Maritime archaic spearpoints: a new examination of their context and chronology

John Michael Garbellano
University at Albany, State University of New York, jgarbellano@albany.edu

The University at Albany community has made this article openly available. Please share how this access benefits you.

Follow this and additional works at: https://scholarsarchive.library.albany.edu/legacy-etd

Part of the History of Art, Architecture, and Archaeology Commons

Recommended Citation

This Master's Thesis is brought to you for free and open access by the The Graduate School at Scholars Archive. It has been accepted for inclusion in Legacy Theses & Dissertations (2009 - 2024) by an authorized administrator of Scholars Archive. Please see Terms of Use. For more information, please contact scholarsarchive@albany.edu.
Maritime Archaic Spearpoints: A New Examination of Their Context and Chronology

by

John Michael Garbellano

A Thesis
Submitted to the University at Albany, State University of New York
in Partial Fulfillment of
the Requirements for the Degree of
Master of Arts

College of Arts & Sciences
Department of Anthropology
2018
Abstract

This research focuses on the morphology, chronology and provenience of nipple-based spearpoints found in Newfoundland and Labrador and their relationship to larger-scale cultural processes during the Archaic period of that Province. Nipple-based points are primarily thought to date between 7500-6000 B.P. and are associated with the early Maritime Archaic tradition, the earliest inhabitants of Newfoundland and Labrador. A recent find of a nipple-based point at the Stock Cove site (CkA1-3) in eastern Newfoundland could mean that part of the island was colonized earlier than previously thought. Lithic analysis of the Stock Cove artifact will be discussed, and the results will be put into the larger cultural context of the Maritime Archaic lithic technology and what it suggests about the broader colonization process of Newfoundland.
Introduction

In 2017, I joined Drs. Christopher B. Wolff and Donald H. Holly, Jr. to conduct archaeological research at the Stock Cove site (CkA1-3) in southeastern Newfoundland (see Figure 1.1). For roughly a decade, Drs. Wolff and Holly have been trying to answer questions focused on understanding the initial colonization and settlement of Stock Cove and eastern Newfoundland. To achieve those goals, a major part of the Stock Cove project is an examination of its human-environment relationships, from its earliest colonization through the historic period. Drs. Wolff and Holly frame this research through a historical ecological approach that studies how past societies of Newfoundland impacted, and were impacted by, their ecosystem, and how they adapted to changing environmental and climatic conditions at various geographic and chronological scales (Wolff et al. 2008).

My involvement in the 2017 field season led to a discovery of an excellent specimen of a Maritime Archaic nipple-based spear point. This spear point is significant because it is morphologically similar to other projectile points found at Early (8,000-6,000 B.P.) and Middle Archaic (6,000-4,500 B.P.) sites in Labrador that typically date in excess of 6000 years (McGhee and Tuck 1975: 96,12-15; Fitzhugh 1975: 132 and 1978: 62-70; Renouf 1977: 37-42; Wolff 2007: 10). This specific spear point is particularly an important find because it could potentially be evidence of one of the earliest Archaic occupations on the island of Newfoundland. Because it is near the island’s eastern margins where it is assumed people arrived the latest, it has implications for the timing and nature of initial colonization and settlement of Newfoundland. The main research questions of this study were to assess the chronology of this particular style and whether this recent find at Stock Cove can provide new information about the colonization of the Island of Newfoundland.

[Insert Figure 1.]
The Stock Cove nipple-based point was found on July 2, 2017, following a windy and cold night that lasted well into the morning. The prior day was spent getting rained on and trying to reach the top of Level F, the lowest identified Archaic level at the site. This day, the weather forecast was calling for a chance of rain, and the plan was to work until weather prevented us from continuing. Just prior to lunch, the artifact that inspired this research was found while I was clearing out the remaining section of Level E, the uppermost Archaic stratum, in my unit. It was located near the corner of my unit and at first, I thought it was a large flake of Trinity Bay chert, an abundant local material; however, as I carefully continued to expose it, I recognized it to be a distal portion of a projectile point. As I slowly revealed more of the artifact I called Drs. Wolff and Holly over right away because I was not sure what I had found. I felt it was going to be something good. I was handed a pair of chopsticks to carefully dig out the remainder of the point. Everyone watched and waited as I slowly removed the remainder of the dirt covering it. I was skeptical that it would be completely intact since we had found broken fragments of other projectile points, but it was! The rest of the afternoon was spent finishing up Level E in preparation to finish level F the following day, and it began to rain as we were wrapping up for dinner. We were hit by rain for the rest of the night.

Before discussing the methods for my research that was inspired by this remarkable find and its results, I will give a brief discussion of the culture history of the Maritime Archaic. Foremost for this research will be my discussion of Maritime Archaic use and manufacturing of spearpoints and/or projectile points, more specifically, what archaeologists in Newfoundland and Labrador have come to call “nipple-based” points. In order to provide more context on the type of sites these nipple-based points have been found in, several of the sites from this research will be discussed more in depth. I will also discuss the possibility for regional overlap of the
Maritime Archaic “nipple-based” style elsewhere. To wrap up, I leave the reader with a short
discussion of my results before my concluding statement.

Culture History of the Maritime Archaic

The Maritime Archaic Tradition got its name after the discovery of the Port au Choix site in Northwestern Newfoundland (Tuck 1971, 1998; Renouf and Bell 2006). According to Tuck (1971: 350), he named this tradition the Maritime Archaic for two reasons: First, it is located in the Canadian Maritime provinces and extends northward into Quebec, Newfoundland, and Labrador, southward into northern New England, especially the state of Maine, and westward up the St. Lawrence. Second, in every geographical area of its expression, there seems to be a cultural orientation toward the sea. Elsewhere, Tuck (1998) has said “Maritime” refers to the important role the sea and its resources played in the lives of the first inhabitants of Newfoundland and Labrador; and “Archaic,” refers to the pre-agricultural, or hunting and gathering, way of life found throughout eastern North America. Maritime Archaic people were culturally continuous from over 8000 years ago to about 3000 years ago, and according to Fitzhugh (1975: 132), nipple-based points have been dated to the early part of that range, primarily in excess of 6000 years ago.

Archaeologists (Fitzhugh 1975, 1978; Madden 1976; Tuck 1982, 1998; Renouf and Bell 2006; Reid 2007) have frequently suggested that there were two variants of the Maritime Archaic tradition, represented by Northern and Southern branches. The northern branch began in southern Labrador and the Quebec Lower North Shore at least 8,000 years ago (Pintal 1998; McGhee and Tuck 1975; Bell and Renouf 2006), and spread northward into central and northern Labrador, reaching as far north as Sagleak and Ramah Bays probably shortly after 7,000 years ago (Fitzhugh
Evidence has also been found as far north as Nachvak Fjord, north of Saglek Bay (personal communication Wolff 2018). The northern branch of the Maritime Archaic Tradition is identified by its stemmed projectile points of quartzite or Ramah chert. Archaeological evidence of over 4,000 years in Labrador indicates a long in situ evolution that included sophisticated maritime adaptations (Tuck 1998; Renouf and Bell 2006:4-5). Interestingly, it is suggested this branch was not restricted strictly to central and northern Labrador because this stemmed point variant is rooted in material, presumably quartzite, from southern Labrador and the Quebec lower north shore, and dates to as early as 8000 B.P. (McGhee and Tuck 1975; Pintal 1998; Renouf and Bell 2006). According to some (Pintal 1998), the stemmed point variant persists in southern Labrador to about 6000 B.P. and in the Quebec Lower North Shore until about 3500 B.P. (Pintal 1998). These types of points are also found at Maritime Archaic sites on Newfoundland (Renouf and Bell 2006: 5), which may suggest that the branch designations probably need to be systematically reassessed.

According to archaeologists (Tuck 1982: 205, 1998; Reid 2007: 6-9), the origins of the Southern Branch Maritime Archaic people are obscure. Following Reid (2007: 7-8), Tuck (1982: 205), discussed the possible relatively early origin of the southern variant by referring to radiocarbon dates from sites such as Forteau Point site (5,035 +/- 65 B.P. and 5,399 +/- 95 B.P.) and area 10 of the L’Anse Amour site (6,435 +/- 95 B.P.). Essentially, around or just before 6,000 years ago a new stone tool complex appears in southern Labrador, the Southern Branch. The Southern Branch of Maritime Archaic people preferred to make tools out of locally available cherts and rhyolites instead of the quartz, quartzite and Ramah chert of the Northern Branch (Tuck 1998; Renouf and Bell 2006). According to Carignan (1975), the northern limit of the southern variant is Black Island in Hamilton Inlet, Labrador, and the southern limit is Bonavista.
Bay, Newfoundland. Some of the tools this Southern Branch of people include; large broadly side-notched or expanding stem projectile points, leaf-shaped bifaces, as well as flake knives, scrapers, and other expedient tools, similar to the Northern branch but different in material (Tuck 1998; Renouf and Bell 2006; Reid 2007). Most Maritime Archaic material pertaining to this Southern Branch found in Newfoundland, date from about 5,500 B.P. to 3,200 B.P. (Renouf and Bell 2001, 2006: 5). In central and southern Labrador, and on the Quebec Lower North Shore, Maritime Archaic assemblages with these spearpoints date from about ca. 5,000 B.P. to 3,500 B.P. (Pintal 1998; Tuck 1975; Renouf and Bell 2006). According to Renouf and Bell (2006:5), chronological variability is recognized within the Northern Branch by a series of radiocarbon dates associated with particular projectile points and other changes in tool assemblages. What’s more, diachronic variability has yet to be identified within the Southern Branch (Renouf and Bell 2006: 5).

Interestingly, the Southern Branch is also believed to be a later intrusive migration into the region and it is suggested that its population on Newfoundland may be more closely related to Archaic groups from the maritime region of Maine, than those of Southern Labrador and the Quebec Lower North Shore, based on point typology and the raw materials preferred to make tools (Renouf and Bell 2006: 5-6). The Early (8,000-6,000 B.P.) and Middle Archaic (6,000-4,500 B.P.) periods of Maine contained scrapers and other modified unifacial tools from quartz, adzes, fully grooved gouges, stone rods, grooved axes, as well as finely ground and polished winged spear-thrower weights (Bourque 2001:43), what some call bannerstones. Ground slate points and “ulus” (semilunar knives) are also found at these sites. Projectile points resemble forms found farther south in the Carolinas, where Bourque (2001: 41) suggests they may have originated, include Kirk Corner-Notched types and, more commonly, projectile points with
notched or bifurcate bases. Bone and antler tools, such as barbed points, have been found as well, which suggests the people who wielded these tools had an economy that focused largely on fishing and sea mammal hunting (Bourque 2001: 41-42). Similarities between Early and Middle Archaic projectile points from Maine and Newfoundland and Labrador will be discussed later, but what is interesting is that the examples Bourque (2001: 41, 44) presents, dating roughly between 7,800 B.P. and 7,000 B.P., look like the nipple-based points of Newfoundland and Labrador. Other later examples from Maine, dating from 6,500-5,000 B.P. look also resemble Newfoundland and Labrador varieties (Pintal 2006: 114-117; and 132).

The concept of northern and southern variants was originally developed to explain the regional variation of the Maritime Archaic tradition in Newfoundland and Labrador (Reid 2007:6). Fitzhugh (1972, 1975, 1978) and Hood (1981) further divided the Maritime Archaic into various regional “phases,” “complexes,” and “groups.” According to Fitzhugh (1978: 70-77), the Northern Maritime Archaic was an amalgamation of several smaller regional complexes, namely the Naksak, Whale Island, Nukasusutok, and Gull Arm. These variants have been interpreted as different migrations or intrusions (Fitzhugh 1975 and 1978). Hood (1995: 88) acknowledged Fitzhugh’s (1978) division of the Maritime Archaic; however, Hood (1995: 88) divided the Maritime Archaic into a simpler chronological model of reference, that included Early (7,500-6,000 B.P.), Middle (6,000-4,500 B.P.), and Late periods (4,500-3,500 B.P.). Early Maritime Archaic sites was defined by lanceolate and “nipple-based” projectile points, as well as use of a variety of local raw materials, such as quartz and quartzite. Other nonlocal materials, such as Ramah chert and slate, were also used (Hood 1995: 88). Middle Maritime Archaic sites are defined by a variety of flaked projectile points (stemmed, leaf-shaped, and notched), slate implements, endscrapers, and pièces esquillées. For the Middle Maritime Archaic, quartz was a
prominent raw material; however, a notable amount of Ramah chert is present at northern Labrador sites as well (Hood 1995: 88). Late Maritime Archaic sites are defined by stemmed projectile points, slate implements, a lack of formal endscrapers and, at some sites, the presence of soapstone plummets and engraved soapstone tablets (Hood 1995: 88). Overall the major differences through time appear to relate to changes in projectile point style and the use of different raw materials to make other stone tools.

Interestingly, Fitzhugh (1978) suggested that Maritime Archaic people probably made large wooden boats to establish settlements, access resources, and trade with other groups. However, such tasks can also be accomplished by traveling overland on foot. Unfortunately, no direct evidence of a boat has yet to be found. I agree with Fitzhugh (1978) that the Maritime Archaic probably used boats because there is a substantial amount of indirect evidence such as site location, exotic materials from Labrador and Newfoundland found elsewhere in the Northeast, and tool analogs associated ethnographically with boat construction. Channeled gouges, axes, adzes, and celts all suggest that the Maritime Archaic worked with wood, which could have been used to make boats. Other technology such as toggling harpoons, plummets, and ground slate points and bayonets, suggest the Maritime Archaic were hunting sea mammals and or fishing in littoral and pelagic zones (Tuck 1975, 1991, 1998; Yesner 1980, 1988; Reid 2007).

In general, the Maritime Archaic adaptation to hunt sea mammals predates 7,500 to 6,500 years ago and is reinforced by the toggling harpoon, line toggle, and walrus tusk found at the L’Anse Amour burial mound, which dates to at least 7,670 B.P. (McGhee and Tuck 1975:114) and site location (Renouf and Bell 2006). The two oldest radiocarbon dates from this site are between about 8,000 and 8,300 years ago and were reported in an unpublished internal report to the Department of Tourism and Culture (Tuck 1993: 5). However, it is also hypothesized that
people utilized interior resources (Fitzhugh 1972; Tuck 1976b). Maritime Archaic subsistence has been characterized as a multi-seasonal coastal adaptation focused primarily on marine resources like seal, walrus, and seabirds, but supplemented with terrestrial mammals and anadromous fish from the interior (Tuck 1976b; Speiss 1993; Hood 1995); the use of composite toggling harpoons assisted with such pursuits as well (Yesner 1980). Tuck (1975: 141, 1998) suspected that ground slate bayonets were developed for dispatching sea mammals, and similar suggestions have been made for bayonets in Maine (Bourque 2001). According to Hood (1995), Maritime Archaic settlement patterns should be characterized as “interior-maritime,” meaning the spring to fall was spent on the coast hunting seal, fishing, collecting birds, while winter was passed hunting caribou and fishing at camps in inner bays and river systems. Seasonal trips north of the tree line in Labrador to procure chert from sources in the Ramah Bay region was another task likely done on a yearly basis (Hood 1995: 90-91). It is also likely that some people lived north of the tree line year-round.

Maritime Archaic Spearpoints

Nipple-Based Spearpoints

According to Hull (2017), nipple-based points are an early tool type in Newfoundland, that likely predates 6,000 B.P., and are sometimes associated with the Northern Branch in Labrador. Moreover, most archaeologists do not specify whether their site is Northern or Southern Branch (personal communication with Hull 2017). I believe this is problematic for the archaeological record and dissemination of knowledge. If this is to be a how archaeologists define regional variation between the groups that lived in Labrador and on Newfoundland, such detail should be included in reports and other published papers. However, I see the Maritime Archaic as a continuum, not separate branches, which makes such divisions not even necessary
and only further complicating the historical narrative of the Maritime Archaic. Tuck (n.d.a.: 52) suggests that the subsistence economies of the Northern and Southern Branches were “very similar, if not identical.” According to Reid (2007: 8), the similarities between the two variants that were proposed include the use of ground slate artifacts, hafted and non-hafted bifaces, site location and other indications of a marine focused subsistence economy. Reid (2007: 8) also asserts the overlap of the geographical boundaries of the two variants between Hamilton Inlet and the southern shore of Labrador makes it so these two branches cannot be entirely distinguished by the location of archaeological sites. The two variants also cannot be distinguished by their chronology. Tuck and Reid’s views are important because we should not assume that there was an enormous difference in beliefs and technology between families living in Labrador and on Newfoundland or even that separate variants existed. I do not believe the idea of a Northern and Southern variant sticks because so much more data has been collected since these terms were first used. Renouf and Bell (2006: 6) suggest that the usefulness of these terms might now be outmoded because of the new data that has been collected over the years as well. I do not believe it would not be problematic to stop using these terms, and to refer to the Maritime Archaic as a continuum of ongoing relationships if not shared ancestry and traditions.

Research regarding the Maritime Archaic people’s use of nipple-based projectile points and/or spearpoints is limited. Information and ideas on this type of artifact do exist (Fitzhugh 1975, 1978; Renouf 1976; McGhee and Tuck 1975), but I have not been able to find a study that specifically focuses on them. As a descriptive term, “nipple-base” was originally used by anthropologists during the 1950’s and 1960’s in association with the platform preparation of Paleoindian fluted points (Witthoft 1952; Mason 1962; and Kehoe 1966). The “flutes” were made by creating a nipple-base striking platform that would set up the removal of channel flakes.
(Speiss et al. 1998). Folsom points are often fluted using a well-prepared, ground “nipple,” and date from 10,900 B.P. to 10,400 B.P., and Bull Brook style points (ca. 10,700 B.P.) are fluted using a nipple striking platform (Speiss et al. 1998: 233, 237). The Maritime Archaic likely descended from Paleoindian people. Although the evidence is pretty sketchy, some believe that Late Paleoindian people might have found the source of Ramah chert in Labrador prior to Maritime Archaic settlement of the region (Loring 1980: 37; Stanford and Bradley 2012: 233-234).

In 1980, an analysis of more than thirty fluted points, associated with the former shoreline of the ancient Champlain Sea, in present-day Vermont, was published by Stephen Loring (1980). One fluted point from that study, made of a fine-grained blue-gray material was originally thought to be Cheshire quartzite, but was later identified as Ramah chert through visual comparisons of the point with both Cheshire and Ramah stone, as well as laser microprobe analyses (Stanford and Bradley 2012: 234). This point is about 4 cm long, fluted on both sides, and has slightly concave lateral edges at the base that turn to form a convex blade edge. One of the basal corners has been snapped off and there is also an impact fracture at the distal end (Loring 1980: 25). Although the exact provenience of this point is unknown, it is assumed that it was found in the vicinity of Franklin County, Vermont. According to Loring (1980: 24-25), this fluted point comes from the Manley family collection whose farm is situated adjacent to a delta that extended into the former Champlain Sea.

This is a significant because the Champlain Sea formed when the Laurentide Ice Sheet depressed the Saint Lawrence and Champlain Valleys of New England below sea level. At around 12,500 years ago, glacial retreat northward caused the ice dam blocking the Saint Lawrence River to collapse, which then allowed Atlantic seawaters to flood valleys, in turn
creating an inland sea (Parent and Occhietti 1988; Stanford 2009; and Cronin et al. 2012). This
sea was brackish, which created a new habitat for marine mammals such as beluga and bowhead
whales, porpoises, and seal species. Over time, the glacial retreat allowed the earth’s crust to rise,
a process called isostatic uplift. By around 10,200 B.P. isostatic uplift had raised the valleys
enough to drain the sea (Loring 1980:16; Parent and Occhietti 1988; Rayburn et al. 2005;

The acquisition of Ramah chert by Late Paleoindian or Early Archaic people is
interesting. According to Stanford and Bradley (2012) the straight-line distance from Ramah Bay
to Franklin County, Vermont, where the artifact Loring (1980) analyzed was found is about
1,300 kilometers, but it would have been impossible to traverse this direct path at the time it was
made, because the area would have been glaciated. Moreover, most of the coastline from the
Torngat Mountains in northern Labrador to the Gulf of St. Lawrence would have been glaciated
(Stanford and Bradley 2012: 235). Using Google Earth, I made my own assessment of the
straight-line distance from Ramah Bay to Franklin County, Vermont. My results show that it is
an even longer distance than Stanford and Bradley’s estimate, and that it is closer to 1,700
kilometers.

Although I am skeptical of Stanford and Bradley’s views on the peopling of the
Americas, I do agree with them that a boat would have been the most likely way Late
Paleoindian people could have acquired Ramah chert (Stanford and Bradley (2012: 235).
According to Stanford and Bradley (2012: 235), the shortest water route from Ramah chert
quarries to Vermont would have been more than 2,400 kilometers; however, if Paleoindians left
from Nova Scotia, a closer port, the trip would have been around 1,500 kilometers. These
measurements might not be entirely accurate either and the distribution of certain stone material
like Ramah chert and slate suggest trade networks spanned great distances. Networks that would have been greatly assisted with boat technology. Perhaps the inability of some groups to acquire Ramah chert through trade or directly from known sources led to some of the variation archaeologists see in Maritime Archaic points. Increased interactions between groups when trading material such as Ramah chert or other materials found on Newfoundland and Labrador might have led to the incorporation of different manufacturing techniques as well.

Maritime Archaic points show significant variation in size, shape, material, and possibly function. Fitzhugh (1978) explains that over time, the development of point styles changes from triangular and nipple-based forms to increasingly shouldered, tapered-stem forms. Early Labrador Archaic point assemblages (7,500-6,000 B.P.) are characterized by nipple-based or triangular points, while Middle (6,000-4,200 BP) and Late Labrador Archaic occupations (4,200-3,500 B.P.) are often dominated by a point style with a more elongated stem and more pronounced shoulders (Hood 2008: 175-176; Keddy 2015; Tuck 1976a: 51). These changes in projectile point morphology have been used to identify and trace cultural shifts between Early, Middle, and Late Labrador Archaic occupations, but some feel that previous claims have been relatively vague and mostly descriptive (e.g. Keddy 2015: 73). I agree with this assessment and feel that a systematic approach to assessing Archaic period typologies and a higher resolution study of their chronology is needed. Although Keddy had a limited number of usable specimens from the sites he studied (n = 30), he averaged the ratios of several measured characteristics to document possible variation in projectile proportions for roughly a 1,500-year period (6,500-5,000 B.P.). In addition to maximum length and width, his measurements included; blade length to shoulder width, stem width to shoulder width, and stem length to shoulder width (see Figure 3.1.).
At the L’Anse Amour burial site, one of the oldest Archaic sites in southern Labrador, dates have been assayed that calibrate to roughly between 7,100 and 8,600 years ago (McGhee and Tuck 1975: 92; Tuck 1993: 5). Several types of lithic tools were interred with the young individual buried at this site (see Figure 3.2), including six stone projectile points and a stone biface. Four of the projectile points are considerably longer than the other two; however, when you examine traits other than length these projectile points resemble some of the nipple-based points documented elsewhere. They are for the most part parallel and the point forms an acute angle. The shoulders are at an obtuse angle that tapers into a bilaterally constricting stem. While these points do not have a “nipple” base, they look similar in every other way. The L’Anse Amour site is significant because it gives us a view of the earliest groups to colonize southern Labrador and their lithic traditions. Although a single site, and relatively anomalous, the assemblage is informative in regard to what early Maritime Archaic projectile points looked like in this region, and give us a baseline to examine diachronic changes.

Fitzhugh’s (1978) research on the Maritime Archaic has helped define the provenience and chronology of nipple-based points in Labrador. Fitzhugh (1978: 77) describes a progression from the use of local lithic materials that relies heavily on various cherts and slates to more exclusive use of particular sources, particularly Ramah chert, for specific tool classes and a reduction in use of local materials. At the Stock Cove site where I worked in 2017, the early Maritime Archaic people there appear to rely on local sources of Trinity Bay chert, rhyolites, and quartz, conforming to Fitzhugh’s timeline of raw material use; however, this continues throughout the site’s occupational history with exotic materials never used in significant
Keddy’s (2015: 35) study of projectile points from eight different Early and Middle (6,500-5,000 B.P.) Projectile points included specimens made out of high quality quartz, black chert, Mugford chert, Ramah chert, silicified slate, and slate. Based on the location of the sites Keddy studied, I believe this distribution of material might fit nicely with Fitzhugh’s pattern (see Keddy 2015: 13).

Fitzhugh (1978: 62, 69-70) defined several different complexes associated with the Maritime Archaic, which include the Hound Pond Component (7,500-7,200 B.P.), Naksak Complex (6,000-5,300 B.P.), Sandy Cove Complex (6,000-4,500 B.P.), Black Island Complex (6,000-4,500 B.P.), and Rattler’s Bight Complex (4,100-3,800 B.P.). According to Fitzhugh (1978: 72), the Naksak Complex, meaning “beach pass” in inuktitut, contained nipple-based points in its tool assemblages, and comprises the majority of Maritime Archaic sites in northern Labrador. In fact, nipple-based points are the most common type of tool found at Naksak sites in the Nain-Okak region. Naksak sites are found on high terraces, beaches, and emergent bridging (tombolo) bars between headlands, at elevations ranging from about 46 meters to the present sea level (Fitzhugh 1978: 72). The specific sites Fitzhugh references as providing the most extensive data for Naskak tool assemblages include Cut Throat, Evilik, Natsatuk, Ballybrack, and Koliktalik. Conveniently, Fitzhugh (1978) provides figures of different nipple-based points made of grey chert and Ramah chert.

Dating the Naksak complex can be problematic because of considerable typological variation and too few radiocarbon dates due to the scarcity of charcoal and other organics in excavated sites. Because of this possible bias, Fitzhugh posited that several Naksak sites had the potential to be up to 1000 years earlier than others on the basis of typology and elevation (1978: 72); however, Fitzhugh (1978: 72) provides several dates for the Naksak complex directly
associated with a few nipple-based points. One hearth pit at Koliktalik 1 included a nipple-based biface and a small flake point of similar style dated to 6,135 +/- 95 B.P. Another date for this site from a nearby pit was assayed to 6,010 +/- 65 B.P. At Cut Throat 2, an assemblage that included a nipple-based, stemmed point dated to 5,480 +/- 110 B.P. McGhee and Tuck (1975) provide an intriguing examination of the Archaic sequence found at fourteen sites from the Strait of Belle Isle, in southern Labrador. They had the following to say about nipple-based points (1975: 96):

“The next stage in our series is missing from our collections, but is present in local collections made from sites in the vicinity of Pinware. This form retains the blade style and use of material characteristic of the Cowpath form, but adds a small "nipple", a minute contracting stem projecting from the center of the base. This attribute is enlarged to a full contracting stem in the Barney form, which retains the Cowpath blade style and use of material [McGhee and Tuck 1975: 96].”

Stephen Hull (pers. comm. 2018), an archaeologist at the Newfoundland and Labrador Provincial Archaeology Office, provided me photos of the projectile points McGhee and Tuck reference (Figure 4. specimen “c.”). These points clearly have a variant of the nipple-base seen throughout this region. They are smaller, the bases are shorter than in other examples but still retain a rounded finish, which suggests they might have been used for smaller game or were at the end of their use-life. A closer examination of these specimens would allow for a more thorough interpretation. The following sites discussed are just a few examples from sample of nipple-based points I assembled for this research.

Shak Selma (GlCs-22)

The Shak Selma site, which is located in the Tshumushumapeu valley, Labrador, on a distinct terrace to the west of a small stream that enters to the south side of the Kamestaston Narrows, “appears to represent a small, short-term camping place where hunters waited to intercept migrating caribou at the caribou crossing place (Arbour et al. 2013:14).” In 2012,
Chelsee Arbor, Anthony Jenkinson, and Stephen Loring, returned to the Shak Selma site (GlCs-22), originally discovered in 1998 by Jack Selma of Sheshatshit, who noticed a concentration of smokey crystal quartz debitage when surveying the region. Upon this discovery, systematic surface collection resulted in the salvage of more crystal quartz debitage, the base of an Early Archaic nipple-based biface (Figure 1.2.), a small number of tiny dark chert flakes of unknown source, as well as some broken and battered quartz found in association with the crystal quartz debitage and nipple-based point (Arbor et al. 2013). During their investigation, seven 1x1 meter units were opened, which revealed a concentration of quartz tools and debitage adjacent to a small hearth. The assemblage is a first of its kind in Kamestastan, consisting of a nipple-based point, two small ovate bifaces, a fragment of the distal portion of a biface, as well as unifacial scraping tools produced from bipolar reduction of small quartz cobble cores (Arbor et al. 2013).

Quartz Point (Borden: EB)

Located on the east side of Red Bay, Labrador, near the Pinware Hill site, the Quartz Point site was reported to the PAO in 2002 by a tourist. According to Hull (2004:1), the site contained an almost complete Maritime Archaic, serrated, nipple-based biface (Figure 4. specimen “a.”). The serration of this point is interesting and suggests it might have been used as a knife. A total of forty-seven test pits were dug at the site, and 18m² were excavated, yielding nine biface fragments, two hammer stones, and several large, milk-white, quartzite boulders (Hull 2004). A possible hearth was also identified from which a small piece of charcoal was recovered and AMS dated to 7,450 +/- 60 BP (Hull 2004: 1).
Uistshitemushish (GICs-26)

In 2010, Uistshitemushish Locus 1 was excavated, and yielded different objects, including a nipple-based point made of salmon colored chert (Figure 4. specimen “b.”). According to Jenkinson and Arbour (2013: 71-72), this particular site is somewhat sheltered from both wind and snow drifting off the main lake, and has a near panoramic vantage point of the surrounding landscape despite being located close to the valley floor. Initial investigation of the site revealed a significant quartz scatter with flakes of Ramah chert and grey-green slate. Several loci of activity were identified, of which Locus 1 contained the nipple-based point and a hearth that was dated to 5,590 +/- 40 B.P. (Jenkinson and Arbour 2013: 72). A caribou migration route runs along the mountains to the east of this site and fish resources are located nearby downstream. Additionally, the wooded area to the southeast is a relatively bio-diverse ecosystem containing species like porcupine, spruce grouse, snowshoe and Arctic hare, and fox (Jenkinson and Arbour 2013: 71). These resources may have also been available during Maritime Archaic occupation and may have influenced their occupation of the area.

White Point 16 (IcCp-34) and White Point 21 (IcCp-41) Sites

During the summer of 2006, Wolff and a group of students went to northern Labrador to survey and excavate several Maritime Archaic structures at White Point. During their time at the White Point sites, Wolff and his team excavated one longhouse at White Point 16 (IcCp-34) and two pithouses at White Point 21 (IcCp-41). The White Point site is situated along a prominent caribou trail and there is direct access to waterfowl, marine mammals, as well as a few different types of seasonal berries. Wolff (2007:13; 2008) believes these resources would have been available at the time of Maritime Archaic occupation and would have been part of their
subsistence strategies. A location where such resources could be easily accessed would be ideal occupation. Wolff believes both sites are relatively short occupations of only a week or so for the pithouses and maybe a few weeks for the longhouse (pers. Comm. 2018).

The longhouse at White Point 16 (IcCp-34) produced a significant assemblage of Maritime Archaic tools, which included a nipple-based point (Wolff 2007: 11-12; 2008). One of the two pithouses Wolff and his team excavated, Pithouse 1, was interpreted as a ritually killed structure (Wolff 2007: 13; 2008). Two nipple-based points were found in Pithouse 1, both broken in half (Figure 2.) and found covered in red ocher in situ within a large red ocher deposit (Wolff 2007: 12-13; 2008). Interestingly, Wolff (2007: 13; 2008) posits that this could be the first indication the Maritime Archaic people had ideological components to their architecture, and/or they could be places of ritual. Other than being made out of a different material and slightly longer, the points from Pithouse 1 resemble the nipple-based point recovered from Stock Cove this past summer (Figure 2 and Table 2.). Because of the stylistic similarity of these examples to the Stock Cove nipple-based spear point, it is plausible that the White Point nipple-based spearpoints and the Stock Cove nipple-based spear point are part of a wide-ranging cultural tradition that stretched from extreme southeast Newfoundland to almost the northern tip of their known range.

Broader Cultural Patterns in the Northeastern Archaic

The Neville variant of Maine resembles projectile points of the Carolinas and is an early example of Archaic technology in the American Northeast, dating between around 7,800 B.P. and 7,000 B.P. (Bourque 2001: 44; Dincauze 1976). Examples of this type (Bourque 2001: 41 and 44; Bourque et al. 2006: 329) are important for this study because they resemble nipple-
based points from Newfoundland and Labrador, which raises the possibility that projectile point manufacturing spanned from Northern Labrador to Maine, and perhaps extended as far south as the Carolinas (see Figures 10.1-10.3). Moreover, I believe that projectile points from the Simpson site (Figure 10.3), which lies along the Maritime Archaic points, and are suggested to date around 7,500 B.P. (Bourque et al. 2006: 312). The assemblage from the Simpson site included fourteen Stark/Neville-style projectile points, ten fully grooved gouges, nine adzes, and five semilunar ulus. Later components include two small-stemmed points from the Late Archaic, seven Susquehanna (3,700-2,700 B.P.) tradition bifaces, as well as six bifaces of probable Ceramic period (3,000 B.P.) and a single pottery sherd (Bourque et al. 2006: 312). Early and Middle Archaic projectile points from the Lower North Shore of Quebec (see Figure 11.1-11.2), belonging to the Letemplier Complex (8,500-6,500 B.P.) and the Blanc-Sablon Complex (6,500-5,000 B.P.), also bear a similar resemblance to the nipple-based points of Newfoundland and Labrador (Pintal 2006: 111-117,131-132). Furthermore, both complexes have a similar tool kit as the Maritime Archaic of Newfoundland and Labrador, and include things like *pièces esquilées*, gouges, adzes, and celts (Pintal 2006: 113-115).

Research by Renouf (1976) discussed the incipient stem of points recovered from the Barney site (McGhee and Tuck 1975), which were associated with Early Archaic dates (7,060 +/- 65 B.P., and 7,440 +/- 70 B.P.). Renouf acknowledged that this complex shares some affinities with roughly contemporaneous materials from Dincauze’s (1976: 108) New Hampshire Neville sequence, which dates between 7,000 and 7,700 B.P. According to Renouf (1976: 108-109), other lithic traditions developed out of the Neville complex, from Southern New England to as far south as North Carolina, such as the Stanley stemmed complex, which dates to approximately 7,000 B.P. (Coe 1964: 121). Renouf (1976) suggested the Neville complex could
be extended northward to include Southern Labrador and that archaeological evidence suggests this early Archaic development occurred *in situ* in the south before rising later to a regional cultural sequence such as those seen in New Hampshire and North Carolina. Renouf (1976: 109-110) also claimed this point style cannot be considered to have originated from the Strait of Belle Isle unless a parallel development existed. In one instance, the Stanly-stemmed projectile point develops out of a bifurcate base point, presumably from the Piedmont region of the northeast, and in the other, emergence from triangular and nipple-based points of the far northeast (Renouf 1976: 109-110). Renouf (1976) further explained that while both complexes share similarities in the configuration of the broad blade and in the tapering stem, they are otherwise quite different. More specifically, the Barney form possesses a more distinct contracting stem and lacks basal thinning, traits that are present in Neville forms and suggests a bifurcate ancestry. The Neville complex also lacks *pièces esquillées*, which are present at the Barney site and at sites in Southern Labrador (Renouf 1976: 110). Renouf (1976: 110) suggested the idea of a regional sequence in Southern Labrador, an *in situ* outgrowth from the late Paleoindian occupation of the area, and some sort of contact with their more southerly neighbors. She points to the occurrence of Ramah chert as far south as Massachusetts by the third millennium B.C. as evidence for this interpretation.

Renouf (1976: 111) also discussed how Southern Labrador Maritime Archaic points displayed similarities with Morrow Mountain and Stark projectile points of New England. Dincauze (1976: 29), states that Stark stemmed points typically have long narrow blades, tapered stems, and thick cross-sections. Stark stemmed points are also contemporaneous with Morrow Mountain points of the Uwharrie sequence and are morphologically similar to the Morrow Mountain II style (Dincauze 1976: 32-33). In my examination of Coe’s examples of Stark points
(1964: 37-39), I also noted morphological similarities, specifically the base, which is rounded, and shoulders that make acute angles. Dincauze (1976: 33) also claims that the Poplar Island type (Ritchie 1961: 44) projectile point is the nearest in comparison to Stark, Morrow Mountain, and Maritime Archaic points. Having examined Ritchie’s (1971) Poplar Island type projectile points, I agree with Dincauze that there are morphological similarities between these types, specifically the rounded base and shoulders. The nipple-based point from Stock Cove, Newfoundland, projectile points from L’Anse Amour, Labrador (Tuck 1975), Neville variants of Maine (Bourque 2001 and Bourque et al. 2006), projectile points of the Lower North Shore of Quebec (Pintal 2006), and the fluted Ramah chert projectile point from Vermont (Loring 1980) are important because they can help archaeologists understand the cultural transformation, social behavior, and technological adaptations of humans in the far northeast between the Late Paleoindian period and Maritime Archaic period. Other projectile points, such as Morrow Mountain variants, Stark Points, and Poplar Island types are significant as well because of their morphological similarities to projectile points of the far northeast. However, further systematic research is needed to better understand any hypothetical relationship that may exist between these regionally recognized artifacts.

Methods

For this study I initially utilized published and non-published reports for descriptive information, images, and provenience data on Maritime Archaic projectile points, specifically “nipple-based” points. I compared the Stock Cove nipple-based point found in 2017 with other examples of “nipple-based” points from throughout the Northeast to assess if there are diagnostic attributes of this point type (Figure 4). I examined information from 26 sites and recorded information pertaining to the raw material of each nipple-based point, their age, site location, and
Conveniently, Stephen Hull of the Provincial Archaeology Office of Newfoundland and Labrador and Lori Temple of The Rooms (the Provincial Museum of Newfoundland and Labrador) were able to help with this research by providing key information on Maritime Archaic sites with nipple-based points. Hull (pers. comm. 2018) offered his own insight on nipple-based points and provided me with catalogued photos of the Labrador collections of McGhee and Tuck (1976). Hull also provided catalogued photos and information of other potential nipple-based points from throughout the province. Temple (pers. comm. 2018) provided me with a list of collections in their database at The Rooms that mention nipple-based points or spear-points. Overall the information Hull and Temple provided was invaluable and helped me learn more about this specific type of artifact. Moreover, their insight made me reconsider the significance of this research and difficulties I would run into given my available time and resources. For starters, I was unable to travel north to view collections with nipple-based points, and a lot of potentially valuable information is in unpublished site reports that have yet to be systematically documented.

Because of these limitations, I conducted a high-resolution metric analysis of the “nipple-based” point recovered from the Stock Cove site (CkAl-3), using the following methodology:

• I measured the maximum length, width, and thickness to the nearest hundredth of a millimeter along the midline, lateral margins, and from the distal to proximal ends.

• I weighed the point to the nearest hundredth of a gram.

• I measured the blade, base, and shoulder angles using a Dinolite and its built-in software (Dino Capture 2.0).

• I documented all other relevant macroscopic attributes.
To add better comparative valued, this follows Keddy’s (2015) methodology and expands upon it in various ways. I compared the metrics of the Stock Cove nipple-based spear point to other nipple-based spearpoints described elsewhere. I also took detailed photos of the Stock Cove specimen. To gain a better understanding of how this projectile point was created, I created drawings of both surfaces of the object and a cross section of each edge, as well as all surface modifications (Figure 5.)

[Insert Figure 5. Here].

Results

The Stock Cove nipple-based spear point is made of Trinity Bay chert; a chert whose source is currently unknown but based on its abundance and distribution in Trinity Bay is most likely located somewhere in the Trinity Bay watershed and likely near Stock Cove (Wolff 2014). Macroscopic observations helped me to determine how this projectile point was made and allowed me to examine the various inclusions, usewear, and retouch. Like other cherts, Trinity Bay chert is a fine-grained crypto-crystalline material that makes it relatively easy and predictable to knap and hold a hard, sharp edge. Most of the retouch is on one lateral margin, which may suggest this tool also functioned as a knife. If this point was hafted and used as a knife, I would expect to see one edge significantly more retouched to serve the purpose of cutting and trusting. However, the same could happen if it was hafted as a spear, although it might be more functional to have bilaterally sharpened edges to maximize the effect of throwing or thrusting. I believe the edge that has more retouch might reflect the handedness of the individual who owned this tool, was intentional, and meant to help with penetration or cutting upon impact. Some of the step fractures at the base suggest possible haft-wear from use. The
areas that feel ground are above the shoulders and were probably done so for hafting to avoid cutting binding elements, such as sinew or other lashing materials. Interestingly, the distal tip seems to have a small fragment missing, which could possibly be the result of impact damage.

This spear point was bifacially flaked and finished with pressure flaking along the lateral margins. Maximum length is 141.89 mm, and maximum width is 31.53 mm at its shoulders. It weighs 65.70 g. The remaining measurements are provided in Table 3 and presented in Figures 10.1-10.3. Many of the flake scars on either face have feather terminations; however, there are several areas where there are higher frequencies of hinge or step fractures. The specimen has distinct shoulders that slope towards the “nipple-base.” The stem resembles the straight contracting stems of later points but the base is rounded with bilaterally converging edges that form an acute angle. Points found from later periods have contracting stems that often have parallel lateral margins and are squared off at the proximal end.

The points examined in this research were either found around a hearth of a campsite or house structure, on an island or cove, or interior areas. The raw material used was primarily chert, but more rarely were made from quartz, quartzite, and slate. Out of the 26 sites with nipple-based points and/or spearpoints that I was able to compile, only the material used at 23 sites were recorded with any certainty. From this sample, the raw material used the most for manufacturing nipple-based points was Ramah chert (n=13 or 56.5%), followed by Grey chert (n=3 or 13%) and quartz (n=4 or 17.4%). Other cherts and quartzite were used as well, but at fewer sites (Figure 6.). These sites ranged from long-term to short-term occupations and some might be associated with ritual. They were located in coves, outer islands, or inland and on high ground. The points themselves were found in various contexts, including; lithic scatters, near
hearts of a campsite, or in house interiors. Unfortunately, due to poor documentation of many of the points, I was only able to compare the metric attributes of three points in this study, the Stock Cove point and the two points recovered from Pithouse 1 at White Point. Overall, these spearpoints are similar in size and form to one another. White Point’s examples, unlike Stock Cove, appear to have been used in a ritualistic context. The White Point examples are made from Ramah chert, while the Stock Cove point is made of Trinity Bay chert. Interestingly, for as much similarity as there is between the size and style of these points, they are separated by a straight-line distance of about 1300 km (see Figure 2. and Table 2.). Based on my current understanding of this early Archaic point typology, the Stock Cove site may have been occupied earlier than current dates suggest. Archaic dates for Stock Cove range from 5,827 to 4,860 cal. B.P. (two-sigma) (see Figure 7.), but elsewhere this type of point typically dates in excess of 6,000 years, potentially as old as 8,000-7,000 years.

Discussion

The nipple-based point from Stock Cove is in good condition, with no evidence of post-depositional damage. Based on my observations, this nipple-base is not as narrow as some of the other examples in my sample, which suggests some variation within hafting elements of these points that may relate to variation among individual knappers or could be regional variability (see Figure 1.2., Figure 2., and Figure 4.). This needs to be examined more closely, and a finer degree of metric analyses needs to be done. Due to the size of the Stock Cove point, I think it was used as a thrusting spear or perhaps for short throws, but it may have also served a dual purpose as a knife.

[Insert Table 2., Figure 2., Figure 6., and Figure 7. Here]
Many of the specimens from this research were located on the coast (n=22; all others) but a few were inland (n=4; Uitshitshemushish, Mashk, Pess Point, and Shak Selma), which may suggest that the points were associated with sea mammal hunting; however, caribou should not be ruled out either. With further research and data collection, it may also turn out that relationships between Maritime Archaic groups in Labrador and on Newfoundland were not uncommon. For example, the lack of Ramah chert at Stock Cove may suggest limited contact with Labrador groups, but diagnostic similarities between spearpoints suggest otherwise.

Out of all the nipple-based spearpoints and or projectile points I reviewed, I felt the Stock Cove nipple-based spear point most closely resembled the two nipple-based spearpoints recovered from the White Point site, which is about 1300km away and are estimated to date to as much as 6,500 B.P. (Wolff 2008). Because of this similarity, it is plausible that the White Point nipple-based spearpoints and the Stock Cove nipple-based spear point are part of a wide-ranging cultural tradition that stretched from extreme southeast Newfoundland to almost the northern tip of their known range. The similarity also suggests that the Stock Cove site is either earlier than our current dates suggest, or that this point style last later in time than previously assumed. Another reason for a more systematic chronology building study in the region. Interestingly, there are certain things missing from the Stock Cove site, like Ramah chert, which was used almost ubiquitously in Labrador. This may be evidence of regional variation, but there is some evidence of Ramah chert in the form of small flakes. No diagnostic artifacts of Ramah chert have been found. Ramah chert is used by the Maritime Archaic prior to 6,000 years ago, so why is there not more? It could be because the Stock Cove has later Maritime Archaic materials, but there is also material indicative of an occupation that exceeds 6,000 years. It may be that the
people at Stock Cove exclusively used Trinity Bay chert or that more Ramah chert has yet to be found.

The examples of projectile points from Maine and Quebec that I assessed overlap in age with the nipple-based points from Newfoundland and Labrador and there appeared to be clear similarities associated with tool assemblages and the morphology of projectile points. Hypothetically, the Letemplier Complex and Blanc-Sablon Complex might have even been trading with groups on Newfoundland between around 7,500-5,000 B.P., or they could have even been involved with the peopling of the Island, which is suggested by their use of raw materials from Newfoundland. This is another reason for a building a systematic study of diachronic changes in projectile point and other tool technology in the far Northeast.

In regard to the difference in size that existed within the examples I saw, I believe the size of larger points suggest they were used to hunt relatively large animals. They may have served as thrusting or throwing spears, while the smaller points could have been used as dart points or even endblades for harpoons. Their presence on the coast, and an early example of a toggling harpoon on the shore of southern Labrador (Tuck and McGhee 1976), suggest that sea mammals were an important economic focus and they may have been associated with those pursuits. Changes through time of these styles may, therefore, also indicate changes in function or economic adaptations. This will be the focus of future research, building off of observed changes documented by Keddy (2015) in the Middle to Late Archaic periods.

Conclusion

Most of what is presented here is preliminary, however, a more detailed study is possible with more time and resources. For example, securing a grant to travel to The Rooms Museum, in
Newfoundland, and other museums in the Northeast and Canada would allow me the opportunity to review unpublished site reports and to record the metrics of the points I have already mentioned and other points that have not been published. Currently, I feel that Maritime Archaic projectile points in Labrador and on Newfoundland need to be better documented and dated. Nipple-based points and/or spears are a significant type of tool and need to be documented more systematically by archaeologists to facilitate a more meaningful framework to understand their function and chronology. I suggest, at this time, everyone should be skeptical about the nature of the Archaic typology of the region until such a study can be conducted.

The only way to more accurately assess the age of this point will be through systematic radiocarbon dating of points from secure stratigraphic contexts, and a higher degree of collecting metric data. The fact that the nipple-based points from Stock Cove and White Point are so similar suggests that cultural traditions and connectivity existed over extremely large territories. Granted, this is still a small sample size, but it suggests that Maritime Archaic were highly mobile hunter-gatherers. The variation within this tool, such as size and material, suggests some degree of regional variation also existed.

According to Reid (2007: 7), artifacts of the northern branch of the Maritime Archaic include *pieces esquillès*, bipoints, ground stone celts, tapering stemmed projectile points, biface knives, ground slate lances, and *ulus*. Raw materials include quartzite, quartz, slate, and Ramah chert (seen in Tuck 1982: 204). Moreover, no site within insular Newfoundland has been incontestably identified as from the northern variant of the Maritime Archaic, although artifacts such as projectile points diagnostic of the northern variant have been found (2007: 7). Following Reid (2007: 8), the southern branch is characterized by large broad side-notched or expanding stemmed projectile points, leaf-shaped bifaces, occasional end scrapers and other unifaces, and
linear or blade-like flakes that are made of grey chert (seen in Tuck 1982: 205). Archaeologists have interpreted the Archaic material found in Newfoundland and Labrador as belonging to two variants or branches of people; however, this is problematic because many Maritime Archaic sites in Labrador and on Newfoundland have not been systematically studied. I do not believe the data collected thus far and what has been published is convincing enough to suggest regional variation in the sense that there was a Labrador Archaic group of indigenous people, and a Newfoundland Archaic group of indigenous people.

If there was indeed such regional variation, I hypothesize that based on some of the material that has been recovered from the Stock Cove site (i.e. nipple-based point; bi-point; ground slate lances; and ground stone celts), the Maritime Archaic people that once lived here are closely related to groups living in Northern Labrador. Overall, the evidence Wolff has found and the size of the Stock Cove site, suggests the Maritime Archaic used this location as some type of repeated occupation site. The diagnostic artifacts and carbon dates suggest repeated use for over 1,000 years.

I remain hesitant to accept there is a distinct difference between the Maritime Archaic living in Labrador and Newfoundland. I do believe that the Archaic people of Newfoundland and Labrador participated in a large interaction sphere that affected their material traditions, such as the production of lithic weapons, and they probably occasionally interacted with people to the south and west. However, I also believe that most of the latter interaction occurred through down-the-line trading networks which was important to the lives of most Maritime Archaic people, because of the need for certain resources and information. I think the cultural adaptations by Maritime Archaic peoples consist of a distinct cultural tradition that we still know little about. The widespread nature of certain artifact styles suggests considerable interaction across a large
amount of territory, but the differences we see between Labrador and Newfoundland (e.g. raw material preferences) also suggests some regional autonomy. It is possible that once the Maritime Archaic make it onto Newfoundland sometime around at least 6,000 years ago, the dependence on their relatives in Northern Labrador weakens, as we see very little evidence of Ramah chert being important on the island, as it is throughout Labrador, and there is more of a focus on local cherts, rhyolites, slates, and some other materials. Yet, the Stock Cove nipple-based point suggests that cultural connections, evidenced in lithic production traditions, may have remained. I hope that future work will help to test these hypotheses.

In general, more systematic research and publications need to be done on other sites on Newfoundland that have Maritime Archaic components. Additionally, interior areas on Newfoundland remain largely unsurveyed and need to be investigated as well. Most of the Maritime Archaic sites found on Newfoundland are single find sites where only a couple artifacts are found, or special use sites, like cemeteries or camps for logistical hunting and gathering. My view is that it is problematic to characterize an entire regional variant or branch of people based on the few sites on Newfoundland that have been systematically investigated. For one thing, there might not have been a significant occupation of people on the island, and it was only used specially for burials and to retrieve specific resources. Or, there was a significant occupation on the island that archaeologists just have not found enough evidence of yet.

I will use Northern and Southern variant cautiously in future research, because I ultimately believe that views of the Maritime Archaic need to be more sensitive to cultural variation. The Maritime Archaic was a dynamic people, skilled at navigating the land and sea to acquire resources and establish settlements. It seems to be a bit presumptuous to define the Maritime Archaic as having regional variation in the form of two branches of people when the
data currently shows they were more than capable of making long distance excursions across Labrador and Newfoundland. I believe future research on the Maritime Archaic should be concerned with systematic investigation of existing site assemblages, with a focus on making comparisons between and within Newfoundland and Labrador. Things like least cost pathway analysis and trying to source raw materials will improve our understanding of the colonization of these people and development of their belief systems. Acquiring dates with good context from Maritime Archaic sites is another thing that will improve our understanding of the time depth of these people and their movements across space. Increased conservation efforts and funding will also help protect sites that are either being lost from rising sea levels or looting.

Acknowledgements

Special thanks to the National Science Foundation who sponsored Wolff’s work at Stock Cove as well as my travel and food expenses to and around Newfoundland. Big thank you to Stephen Hull and Lori Temple for helping me with the accession of information on Maritime Archaic sites and photos of potential nipple-based points, as well as Jessica Campbell for helping edit my figures. Thank you to the University at Albany for providing support in funding and lab space to conduct this ongoing research. Thank you to my advisors and readers, Drs. Wolff and Rafferty. And last but not least, thank you to my parents, John and Marie, for their continuous support and love throughout my education.
References Cited

Arbour, Chelsey, Anthony Jenkinson, and Stephen Loring

Bourque B.J.

Bourque B.J., Steven L. Cox, and Robert A. Lewis

Carignan, Paul

Coe, Jeoffre L.

Cronin, T.M.; J.A. Rayburn; J.-P. Guilbault; R. Thunell; and D.A. Franzi

Dincauze, Dena Ferran
1976 The Neville site: 8,000 years at Amoskeag, Manchester, New Hampshire. Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA.

Fitzhugh, William

2006 Settlement, Social and Ceremonial Change in the Labrador Maritime Archaic.
Arctic Studies Center, Smithsonian Institution, Washington D.C., 20560.

Harp, Elmer

Hood, B.C.

2008 *Towards an Archaeology of the Nain Region, Labrador*. Contributors to Circumpolar Anthropology 7. Arctic Center, Smithsonian Institute, Washington, D.C.

Hull, Stephen

Jenkinson, Anthony and Chelsee Arbour

Kelly, Joshua

Kehoe, Thomas F.

Loring, Stephen

Madden, M.M.

Mason, Ronald J.

McGhee, Robert

McGhee, R.J. and J.A. Tuck

Parent, Michel and Serge Occhietti

Pintal, Jean-Yves
1998 *Aux Frontières de la Mer: La Prèhistoire de Blanc-Sablon*. Dossiers 102, Ministère de la Culture et des Communications du Québec, Québec.

Rayburn, John A.; Knuepfer, Peter L. K.; Franzi, David A.

Reid, Heather S.
2007 *A Study of Southern Variant, Maritime Archaic Sites from the Northern Peninsula and Strait of Belle Isle, Newfoundland and Labrador*. Masters thesis, Memorial University of Newfoundland.

Renouf, M.A.P. and T. Bell

Renouf, Priscilla
1976 *A Late Paleo-Indian and Early Archaic Sequence in Southern Labrador*. Masters thesis, Memorial University of Newfoundland.

Ritchie, William A.

Speiss, Arthur, Deborah Wilson and James Bradley

Stanford, Dennis J. and Bruce A. Bradley

Stanford, Scott D.
2009 Onshore Record of the Hudson River Drainage to the Continental Shelf From the Miocene through the Late Wisconsinan Deglaciation, USA: Synthesis and Revision. *Boreas*, 1-17.

Strong, Duncan

Thomson, Callum

Tuck, James A

n.d.a Prehistory of Atlantic Canada. Unpublished text for undergraduate course Anthropology 3290, Newfoundland and Labrador Prehistory at Memorial University of Newfoundland and Labrador. St. John's

Tuck, J.A. and R. McGhee

Witthoft, John

Wolff, Christopher B.

Figure 1.1 Nipple-based spear point recovered from the Stock Cove site 2017.

Figure 1.2. Nipple-biface/projectile point from the Shak Selma site (GICs-22) in the Tshumushumapeu Valley, Labrador (Arbor et al. 2013).
Table 1. Maritime Archaic sites examined in this project with “Nipple-based” projectile points and their basic information (e.g. date, material, site function, archaeologist). No Date Available (N.D.A) and No Source Available (N.S.A).

<table>
<thead>
<tr>
<th>Site Name</th>
<th>Date Range</th>
<th>Material</th>
<th>Site Function</th>
<th>Archaeologist</th>
</tr>
</thead>
<tbody>
<tr>
<td>White Point (IcCp-41)</td>
<td>6,500-3,500 B.P.</td>
<td>Ramah chert</td>
<td>pit house</td>
<td>Wolff (2008)</td>
</tr>
<tr>
<td>Shak Selma (GICs-22)</td>
<td>N.D.A.</td>
<td>smokey quartz crystal</td>
<td>short-term camp</td>
<td>Arbour et al. (2012)</td>
</tr>
<tr>
<td>Quartz Point a.</td>
<td>7,450 +/- 60 B.P.</td>
<td>quartz</td>
<td>lithic scatter and hearth</td>
<td>Hull (2004)</td>
</tr>
<tr>
<td>Utishitshemushish (GICs-26) b.</td>
<td>5,590 +/- 40 B.P.</td>
<td>salmon colored chert</td>
<td>lithic scatter and hearth</td>
<td>Jenkinson and Arbour (2013: 72)</td>
</tr>
<tr>
<td>Stock Cove (CkAl-3)</td>
<td>5,827-4,860 B.P.</td>
<td>Trinity Bay chert</td>
<td>long/short-term camp</td>
<td>Wolff (unpublished)</td>
</tr>
<tr>
<td>Koliktalik 1 (HdCg-2)</td>
<td>6,010 +/- 65 and 6,135 +/- 95 B.P.</td>
<td>Ramah chert</td>
<td>hearth</td>
<td>Fitzhugh (1978: 66, 73)</td>
</tr>
<tr>
<td>Ballybrack 5 (HeCi-6) d* (n)</td>
<td>N.D.A.; Ramah chert</td>
<td>outer island</td>
<td>Fitzhugh (1978: 73)</td>
<td></td>
</tr>
<tr>
<td>Evilik 5 (HdCg-7) d. * (q & r)</td>
<td>About 6,000 B.P.</td>
<td>Ramah chert</td>
<td>outer island</td>
<td>Fitzhugh (1978: 65, 73)</td>
</tr>
<tr>
<td>Ballybrack 11 (HeCi-12)</td>
<td>N.D.A.; Ramah chert</td>
<td>outer island</td>
<td>Fitzhugh (1978: 65, 74)</td>
<td></td>
</tr>
<tr>
<td>Cut Throat 2 (HiCj-5)</td>
<td>5,480 +/- 110 B.P.</td>
<td>Ramah chert</td>
<td>single occupation hearth pit</td>
<td>Fitzhugh (1978: 66, 72, 75)</td>
</tr>
<tr>
<td>Occasional Harbour 1 (FdAx-1)</td>
<td>N.D.A.; coastal lithic scatter</td>
<td>LAB MAI site reports: Stopp, Marianne; Stopp (1997)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caribou Castle (FkBg-1)</td>
<td>N.D.A. and N.S.A.; undetermined coastal habitation</td>
<td>LAB MAI site report: Penney Gerald; Stopp Marianne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pess Point (GICs-10)</td>
<td>N.D.A.; grey chert</td>
<td>lithic scatter</td>
<td>LAB MAI site report: Nuna, Richard and Jenkinson, Anthony</td>
<td></td>
</tr>
<tr>
<td>Ballybrack 4 (HeCi-5)</td>
<td>6,000-6,500 B.P.</td>
<td>Ramah chert</td>
<td>Fitzhugh (1978: 93)</td>
<td></td>
</tr>
<tr>
<td>Barney site (EjBf-) c. *</td>
<td>3,960 +/- 45 (I-7504) B.P.</td>
<td>McGhee and Tuck (1975: 114)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mashk (GICs-17)</td>
<td>N.D.A.; grey chert</td>
<td>eroded lithic scatter</td>
<td>Anthony and Arbour (2013: 76)</td>
<td></td>
</tr>
<tr>
<td>Natsatuk 1 (HdCg-1)</td>
<td>6,000 B.P.; quartzite</td>
<td>high beach site</td>
<td>Fitzhugh (1975: 132)</td>
<td></td>
</tr>
<tr>
<td>Big Island East 12 (Ideq-511)</td>
<td>N.S.A.; 6,000 B.P.</td>
<td>Callum Thomson (1985: 26-27)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imilikuluk 5 (HdCg-33)</td>
<td>N.D.A.; Dr. William Fitzhugh, excavation</td>
<td>Unit structure 4; proximal ends of two nipple-based points; Ramah chert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karl Oom Island 3 (HdCg-39)</td>
<td>N.D.A.; Dr. William Fitzhugh; excavation</td>
<td>Unit test pit, structure 2; Ramah chert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballybrack Valley South 1 (HdCl-9)</td>
<td>N.D.A.; Dr. William Fitzhugh; surface collection</td>
<td>unit locus 2; Ramah chert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballybrack 5 (He-Ci-6)</td>
<td>N.D.A.; Dr. William Fitzhugh, Loring; surface collection</td>
<td>unit area 4b; proximal and distal nipple-based point frags; Ramah chert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballybrack 10 Mound 2 (HeCi-11)</td>
<td>N.D.A.; Dr. William Fitzhugh; excavation</td>
<td>Unit locality 2; nipple-based points; Ramah chert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nulliak Cove 1 (IbCp-20)</td>
<td>N.D.A.; Dr. William Fitzhugh; surface collection</td>
<td>unit area 2 (1983 site survey, sc3); proximal end of nipple-based point; Ramah chert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Ramah Narrows 1 (IeCt-1)</td>
<td>N.D.A.; Dr. William Fitzhugh; surface collection, unit locus 4, area 1; Ramah chert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reid House-pit (HeCm-20)</td>
<td>N.D.A.; Dr. Fred Schwarz; surface collection, unit on surface, in quartz debitage scatter</td>
<td>situated to the North of the boulder mound feature at the site; quartz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 2. Stock Cove point (Left: a.) and White Point point’s (Middle and Right: b1. and b2.). Not to exact scale. White Point specimens (pers. comm. Wolff 2018).

Table 2. Metrics of Stock Cove and White Point Spearpoints.

<table>
<thead>
<tr>
<th>Site</th>
<th>Length (mm)</th>
<th>Width between shoulders (mm)</th>
<th>Weight (grams)</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock Cove (CkAl-3)</td>
<td>141.89</td>
<td>31.53</td>
<td>65.7</td>
<td>Trinity Bay chert</td>
</tr>
<tr>
<td>White Point (IcCp-41) (a.)</td>
<td>146.90</td>
<td>44.6</td>
<td>64.88</td>
<td>Ramah chert</td>
</tr>
<tr>
<td>White Point (IcCp-41) (b.)</td>
<td>152.80</td>
<td>n/a</td>
<td>65.8</td>
<td>Ramah chert</td>
</tr>
</tbody>
</table>
Figure 3.1. Location of Keddy’s (2015: 29) measurements.

Figure 3.2 L’Anse Amour burial mound projectile points that date in excess of 8,000 years before present (McGhee 1976).
Figure 4. Other nipple-based points from Labrador. Not to scale. See Table 1 to match sub letters with corresponding site (Hull 2004; Jenkinson and Arbour 2013; personal communication with Hull; and Fitzhugh 1978).

Table 3. Metrics of Stock Cove Point: length, width, thickness, weight, and angles.

<table>
<thead>
<tr>
<th>Thickness (mm): Tx</th>
<th>Width (mm): Wx</th>
<th>Length (mm)</th>
<th>Weight (grams and oz.)</th>
<th>Angles</th>
<th>Material</th>
<th>Complete</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1: 10.86mm</td>
<td>W1: 31.53mm</td>
<td>Total: 141.89mm</td>
<td>65.7 grams; 2.31 oz.</td>
<td>A1: (Left shoulder 137.727 degrees)</td>
<td>Trinity Bay chert</td>
<td>Yes</td>
</tr>
<tr>
<td>T2: 10.02mm</td>
<td>W2: 40.96mm</td>
<td>Shoulder to tip 1: 126.10mm</td>
<td></td>
<td>A2: (Right shoulder 119.956 degrees)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3: 10.33mm</td>
<td>W3: 33.68mm</td>
<td>Shoulder to tip 2: 123.33mm</td>
<td>A3: Base (88.594 degrees)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T4: 5.50mm</td>
<td>W4: 14.60mm</td>
<td>Shoulder to nipple 1: 21.17mm</td>
<td>A4: Tip (85.961 degrees)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T5: 8.85mm</td>
<td>W5: 30.98mm</td>
<td>Shoulder to nipple 2: 22.98mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T6: 4.77mm</td>
<td>W6: 14.60mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T7: 10.11mm</td>
<td>W7: 38.93mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T8: 3.23mm</td>
<td>W8: 8.54mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 5.1. and 5.2. “Front and “Back” of the Stock Cove Specimen.
Figure 5.3. and 5.4. Cross-sections of each edge of the Stock Cove Specimen.
Figure 6. Archaic dates at Stock Cove (as well as Groswater). Oldest recent dates are 5827–4860 Cal. BP at two-sigma (pers. comm. Wolff 2018).

Figure 7. Distribution of raw materials for Nipple-based spearpoints in sample.
Figure 8. Stock Cove is indicated by the star. Approximate locations of sites are indicated by circles (a. White Point; b. Cutthroat 2, Ballybrack 10, and Evilik Bay 5, Koliktalik 1, Natsatuk 1; c. Uitshitshemushish, Mashk, Pess Point, Shak Selma; d. Caribou Castle; e. Occasional Harbour 1; f. Quartz Point site; g. Barney site; h. Big Island East 12). Modified map used by Dr. Wolff (pers. comm. 2018).
Figure 9.1. Stock Cove nipple-based point (thickness). “T” and number correspond with thickness measurements in Table 3.

Figure 9.2. Stock Cove nipple-based point- width. “W” and number correspond with width measurements in Table 3.
Figure 9.3. Stock Cove nipple-based point-length.

Figure 10.1. Archaic assemblages from the Maine State Museum Collections. Courtesy of the Maine State Museum (Bourque 2001: 44).
Figure 10.2. Archaic assemblages from the Maine State Museum Collections. Courtesy of the Maine State Museum (Bourque 2001: 41).

Figure 10.3. Bifaces from the Simpson site, Maine (Bourque 2006: 329).
Figure 11.1. Projectile points from the Letemplier Complex (8,500-6,500 B.P.), Lower North Shore of Quebec. See bottom right projectile point. Note the short nipple-like base (Pintal 2006: 131).

Figure 11.2. Projectile points from the Blanc-Sablon Complex (6,500 B.P.-5,000 B.P.), Lower North Shore of Quebec (Pintal 2006: 132).