textual experiences. By this I mean this chapter will answer the following question: what does playing a video game entail for the player that goes beyond textual experience? This line of inquiry does not aim to ignore the ways in which games are textual--but instead to broaden our understanding of playing games as a multi-channeled participatory experience. In order to breakdown this process and develop a definition of “multi-
channeled,” this chapter will use Gilles Deleuze’s *Cinema* to parse the player’s subjective experience in relation to the video game’s narratological orientation. Deleuze’s *Cinema* reveals that movement, space, and time are three features of film that compose the cinematic image. Because of these features, the audience is immobilized by the invisible hand of the director precisely because the cinematic image is non-negotiable. In this way, Deleuze reveals a new type of relationship to visual narrative distinct from the novel or the play. Sharing his intrigue of the audience, chapter one aims to expand his analysis of the cinematic image by shifting the conversation towards video games. Deleuze’s film theory will help us develop a flexible terminology in breaking down the relationship between virtual composition in visual narrative and its relationship to the ludic narrative as a way to understand intra-subjective transformation between player and avatar. Specifically, what happens to the visual narrative when the audience can participate in the outcome of the story? What happens when the invisible hand of the director no longer controls every frame of the film, and instead lets his audience manipulate the camera? Thus, we can use the taxonomy of terms Deleuze develops in *Cinema* to isolate the intersection of agency and narrative while playing *Red Dead Redemption 2* in order to better understand how games affect one’s subjective orientation--that the relationship gamers have with the games they play is predicated on a shared subject orientation with the virtual identities present in-game. For example, my relationship to *Red Dead Redemption 2* is not merely as a gamer playing a video game, but rather as a shared subject orientation with the protagonist of the game, Arthur Morgan.

The second chapter of this project will home in on what it means to assume a simulated subject position in a ludic narrative. To do this, the second chapter will use Ian Watt’s *The Rise of the Novel* in order to deconstruct authorship as the privilege of the individual subjective experience creating an individuated story. Since video games are “authored” by thousands of
different people, chapter two aims to define authorship of games as related to the desired
simulated subject position of the game. In this way, we can see the simulated subject positions in
Rockstar Game’s *Red Dead Redemption 2* interfere with the subject position of the player,
introducing us to a new phenomenon in games: ludic entanglement. By this I mean, playing
games involves more than controlling an avatar or a gun. *Red Dead Redemption 2* dictates
players to attenuate multiple channels of information simultaneously to reframe their subject
position in relation to the characters they control in-game.

The third chapter works to understand how closely related a player’s subject orientation
is in their perspective about reality, or “the real”. Departing from examining just single-player
narrative driven games, this chapter will focus on developing an understanding of how video
games address reality both in its virtual and narrative production as universal computation
machines. The function of this chapter is to demonstrate the following: that if we admit that
video games are interpreting a multi-channeled form of reality in their visual and narrative
compositions, then they also work to shape the way we interpret reality. In order to understand
how video games address “the real” and the reality of the people that play games, we will use
Antonio Damacio’s *Looking for Spinoza* and David Deutsch’s *The Fabric of Reality* as a lens to
engage how our subjective identities are manipulated by games. Since Damacio is interested in
breaking down “the bedrock of our minds,” he illustrates relationships between emotions and our
brain--and in turn how they’re produced in text--that are useful when talking about the diverse
effects video games have in shaping the way we see reality given their penchant for simulating
reality.
As mentioned in the introduction, I completed a yearlong research project on video games studying the *textual* features of video games. My goal in that project was quite simple: in several ways, I argued that video games have distinct textual features that would benefit from the eyes of literature scholars. As with most of my completed research projects, I never want to look at them again--too much embarrassment of *what should have been, or I should’ve pushed this idea further*. Yet, unlike many of my completed research projects I went back to that one. Part of the reason I went back was because I felt there was material that I left undone that I could salvage--all the time I spent arguing about how video games are textual I never thought about the ways in which I overlooked the pixel. Or better said, I spent too much time *reading* video games and not enough time *playing* them. My disservice to the pixel led me to revisit the distinct relationship video games have with people--*what relationships do people have with videogames, and why are they so unique?* I no longer felt comfortable using the words “play” or “participate” as a way to summarize this relationship because people who don’t play games look at me like an alien when I use them as commonplace terms. *Play* can mean different things in different contexts, and my previous project took advantage of this fact within the context of video games without delivering a fair explanation. The fact is, no matter how popular gaming is or ever will be, the place to start developing an understanding of the terminological commerce games scholars use is with the words themselves. In this way, this chapter will formulate an etymology of *play* as related to videogames by examining several previous definitions of play as developed by games scholars.
Of course, this chapter won’t boil the multi-channeled processes of playing games down to merely just words. Rather, since these words refer to complicated processes, we will begin developing a select few words that come up in relation to games quite often—words that should be specified for the rest of this project. Since previous videogames scholars have varying opinions as to what the term *play* could mean, we will also examine the relationship between *play* and *work*. To establish our footing, it would prove useful for this chapter to talk about video games in motion. Much like Ian Watt (more on him later), I am equally as concerned about the formation and discipline of the video game as I am about the content that it produces. This to say, before we can talk about the “game itself” we must talk about the importance of how the player reaches the game and how the game reaches the player. To do this, we need to talk about currencies of virtuality: simulations of movement, time, and agency. While movement, time, and agency are deeply connected in video games, isolating each piece individually will allow us to develop a consistent image of virtuality through different games.

Movement and time are also features of novels\(^1\) and film as much as they are video games, but video games depart through the agency of audience. Yet, even though video games manipulate movement and time in unique ways, the engagement of the image on a terminal—in this case, televisions or computer monitors—bring film and video games closer in their engagement than do novels. For this reason, this chapter will investigate the implications of the ludic terminal and based on our investigation of the ludic terminal will argue the following: during the process of gameplay, the video game maps agency to the player by simulating time, movement, and agency in the player’s lived experience thereby creating *ludic entanglement*.

\(^1\) This project discusses the importance of novels in relation to video games in chapter two.
For Deleuze, there are two primary types of images he discusses in the context of cinema: the time-image and the movement-image. Deleuze argues that both the time-image and the movement-image are objects emergent of film that manipulate our notion of “the real”:

- The real was no longer represented or reproduced but ‘aimed at’.
- Instead of representing an already deciphered real, neo-realism aimed at an always ambiguous, to be deciphered real; this is why the sequence shot tended to replace the montage of representations.

(Deleuze 1)

Here, Deleuze clarifies a feature of neo-realism: that the goal of neo-realism in its cinematic representation was no longer to capture the real in sequenced images; rather, to describe reality through film cameras. This distinction is important for Deleuze, because it transforms the responsibility of film in two ways: (1) the sequential nature of film--the way each frame follows the next as time moves forward--constitutes linear time; and (2) the portrayal of movement in film constitutes an illusion of space. Deleuze has a much easier time defending this relationship with the real because it allows cinema to compose its own form of reality--meaning, once film abandons the burden of mirroring reality, it privileges narrative over the sensory-motor representation of its characters. He writes, “neo-realism produced a formal or material ‘additional reality’. However, we are not sure that the problem arises at the level of the real, whether in relation to form or content. Is it not rather at the level of the ‘mental’, in terms of thought?” (Deleuze 1). This is to say, process of capturing the real for cinematic representation is not a closed circuit; rather, the subjects and objects captured in film, and those who watch film are connected through our encountering of film.
In this way, we use cinema as a mode of artistic expression so as to encounter the cinematic image within the framework of an optical situation. Cinema describes the real for us to encounter it for our own subjective experience. Deleuze’s neo-realism is defined further by the immobility of the audience, which introduces our first formal difference between films and video games:

What defines neo-realism is this buildup of purely optical situations (and sound ones, although there was no synchronized sound at the start of neo-realism), which are fundamentally distinct from the sensory-motor situations of the action-image in the old-realism. (Deleuze 2)

Deleuze’s taxonomy gives us several objects in motion that can be translated from the cinematic text over to the ludic text: optical situation, synchronous visual and audial objects, sensory-motor strata, action etc. In many ways, Deleuze’s taxonomy of cinema anticipates the following question: how do we encounter the ludic image differently than the cinematic image? Firstly, encountering cinema requires a completely immobile audience. So much so that you will begin to hear growls of frustration from surrounding audience members at the movie theater if you move your head around too much. In fact, immobility is required so much from movie-goers these days that AAA movie companies have replaced those old sticky chairs with recliners. Point being, if the audience is not immobile, they unfortunately might miss something really important. Thus, encounters with the sequential film image is ultimately irretrievable--the cinematic image has arrived and left in the same moment.

This relationship with the cinematic image frames not only the way we understand the progression of movie as it relates to time, but also the design of cinematic time at the hands of
the filmmaker. Deleuze writes that the filmmaker’s hand “doubles its prehensile function (of object) by a connective function (of space); but, from that moment, it is the whole eye which doubles its optical function by a specifically ‘grabbing’ one (Deleuze 13). For Deleuze, the cinematic image is the connective tissue between the hand of the filmmaker and the eye—or better put ‘optical situation’—of the audience. More importantly, this means the design of the optical situation by filmmaker simultaneously functions as manipulated subjective experience for the audience member. Thus, the cinematic image disrupts the literal space between audience and film, or even audience and filmmaker.

Ludic Space

The ludic image that emerges from the video game disrupts the space between player and game by way of agency. Players must familiarize themselves with the way space functions in a game in order to successfully move their avatar throughout the game world. Traditionally, in games like *Super Mario Bros.* or *Contra*, space is simulated so that players must familiarize themselves with the abilities of their avatar in order to make their way through each level. If the player fails to do so, they can end up dropping Mario into an endless pit, launching him into the mouth of a piranha, or missing a shortcut in later levels. In other games, however, the significance of space goes beyond the ways in which players avoid falling off high cliffs. As we’ll see later in this chapter, the significance of space can also be operant through time.

Take, for example, the following image of an in-game screenshot of *Red Dead Redemption 2*. While Arthur aims a rifle at a stranger, the game displaces physical space in multiple ways. Firstly, the way Arthur is oriented on screen suggests that there is roughly twenty yards away from the stranger he is aiming at, but there is also a space between Arthur and the
player. Since, of course, the player controls Arthur’s avatar, one could say that the orientation of Arthur’s perspective is necessary so the player can see what Arthur cannot see. For example, if Arthur is in a gunfight, an enemy will potentially try and flank Arthur to attack him, but since the player is not confined by a perspective behind Arthur’s eyes, they can react accordingly and remain safe. Another way space is displaced between Arthur and the player is the HUD. Located at the corners of the screen are HUD elements that inform the player of various information occurring in the game world. Located at the top right-hand corner of the image is both Arthur’s ammunition counter and the criminal status bar. While functional information for the player, Arthur is unable to see the HUD as well and respond appropriately—this is the same case for the rest of the HUD. In this way, RDR2 demonstrates a multi-channeled displaced subjectivity between the player and Arthur. Through this displacement emerges a spatial entanglement between Arthur and the player—that there is information accessible only to the player and Arthur respectively tells us that the multi-channeled subjectivity operant in the game is shared between player and avatar.
Disregarding the limitations of representing gameplay by way of still-images, space is simulated in several ways. Firstly, in *RDR2*, the protagonist is depicted to the player from the third-person perspective--that is, the game’s cinematic perspective will always be behind the avatar in the game. The function of this perspective from a gameplay standpoint is predicated upon space--in *RDR2*, it is important for the player to view Arthur Morgan’s avatar from the third-person perspective so they can see around him to make sure he isn’t getting blindsided by an enemy attack; so they can easily maneuver Arthur’s horse through dense forests to prevent them from colliding with trees; and most importantly so they can determine how to move Arthur throughout the world. Viewing your avatar from the third-person perspective is a spatial relationship the player has with Arthur which emphasizes the presence of his body on-screen.

The unique relationship a player has with their avatar has both mechanical and mental implications in how the player carries out their virtual responsibilities. For example, even though the above image presents Arthur Morgan in the third person perspective, Rockstar Games implemented varying camera perspectives for the player to assume, thereby displacing emphasis from Arthur’s entire body to his weapons:

![Figure 2: The player plays Arthur Morgan from the first person perspective.](image-url)
While neither camera perspective is mandatory for the player to assume (the player can change the orientation seamlessly whenever they choose), assuming either perspective has massive implications for the player’s relationship to Arthur Morgan. If we compare both images, the only in-game feature that remains constant is the HUD (Heads Up Display). In this case, the HUD encompasses the map on the bottom-left of the screen and the weapon reticle at the center of the screen. The player that assumes the first-person perspective in the game will have very little exposure to Arthur throughout the game besides from cutscenes, wherein the game itself assumes a cinematic image, and the player loses all agency over Arthur. In this way, RDR2 signals the difference between the cinematic image and the simulated image by way of agency, and the loss of agency always parallels the loss of the cinematic image. RDR2 transitions from cinematic image to simulated image with little to no resistance--unlike most games, RDR2 manages to transition between cutscene and gameplay without any loading screens.

In older generation games like Resident Evil 4, cutscenes were triggered by player action--usually by reaching an undiscovered location in the story. This was for two reasons: (1) given the processing power of previous console generations, new levels needed time to render; and (2) it was very difficult for programmers to implement complex dialogue while walking around levels, therefore necessitating that plot development, character development, and any ounce of story exposition take place within a 50 to 80 second CGI cutscene--point being, the technology just wasn’t there yet. Thus, in older generation games wherein cutscenes were the most visible source of story development for the game, players learned that their character was essentially ‘safe’ for the duration of the cutscene, and they could take a momentary break from gameplay since the loading screen post-cutscene would signal the player that they would be responsible for

2 Most cutscenes in RE4 are hidden behind closed doors.
playing the game again. Since no loading screens are required in-between cutscenes in *RDR2*, players never can offload the responsibility of controlling Arthur for the duration of the game. Even when a cutscene isn’t playing, *RDR2* sometimes thrusts the direction of the narrative into the player’s hands by way of choosing how Arthur responds to characters around him.

While riding to the Wapiti Reservation in “Archaeology for Beginners”, Rains Fall tells Arthur he is free to talk with him on their journey if he likes, triggering a dialogue option. Generally, the ability to respond to characters in-game is reserved for RPG (role playing games) wherein the direction of the narrative can branch off into different outcomes depending on dialogue choices. In *RDR2*, the player has the ability to engage in dialogue with characters without worrying about disrupting the trajectory of the narrative into something undesired. More importantly, the dialogue options the player must choose from in *RDR2* cannot be undone or reverted. If the player decides one dialogue option over another, Arthur will only record the conversation that happened in his journal. In this way, *RDR2* places the responsibility of Arthur’s conversations in the player’s hands, but also signals to us that there are dialogue chains left unopened and undiscovered. These undiscovered dialogue tracks can only be accessed on a second playthrough of the game, wherein the player elects to choose the alternate dialogue option with the character they speak to. I always cast this as a troubling design decision on behalf of the game. Given how much time and effort was put into making Arthur’s journal a functional archive of the game’s narrative and their actions in-game, it seems daft that players cannot carry out both dialogue options in a conversation. For example, in the figure below, the player will only have the option to choose one dialogue track, and if they want to hear the alternate conversation, they must replay that specific quest or look up a transcript online. Again, *RDR2* introduces us to a new form of entanglement. By withholding dialogue tracks from the player—
and, by extension, Arthur—RDR2 forces an unfinished archive wherein no two narratives can be played the same way.

Figure 3: During the mission “Archaeology for Beginners,” Arthur rides through the Wapiti Reservation’s forests with Eagle Flies.

The dialogue interaction shown in figure 3 provides the player with the opportunity to shift the direction of important conversations throughout the game. In the scene above, depending upon whether the player chooses “Eagle Flies?” or “Dutch” means Arthur (and therefore the player) will learn a critical piece of information about either Eagle Flies or Dutch, but it also means they lose the opportunity to carry out the second dialogue option in the future. Having this degree of control over the direction of the narrative means RDR2 aims to disrupt the pure cinematic image and pure simulation. In other words, RDR2 disrupts the space between cinematic and simulated image in order to keep the player’s presence in the game as constant. If we think back to how Deleuze notes that the connective tissue between filmmaker and audience
is the film itself, we can see that when it comes to video games, the player functions as the connective tissue between the game creators and the game itself.

Ludic Time

At this point, we can no longer talk about the function of space in video games without talking about time. Virtual time and space have a unique function in relation to movement in games--that is, time, space, and movement are all related to progression. In a game like *Super Mario Bros.* time, space and movement are all necessarily linked together through both the mechanics of the game and goals of each level:

![Figure 4: Mario jumps his way the first level of Super Mario Bros.](image)

Here, time is represented by the “Time” counter on the top right hand corner of the screen, movement is represented by Mario’s avatar located at the center of the screen, and space is defined by the degree to which movement of the game’s avatar can be carried out within the physical limits of the game’s engine. By this I mean, space is defined by the limits of each game
world--as in the invisible walls that players cannot move their avatar beyond. Sometimes this is defined by the limitations of a particular game’s engine (see in GTA V wherein the players avatar can only travel so far into the ocean before the engine forces the player back in the direction of the shore) or it can even be defined by the limitations of level design (see in Super Mario Bros. that the player cannot go below platforms without triggering a fail-state). Super Mario Bros.’ implementation of time is registered by the player only in one channel: completion time. Finishing a level with more time on the clock will grant the player more points upon completion of the level, and failing to complete the level within the allotted time will trigger a fail-state, forcing the player to lose a life and restart the level from the beginning. But, since the function of time in Super Mario Bros. is restricted to a spectrum of success and failure, its construction of time is simplistic. In Red Dead Redemption 2, the function of time is far more complicated precisely because its function is not restricted by space or movement. In fact, movement and space only work to disrupt Red Dead Redemption 2’s several renditions of time.

RDR2 and Time

Red Dead Redemption 2 deals in several registers of virtual time that remediate the player’s understanding of chronological time, historical time, and simulated time. Firstly, RDR2 disrupts the chronological time of the game’s narrative by functioning as a prequel. In RDR1, John Marston is the protagonist of the story trying to hunt down and kill the Dutch Van der Linde gang as part of obligations made by the FBI about his former life of crime. Thus, the creation of RDR2 as both sequel in its title (hence the number two signaling its second the game in the series) and as prequel in narrative form works to disconnect its chronological legitimacy for its audience. Another problem that emerges as a result of the series’ disconnected
chronological order is the way in which its arc of redemption plays out. In *RDR1*, the arc of redemption was located in John Marston’s character development over the course of the game--in order to redeem his name in the eyes of the government, the FBI contracts him to hunt down the remaining members of his former gang in order to restore his status of civilized human being before returning to his family. Thus, *RDR1*’s narrative timeline is predicated upon the restoration of the civilized man in the domestic domain. Yet, *RDR2*’s function as a prequel narrative displaces John Marston as redemptive character in a double movement: by (1) reorienting the redemption narrative around a new protagonist, Arthur Morgan; and (2) the hidden history of the displaced native bodies in the simulated Western frontier. Thus, *RDR2* transforms the restoration of the patriarchal domestic body into a quest for colonial redemption of the white oppressor for the sin of Native American displacement on the Western frontier.

In this way, *RDR2* disrupts a second formulation of time: historical time. Throughout the game’s narrative, evidence of Native American displacement on the Western frontier subtly emerges until Arthur attempts to aid the Wapiti reservation in their battle with the US Army. Prior to the eventual war between the Army and the Natives in the story, Arthur--and thereby the player--bear witness to evidence of the displaced Native Americans in the American frontier. In fact, Charles Smith of the Van der Linde gang--a half Native American half black orphan roaming the country until joining up with the gang--brings Arthur along several quests that involve restoring his displaced culture and identity. Early in the story when Arthur joins Charles to hunt down a roaming duo of poachers murdering the sacred buffalo, Charles gives Arthur the choice of enacting revenge upon one of the poachers by killing him, or letting him run off unharmed:
Figure 5: Arthur must decide whether the poacher will live or die. If the player decides to let the poacher go, Arthur’s honor level will increase but Charles will scold Arthur, suggesting the player made the morally good decision in relation to the poacher but a dishonorable decision in the eyes of Charles. The player’s agency in this quest is replicated throughout the story involving different events; however, the player-specific actions in this quest have implications upon the figuration of Arthur in a simulation of historical trauma. If the player decides to kill the remaining poacher, they are redeeming the figuration of the Native American genocide in historical time by carrying out the killing of a white oppressor. If the player decides to let the poacher live, they are restoring the trauma of the Native Americans by letting the white oppressor roam the frontier. Or, simply put, simulating the historical trauma of displaced Native American bodies through Arthur Morgan, *RDR2* displaces evidence of the Native American genocide by simulating moral agency for the oppressor.

Since the simulation of moral agency is key for understanding *RDR2*’s definition of *redemption*, we should shift our focus over to the third formulation of time: simulated time. As mentioned in this chapter’s discussion of *Super Mario Bros.* simulated time can emerge in various forms: as a narrative feature which describes the time it takes for a particular event to
proceed or arrive; as a mechanical feature wherein players are given an allotted time to complete a number of game tasks before a fail-state is triggered; and even by way of agency, allowing players to engage with history via an enacted historical archive. In *RDR2*, simulated time is represented in several conflicting ways that, when deciphered, reveals the potential for a simulated archive wherein historical artifacts are reproduced beyond their historical time.

In Arthur Morgan’s journal, players can witness a simulation of late 19th century journaling develop over the course of the game’s narrative:

![Figure 6: Arthur’s illustrations of Uncle, Tilly, Mary-Beth, and Karen (left); and a journal entry documenting a trip into Valentine (right).](image)

In the above image, Arthur documents a trip into the town of Valentine for a quest with Uncle and several of the women in the camp to get supplies:

Headed into Valentine with Uncle and the girls. Girls went scouting for work while uncle and I had a few drinks and he
explained more of his theories on existence and bare faced lies about his past. Things took a strange turn--some fella seemed to recognize me, or us from Blackwater. Guess we had been holed up there too long while Hosea and I scouted the job that never was. I chased the bastard. (Morgan)

Here, we see Arthur’s journal writings after the events he describes had occurred. His journal functions as a space for the player to recount previous events that took place in the story, but it also functions as a critical artifact of the Van der Linde gang. Meaning, even though the events in Arthur’s journal are scripted to report what the player has already experienced in the game, the journal itself functions as an artifact describing late 19th century nomadism.

I use “nomadism” loosely here, but my intent is to relate Arthur’s ability to document events that occur in and out of the strict chronological story. For example, since the environmental systems in RDR2 contain roughly 200 different species of animals, players encounter species at different rates than one another--I could come across the different swamp life by chapter two in RDR2, while another player can come across different swamp life in chapter 4. As a result, Arthur will construct his journal in different ways depending on the timeline of encounters he has with different territories in-game. Arthur’s journal not only documents a list of encounters the play endures throughout the game; rather, the events documented in his journal are evidence of shared subjective experience between Arthur and player controlling him--meaning, Arthur’s journal becomes the connective tissue for lived experience of both protagonist and player. Thus, RDR2’s simulated time supports a historically linked relationship between the virtual and the real.
Chapter Two: Arthur Morgan both Flesh and Not

In *The Rise of the Novel*, Ian Watt conjoins the specific literary qualities of the novel to the historical and social context out of which the novel was born. Specifically, he links the major works of Daniel Defoe, Samuel Richardson, and Henry Fielding in order to convey that each of them are in part “the result of changes in the reading public, of the rise of economic individualism, and of the ‘spread of Protestantism, especially in its Calvinist or puritan forms’” (Schwarz 61). Meaning, he demonstrates that “biographical, sociological, and historical knowledge explain the forms of works of art and are necessary for understanding their meaning”-that in order to understand the function of the novel as both the site of a new creative art form and evidence of a new cultural artifact, our scholarly responsibilities are predicated upon seeing the novel in historical motion. For today’s standards of scholarship, this feature of literary studies is usually deemed as a given--I’ve had Marshall McLuhan’s *the medium is the message* engraved into my brain since I was a freshman English major. However, since Watt first published *Novel* in 1957, the types of cultural media that have been ingrained into modern culture have metastasized in incredibly interesting ways. For example, digital and virtual mediums such as film, television, and video games have emerged as some of the most popular media in recent history, and the advent of the internet has only catalyzed our engagement with said media in the workplace, at home, and everywhere in-between.

Yet, even as a young scholar entering his fifth year of University level research, there seems to be a rather undisclosed hesitation from my professors and peers about engaging with digital and virtual texts, and I’m unsure if it’s an outright unwillingness to work with digital and virtual material or if part of the blame is due to the unstable nature of the material itself. This is to say, the Humanities still have not figured out how to include video games into our
conversations of literature, narrative, and poetics. In fact, if we look at some of the rhetorical framing of games scholars who are interested in video games as bridging the gap between digital and virtual productions, we can begin to see that talking about video games as textual objects complicates our traditional understanding of literary scholarship. Steven E. Jones writes of the displaced location video games studies has at the university level, reaching a point where deciding whether one wants to study narratology or ludology is merely recapitulating a pointless academic quandary:

In its extreme form...ludology amounted to a reductive formalism.

Some ludologists sometimes ironically seemed prepared to recapitulate the history of twentieth century literary formalism, with “the game itself” replacing the New Critics’ “text in itself” as the hermetically sealed object of attention, rules and procedures replacing tropes and symbols as the features to be analyzed in isolation of authorial, historical, or cultural factors. (Jones 5)

Much like Jones, I am not here to wade through the narrative v. ludology debate either; rather, I’m here to initiate a conversation about to what end literary scholars should examine games for their textual significance, and to what end the relationship between the player and their actions within the games they play are part of that textual significance. In other words, Jones points out that video games scholars are enduring a crisis of scholarship--we don’t know where to situate video games insofar as to how to read them. Indeed, how we read video games as textual objects began in a previous project of mine called Respawn, Relearn: How Videogames Build and Destroy Emergent Languages, and that conversation will continue in this chapter. While that project took up the argument that we can read video games as literary texts, this chapter aims to
make clear a contradiction about the intersection of textuality and ludology: given that the participation of the human subjective experience is required for the ludic narrative, the textuality of video games is thus entangled in the lived human experience as well as the game itself. Another way we can describe this process is *ludic entanglement*. By ludic entanglement, I refer to the process of play both the video game and the player enact upon each other. In other words, in order to uncover the basis of textuality in video games, we must be willing to examine both the video game and human subjectivity as significant sites of analysis. Thus, by examining the ways in which Rockstar Game’s *Red Dead Redemption 2* entangles the human subjective experience in the narratological development, we will see how video games invoke the human subjective experience as an additional site for examining the textuality of games.

The Importance of the Flow State in Games

Some of my earliest childhood memories involve spending countless hours playing video games with my father. For what seemed like entire summer days we sat in front of our dusty CRT television eating pellets in *Pac-Man* levels, jumping from level to level in *Super Mario Bros.*, or dodging zombies in *Resident Evil*. The games we played together laid the foundation for a hobby I would later take up for the rest of my life on an almost daily basis. Looking back on those memories at the start of this project made me notice something about the games we played together--they were usually not multiplayer games. Sure, we played our fair share of party games like *Crash Team Racing* or *Mario Party*, and as I got older shooters like *Desert Storm* and *Counter Strike*, but we always came back to single player games despite the fact there was two of us. There was something about sharing the experience of progressing through a single player game experience that we preferred over competing with one another in a game world at the same
time. Intrigued by this glitch in our relationship, I asked him why we never stuck with multiplayer games:

I think it was because we appreciated the shared experience of a more developed story in the single player games. There was something about the multiplayer games that was fleeting--you never wanted to play them for more than an hour.

While we couldn’t play the single player games with one another at the same time, we were able to share the character arc of, say, Mario with one another as we passed the controller back and forth and watched every piece of story unfold in front of us. Sharing the story together meant recognizing we were both responsible for rendering the story’s progression. The rendered progression we took part in, however, was incredibly linear. *Crash Bandicoot* and *Super Mario Bros.*--games which we could easily call “old-school” games are designed to represent progression through two primary game-state functions: success allows the player to proceed to the next level or “game world” and failure forces the player to restart the level they are stuck on until they run out of lives. Once the player runs out of too many lives, they must restart the entire game. Although dated in comparison to the complexity of today’s game design, older games like *Crash Bandicoot* modeled their success and failure mechanics after cabinet arcade games wherein in order to keep playing the game, you were required to keep adding quarters.

In this way, these old-school games were very easy for my father and I to bond over by taking turns because of the way success and failure are directly tied to the game’s progression. Reaching a new level in *Crash Bandicoot* or *Pac-Man* meant we were surely closer to the end of the game, but more importantly it meant we could witness a new world that was aesthetically
different enough from the previous one so as to simulate progression--completing the first jungle levels in *Crash Bandicoot* meant that you would eventually proceed to the ice mountain levels wherein the game would incrementally introduce new game mechanics such as sliding on ice or zero gravity. While this progression mechanic required players to pay more attention to moving their avatar around in-game, it also required them to link narratological sequences to sensory-motor mechanics involving the game controller. Failing to reach a new level or game world meant my father and I would have to pay more attention to game mechanics we didn’t quite master but failing also taught us how to read narrative sequences as gateways for more complicated game functions. For example, my father and I eventually understood that when the boss fight in the “Hog Wild” level would occur in *Crash Bandicoot*, we would start rehearsing the incremental race mechanics we needed to memorize in order to beat the level. Thus, the process of playing games together--and to a certain point learning games together--can be more easily defined as rendering sensory-motor reactions with narrative sequences. When one of us failed a level, we would take note of things like the amount of jumps it would take for Crash Bandicoot to kill an enemy, or we would delicately measure the angle at which Lara Croft would have to jump towards a ledge--these things may seem arbitrary, but spending the extra ten seconds making sure Lara Croft can sufficiently grab onto a ledge often determined whether you can continue playing the game or you had to witness Lara fall into a pit of spikes. Point being, the time my father and I spent prodding over game mechanics demonstrates the types of resources we had to work with emergent from the game itself:

Alyse Knorr notes this process when discussing what it was like playing *Super Mario Bros. 3* with her father during her childhood:
As controller-throwers like my father know all too well, while failure is key to making a game fun, too much of it can have the opposite effect...Mihaly Csikszentmihalyi’s 1990 theory of “flow state,” which contends that individuals prefer challenges that are not too easy but also not too hard. Too easy becomes boring while too hard becomes frustrating. Atari founder Nolan Bushnell summed up a modified version of this theory with his famous “Bushnell’s Law” for arcade games: “All the best games are easy to learn and difficult to master. They should reward the first quarter and the hundredth. (Knorr 3)

Here, Knorr points out that the balance of the flow state while playing a game is a crucial part of the lived experience of the player, and the didactic function of the game. On a basic level, the flow state is the specific rate at which players progress through a list of game tasks that need to be completed before the player can reach the final level. For my father and I, sharing single player games taught us how to interact with virtual interfaces at the level of the pixel--learning to maneuver the pixel from games like Super Mario to Tomb Raider--but it also displaced our lived experiences to locations that are, to this day, hard to describe. Often to the bafflement of my mother, we would emerge from the den--where our PlayStation was located--exhausted after hours of play because we did so much. My mother would scoff at us for wasting our weekends away staring at a screen--utterly disconnected and confused as to what we got up to in our game worlds, and how we had so much fun “in front of the TV.” In retrospect, she was right for questioning how much homework I possibly got done when I spent most of the afternoon oscillating from PlayStation, to Gameboy, to chessboard. The truth is, I thought homework was
trivial. For me, the flow state of games began simply as whether or not I was able to finish a level and get to the next one, and transformed into the practice of completing the game on a higher difficulty setting, and then eventually reaching the skill to complete most levels of *Super Mario* or *Crash Bandicoot* blindfolded. At this point, games were no longer simply about finishing them, or seeing how the story ends; no, I became obsessed with disrupting virtual spaces in every way I can.

By disruption, I don’t mean to say that I broke the games I played beyond repair; rather, I refer to a type of play-through of games that I took up as a hobby called *Speedrunning*. Speedrunning is “nothing more than playing a game with the intent of completing it as fast as possible. People speedrun to challenge themselves, to see a game pushed to the limits, and to get extra replay value out of a game” (SpeedRunsLive). Specifically, speedrunning requires players to reason with a game beyond the intended mechanics of gameplay. Players will manipulate the core mechanics of *Super Mario 64* such as jumping, sprinting, crouch-jumping, power-ups, and interactive level-design in order to break the intended design of the game. These actions will result in *sequence-breaking*—the act of performing actions or obtaining in-game items out of the intended linear sequence of the games design. Or, even *glitch-usage*—the act of manipulating core game mechanics in order to glitch out of required game-tasks, multiply game items, or skip entire sections of games to complete the game faster. For example, in *Super Mario 64*, one of the intended game-tasks before you can challenge Bowser in the final level is to collect 70 power stars. However, the player can sequence-break out of an in-game barrier designed to block Mario from proceeding to the next level before collecting 70 power stars, thus cutting down the length of the game by potentially dozens of hours:
In this way, speed running is a commitment to taking advantage of every aspect of a game’s literal code and using it against the game’s intended design in order to break it without rendering a fail-state. In this way, games necessitate a distinction between intended use and potential disruption at the site of coded language—meaning, the disruption of programmed code in games to void the intended structure of games desituates language as a form of authorship.

In many ways, my use of authorship is anchored in my experience as an English scholar and in many ways calls back to Watt’s research in *Rise of the Novel*. In *Novel*, Watt defines authorship within the historical and cultural significance of the Novel, which will prove useful for our working definition of authorship as related to games. For Watt, the Novel shifts authorship from the process of working within and simultaneously paying respect to genres towards the concern of the individual working outside of strict genres:

The novel is the form of literature which most fully reflects this individualist and innovating reorientation. Previous literary forms had reflected the general tendency of their cultures to make
conformity to traditional practice the major test of truth: the plots
of classical and renaissance epic, for example, were based on past
history or fable, and the merits of the author’s treatment were
judged largely according to a view of literary decorum derived
from the accepted models of the genre. This literary traditionalism
was first and most fully challenged by the novel, whose primary
criterion was truth to individual experience--individual experience
which is always unique and therefore new. (Watt 13)

Here, Watt contends that the Novel was historically unique precisely because it privileged the
truth of individual experience as a literary object. In other words, Watt argues that the novel is a
literary device in which the individuated textual production--that is, a story emergent out of a
single author--is consumed by the individual subjective experience. The Novel did not have to
worry about coming up against established models of traditional genre plots as a formal practice;
rather, the Novel became a “logical literary vehicle” of culture that was predicated on originality
sourced by a single author. Watt’s definition of authorship as pertaining to the Novel is
significant for our working definition of authorship in games precisely because both mediums
privilege the individual subjective experience in different but meaningful ways. Firstly, the
relationship the reader has with the novel is far more exclusive than that of games.

At the material level, the novel holds a limited entanglement in the reader’s perceptions.
If reading an English novel, the reader must engage with each page individually from left to right
in order to progress through the novel--just in terms of plot, page 200 will not make sense to the
reader unless they have also read the previous 199 pages. In this way, the novel demands the
reader to engage the narrative as a progression, and any attempt to usurp the designed structure
will render the story meaningless for the reader. Simultaneously, the novel does not care if it is read by someone--given it’s material structure, page 200 of *The Sun Also Rises* is just as accessible to the reader as page 150 regardless of whether or not the reader has complied to the intended structure of the novel. This is important to note in terms of engagement: the novel has no implicit feedback system during the process of reading. The shape of the novel will not change if someone does or does not read it--as readers, our responsibilities are to bear witness to the individuated subjective experience offered by the novel and give the novel nothing in return.

If anything, the relationship players have with video games are important *because* they challenge this relationship. From the outset, video games resist this structure through their materiality. Having a joystick or keyboard required to play video games establishes a relationship wherein the player has to give back to the game in order to “move forward.” At a basic level, this interaction is generally called “play.” But, since this chapter is invested in ludic entanglement, we should shift our focus towards a more inclusive conception of play, where the act of playing a video game is never one sided. In *Half-Real* Jesper Juul proposes a new definition of playing games that contains six features:

1. *Rules:* Games are rule-based.

2. *Variable, quantifiable outcome:* Games have variable, quantifiable outcomes.

3. *Valorization of outcome:* The different potential outcomes of the game are assigned different values, some positive and some negative.

4. *Player effort:* The player exerts effort in order to influence the outcome. (Games are challenging)
5. *Player attached to outcome:* The player is emotionally attached to the outcome of the game in the sense that a player will be winner and “happy” in case of a positive outcome, but a loser and “unhappy” in case of a negative outcome.

6. *Negotiable consequences:* The same game [set of rules] can be played with or without real-life consequences. (Juul 36)

In shorter terms, Juul argues that video games are rule-based systems with variable and quantifiable outcomes that have assigned values. These outcomes are influenced by player decisions because the player is emotionally attached to the outcome, and the consequences of the activities in-game are negotiable.

Written over a decade before *RDR2* was published, Juul’s proposed definition of game features anticipates many of the ways in which *RDR2*’s ludic entanglement is operant in relation to the player. Though, given the structure that Juul gives for how games function—that is, a virtual story-world with rule-based systems—it is important to understand the difference between emergence and progression:

Progression and emergence are the two extreme ways of creating games. In practice, most games fall somewhere between these poles... *Grand Theft Auto III* is structured in two different ways: In the big picture, the game is linear sequence that the player has to complete, from being betrayed in the beginning of the game to finally getting revenge. There are a few optional missions and a few missions that can be completed in different order, but overall *Grand Theft Auto III* is a game of progression. (Juul 82)
Here, Juul notes that while *Grand Theft Auto III* is a game of progression, it is a game that tests the waters with variable and emergent game-tasks. These game-tasks vary from arcade-type shooter missions wherein the player is responsible for killing a certain amount of opposing gang members with particular weapon, or even time-trial racing missions for bonus cash. But, Juul points out that the *core* of the game--in this case, the revenge plot of the protagonist--is strictly structured in terms of how the game resolves itself. Whether the player likes it or not, the story ends the same way every time without input from the player. For Juul, the limited influence the player has on the game’s narrative is what makes the game linear, not the variable actions the player can implement in-game. Thus, games are dynamic if their gameplay is dynamic. Meaning, a game is not merely a game of *progression* or *emergence*; rather, *Grand Theft Auto III’s* gameplay is emergent and its narrative is progressive.

Greater examples of emergent gameplay are represented more clearly by games that are primarily gameplay focused--that is, the game itself is constant emergence. Games like these more notably lack strictly structured plots, since they aren’t necessary for the game’s goals. For example, famous first-person shooters of the 1990’s and early 2000’s like *Quake* or *Counter-Strike* are games that don’t establish themselves as story-based games, but are important to study for their features of emergence. Like Juul defines, gameplay is emergent when players have the ability to manipulate gameplay to achieve desire-based goals. For *Counter-Strike*, these goals are defined by the gameplay itself--that is, a team-based first person shooter. Of course, players playing *Counter-Strike* have desire-based goals: they want to win as many games as possible and perform well at the same time. While aiming to win games remains a constant across first person shooters, the variable emergence lies in the gameplay itself: building a team, creating strategies, practicing your own individual skills (aiming, callouts, economy strategies etc.)--this is made
possible by the fact that each match of Counter-Strike you play can be carried out in a different way. The rules remain the same--one team wins, one team loses--but playing towards success or failure is where the desirable challenge emerges for each player: “As such, game design is about designing rules so that the actual strategies used by players are enjoyable to execute” (Juul 91).

Converging Progression and Emergence

The Novel and the video game are starkly different depending on what era of the video game canon we would like to look at. The material presence of the Novel has not changed much over the last few hundred years because of the individual subjective experience needed to compose the Novel, but also because of the individual subjective experience needed to read the novel. For example, we established that the novel differs from the game in terms of entanglement. The production and consumption of the novel mirror each other--they are didactic. In these terms, the novel is as perfect of a “logical literary train” as Watt argues it needs to be. Yet, the material presence of the video game has changed drastically over the years: we’ve seen games in arcade cabinets offering joysticks and buttons, our personal computers operant with mice and keyboards, game consoles with controllers and eventually motion controls, handheld devices, and more recently virtual reality headsets recording movement and directional perspective wherein the human body becomes the operant joystick. The several evolutions of the materiality of video games all aim to affect the human subjective experience in different ways.

From Galiga to Time Crisis, arcade cabinets generally offer games for which the primary goal of the player is to achieve the highest score in an archived scoreboard. For example, if I achieve the highest score in Pac-Man, I can inscribe three initials that demonstrate to other players who the best Pac-Man player is. I can make it as simple as “JOE” to represent my first
name or even “JMW” to represent the initials of my name. Despite its simplicity, arcade cabinets demonstrate an introductory relationship between play and authorship. Playing a video game entails two types of renderings: the rendering of a virtual game world and the evidence that I participated in that game world. Chapter one discussed the extent to which RDR2 functions as a narrative device that rehabilitates history through the actions of the player in-game, thus demonstrating narrative design as authorship and the actions of the player within that narrative design as an individualized authorship. In this way, the question of authorship as related to games is problematized not only by the occurrences of different systems we play games on, but also by the fact that game narrative itself is defined by the inputs of players.

Furthermore, the simple development process of games requires thousands of labor hours from thousands of people over a multiyear development cycle. So, when it comes down to it, the idea of pinning the material presence of a game on a single individual is largely impossible. Sure, there are development leads, creative designers, and more recently narrative designers, but a feature of video game authorship that is unique to games is the way the game itself obscures individual contribution for the individual ludic experience. Jason Schreier notes this when discussing the problematic development cycle of Red Dead Redemption 2:

In the final year of development on Red Dead Redemption 2, the upcoming Western game, the top directors decided to add black bars to the top and bottom of every non-interactive cutscene in hopes of making those scenes feel more cinematic, like an old-school cowboy film. Everyone agreed it was the right creative move, but there was a catch: It would add weeks of work to many people’s schedules. (Schreier)
Here, Schreier notes that a simple cinematic directorial decision can implicate multiple production cells in a development team. In order to enact this new narrative feature, multiple development cells were required to upend previously established directive decisions implemented into the game. In order to understand the scale of this implementation, a Rockstar games developer notes, “You can’t just slap black bars on the cinematics we’ve already shot. You have to reframe the camera so that the cinematics flow in a particular way, and you’re emphasizing what you weren’t emphasizing initially with that shot” (Schreier). Thus, authorship is not limited by the vision of a single author; rather, the production and development of the video game emerges out of a nexus of developers with different interpretations of the type of virtual world they’re trying to build.

Thus, ludic entanglement comes out of an obscured creative process wherein the player is engaging with a multi-channeled game that was implemented to reinstate the entanglement of gameplay and story. In this way, ludic entanglement consists of a constant refiguration of progression and emergence. In RDR2, progression and emergence are blended from mission to mission--the game retains the linear plot structure of Grand Theft Auto III while giving the player various plot structures they can potentially carry out. If we look to the game’s honor system, we can see that Rockstar implemented a rule-based honor system that determines what kind of story develops over the course of the player’s time spent in the game. Simply put, if the player plays RDR2 with high honor--meaning, they play Arthur Morgan as an honorable character--different occurrences throughout the story take place that greatly influences the plot, the way characters react to Arthur in-game, and high honor even determines one of several different conclusions to Arthur Morgan’s story by the end of chapter six.
The way *RDR2* implements this honor system is quite simple: if the player has Arthur perform “honorable” actions throughout the game, the player will be rated more honorable in the honor system displayed in-game. Having high honor can render benefits for the player in-game: better prices for items in shops, members of the Van der Linde will treat you with kindness, and you unlock certain outfits that are reserved for more honorable players. However, if the player performs dishonorable actions throughout the game, bad things happen to Arthur: he is hunted down by the law more often, shop owners will refuse to sell the player in-game items they normally would, and there is a chance Dutch will kick Arthur out of the gang.

![Image](image.png)

Figure 8: The honor meter (bottom center) informs the player of Arthur’s honor level in-game.

Yet, the honor system has implications beyond the emergent level gameplay features. Depending on what honor level the player maintains over the course of the game will have a significant impact on the game’s narrative. Specifically, Arthur’s honor level will determine how his character arc ends upon his death at the end of chapter six. When Arthur is helping the gang escape the Pinkerton raid, his tuberculosis becomes too much to bear in his final fight against Micah, and he collapses at the side of a cliff. Up until this point, if the player maintained a high
honor level for Arthur, he dies peacefully facing a sunrise along the horizon line. If the player maintained a low honor level for Arthur, he dies far more gruesomely. Even after Arthur’s death when the player assumes control of John Marston, Arthur’s grave will be decorated differently depending on the honor level he died with.

Figure 9: Arthur’s empty grave as a result of the player’s low honor level upon his death.

More importantly, however, is that the honor meter is evidence of a designed authorship implicit within the game. While Juul’s definition of gameplay explains the function of the honor system as a variation system of gameplay, it also points out the convergence of progression and emergence in games as a ludic entanglement. *RDR2* entangles the subjective experience of the player in the narrative trajectory of Arthur Morgan over the course of the game.
Figure 10: Arthur’s grave as a result of the player’s high honor level upon his death.

As a side note, the presence of Arthur’s grave in the epilogue presents an odd paradigm for the player: the shifting of protagonists upon Arthur’s death is significant regarding the subjectivity of the player. After spending possibly dozens of hours with Arthur, how does the player function while playing as John Marston for the remainder of the story? Based on personal experience, not well. Spending dozens of hours with Arthur through the story had a profound impact on the way I addressed RDR2’s environment. This is not to say that concluding the narrative as John Marston was negative, but even despite their similarities, Arthur and John’s figuration into the narrative is very different. Arthur’s redemption arc concludes upon his death. Pursuing the Van der Linde gang’s traitor in the epilogue as John serves as his individual redemption arc, but I must admit to some impostor syndrome while roaming around the game-space during the epilogue. There were times when moving the avatar around to see John’s face took me by surprise. This is to say, the ludic entanglement preceding the epilogue of the game
works to develop an identity that is closely linked to the game’s environment. Traversing the
same environment with a new avatar made me question my own ludic identity: how am I
supposed to put Arthur to rest when he is still feels very much alive in me? Furthermore, the
entanglement of a human subjective experience in a video game poses the following question: to
what extent does RDR2’s entanglement of the player have an impact on the future of virtuality?
The next chapter will discuss the implications of this entanglement in relation to our working
definitions of virtuality and reality.
Chapter three: The Fabric of Virtuality

While chapters one and two of this project develop new insights about how video games entangle the subjective experience of players during the process of gameplay, chapter three will develop the relationship between ludic entanglement and simulation. The intersectionality of the virtual and the real is important to this project insofar as how we understand collapsing boundaries—that is, the collapsing boundaries of reality within the confines of our subjective experience. Before we can begin to define what makes up the virtual and what makes the real, it is important for us to make a distinction between the virtual and simulation—they are two sides of the same coin, but simulation is distinct for it has a direction. On the other hand, virtuality and simulation use the human subjective experience as the primary text for which they mirror. In other words, virtuality can be simply defined as any manipulation of the real, and simulation is the direction of the manipulation. This distinction is important for this project since video games can manipulate the real in a variety of ways, but also for their power to render a genuine emotional response to virtual images that potentially have no real grounding in reality. In order to better define these virtual and simulated dynamics, we need to examine the boundaries of ludic entanglement—that is, if video games function by entangling the human subjective experience what permanence does playing video games have on our relationship to reality?

Alexander Galloway summarizes the stakes of this claim in his essay “Social Realism.” For Galloway, the relationship between virtuality and the real is a matter of congruence: does it matter if a game is a realistic depiction of a real place or a real activity? Or, does it matter that games can train us to do things in real life we normally wouldn’t do? These questions describe a long standing tension game scholars have run into: how are we supposed to solve the Columbine problem? Galloway begins to dissect this problem by examining what it means for a game to
have “realisticness” versus the implications of “Social Realism.” For Galloway, games can be divided in two ways:

Within the world of gaming, it is possible to divide games into two piles: those that have as their central conceit the mimetic reconstruction of real life, and those resigned to fantasy worlds of various kinds. Thus, *SOCOM* is about the real Navy Seals, *The Sims Hot Date* is about real dating (one assumes), and *Madden NFL* is about the real National Football League, while games like *Final Fantasy*, *Grand Theft Auto*, and *Unreal Tournament* transpire in fictional worlds with fictional characters and fictional narratives. (Galloway 72)

Here, Galloway links realism with whether or not the game’s content is directly mimicking the real world, but this definition is limited. Expressing the perspective of game developers, Galloway notes that realism in games is often used more as a tool to inspire players to feel motivated about pursuing goals in games. Playing a game like *Madden NFL* allows people to play as their favorite football team—something that watching the NFL does not allow. In this way, realism in games is used to leverage a greater impact of gameplay.

This usage of realism is akin to the use of a movie prop—after the initial shock and awe, if the cost of realism in games limits the gameplay the player can pursue then it is rendered useless. Even so, the problem with dividing realism and fantasy in games are the boundaries that begin to blur between the minutiae of ludic entanglement:

Realistic narrative and realistic representation are two different things. So these two piles start to blur. For instance, listening to
music, ordering pizza, and so on in *The Sims* is most probably closer to the narratives of normal life than is storming an enemy base in *SOCOM*, despite the fact that the actual visual imagery in *SOCOM* is more realistically rendered than the simplistic avatars, isometric perspective, and nondiegetic wall cutaways in *The Sims*.

(Galloway 72)

Galloway argues that when we talk about realism in games, it is important to make a distinction between visual representation and narrative. From the point of view of a consumer, realism is often marketed as a desirable feature in games--that making games look more like real life is something of a technical achievement as well as a goal for the industry to pursue. The *Rainbow Six* franchise established itself in the early 2000’s as a hyper-realistic tactical shooter than reinvented the first person shooter. Instead of arcade-type shooters like *Call of Duty* or *Quake*, *Rainbow Six* prides itself on a slower-paced tactical shooter wherein the team with the best strategies will win matches. *Rainbow Six* distinguished itself from other shooters in the genre for allowing players to have LAN (Local Area Network) parties wherein players could be in the same room with their teammates, inspiring a more tactical environment for gameplay. Again, there is a tension between video games that *look* realistic and video games that use realistic representations of the real world so as to inspire attitudes about video games. Chapter three aims to investigate the contradiction at the heart of realism in games: that the more realistic a game is designed, the further away from a video game becomes. Since the human subjective experience is the median for which realism in games are both represented and consumed, virtuality aims to desituate basic phenomenological qualities from the real world as a critique of reality. Simply put, video games simulate reality as a way to critique reality.
The problem with Simulation

As noted in the intro, virtuality and simulation operate in video games differently, but they serve to critique reality by way of ludic entanglement. In order to see how ludic entanglement functions within the simulation, we will be investigating the relationship between simulation and the human subjective experience. Historically, simulated virtual environments have their roots in the military industrial complex. As far back as the Cold War, the Pentagon poured funding into virtual combat simulators as a way to simulate what a global conflict would look like between the United States and the Soviet Union. Once the conflict dissolved, funding for the computer simulations declined and weren’t revived until the 1990, when it became obvious to the U.S. National security state that commercial video games were doing a better job at creating combat simulations in video games:

The attacks of September 11, 2001 gave this rapprochement a massive boost. The military poured funds into codesigned simulations to anticipate the new challenges of the war on terror. Meanwhile developers of commercial games rushed to capitalize on market opportunities created by media coverage of terrorism and the invasion of Afghanistan and Iraq. Sales of war games rocketed, and developers able to cite collaboration with the military gave their products the cachet of ‘authenticity’ that console warriors craved. (Dyer-Witheford and de Peuter 101)

Overlaps between the military industrial complex and the video game industry are nothing new, even today. However, military-based shooter games have often come under critique for their
obvious appeal to children and teenagers and for good reason. Simulating the horrors of war to children through an addictive ludic formula is suspicious to say the least. I know, I played them when I was surely too young to understand the political implications of militarized combat simulation. The implications these combat simulators have on ludic entanglement suggests that the scope of simulation in games goes beyond the commercial realm. Indeed, the collaboration of the U.S. military with the games industry at the very inception of simulated combat shooters in the 1990’s is no coincidence.

Nick Dyer-Witheford and Greig de Peuter argue that the development of combat shooters both in the commercial market and for military training suggests that the function of simulated war is to prepare Americans for an undefined global war conflict and to resituate the U.S. militaristic empire in every home that has a game console:

You, the player, are “our” troops, at once defending the homeland and liberating oppressed inhabitants of invaded countries. One of the U.S. soldiers, whose position the player adopts, displays on his helmet the letters NYPD...In a moment of scripted dialogue, after a ferocious firefight has left bodies strewn all across the streets, one of our infantrymen reflects, “I think just by being here we help.”

(Dyer-Witheford and de Peuter 106)

Thus, the simulated combat in military shooters works not only to familiarize the player with violence in war, but also to reinstitute the validity of the U.S. invasion of Iraq in 2003. Dyer-Witheford and de Peuter are careful to note that the criminality of combat simulators is not the violence itself--that the images of violence in *Full Spectrum Warrior* or *Counter-Strike* are harmful to those that witness them during gameplay--but rather, the sequencing of ferocious
gunfights with banal game-tasks. In our own terms, the emergence of war violence—that is, adrenaline pumping gameplay—paired with the virtuality of banal game-tasks in a combat simulator—such as maneuvering a group of avatars through barren desert environments—reduces the significance of game violence to a checklist of tasks players must complete before getting to the next level.

Part of the banalization of violence within combat simulators is what Dyer-Witheford and de Peuter refer to as armed vision—“the enveloping sociocultural-emotional process habituating populations to the perpetual conflict of the war on terror” (99). While they speak directly about Full Spectrum Warrior as an example of the technological weapon of armed vision, their suspicion about the relationship between simulation and the human subjective experience speaks to the volatility of simulated environments. If we think back to Galloway’s take on realisticness versus realism—that mirroring reality in a virtual space also serves to critique reality—then we can understand that mirroring the violence of war in games enacts “the cyclical connection between the actual and virtual dimensions of Empire” (Dyer-Witheford and de Peuter 98). Thus, we can see that a significant problem that simulations face is their limited structure of mirroring reality—that merely mirroring reality only serves to hypnotize the human subjective experience with a violent, militarized lightshow.

What is the fabric of our reality?

Developing insights into virtuality, simulation, and the game-space are helpful in encompassing the potential video games have in altering our reality, but what is the basis of our reality? If we were to come up with measurements of the real and the non-real, what would a cup of reality look like? If we were to build a new reality, what would be the building blocks of our
lived experience? In *Looking for Spinoza*, Antonio Damasio investigates the construction of reality from a neuroscientific perspective. In this way, Damasio investigates the human subjective experience as a complex feeling brain--that the treatment of mental images we experience every moment are directly tied to the objects affecting those images for us:

> The neural patterns and the corresponding mental images of the objects and events outside the brain are creations of the brain related to the reality that prompts their creation rather than passive mirror images reflecting that reality. For example, when you and I look at an external object, we form comparable images in our respective brains, and we can describe the object in very similar ways. That does not mean, however, that the image we see is a replica of the object. The image we see is based on changes that occurred in our organisms, in the body and the brain, as the physical structure of that particular object interacts with the body.

(Damasio 199)

Damasio contends that the mental images we experience from the world around us are constructions of our complex brain--indeed, our mental images are creations derived from the reality from which we draw from, not a direct replication (mirroring) of the actual objects we see. For Damasio, our relationship with reality is that of a feedback system. The mental images we call upon from our minds are actually evidence of interacting with the world around us. According to Damasio, the building blocks of our reality are complicated to define in units located *beyond* our brains and neural patterns. This is because “the building of those neural patterns is based on the momentary selection of neurons and circuits engaged by the interaction.
In other words, the building blocks exist within the brain, available to be picked up--selected--and assembled in a particular arrangement” (Damasio 199). Meaning, the mental images we engage with in our momentary lived experiences emerge out of our brain’s capacity to build those images.

In this way, we could construct an endless number of mental images because our brain already has every building block necessary to build those mental images. One could counterclaim that this formulation of reality is close to solipsism, but he notes that the way our brains construct reality does not deny the reality of the objects:

The objects are real. Nor does it deny the reality of the interactions between object and organism. And of course, the images are real too. And yet, the images we experience are brain constructions prompted by an object, rather than mirror reflections of the object.

There is no picture of the object being transferred optically from the retina to the visual cortex. (Damasio 200)

Again, Damasio contends that the presence of mental images is evidence of a feedback system in motion: our brains respond to the reality they can construct with the building blocks possessed by the brain. Damasio allows us to shift our understanding of the human subjective experience from purely receptacle of purely external information to a computational reality. By this I mean, much like computers, our brains are responsible for organizing external information for our own internal comprehension.

More specifically, a theory of computation can elaborate the significance of the type of processing work our brains are performing in our momentary experiences. For David Deutsch, the theory of computation is necessary for defining virtual reality:
One of the most important concepts of the theory of computation is universality. A universal computer is usually defined as an abstract machine that can mimic the computations of any other abstract machine in a certain well-defined class. However, the significance of universality lies in the fact that universal computers, or at least good approximations to them, can actually be built, and can be used to compute not just each other’s behavior but the behavior of interesting physical and abstract entities. (Deutsch 98)

For Deutsch, the universal computer could potentially open a new door into the human subjective experience. For example, Deutsch’s basis for reality rests upon the significance of going beyond our own abstract thought—that is, not just bearing witness to the abstract though of other people but embodying their perspective. On another level, he is interested in the behavior of abstract entities (like blackholes) because of their interesting patterns of functions. In other words, the universal machine could not only decipher the behavior of a blackhole, but also determine our significance to the blackhole.

Deutsch argues that the only computer device that’s been able to get close to what a universal computer can do is the virtual reality machine. He writes, “Since we experience our environment through our senses, any virtual-reality generator must be able to manipulate our senses, overriding their normal functioning so that we can experience the specified environment instead of our actual one” (Deutsch 99). This specified computational experience lends itself to video games in several obvious ways. On one level, video games can produce accessible virtual spaces that can represent several real places. Upon the partial destruction of Notre Dame, Ubisoft responded to the catastrophe by offering free downloadable copies of Assassin’s Creed: Unity.
for a period of time to give people the opportunity to walk through a virtual representation of Notre Dame before it burned down. More importantly, given the historical and archival research Ubisoft completed to recreate Notre Dame in 1789, they built a fully accessible virtual archive for players to roam around in and explore. In this way, *Assassin’s Creed: Unity* transpires to serve as virtual archive as much as it does video game. Indeed, the need for distinction between virtual archive and video game is becoming less and less obvious: I don’t see why something like the virtual recreation of Notre Dame cannot serve as both historical archive and fictional representation of history.

Deutsch’s take on the potential of video games to serve as universal machines is not too far off from Ubisoft’s attempt at rehabilitating history in the modern era:

> Present-day video games do allow intersection between the player and the game objects, but usually only a small fraction of the user’s sensory range is covered. The rendered ‘environment’ consists of images on a small screen, and a proportion of the sounds that the user hears. But virtual reality video games more worthy of the term do already exist. (Deutsch 100)

Although Deutsch’s comment about virtual reality having the upper hand in simulating a realistic reality is dated, he is right about the way virtual reality systems transmit virtuality to the person wearing a virtual reality rig. For example, when I play *RDR2*, I am usually sitting in a chair at a distance of two to three feet away from my television. If I’m playing games on my computer, then I’m usually even closer to the screen since the size of my monitor is much smaller. Regardless, as “sucked into” either screen I may be, it is easy for me to disengage from the game I’m playing and walk away to do something else. I’m not taking lenses out of my eyes, or
goggles off my face, or leaving a virtual chamber to exit the matrix—I am simply removing myself from the area of the screen. Non-virtual reality games don’t consume the player like modern virtual reality headsets do; rather, they make clear the boundaries players can test before playing games becomes too difficult and they need to change their position. Deutsch renders the material relationship between non-virtual reality game and player as one of augmentation—that the player will participate in a low risk physical attachment to the video game as long as the physical attachment does not compromise their ability to play the game.

According to Deutsch, virtual reality has a much clearer investment in consuming and subduing the body of the player such that when the player is participating in virtual reality, they are unable to function in the real world at all:

 The information about what the user is doing is passed to a computer, which calculates what the user should be seeing, hearing and feeling, and responds by sending appropriate signals to the image generators. When the user looks to the left or right, the pictures on the two television screens pan, just as a real field of view would, to show whatever is on the user’s left or right in the simulated world. The user can reach out and pick up a simulated object, and it feels real because the effectors in the glove generate the ‘tactile feedback’ appropriate to whatever position and orientation the object is seen in. (Deutsch 100)

This passage is critical for understanding the fabric of virtuality: every visage of bodily autonomy we can think of operates under a form of computation. The eyes of the user are locked into television screens which dictate a purely virtual lightshow; the user’s ears are isolated by
headphones that block the rest of the world’s audio out, and keeps all of the virtual audio in for
the user; sensors detect the user’s physical orientation not to record their movement in-game, but
to render an environment in response to their curious movements. Virtual reality does not work
to entangle the human subjectivity, it seeks to rid it of reality. In this way, the very fabric of
virtuality is rooted in consuming the human subjective experience rather than forming a balance
of real and non-real entities. Of course, I don’t want to eliminate any possible positive outcome
of virtuality; rather, I argue that the material relationship virtual reality systems have with the
human subjective experience leaves little room for critique from the real. In other words, if
Deutsch posits that when you simulate reality you establish a new universality, then he must
accept that you limit your ability to critique virtuality.

A Final Word on VR

Unfortunately, even today virtual reality systems struggle with the same material
limitations they have always struggled with. As gaming systems, players enjoy the disorienting
feeling of simulation more than the actual gameplay. As it turns out, the human body is not a
functional joystick for maneuvering around virtual worlds. On the other hand, I think Deutsch
casting virtual reality as also functioning as a universal machine makes sense if we consider the
problem with saving history over time. Using virtual reality as an archive to safely view ancient
artifacts or delicate pieces of art would allow people to acquaint themselves with relics that
would usually be lost in time. A previous project of mine looked at how the Tomb Raider
franchise implemented a functional archival system wherein players could roam around ancient
tombs in order to find relics, journals, and languages. On one level, the exploration of those
tombs is an opportunity for players to engage with history in a new way. Rather than learning
about the ancient Byzantine empire from a textbook (not that there’s anything wrong with that) players could reenact history as witness and observer. Much like Arthur’s journal, video games and virtual reality should take advantage of one of the rehabilitative powers they possess: blurring the boundaries of the real and the virtual.
Conclusion

Towards the future, this field of inquiry has a lot to look forward to. This project has transformed many times before really taking off, and as I read this over and over, I am delighted by how many pockets of exploration have potential for future study. This project has aimed to investigate three things: the relationship between video games and people, the relationship between video games and text, and the relationship between the real and the virtual. As for video games and people, this project has clarified the complex process at the heart of play: that the entanglement between video games and people can render complicated subjective orientations. As for video games and text, we discovered that the entanglement at play shifts our understanding of how authorship is defined. As for the real and the virtual, we learned that the boundaries of what makes the real and virtual definable are largely insufficient because of the way our minds process the external world and the advent of virtual reality systems. So, in terms of the future of this work, much is left undone and for good reason: *Red Dead Redemption 2* came out while this project was still developing, and I managed to find value in all of its unstable structure. And yet, perhaps the instability of reading and analyzing video games is something to be happy about as a researcher.
Works Cited

Red Dead Redemption 2. Rockstar Studios; Rockstar Games. 2018. Video Game.

