Cops and cells: theorizing and assessing the implications of smartphone surveillance for policing

Sean Patrick Roche
University at Albany, State University of New York, sproche48@gmail.com

The University at Albany community has made this article openly available. Please share how this access benefits you.

Follow this and additional works at: https://scholarsarchive.library.albany.edu/legacy-etd
Part of the Criminology Commons, and the Public Policy Commons

Recommended Citation

This Dissertation is brought to you for free and open access by the The Graduate School at Scholars Archive. It has been accepted for inclusion in Legacy Theses & Dissertations (2009 - 2024) by an authorized administrator of Scholars Archive. Please see Terms of Use. For more information, please contact scholarsarchive@albany.edu.
COPS AND CELLS:
THEORIZING AND ASSESSING THE IMPLICATIONS OF SMARTPHONE
SURVEILLANCE FOR POLICING

by

Sean Patrick Roche

A Dissertation
Submitted to the University at Albany, State University of New York
in Partial Fulfillment of
the Requirements for the Degree of
Doctor of Philosophy

School of Criminal Justice

2017
Cops And Cells:
Theorizing And Assessing The Implications Of Smartphone Surveillance For Policing

by

Sean Patrick Roche

COPYRIGHT 2017
ABSTRACT

In the United States, police officers are empowered to use force, and are often people’s first point of contact with the criminal justice system. Significantly, in the last decade, the majority of American citizens have acquired smartphone technology, which allows them to document and broadcast police behavior on a scale never before seen. Several high-profile police use of force incidents have been captured on video, and the resulting public outcries suggest that this technology now presents exceptional challenges to the maintenance of police legitimacy. Foucault (1977) argues that power in modern society is achieved by surveillance systems that work to normalize behavior by discouraging nonconformity, and individualizing and documenting those who do deviate from accepted standards. Thus, citizens’ smartphone monitoring of the police may be essentially corrective, and beneficial for police legitimacy. This Foucaultian model suggests important attitudinal preconditions, which are assessed here.

Using data from two recent national surveys, one of police officers and the other of members of the American public, three studies were conducted. Study 1 assessed if and to what extent police officers are aware of citizen recording (i.e., sousveillance), how likely they perceive it to be, and the extent to which they worry about it. Study 2 presented members of the public with randomized survey vignettes depicting police-citizen encounters to assess the impact of the presence of smartphones on respondents’ emotions and intention to comply. Study 3 examined the relationships between perceived procedural justice, police performance satisfaction, and experience interpersonal police misconduct on the perceived effects of citizen smartphone surveillance and overall support for citizens engaging in such practices.

The results of the three studies provide mixed support for a Foucaultian model for understanding how citizen smartphone surveillance may eventually influence policing in the United States. The results for Study 1 suggest that American police officers today are sincerely concerned with these technologies, and that individual officers’ concerns vary by their exposure to technology and viral videos that depict police officers. At the situational level, Study 2’s results indicate the presence of smartphone technology is weakly related or unrelated to respondents’ emotional affect and intent to comply, and that this effect is
primarily comforting rather than emboldening. Finally, Study 3 provides tentative support for the claim that citizen smartphone surveillance is viewed as largely acceptable among the general public. However, the antecedents for believing that these recording have strong effects, either positive or negative, on police behavior are still largely unknown. Still, perceived positive effects are the strongest predictor of overall support for citizen smartphone surveillance. As well, the results suggest that respondents who are dissatisfied with the ways that police officers treat citizens in their communities are more likely to believe that recording the police using smartphone devices is acceptable. The implications of the findings for theory, research, and policy are discussed, along with each study’s attendant limitations. Areas for future research are then outlined.
Acknowledgements

This dissertation would not have been possible without the steadfast support of my mentors, colleagues, friends, and family. I would first like to thank my advisor, Dr. Justin T. Pickett — a constant inspiration, brilliant scholar, great friend, but most importantly, a good man. I also wish to thank my committee members — Drs. Steven F. Messner, Greg Pogarsky, William Alex Pridemore, and Robert E. Worden — who provided invaluable insights and guidance. I owe a large portion of this manuscript’s merits to them. All errors remain my own.

Thank you as well to all my friends and colleagues, particularly those of who read parts of this manuscript or acted as a sounding board during this long process — Jasmine Silver, Tom Bilach, Luzi Shi, Ryan McKenna, Max Duhé, Megan Denver, Dean Weld, Meghan Hollis, Diana Mancini, Chelsey Hochmuth, Jason Place, and many, many others. Lastly, a thank you to my parents, Timothy and Christine Roche, for both giving me life, and the strength to navigate through its most difficult parts. And my love to Devin, always.
TABLE OF CONTENTS

LIST OF TABLES AND FIGURES ... vii

CHAPTER 1: INTRODUCTION ... 1

CHAPTER 2: SMARTPHONE TECHNOLOGY .. 9
 DIGITAL TECHNOLOGY OVERVIEW .. 9
 THE LEGALITY OF SMARTPHONE RECORDING .. 14
 IMPLICATIONS ... 16

CHAPTER 3: THEORETICAL BACKGROUND ... 18
 SYMBOLIC INTERACTIONISM AND DRAMATURGY 19
 THE DRAMATURGICAL VIEW OF POLICING ... 21
 FOUCAULT AND THE PANTOPICON ... 28
 EXTENSIONS OF FOUCAULT'S PANTOPICISM ... 31
 SUMMARY ... 35

CHAPTER 4: PRIOR RESEARCH .. 38
 SMARTPHONE SOUSVEILLANCE ... 38
 POLICE BODYWORN CAMERAS .. 43
 UNANSWERED QUESTIONS .. 48

CHAPTER 5: STUDY 1 – POLICE PERCEPTIONS OF SOUSVEILLANCE 50
 METHODS ... 53
 DATA ... 54
 RESULTS ... 63
 SUMMARY ... 70

CHAPTER 6: STUDY 2 – EXPERIMENTAL SURVEY VIGNETTES 80
 METHODS ... 82
 DATA ... 83
 RESULTS ... 89
 SUMMARY ... 95

CHAPTER 7: STUDY 3 – PUBLIC PERCEPTIONS OF SOUSVEILLANCE 101
 METHODS ... 53
 DATA ... 54
 RESULTS ... 48
 SUMMARY ... 48

CHAPTER 8: DISCUSSION AND CONCLUSION .. 122

APPENDIX A: POLICE SURVEY CODEBOOK ... 136

APPENDIX B: PUBLIC SURVEY CODEBOOK ... 160

APPENDIX C: SUPPLEMENTARY ANALYSES .. 187

REFERENCES ... 207
LIST OF TABLES AND FIGURES

1. Table 1.1 Descriptive Statistics for Study 1’s Analytic Sample ... 73
2. Figure 1.1 Percentage of Respondents Who Answered “Likely” or “Very Likely” to each of the Items in the Perceived Recording Likelihood Scale ... 74
3. Figure 1.2 Percentage of Respondents for Each Category of Recording Worry 74
4. Table 1.2 Bivariate Correlations for the Variables Used in Study 1 .. 75
5. Table 1.3 Baseline OLS Regression Models Predicting Perceived Likelihood of Recording and Worry of Recording .. 76
6. Table 1.4 OLS Regression Models Predicting Perceived Likelihood of Being Recorded 77
7. Table 1.5 OLS Regression Models Predicting Worry of Recording – Select Predictors 78
8. Table 1.6 OLS Regression Models Predicting Worry of Recording – Full Models 79
9. Table 2.1 Descriptive Statistics for Study 2’s Analytic Sample .. 97
10. Table 2.2 Bivariate Correlations for the Variables Used in Study 2 .. 98
11. Table 2.3 OLS Regression Models Predicting Outcomes in Vignette 1 (Speeding) 99
12. Table 2.4 OLS Regression Models Predicting Outcomes in Vignette 1 (Littering) 100
13. Table 3.1 Descriptive Statistics for Study 3’s Analytic Sample .. 115
14. Figure 3.1 Percentage of Respondents Who Answered “Agree” or “Strongly Agree” to each of the Items in the Perceived Sousveillance Effects Scale .. 116
15. Figure 3.2 Percentage of Respondents Who Answered “Somewhat Acceptable” or “Very Acceptable” to each of the Items in the Sousveillance Support Scale .. 116
16. Table 3.2 Bivariate Correlations for the Variables Used in Study 3 .. 117
17. Table 3.3 Baseline OLS Regression Models Predicting Perceived Effects of Sousveillance and Sousveillance Support ... 118
18. Table 3.4 OLS Regression Models Predicting Perceived Effects of Sousveillance 119
19. Table 3.5 OLS Regression Models Predicting Support for Sousveillance – Select Predictors 120
20. Table 3.6 OLS Regression Models Predicting Support for Sousveillance – Full Models 121
21. Figure S1.1 Percentage of Respondents Who Answered “Likely” or “Very Likely” to each of the Items in the Perceived Recording Likelihood Scale, Supervisors Only ... 187
22. Figure S1.2 Percentage of Respondents Who Answered “Likely” or “Very Likely” to each of the Items in the Perceived Recording Likelihood Scale, Non-Supervisors Only .. 187
23. Figure S1.3 Percentage of Respondents for Each Category of Recording Worry, Supervisors Only .. 187
24. Figure S1.4 Percentage of Respondents for Each Category of Recording Worry, Non-Supervisors Only .. 187
25. Table S1.1 Baseline OLS Regression Models Predicting Perceived Likelihood of Recording and Worry of Recording, Supervisors Only .. 189
26. Table S1.2 OLS Regression Models Predicting Perceived Likelihood of Being Recorded, Supervisors Only ... 190
27. Table S1.3 OLS Regression Models Predicting Worry of Recording – Select Predictors, Supervisors Only .. 191
28. Table S1.4 OLS Regression Models Predicting Worry of Recording – Full Models, Supervisors Only .. 192
29. Table S1.5 Baseline OLS Regression Models Predicting Perceived Likelihood of Recording and Worry of Recording, Non-Supervisors Only .. 193
30. Table S1.6 OLS Regression Models Predicting Perceived Likelihood of Being Recorded, Non-Supervisors Only .. 194
31. Table S1.7 OLS Regression Models Predicting Worry of Recording – Select Predictors, Non-Supervisors Only .. 195
32. Table S1.8 OLS Regression Models Predicting Worry of Recording – Full Models, Non-Supervisors Only .. 196
33. Table S1.9 OLS Regression Models Predicting Perceived Likelihood of Being Recorded, Missing Values Mean-Substituted .. 197
34. Table S1.10 OLS Regression Models Predicting Worry of Recording – Select Predictors, Missing Values Mean-Substituted .. 198
35. Table S1.11 OLS Regression Models Predicting Worry of Recording – Full Models, Missing Values Mean-Substituted .. 199
36. Table S1.12 Ordered Logistic Regression Models Predicting Worry of Recording – Select Predictors .. 200
37. Table S1.13 Ordered Logistic Regression Models Predicting Worry of Recording – Full Models ... 201
38. Table S2.1 Vignette 1 Outcomes by Dichotomous Experimental Manipulations ... 202
39. Table S2.2 Outcomes by Dichotomous Experimental Manipulations ... 203
40. Table S2.3 Vignette 1 ANOVA Models of the Causal Effect of Exposure to Recording Device (Relative to Control Group) .. 204
41. Table S2.4 Vignette 2 ANOVA Models of the Causal Effect of Exposure to Recording Device (Relative to Control Group) .. 204
42. Table S2.5 Ordered Logistic Regression Models Predicting Fear and Anger Outcomes in Vignette 1 (Speeding) .. 205
43. Table S2.6 Ordered Logistic Regression Models Predicting Fear and Anger Outcomes in Vignette 2 (Littering) .. 206
CHAPTER 1
INTRODUCTION

Policing holds a precarious place in a free, democratic society (Skolnick, 2011). Law enforcement organizations must balance the many, often conflicting, expectations of politicians, the public, and the media (Laurie, 1972; Manning, 1977; Van Maanen, 1974). Police officers are pledged to protect citizens while also regulating their behavior. More broadly, the police stand as crucial symbols of social control and social order, and indeed they may be the most visible representations of the state (Jackson & Bradford, 2009; Loader & Mulcahy, 2003; Manning, 1977; Pickett & Bontrager Ryon, 2017), and that dramatic representation is perhaps as meaningful as their physical day-to-day activities (Edelman, 1964; Laurie, 1972). Also, police officers have a monopoly on the legitimate use of force (Bittner, 1970; Paoline, 2003), up to and including deadly force. Such power invites extreme scrutiny from the public. Thus, rather than a stable arrangement, police legitimacy is a continual dialogue between law enforcement agencies and the communities and broader society that they serve (Bottoms & Tankebe, 2012; Jackson & Sunshine, 2007). This dialogue is no minor issue for the police, since law enforcement agencies rely on the trust and support of the public in order to function effectively (Cao, 2011; Crow et al., 2017; Gau & Brunson, 2010; Tyler & Fagan, 2008).

In the course of their duties, police officers must necessarily restrain and control some members of the public at least some of the time, rather than simply provide them advice or assistance. Some scholars have argued that it is thus in the very nature of police work for the police to always be at odds with at least some proportion of the public (Manning, 1977, p. 134). Still, even by that forgiving standard, in recent years policing has recently become more difficult in the United States, and police officers’ relationship with the American public has become
strained (Brown, 2016; Weitzer, 2015). The last few decades have brought enormous increases in the complexity of policing (Huq, Jackson, & Trinkner, 2016; Reiss, 1992) as communities have become increasingly pluralistic, and as technology has rapidly expanded in power and scope (Goldsmith, 2010). Moreover, several recent high-profile incidents of police use of force have recently captured the public attention (Brown, 2016). The deaths of Michael Brown, Eric Garner, Tamir Rice, Philando Castile and others have resulted in sustained public outrages, chief among them the formation of the Black Lives Matter movement (Weitzer, 2015). Today, a significant portion of the U.S. population does not support police use of force (Silver & Pickett, 2015). A nationally representative survey suggests that almost half (49%) of the American public believes that generally police officers think they are ‘above the law,’ and nearly half (46%) also believe that when there are specific instances of police misconduct, officers are generally not held accountable (Ekins, 2016, p. 4). And in 2015, Americans’ confidence in police reached a twenty-year low (Jones, 2015).

Police are hardly ignorant of these developments. A recent national survey of police officers suggests that 75% of officers believe that high-profile use of force incidents have increased tensions between police and sections of the their communities, particularly among African-Americans, and the overwhelming majority (86%) believe that policing is harder today because of those incidents (Pew Research Center, 2017, p. 4). The former director of the Federal Bureau of Investigation, James Comey, even went so far as to suggest that the high publicity surrounding these incidents has made police afraid to do their jobs, describing it as “a chill wind blowing through American law enforcement” (Graham, 2015; Lichtblau, 2016).1 Evidence

1 The suggestion that recent negative publicity surrounding police has causes many officers to become risk averse, in turn emboldening potential offenders to the point where crime rates are now increasing, is sometimes referred to as the “Ferguson effect.” This name references the civil unrest that followed the death of Michael Brown in
suggests that a significant portion of police officers share this view — the majority (67%) of officers reporting that while they believe incidents are ultimately isolated events (Pew Research Center, 2017, p. 4), but an even greater proportion (72%) suggest that officers in their department are less likely to proactively engage with members of the public (Pew Research Center, 2017, p. 76). Tellingly, there is also a large gap between what members of the public believe they know about policing, and what police officers themselves believe the public knows. A large majority of Americans (83%) report they “understand the risks and challenges of police work,” while an even higher proportion of police officers (86%) believe the public does not truly understand those risks and challenges (Pew Research Center, 2017, pp. 77-78).

THE INCREASING VISIBILITY OF AMERICAN POLICING

It is unlikely that the death of Michael Brown, Eric Garner, and others would have reached so many people, or completely saturated the media in the ways they did, were it not for profound changes in personal social technologies, most notably — the smartphone (Brown, 2016; Toch, 2012). In fact, most of these high profile use of force incidents were recorded using smartphone devices, and the resulting videos and images quickly spread to millions of people using social media websites like Facebook and Twitter. It is now well known that the Internet, social media, and cell phones have suffused American life, fundamentally changing how information is created and spread through communities and the nation as a whole (Ling, 2008, 2012; Rainie & Wellman, 2012; Smith, 2017). Smartphone technology is, in many ways, the culmination of these trends, quickly ascending in popularity from the early 2000s to today, where more than three-quarters (77%) of all adult Americans now personally own smartphones (Smith, Ferguson, Missouri. A small but growing literature is assessing whether such an effect does indeed exist (see, Nix & Wolfe, 2016, 2017; Wolfe & Nix, 2016).
The smartphone allows the average citizen to accomplish several interrelated feats that would have been unthinkable a quarter-century ago (Ling, 2012)—almost anyone can now capture high definition pictures and video footage; instantly transmit that content to friends and family, near and far; and specifically deliver that content into the larger web of social media, where it has the capacity to “go viral” and reach millions of people (Pew Research Center, 2015). The smartphone has the capacity to fundamentally alter policing by highlighting incidents of use of force, creating new and unanticipated challenges, and indeed changing how police work is done. Indeed, a recent report from the U.S. Department of Justice identifies citizen recording of the police as one of the principal challenges facing American law enforcement in the coming years (Gallagher et al., 2016, p. 16), and some scholars contend that this new environment has already begun to affect police practices (Brown, 2016; Goldsmith, 2010; Toch, 2012).

Police are uniquely situated in modern society to be affected by the rapid evolution of social technologies like smartphones. First, police officers are the most common and most visible agents of the criminal justice system (Chermak & Weiss, 2005). Police are both logically and physically proximate to citizens in ways that all other criminal justice actors simply are not. For a number of reasons, police officers have historically emphasized their visibility through distinct uniforms and marked vehicles (Goldsmith, 2010; Paperman, 2003). Unlike prosecutors, judges, or corrections officers, the police officer makes regular contact with everyday people in public places, like the street and in homes and businesses. Systemically, police officers are first responders, and the first point of contact for most people and other institutions in the criminal justice system like courts and prisons. Simply, because police officers actively monitor and engage with the public, members of the public have the physical opportunity to record them.

2 Among American adults 18 to 29 years old, smartphone ownership nears almost complete saturation, with current estimates suggesting that 92% of all adults in this age range possess a smartphone (Smith, 2017).
Second, policing is fundamentally a dramaturgical enterprise, concerned both explicitly and implicitly with the management of perceptions (Alpert & Dunham, 2004; Manning, 1977; Sykes & Brent, 1980). While law enforcement agencies are often rigid, hierarchical, paramilitary organizations, street-level policing itself often features improvisational episodes that vary greatly from one situation to the next (Manning, 1977; Sykes & Brent, 1980; Toch, 2012). In addition to making extemporaneous judgments about the intentions of suspects, patrol officers must also perform “the role of police officer” for social audiences (e.g., bystanders, fellow officers). Crucially, different audiences may expect or appreciate very different qualities in a performance (Goffman, 1959, 1971, see also Meares, Tyler, & Gardener, in press). However, historically the police were given discretion and flexibility by the fact that the vast majority of police performance passed without any record beyond the testimony of witnesses or involved parties (The Constitution Project, 2016, p. 11). Any technology — such as the smartphone — that allows police performances to be quickly and easily recorded, and then subsequently broadcast, represents a powerful change to the status quo of policing.

APPLYING Foucault TO MODERN POLICING

Scholars have long speculated about the growing role of surveillance in modern societies (Foucault, 1977; Mathiesen, 1997; Thompson, 2005), sometimes in the context of police utilizing surveillance to control potential offender (Haggerty, Wilson, & Smith, 2011), and other times to suggest that citizens could turn surveillance technology against the authorities (Mann, Fung & Lo, 2006). Foucault (1977) suggests that the modern state is a series of interlocking disciplinary systems of surveillance, designed to elicit conformity under the “normalizing gaze” of authority. To Foucault, the ability to indefinitely surveil individuals is a technological innovation that
enables subjugation through visibility. In sum, behavior is kept in line “through the promise, if not the reality, of omniscient observation” (Haggerty, Wilson, & Smith, 2011, p. 232). This principle is a familiar one for police, since both classic policing strategies (e.g., random patrol) and more recent innovations (e.g., hot spots policing) attempt to deter offending via implied omnipresence (Nagin, Solow & Lum, 2015).

Police officers in a democratic society are already ostensibly accountable to citizens (Pickett & Bontrager Ryon, 2017; Skolnick, 2011). For instance, Alpert and Dunham (1994, p. 177) suggest that citizens have both some formal legal authority, as well as informal traditional social authority. Skolnick (2011, p. 18) notes that the rule of law is ultimately empowered “from below, not from above.” Smartphone technology might provide a powerful tool to exercise that authority. Smartphones and their links to social media are, in many ways, the democratization of surveillance technology, and its attendant authority, across society (Doyle, 2011). This creates “sousveillance” (“watching from below,” see Mann, Fung, & Lo, 2006; Ganascia, 2010) in addition to classic surveillance (“watching from above”). Thus today, most everyone is both watched and watcher.

Moreover, smartphone technology allows specific police officers to be, in Foucault’s terminology, individualized and fixed in space and time through video documentation. The full theoretical implications of such mutual surveillance – a “viewer society” or “digital Panopticon” – have yet to be fully realized (Goldsmith, 2010). As well, Foucault’s perspective suggests that police awareness of smartphone technology would alert them to the potential of being watched by the public, and that officers would accordingly better comport their behavior to social expectations. The practice of smartphone recording by the public may in the long run improve
general police behavior, and could consequently both enhance audience (Tyler, 1990) and power-holder legitimacy (Bottoms & Tankebe, 2012, 2013).

Using survey data from samples of both police officers and the public, this dissertation is one of the first empirical investigations of crucial attitudinal preconditions for smartphone technology to eventually affect American policing under a Foucaultian model. Three research questions are assessed, with a study devoted to each:

(1) Do police officers believe that citizens commonly use smartphone devices to record the police? And is this phenomenon salient to them?

(2) Are citizens situationally empowered in their interactions with police officers when smartphones are present?

(3) Do citizens believe that police officers need to be monitored? And do they believe that recording police officers using smartphones will positively impact police behavior?

There are two main sources of data for the dissertation. The basis for Study 1 is a dataset derived using an online nationwide survey sample of police officers, obtained through convenience and snowball sampling methods. Studies 2 and 3 utilize data from a survey administered to a nationwide sample of adult (18 and over) residents of the United States, through Amazon Mechanical Turk (MTurk), a leading online crowdsourcing website. The police survey touched on several topics: use of force; procedural justice; police culture; personal technology use, on-duty technology use, and personal and department demographics. The civilian survey sample incorporates many of the questions and concepts from the police survey, but also measures overall support for sousveillance activities, and the effectiveness of sousveillance activities in changing police behavior.
This dissertation is composed of seven additional chapters. Chapter 2 provides an account of the prevalence and significance of smartphone technology. Chapter 3 outlines the theoretical framework, drawing specifically on a dramaturgical understanding of policing, and then incorporating Foucault’s work to draw hypotheses on the precise mechanisms necessary for sousveillance to influence policing behavior. Chapter 4 briefly outlines and summarizes the extant literatures on smartphone technology in relation to policing, as well as the literature on police bodyworn cameras. Chapter 5 details the hypotheses, analytic sample, specific measures, and results for Study 1. This study assesses the predictors of officers’ estimates of the likelihood of their being recorded, and examines whether estimates of likelihood translate into emotional fear or worry. Chapters 6 details the hypotheses, analytic sample, specific measures, and results for Study 2. This study examines how members of the public react to the presence of smartphones given hypothetical police-citizen encounter scenarios. Chapter 7 details the hypotheses, analytic sample, specific measures, and results for Study 3. This study examines whether members of the public believe that the police do indeed need to be monitored, and whether smartphone technology is effective at altering their behavior. Lastly, Chapter 8 provides a discussion of the findings for all three studies, and delivers some concluding remarks.
CHAPTER 2
SMARTPHONE TECHNOLOGY

INTRODUCTION

A comprehensive investigation into the potential relationship between smartphone technology and policing naturally entails a clear understanding of the history and current use of that recording technology, as well as prior literature on the topic. This chapter outlines the history of smartphone technology, its current prevalence among Americans, its current correlates of its use, and finally the legality of recording the police using these devices across the United States of America. Prevalence and legality are important because any potential impact of citizen smartphone recording on policing would likely be lessened in a society where smartphone use was relatively rare, or where its use in recording the police was largely illegal.

DIGITAL TECHNOLOGY OVERVIEW

The last twenty-five years have seen enormous advances in digital technology. Importantly, these advances are not abstract or distant from the general public, such as NASA rocketry or nuclear power (Shirky, 2008). Instead, these technologies are similar to the automobile and the clock, in that they are increasingly essential to the facilitation and mediation of social interactions in modern societies (Ling, 2008, 2012). Face-to-face interactions are now supplemented by an array of mediated interactions (Thompson, 2005, p. 34). In addition to the traditional phone call, which itself can now be made from virtually anywhere, the average person can receive emails, texts, Twitter tweets, YouTube videos, Facebook posts and messages, and many other communications.
While face-to-face interactions are mainly dialogical, many mediated interactions are only quasi-interactions at all, since they are geographically and temporally asynchronous — that is, they are stretched across both space and time (Thompson, 2005, p. 32). First, this means they are monological or one-way – when watching a video of a police officer using force, it is impossible to step into scene and question the participants, or investigate the true meaning of what has transpired (Thompson, 2005). Instead, people are now often privy to the visceral intimacy of face-to-face interactions (e.g., a person recording their interaction with a police officer at traffic stop), but they must simply watch as events play out. Second, these quasi-interactions can be reproduced for an infinite number of recipients, or “mass self-communication” (Castells, 2007, p. 238). For instance, a video of a police officer can be posted and reposted in social media, potentially being viewed by millions of people (Thompson, 2005). This is possible because of the rapid advancements of digital technology across the developed world, and especially the United States.

Rainie and Wellman (2012) argue that the “digital revolution” of the last quarter-century is not a single phenomenon at all, but instead three simultaneous upheavals in Internet, social networking, and mobile phones. Today, almost 90% of all American adults, and 97% of all young adults ages 18 to 29, use the Internet compared to only half of adults in the early 2000s (Pew Research Center, 2014, p. 5, see also, Smith, 2017). Collectively, Americans spend over billions of minutes on social networking websites alone each month (Nielsen, 2012). In the United States, social media websites like Facebook are now used by nearly 80% of all online adults, and by almost nine out of ten adult Internet users under the age of 30 (Pew Research Center, 2016). In contrast, in 2005, only 5% of American adults reported using social media platforms (Smith, 2017). For Facebook users, having the service often entails daily participation:
almost two-thirds check the website daily, and over a one-third visit several times throughout the day (Duggan & Smith, 2014, p. 2). While the penetration of social networking into daily life is sizable, the growth in cell phone usage is even more staggering. At the end of 2015, an estimated 92% of all Americans had cellphones, 98% when narrowed to young adults, ages 18 to 29 (Anderson, 2015). And indeed, among those young adults, a larger proportion owned a smartphone (86%) then owned a computer (78%) (Anderson, 2015, see also File & Ryan, 2014). Although there are some differences for computer use estimate between the Current Population Survey and the American Community Survey (see Ryan & Bauman, 2017), the overwhelming consensus across both governmental and non-governmental (e.g., Pew Research Center) sources is that computers, social media, and smartphones are ubiquitous fixtures of American life today.

Charting the Rise of the Smartphone

The smartphone is, in many ways, the culmination of all three trends of the digital revolution. A smartphone is typically defined as a mobile phone with an advanced operating system that combines features of a personal computer. In addition to the ability to receive and make phone calls, it typically features applications for calendars, media players, games, GPS navigation, and digital cameras that can capture both photos and video (Raento, Oulasvirta, & Eagle, 2009). Thanks largely to the convenience of smartphones, over 90% of American teens go online daily, and roughly a quarter of them are online almost constantly (Lenhart, 2015, p. 2). In effect, the smartphone has become the “locus of social networking sites, text processing, email, gaming, payment and banking services, and much more” (Ling, 2012, p. 11).

While the first multifunctional mobile phone technically began with the IBM Simon in 1993 (Reed, 2010), the first modern smartphone for the everyday consumer is widely considered Apple’s iPhone, unveiled in 2007 (Arthur, 2012). Over the course of four years, smartphone
ownership skyrocketed, with 35 percent of American adults reporting their ownership of such a
device when Pew began polling on the topic in 2011 (Smith, 2017). In the five years following,
smartphone ownership has more than doubled, with 77 percent of all American adults now
reporting ownership, and 92 percent of young adults (18 to 29 years old). Furthermore, there
have been significant jumps in smartphone ownership among those ages 50 and older, and
households earning less than $30,000 a year (Smith, 2017, p. 2). Some researchers at the U.S.
Census have even suggested smartphones may eventually ameliorate small but persistent gaps in
technology use and effectiveness across different demographic and geographic groups in the
United States (Lewis, 2017, p. 2, see also Anderson & Horrigan, 2016). We now turn to a brief
discussion of these gaps.

Correlates of Use

There is a widespread belief that a large swathe of the population, due to poverty or lack
of education, does not or cannot use the Internet and related social technologies (e.g. email,
texting, social network sites). This disparity is often called the “digital divide” hypothesis
(DiMaggio et al., 2001; Norris, 2001; van Dijk, 2006; van Dijk & Hacker, 2003), and it is of
significant importance to this discussion, since poverty is significantly associated with both
crime and police contact (Son & Rome, 2004. However, the digital divide hypothesis is fraught
with assumptions. First, “digital divide” implies a clear gap between two clearly defined groups.
Second, it suggests an absolute inequality – people either have or they do not have. Third, it
implies that this inequality is stationary, and at least somewhat enduring (van Dijk, 2006, p. 222).

None of these assumptions holds up well under scrutiny. The prodigious spread of digital
infrastructure, coupled with the proliferation of many kinds of social technology, has created not
a single great divide, but rather many kinds of different uses and users (van Dijk & Hacker,

While some scholars argue that social technologies like smartphones simply have low appeal for populations most likely to come into contact with the police — low-income, low-educated minority males (Katz & Rice, 2002; Rojas et al., 2004) — more recent scholarship casts doubt on these early assumptions. Research suggests that social technologies like smartphones play an integral, daily role in the lives of both gang-affiliated (Pyrooz, Decker, & Moule, 2015; Sela-Shayovitz, 2012), and homeless youth (Guadagno, Muscanell, & Pollio, 2013; Rice & Barman-Adhikari, 2014). More broadly, by analyzing seven waves of data from the Current Population Survey, Kim (2011) finds evidence for a shrinking race- or occupation-based digital divide in Internet use. This trend is even more pronounced in cell phone use.

In fact, there is evidence to suggest poor and minority Americans are just as likely are more likely to utilize my phone technology. While Duggan (2013, p. 3) notes that “younger adults (those ages 18-29), the college-educated, the more affluent, and urban and suburban-dwellers are especially likely to use their phones in a variety of ways,” she also notes that Latinos use their phones to text at a statistically significant higher percentage than Whites, 87% versus 79% (Duggan, 2013, p. 3). Latinos and Blacks use their phones to access the Internet at a statistically significant higher percentage than Whites, 67% and 72% respectively, compared to 56% for whites (Duggan, 2013, p. 4). And importantly, differences based on household income were relatively small, especially when comparing low and middle-income families. Between households that made less than $30,000 per year, and households making between $30,000 and $50,000, there were no statistically significant differences in percentage texting, accessing the Internet, using of email, or using location-based services (Duggan, 2013, pp. 2–7). Large portions of even the least educated and poorest categories of respondents were still using these services. The lowest reported usage statistic was that 32 percent of respondents without a high
school diploma use mobile email (Duggan, 2013, p. 5). Further, as previously suggested, recent scholarship suggests that poor African-Americans, those less likely to have traditional technology like desktop computers, are increasingly using smartphone technology instead (Lewis, 2017; Smith, 2017). To conclude, a growing amount literature suggests that while there are digital divides: (1) they are gaps between partial and complete adoption of these technologies, not gaps between those who do not have them at all and those who do, and (2) disaggregating by age reveals that gaps are especially narrow for young people (see also Lewis, 2017; Smith, 2017). This is important because smartphone technology is unlikely to affect impact the police unless it is commonly used by the citizens who most often come in contact with police officers.

THE LEGALITY OF SMARTPHONE RECORDING

We now turn to the legality of citizens using smartphones to record police officers. Again, this is important because a Foucaultian model requires the potential perception of omnipresent surveillance. This would be difficult to achieve if the surveillance activities are illegal — that is to say, if the police could not use their social control powers to simply arrest citizens who engage in such activities. There have been incidences of police arresting bystanders who record them, as well as destroying recording devices (Simon, 2012, Wilson & Serisier, 2010). Another tactic has been to accuse bystanders who are recording of interfering with police operations (Bock, 2016; Stanley, 2017; Wall & Linneman, 2014). However, in the United States, federal law only blocks the warrantless capturing of photo or video images of people when they have a reasonable expectation of privacy; most U.S. states have similar laws (Hayes & Ericson, 2012, p. 7) and these laws have been upheld on multiple occasions (Stanley, 2017). This encompasses a large amount of police activity, which often occurs in public places. On the other
hand, there are police-citizen interactions where there is a reasonable expectation of privacy, such as a conversation between an officer and member of the public on private property. In this instance, federal law allows the recording of such in-person conversations, as well as telephone calls, contingent on the consent of at least one of the parties (Digital Media Law Project, 2014).³ Thirty-seven states and the District of Columbia follow in the same vein as the federal statute by requiring the consent of just one party.⁴ This means that citizens who are directly interacting with police officers can produce a smartphone and record without the officers’ consent. Also, if the citizen interlocutor has knowledge and gives consent, it also allows for other individuals (e.g., car passengers) to record, even if the police officer does not consent.

On the other hand, there are also twelve states that do require the explicit consent of both interlocutors. These states are called “two-party consent” states, but this is somewhat of a misnomer, since in conversations involving more than two parties, all must consent. Two-party consent laws are currently in effect in California, Connecticut, Delaware, Florida, Illinois, Maryland, Massachusetts, Montana, New Hampshire, Pennsylvania, and Washington (Digital Media Law Project, 2014, p. 1).⁵ Nevertheless, for most Americans, and in many common situations involving police-citizen interactions, members of the public have the legal right to record police officers, even without their consent. This includes situations like recording the police on the street, in public transportation facilities like a subway, and on one’s own private property (Stanley, 2017).

Yet, it is also important to note that this legal issue continues to evolve. For instance, in the 2016, two separate bills were introduced in the Texas State Legislature aimed at curtailing

³ See 18 U.S. Code § 2511(2)(d). Interception and disclosure of wire, oral, or electronic communications prohibited.
⁴ Hawaii is not counted among these states because technically while it is a one-party state, but requires two-party consent if the recording devices is installed in a secret location (Digital Media Law Project, 2014).
⁵ Massachusetts does not explicitly require the consent of all parties, but instead prohibits “secret” recordings. (Digital Media Law Project, 2014).
citizen recording of the police (Petersen, 2017), one of which would have required citizens to be at least twenty-five feet (and one hundred feet if a person is carrying a firearm) away from a police officer in order to record. Neither bill has been ratified into law (Petersen, 2017). The fluidity and uncertainty of the issue is reflected in the data collected for this dissertation — a large majority (~72%) of the respondents in the dataset used in Studies 2 and 3, which surveyed American adults in early 2017, reported that they did not know if it was legal or not to record the police in public places in their state. Still, less than three percent believed it to be illegal.

IMPLICATIONS OF SMARTPHONE UBIQUITY AND RECORDING LEGALITY

The cell phone or smartphone user has abilities that would have seemed marvelous only a few short years ago. First, they have constant contact with other users, even while in transit, giving people more freedom and more interdependence with others simultaneously (Ling, 2008, 2012). Second, almost all users have cell devices that are small, lightweight, and easily concealable (Ling, 2008, 2012; Raento et al., 2009). Third, most have these users have the ability to capture high quality photographs, audio recordings, and video recordings, and these media are created outside the bounds of traditional journalism (Burgess & Green, 2009; Li, 2009). Making these recordings does not require any special expertise or materials, and many recordings can be created and stored on a single device. Third, most users can transmit copies of these pictures, audio recordings, and video recordings to other users instantly. They can also upload copies of this content to the Internet, often to social media websites like Facebook and Twitter (Ling, 2012). Perhaps most importantly, that content now lives out in the world, and is likely outside of any one person’s control, even the control of its creator. Indeed, traditional media outlets have begun to frequently use media created by citizens (Goldsmith, 2010; Wilson & Serisier, 2010).
These capabilities have startling implications for police-citizen interactions. Previously, police behavior, like the behavior of most government officials, was obscured from the vast majority of the public (The Constitution Project, 2016; Manning, 1977). But today, the average person can now document their own interaction, or others’ interactions, with police officers with relative ease (Digital Media Law Project, 2014). They can do so with high quality picture and sound. And they can now easily distribute that documentation to potentially millions of people. Perhaps most importantly, the average person also has tremendous discretion in how they frame the actions of police officers. After all, any recording is an exercise in discretion (Toch, 2012). The records make decisions about when to start recording, when to stop, whom to focus on, and whom to avoid. These decisions may profoundly influence secondary or tertiary audiences perceived the recording (Brown, 2016; Toch, 2012).

Perhaps most importantly, over two-thirds of smartphone users report that they use their device to share pictures, videos, or commentary about events happening in their community. Over one-third saying they do so frequently (Pew Research Center, 2015, p. 9), and there is a growing literature police officer are frequent targets of the public’s curiosity (see e.g., Antony & Thomas, 2010; Farmer, Sun, & Starks 2015; Farmer, 2016). All of this implies that police officers are more visible, and potentially more publically accountable, than ever before. In order to make sense of these technological changes and their potential relevance to policing, we next turn to discussion on a theoretical framework for understanding both police officers’ dramaturgical performances and surveillance in modern society.
CHAPTER 3
THEORETICAL BACKGROUND

INTRODUCTION

In order to form testable hypotheses regarding the relationship between smartphone technology and policing in America today, it is helpful to first have cogent theoretical frameworks for: (a) how police officers operate in a democratic society, and (b) how observation affects human behavior. As noted in the introduction, the police officer is physically proximate to citizens in ways that all other criminal justice actors simply are not. As such, it follows they would be among the first to be affected by changes in technology and visibility that allow the public to turn the normalizing gaze back on agents of the state such as police officers.

In this chapter, I first outline symbolic interactionism (Blumer, 1937, 1986) and Goffman’s (1959, 1961a, 1961b, 1963a, 1963b) interaction order, then explain how it has been applied to law enforcement officials as a dramaturgical view of policing (Manning, 1977; Sykes & Brent, 1980, 1983). This will demonstrate how police officers are intimately concerned with the management of performances, perceptions, and audiences, and thus how they are particularly susceptible to the advent of smartphone technology. I then discuss the Foucault’s (1977) work on the disciplinary gaze of surveillance, and briefly address its subsequent theoretical extensions (e.g., Haggerty & Ericson, 2000; Mathiesen, 1997; Michael, Fusco, & Michael 2008; Poster, 1990; Vaidhyanathan, 2011). I build how on these theoretical extensions have fallen short by recognizing the public’s increasing ability to actively monitor the very agents of social control (i.e., the police) who have traditionally monitored them. This Foucaultian framework allows me to form substantive predictions about the specific mechanisms necessary for citizen’s smartphone recording to influence police behavior.
"Social action, like poetry, is ambiguous. It can be read off or interpreted in a variety of ways and at several levels of meaning" (Manning, 1977, p. 25).

Symbolic interactionism is a theoretical perspective that emphasizes how meaning, as well as understanding of the self, is a product of social interactions and consequently updated and altered by subjective interpretation of the individual. Although originally grounded in the work of philosopher George Herbert Mead (1934), the perspective was actually named by his protégé, Herbert Blumer (1937), who substantially advanced the perspective throughout his own career. Blumer (1986) summarized the perspective as consisting of three key insights. First, in line with the Thomas theorem — “If [people] define situations as real, they are real in their consequences” (Thomas & Thomas, 1928, p. 572) — the individual person interacts with other people and things based primarily on the meanings that the individual has ascribed to them. Second, these meanings are often not apprehended directly, but rather derived primarily from social interactions with other people and social groups. Thus, “the response of one organism to the gesture of another in any given social act is the meaning of that gesture” (Mead, 1934, p. 78). Third, these meanings are not directly inscribed on the individual person as a result of social interaction, but rather through a process of evaluation and reinterpretation.

Drawing on the work of Blumer (1937) and Homans’ exchange theory (1958), Goffman (1959, 1961a, 1961b, 1963a, 1963b) strongly emphasized the importance of social interaction in everyday life, defining social interaction as “that which uniquely transpires in social situations, that is, environments in which two or more individuals are physically in one another’s response presence” (Goffman, 1983, p. 2) and noting that interactions vary wildly by their constituent participants (e.g., friends and family versus colleagues or strangers) and their degree of formality.
The dramaturgical perspective emphasizes “the ways in which human beings, in concert with other similarly situated others, create meaning in their lives” (Edgley, 2013, p. 2), specifically by focusing on behavior as the fundamental expression of meaning.

Most notably, Goffman (1959) employs a dramaturgical metaphor in describing social interaction. Simply, as in theater or drama, everyday social interactions are derived from the selective presentation of dialogue, props, costumes, facial expressions and physical behavior to convey meaning (Goffman, 1959). All of this takes place in a fluid and dynamic process — individuals extemporaneously perform behavior in order to convey information and meaning to others, who in turn improvise performances back. This can be as important reifying one’s own sense of self as it is for imparting meaning to others. Individuals therefore negotiate social meaning continuously as they interact with similarly situated others, striving to both understand the roles of the actors in the scene and to perform their own role well (Goffman, 1959, p. 249).

Crucially, performances are multivalent (Goffman, 1983) — performers must work to convey the veracity of the performance (e.g., “What I’m saying is true” or “How I’m behaving is correct”) while also convincing other of the truth behind the performance (e.g., “I am who I say I am”).

The complicated, spontaneous, and simultaneous character of social interactions — that is, the sheer complexity of performing for a social audience — virtually insures that they sometimes break down, often with negative consequences for one or more individuals involved in the interaction (Goffman, 1959, p. 87, see also Goffman, 1963a). When people “break the rules,” either intentionally or unintentionally, they may be “called out” in the moment, informally punished, or stigmatized and shunned by others going forward. If the infraction is serious enough, formal agents of social control like teachers or police officers may intervene. Notably, Goffman posits that improper performances, although deleterious to those who enact
them, are functional for others in society by strengthening the distinction between what is acceptable and unacceptable (1963b, p. 4). Thus, the dramaturgical metaphor is well suited to a discussion of police behavior. Indeed, Goffman himself cursorily suggests that the “goal-oriented presentations, regular performances, and behavioral routines” of the police have “high symbolization potential” as representing ceremonial “morally defined ends, or ‘official values’” (Goffman, 1959, p. 35). By that same token, failed performance by the police may be doubly harmful by representing not only a failure of the individual, but a failure of the broader values and institutions that he or she represents. We now turn to the work of Peter K. Manning (1977), who provides a deep dramaturgical analysis of Anglo-American policing that touches on this topic and many others.

THE DRAMATURGICAL VIEW OF POLICING

“The police are dramatic actors, and they must wrestle collectively and individually with the salient dramatic dilemmas of their role and occupation” (Manning, 1977, p. 17).

In considering the dramaturgical role that police play, Manning first considers the overarching role that they hold in modern society. In line with Durkheim’s conception of the division of labor (2014 [1893]), Manning (1977, p. 29) suggests that complex modern societies necessitate occupational groups of people who specialize or become expert in their area. The members of these expert groups feel solidarity with one another, feel they have the right to define, judge or control a set of activities, and may seek to claim a mandate to that effect (Manning, 1977, p. 29, see also Hughes, 1958). Although state-sponsored groups like the police have an inherent advantage in seeking this mandate, prestige and legitimacy are not easily achieved or maintained in a society with many groups vying for power. Manning (1977, pp. 30-31) proposes that dramatic symbolism is a powerful tool in maintaining status, and because
police work involves so many different kinds of people in society, is so varied in its content and so ambiguous in its results, the police must in fact foster dramatic symbols of control.

This is not to say that the police do not have explicit rational goals rooted in the actual performance of their duties (see Goffman, 1969, 1971). As Laurie (1972, p. 31) states, “To say that the police job is theatrical is not to denigrate it.” Yet neither are the police “passive respondents buffeted by the unexpected contingencies created as a result of attempting to fulfill a set of rationally defined goals in a problematic environment” (Manning, 1977, p. 33). Rather, Manning suggests that the police remain a fundamentally political group competing in the vast societal arena with many other political groups, whose members perform en mass to carefully maximize their appearances and utilize symbols in order to contend. This has important consequences for the behavior of individual officers.

Since police organizations are constantly working on an overarching project to maintain legitimacy (Alpert & Dunham, 2004), individual police-citizen interactions are also occasions where respect and prestige can be lost or won (Sykes & Brent, 1983). Drawing directly from Goffman (1967) Manning posits that this is no ancillary project, but rather that it is bound up in the very act of law enforcement — committing to enforcing a rule inherently binds the individual to the integrity of that rule. As Goffman (1967, p. 50) notes, “when an individual becomes involved in the maintenance of a rule, he tends also to become committed to a particular image of the self.” Laurie (1972, p. 31) remarks that police officers “[i]n their own persons…embody respect for the laws.” In effect, these scholars suggest that there can be little in the way of purely objective and disinterested policing. Instead, police officers have a deeply vested interest in upholding laws that they have chosen to enforce, not just for the maintenance of society’s moral order, but rather because their own sense of self and their group’s symbolic status could
otherwise be in jeopardy. Police work already carries the potential for physical danger, but this constant maintenance of police legitimacy imports gravity to situations that might seem (to the outside observer) to be unimportant or mundane as officers attempt to “coerce respect from the public” (Westley, 1953, p. 35, see also the “authority maintenance theory” of Alpert & Dunham, 2004, p. 171; Sykes & Brent, 1980, 1983). This is important for the purposes of this dissertation because smartphone technology is a powerful tool that, depending on the situation, may bolster or destabilize the overarching narrative of police legitimacy. I next review the strategies police employ to maintain their performance of control.

How the Drama of Policing is Achieved

Until recently, police-citizen interactions typically produced little in the way of objective data or evidence beyond that which the police themselves produced via reports, statistics, or testimony (The Constitution Project, 2016, p. 11, see also Manning, 1977, p. 135). Even today, other than in select instances, much of policing goes unseen and unrecorded. That relative invisibility allows police organizations to perform as an individual actor would, selectively presenting some behaviors while hiding others, which in turn plays out in a few key ways (Manning, 1977, p. 32). First, it allows the police to project a narrative of professionalism, technical expertise, and objectivity that can stand with few systematic challenges to its veracity (Manning, 1977, pp. 127-130). Second, it allows the police to conceal “backstage” aspects of their work that are contrary to this narrative, what Manning (1977, p. 18) calls “the dirty, the boring, the ineffectual, the illegal or potentially immoral” aspects of everyday police work.

Third, the relative invisibility of police work gives officers much-needed situational flexibility — police can extensively vary performances based on the exigencies of the situation, the race or socioeconomic status of the citizens involved, the presence of other officers, or any
number of other factors. Police officers are thus able to “segment their audiences so that certain presentations are available only to some segments of the society” (Manning, 1977, p. 17). The lack of consistent evidence of police-citizen interactions gives officers the freedom to act in a discretionary manner, and in inconsistent or even contradictory ways, in order to maintain their performance of control for a diverse array of audiences. Fourth, the invisibility of police work inherently makes the police powerful. Manning (1977, p. 135) explains, “mystification has always been a means of sustaining respect and awe. As a strategy, then, secrecy is one of the most effective sources of police power.” Fifth, when police are seen, they employ a variety of regalia to denote their status, including badges, insignia, uniforms, and colors, to bolster the sense of group unity and symbolism (Manning, 1977, p. 117).

The Protective Façade of the Drama of Policing

Traditionally, police officers have felt embattled, convinced that the public neither likes or appreciate them, nor understands the demands of their job (Paoline, 2003, 2004; Van Maanen, 1974; Westley, 1953), a view that has persisted to the present day (see Pew Research Center, 2017, pp. 77-78). Furthermore, the individual police officer is constantly propelled into new uncertain situations (Bittner, 1970), possibly lurking with potential deadly threats, and they must simultaneously assess the character of those around them and improvise their own performance (Skolnick, 2011). He or she is often called to a scene with limited information, then must make constant assessments of the character of the people with whom they are interacting (e.g., victims, witnesses, potential suspects), and the overall meaning of those interactions (Alpert & Dunham, 2004; Brent & Sykes, 1979; Sykes & Brent, 1980, 1983). At the most fundamental level, the officer must make extemporaneous judgments about whether danger exists, its magnitude, and who presents that danger. Bittner (1970, p. 4) suggests that this is an inherent feature of policing:
“no measure of effort will ever succeed in eliminating, or even meaningfully curtailing, the area of discretionary freedom of the agent whose duty it is to fit rules to cases… we cannot spare him the task of judging the correctness of the fit.”

Not only is the police officer’s job interpersonally challenging, it may be fundamentally contradictory. Skolnick (2011) argues that the police’s societal mandate to maintain “law and order” is near paradoxical. Law and order are not synonymous, and in fact are often antithetical. Police officers, as front line agents of the government in a democratic society are both functionaries in a bureaucracy and arbiters of law (Bayley, 1990, 1994). The officer is thus caught between bureaucratic ideals of “order, efficiency, and initiative” on the one hand, and strict adherence to “the rights of individual citizens” on the other (Skolnick, 2011, p. 6).

For both the police themselves and the public, the dramatic presentation of policing — what Manning (1977, p. 35) summarizes as the “police myth” — helps to organize and simplify, legitimize and glorify, this chaotic state of affairs. The police myth serves to: (1) provide a means to clarify and simplify police action, (2) simultaneously, keeps police officers out of the realm of “everyday discourse” and instead places them in a larger moral battle, (3) subsumes for most laypeople deep and difficult topics such as the etiology of crime, class conflict, and the ultimate utility of force itself, (4) gives coherence to police action as coherent stories with beginnings and ends, and yet concurrently (5) casts policing a timeless, placeless endeavor. To wit, “[l]aw enforcement is no longer seen as mere work, involving decision, discretion, boredom, and unpleasantries; it becomes a sort of ‘creed’” (Manning, 1977, p. 327). Indeed, it provides an enduring positive narrative of benevolent crime-fighters protecting the public from evil and rooting it out (Manning, 1977, p. 35, see Laurie, 1972, see also Loader, 1997, for police as “condensation symbols”). In succinct fashion, Manning (1977, p. 326) states, “The myth
provides, in repetitive form, the assumed truth the police force will be applied systematically to isolated and thoroughly evil persons in a predictable and routine fashion.”

Importantly, this is a perception that still somewhat endures today. A 2016 survey suggest that significant majorities of Blacks, Whites, and Latinos are in agreement that the top priorities for police should be investigating violent crime and protecting the public from crime (Ekins, 2016, p. 5). But just as important, Manning (1977, p. 316) states that endurance of the police myth is dependent on micro-feedback loops between the police and public, who, in a democratic society, have a powerful ability to make their expectation of future police conduct known (Skolnick, 2011, p. 18). Thus, while the dramatic presentation of policing is a bulwark that individual officers rely on in their daily work (Manning, 1977, p. 328), it is by no means indomitable, because it relies on the public to reify its narratives and myths.

The Fundamental Weakness of the Police Performance

“That the police bear a heavy moral and political freight is undeniable and perhaps in the long run tragic” (Manning, 1977, p. 17).

So far, we have seen that in order to perform a difficult, messy job, the police have engaged in a sustained project of impression management with the public, relying on both the fact that few citizens have regular direct contact with police officers, and consequently that much of what the police do is largely invisible to broader society. In addition, the police have (1) constructed a highly dramatized account of who they are and what they do, (2) convinced the public, and perhaps even themselves, of its authenticity, and (3) traditionally performed on a situational and improvisational basis for circumscribed audiences, with little to no outside tangible evidence (e.g., pictures or video) of their daily interactions. This perhaps would not be problematic if the “police myth” was in some accord with actual police capabilities. Manning
(1977, pp. 328-329, see also, Bayley, 1990, 1994) strongly suggests that it is not: “The police can little control their environment, especially those activities conventionally labeled as ‘crime.’ Yet they claim to do so...this places them in a structural dilemma: they claim to do something they can’t.” While there is a substantial debate about the ability of the police to reduce crime (see e.g., Kovandzic et al., 2016; Lee, Eck & Corsaro, 2016; Nagin, Solow & Lum, 2015; Pickett & Roche, 2016; Pratt & Cullen, 2005), it is surely far less than police often imply (Bayley, 1994).

Furthermore, not only can the police not systematically control crime, they are fundamentally human, and thus subject to all the frailties, passions, fears, errors, and inconsistences that characterize all other people. This is simultaneously a very banal observation, and yet it stands in stark contrast to the myth to the police seek to embody. As Arnold (1935, p. 49) noted over eighty years ago:

“An official admission by a judicial institution that it was moving in all directions at once in order to satisfy the conflicting emotional values of the people which it served would be unthinkable. It would have the same effect as if an actor interrupted the most moving scene of a play in order to explain to the audience that his real name was John Jones. The success of the play requires that an idea be made real to the audience. The success of the law as a unifying force depends on making emotionally significant the idea of a government of law which is rational and scientific.”

Smartphone technology is particularly salient to the police because it threatens to undermine the selective presentation of self that they have carefully cultivated. The often invisible backstage work of police officers can now be made visible to large swathes of the public. The disparate performances that police officers engage in can now be systematically recorded and compared, so that inconsistencies and hypocrisies can be identified. When footage of police use of force is captured — particularly, when it is raw, messy, and inelegant — it directly challenges the police rhetoric of professionalism, technological efficiency, and objectivity. Smartphones technology provides new tools to members of the public who are already hostile to the police (Manning,
1977, p. 117-118) to collect information to further spread their opinions. This is especially important since, as Manning (1977) and others (Skolnick, 2011) have suggested, the police are ultimately reliant on the public to accept and affirm their performance, and to invest them with legitimacy and power (Tyler, 1990). For a much more intensive account of power and surveillance in modern society, as well as substantive predictions for how citizen smartphone surveillance may impact policing, we turn to the work of Michel Foucault (1977).

FOUCAULT AND THE PANTOPTICON

In Discipline and Punish, Foucault (1977) provides a seminal work on the role of surveillance and the maintenance of authority in modern society. This theoretical frame is valuable in understanding the potential impact of the public’s use of smartphone technology on policing today. While Foucault’s theoretical contributions are many and varied, this analysis will particularly focus on one of his insights — power in modern society is achieved by systems of surveillance that work to normalize behavior by discouraging nonconformity, and identifying, individualizing, and documenting those who do deviate from accepted standards. Other scholars, such as Packer (1968), have made similarly argued about the relationship between visibility and reform. This insight provide necessary context for understanding the role that smartphone technology may play in police-citizen interactions in the coming years. Specifically, it suggests three basic mechanisms: (1) police being aware of smartphone surveillance by the public, (2) members of the public being empowered by smartphone surveillance in their interactions with police officers, and (3) support among the public for smartphone-based surveillance to monitor and correct police officers.
Foucault (1977) uses the historical emergence of the prison to explain power relations and the social construction of individuals in society today (Garland, 1990, p. 134). The prison is a useful example because it showcases the technologies of control that are more subtly present throughout modern society. Foucault (1977) suggest that, beginning in the 17th century, institutions like schools, hospitals, and prisons began to institute systems of discipline via training, observation, and recording (Haggerty & Ericson, 2000; Thompson, 2005). Foucault (1977) posits that these systems gradually spread out across society “as a diagram of a new model of power” (Haggerty & Ericson, 2000, p. 607); such that today there is pervasive web of surveillance, evaluation, and critique. The development of these disciplinary regimes was a technological innovation that enabled control or subjugation through visibility.

Surveillance, says Foucault (1977, p. 201), generally acts as a “normalizing gaze” that “assures the automatic functioning of power.” When rules are not observed, it singles out and corrects the behavior of the offender. Normalization, Garland (1990, p. 134) notes, “In its positive, correctional orientation it is rather different from the simple prohibition and punishment of misconduct.” Behavior is kept in line “through the promise…of omniscient observation” (Haggerty, Wilson, & Smith, 2011, p. 232). This principle is a familiar one for police, who have employed a variety of strategies (e.g., random patrol; hot spots policing) to deter offending via implied omnipresence. Indeed, Manning (1977, p. 14) specifically identifies policing as “controlling, monitoring (in terms of correcting misguided behavior), tracking, and altering, if required public conduct” (Manning, 1977, pp. 13-14). While, as previously stated, police have not been able to control crime using those strategies (Bayley, 1990, 1994), it is possible that
smartphone technology wielded by the public (i.e. crowd-sourced surveillance) can project a sense of omnipresence far beyond the capabilities of police agencies in a democratic society.

Turning back to Foucault, his analysis also rests on the idea that knowledge and power are interdependent concepts. The more that can be learned about a person—via individualization, monitoring, and documentation—the more power can be exerted upon them. Thus, Bentham’s (1791) Panopticon prison, or Inspection House, is the best illustration of Foucault’s power-knowledge thesis (Garland, 1990; Thompson, 2005). Cells are arranged around a central tower, and filled with lighting and windows so the cells are always visible from the central tower, but the tower dwellers can never be seen from the cells (Foucault, 1977, p. 201). The inmate is never sure if he or she is being monitored or not, yet is aware of the potential for surveillance, and thus will comports themselves as if they are being watched, inducing self-control (Garland, 1990, p. 146). The technology of surveillance — the Panopticon itself — results in the perception of being watched among the watched. Recall that “If [people] define situations as real, they are real in their consequences” (Thomas & Thomas, 1928, p. 572). Therefore, knowledge leads to power in two ways: (1) the watcher has the ability to detect deviance directly through visibility, but moreover (2) the watched is aware of this visibility, and bends to the will of the watcher without struggle. Again, there are parallels here to the policing and deterrence literatures, which have recently prioritized crime prevention over detection and subsequent arrest (e.g., Lum & Nagin, 2015 Nagin, Solow & Lum, 2015).

Yet, crucially, Foucault (1977) posits that power-knowledge is independent of any particular person or group. Instead, it is the property of the technologies of control and surveillance. For instance, in the Panopticon prison, it is the architecture itself that automates and objectifies power relations. If one has the keys to the central tower, then social standing, cultural
background, or political affiliations are all made irrelevant (Garland, 1990, p. 146). Foucault (1977, p. 202) is careful to state this point explicitly, “it does not matter who exercises power. Any individual, almost at random, can operate the machine.” This strongly suggests that shifts in the distribution of technology, visibility, and information in a society, particularly those that accomplish a “leveling of the hierarchy of surveillance” (Haggerty & Ericson, 2000, p. 606), can radically shift who holds power-knowledge in that society. By extension, any technological innovation that alters the scope of surveillance can both influence citizens that can now view police behavior, and therefore also influence the police’s behavior itself. To extend Foucault’s metaphor – if anyone can pick up the surveillance machine, then the availability of new machines is crucial. Police officers have traditionally exerted the normalizing gaze on citizens. Now those officers may have to contend with, on a large scale, citizens individualizing, monitoring, and documenting the police themselves, in effect creating “sousveillance” by “revers[ing] the one-sided panoptic gaze” (Mann et al., 2006, p. 177). Further, since Foucault considers knowledge and power to be synonymous, it is possible that smartphone technology will empower and embolden citizens in their day-to-day interactions with police officers, potentially making them less afraid or more likely to resist officers’ directives.

EXTENSIONS OF FOUCALUT’S PANOPTICISM

Foucault’s work, particularly his employment of the Panopticon metaphor, has been highly influential. It has generated a number of theoretical extensions over the last thirty years, including, by not limited to: the “maximum security society” (Marx, 1985), the “minimum security society” (Blomberg, 1987), the “superpanopticon” (Poster, 1990); the “synopticon” (Mathiesen, 1997); the “surveillant assemblage” (Haggerty & Ericson, 2000); the “postpanopticon” (Boyne, 2000); the “ban-opticon” (Bigo, 2006); “überveillance” (Michael,
Fusco & Michael 2008); and the “cryptopticon” (Vaidhyanathan 2011). While the details of these theoretical extensions vary, Marx (2016, pp. 45-46) argues that they share many themes. He lists almost twenty, some of which are correct, and some of which are likely wrong. I have synthesized them to eight key propositions.

First, they suggest that surveillance is fundamentally an exercise of power, which acts via the mechanism of acquiring knowledge about the person(s) who will be controlled or disciplined. Second, the technological means to acquire and use this kind of knowledge has grown and changed rapidly over the last fifty years, and especially the last twenty years. Third, the expanded scope of these data collections reveals and gives meaning to areas of life that were previously meaningless or obscured, such as the bulk of police citizen-interactions. Fourth, this expanded scope also has moved beyond particular events or causes into a more generalized examination of peoples’ everyday lives. Fifth, these data collections have gradually become more embedded and automated in everyday life, and as a result, less visible to those being watched. Sixth, scholars have usually argued that surveillance is deleterious for society, and privacy is ultimately beneficial. Seventh, with exception of scholars who have argued for countervailing sousveillance effects (e.g., Ganascia 2010; Mann, Nolan, & Wellman, 2003; Mann et al., 2006), there is a clear distinction between the watchers and the watched, and those who are watched are either ignorant of their position or they have been manipulated or duped into it. Eighth, as a result, the state and other powerful institutions steadily gain power as they render everyday people more and more visible, while simultaneously staying invisible themselves, such that the near future might yield an Orwellian dystopia (see Marx, 2016 for further elaboration of these key themes).

6 In positing his “synopticon,” Mathiesen (1997) argues that he growing role of broadcast mass media and investigative journalism had effectively allowed “the many” to watch “the few.” However, he focuses on entertainment and political elites, and not everyday wielders of authority like police officers.
While the first five points seem alive in well in a society inundated with smartphone technology, the last three propositions are perhaps fundamentally out of touch, at the very least in relation to police-citizen interactions today. What Foucault did not anticipate in his Panopticon, and even what later elaborations like Mathiesen’s (1997) synopticon did not imagine, is a society where the public writ large can exert a normalizing gaze on authorities, especially police officers. Previously, like most facets of the criminal justice system, the visibility of police was almost always through direct (i.e., a citizen’s face-to-face encounter) or vicarious experiences (i.e., a friend or family member’s account) (Goldsmith, 2010). The advent of mass media like newspaper and television allowed for secondary audiences to police actions, but still rarely were the police documented in the middle of their performances. As previously discussed, police officers were empowered by the relative invisibility of their interactions with the public, and their ability to employ the normalizing gaze on citizens (Goldsmith, 2010).

However, today, smartphone technology allows citizens to record police officers in the middle of their performances (Thompson, 2005). These recordings can individualize and document police activities, fixing them in space and time (Foucault, 1977, p. 189). In the best case scenario, all audiences, both the proximate audiences at the scene, and secondary and tertiary audiences viewing the recording via email or social media, consider the police performance to be normal and appropriate. In practice, citizens often do not begin to record the police until they feel something is inappropriate or wrong with officers’ behavior (Bock, 2016). And indeed, smartphone users may actually influence how later audiences make sense of police actions by functioning as a Greek chorus — commenting and framing the scene without directly participating in it (Toch, 2012). But importantly, the widespread influence of these behaviors does seem to rest on a general belief among the public that the police should be monitored by the
public, that recording the police is an appropriate means to do so, and that recording the police may have beneficial effects (either immediately or over time) on police behavior.

After all, as Packer (1968, p. 242) notes, criminal justice reform “thrives on visibility.” Contrasting the conservative crime control model to the more progressive due process model, he writes, “At the root, the Due Process model depends on the functioning of what has been called the sense of injustice. No one, Supreme Court justices included, is immune to the horrible example” (Packer, 1968, p. 242-243). Thus, in theory, each new outrage captured on a smartphone may fuel the tendency of the public to monitor the police with their handheld technology. While this may be especially damaging to police legitimacy among segments of the population who are predisposed to see even good-faith actions by the police as incidents of misconduct (Son & Rome, 2004, p. 201, see also Braga et al., 2014, p. 619), the consideration of other audiences is potentially beneficial for overall police behavior.

As previously noted, police legitimacy is a constant dialogue between the police and citizens based in reciprocal expectations of conduct, and where meanings are debated and negotiated (Bottoms & Tankebe, 2012, 2013; Coicaud, 2002, 2013). However, police are often caught between favoring bureaucratic efficiency or citizen’s procedural rights (Skolnick, 2011). A Foucaultian framework for understanding the impact of smartphones on the public would suggest that monitoring and documentation by the public, or what one might call having to “police in the digital Panopticon,” may influence many, if not most, police officers to more carefully consider citizens’ rights. The dramaturgical perspective suggests that the individuals derive self-identity from the opinions of others (Goffman, 1959). Going forward, the normalizing gaze of the public’s smartphones may discourage problematic police behavior, such as excessive use of force, by expanding the scope of the social audiences that give meaning to police
performances, ending the traditional hegemony police has possessed in meaning-making. This may incentivize officers to preserve the public’s faith in the authority of the police by acting in a way that is consistent with the public’s understandings of “justice” (Tyler, 1990), and to preserve officers’ own confidence that they have the moral authority to enforce the law (Bottoms & Tankebe, 2012, 2013).

Still, this process seems to rely on, at the very least, three mechanisms. First, as per Foucault, surveillance is principally meaningful when the people being watched know that they are being watched, and that this fact is, for whatever reason, important to them. Thus, police must believe members of the public are recording them, and this must affect them in some way. Second, since knowledge and power are virtually synonymous for Foucault, knowledge should empower citizens during police-citizen interactions. Thus, if a smartphone is present, individuals should feel more secure and perhaps even more defiant, when dealing with a police officer. Third, the Panopticon functions when there is some consensus for who is under observation, and that the gazing will have a disciplinary effect. Thus, a sizeable portion of the public should support the recording of the police, and that support should principally flow from the belief that this monitoring will be corrective, pushing the police to socially desirable behaviors.

SUMMARY

This chapter began by assessing police officers from a symbolic interactionist perspective, specifically a dramaturgical theory of policing. This theoretical perspective suggest that while police officers are embedded in rigid, bureaucratic paramilitary organizations, police officers’ interactions with the public are often performative, improvisational, and situational. This is because police officers are not merely individuals, but rather they stand as symbols of greater institutional forces, such as social control, law, and the state itself. Furthermore, officers
are frequently called into situations where they must make on-the-fly judgments about the veracity and intent of people’s words and actions, which necessitates dynamic responses. To use the dramatic metaphor — varying situations and audiences necessitate a variety of police performances. Conversely, not all performances are palatable to all audiences. While the reality of police discretion has been well known in academic research for some time, the overwhelming majority of police performances have traditionally passed by without record, save for the personal accounts of suspects, witnesses, and written records that the police themselves produce (e.g., arrest reports). Smartphone technology is thus particularly salient to the police because it allows, for the first time, for the vivid documentation and subsequent broadcast of police performances. In short, it transports new social audiences into the encounter.

To understand how the implications of this potentially ubiquitous observation of the police, I turn to Foucault’s work on surveillance. Using the metaphor of the Panopticon, Foucault argues that surveillance (or the possibility thereof) is essentially the constant exercise of power of one subject onto another via knowledge. Indeed, for Foucault knowledge and power are intimately connected, even synonymous. Previously, Foucault’s theoretical perspective has typically been applied to society writ large, and in the context of the powerful increasingly impinging on the privacy of everyday people. Only rarely has it been examined from the perspective of surveillance potentially exerting social control on political or economic elites, or on traditional agents of social control themselves (e.g., the sousveillance of police). Still, Foucault prescient in recognizing that power may not be embedded in qualitative social groupings, but rather in architectures and technologies. This suggests that shifts in the distribution of technology, visibility, and information in a society, particularly those that accomplish a “leveling of the hierarchy of surveillance” (Haggerty & Ericson, 2000, p. 606), can
radically shift who holds power-knowledge in that society. Nevertheless, it remains to be seen if:

(1) a significant proportion of police officers believed they are or can be watched, and whether
this emotionally impacts them; (2) members of the American public feel empowered in
encounters with the police by the potential to gather knowledge and data on those officers, and
whether than in turn affects citizen behavior; and (3) a significant proportion of Americans
believe that the police need to be monitored, and whether they believe smartphone sousveillance
can serve as an effective means to alter police behavior. These mechanisms are each assessed in
this dissertation. First, however, it is crucial to examine the extant literature on this topic.
CHAPTER 4

PRIOR RESEARCH

INTRODUCTION

This chapter examines the extant scholarship in several salient domains. These domains include studies that utilize Foucaultian theoretical frameworks to understand the recoding of the police, relevant work on police-citizen interactions, and public and police attitudes towards the recording of the police using smartphone. In addition, this chapter also briefly outlines the extant literature on the attitudinal and behavioral effects of the implementation of police bodyworn cameras. A review of these disparate literatures is crucial for identifying unanswered questions, and for structuring the three empirical studies that follow.

PRIOR LITERATURE RELEVANT TO SMARTPHONE SOUSVEILLANCE

To continue with the dramaturgical metaphor from the previous chapter by “setting the scene,” it is first important to note that while police misconduct is relatively rare overall, its prevalence varies significantly by type and by the sub-populations that observe and experience it (Son & Rome, 2004). As well, research indicates that in the United States, members of the public develop perceptions and normative judgments of the police from a variety of sources, not just direct or even close vicarious experiences (Huq et al., 2016; Peffley & Hurwitz, 2010). These alternative sources, such as television and Internet news (Roche, Pickett, & Gertz, 2016), may be powerful, and these perceptions may gradually accrue from childhood to adulthood (See scholarship on “legal socialization,” e.g., Fagan & Tyler, 2005; Trinkner & Cohn, 2014; Tyler & Trinkner, 2016). While this research does not directly address smartphone citizen sousveillance, it is nonetheless relevant for two reasons. First, it implies that recent smartphone-recorded accounts of police behavior may allow the experiences of one subpopulation (e.g., poor, urban
residents) to be made visible to other segments of society. Second, it suggests that these accounts may eventually constitute a significant source for American citizens’ normative judgments about the police generally. In the long run, as these accounts accumulate, they could potentially be weighed more heavily than even personal or direct vicarious experiences with police, or shape citizens’ interpretations and judgments of those direct interactions (Rosenbaum et al., 2005; Slocum, Wiley, & Esbensen, 2016).

Turning to research specifically focused on smartphones, it is important to note that the existing scholarship about the nature and potential effects of smartphone surveillance has been largely theoretical rather than empirical. For instance, Trottier (2017) places sousveillance of the police by citizens in a broader category of what he calls “digital vigilantism,” where private individuals seek to crowsource social control, both of control agents like the police, but also of other members of the public generally. Trottier (2017) argues that this vigilantism may easily blend with online harassment or “doxing” (i.e., publishing another’s sensitive personal information like personal phone number, home address, or children’s names in a public place). As well, there have been treatises in how sousveillance may be hampered by the current structural landscape of the Internet (Schaefer & Steinmetz, 2014), and how the proliferation of video data can be considered a “harvest” (Evans, 2015) for activists and concerned citizens.

Now moving to qualitative research of the police regarding smartphone sousveillance, three studies on the impact of citizen sousveillance on police officers’ attitudes and behaviors (Sandhu, 2016, 2017; Sandhu & Haggerty, 2017) have originated from an ongoing ethnographic project in Edmonton, Alberta, Canada. The studies utilize data derived from participant observation fieldwork and semi-structured interviews with 60 officers across three law enforcement organizations — the city police department, university campus police department,
and transit police. The findings for all three studies are substantively similar. They suggest police officers in Canada are highly aware of the possibility and high probability that citizens will record them, but that they are ambivalent on how to respond to this new feature of their occupational environment. Sandhu (2016) suggests a dyadic typology, with a minority of officers falling into a “camera shy” group, and a majority taking on “camera friendly policing” strategies. These strategies include the officer: (1) taking pains to loudly narrate a citizen encounter, verbalizing both the physical and verbal actions that they are taking, and also their perceptions of what the suspect is physically doing, and (2) deliberately “setting the scene” for a potentially physical encounter by drawing suspects into well-lit areas (p. 85). Sandhu and Haggerty (2017) keep this typology, but add a category for officers who report being habituated to citizen recording. Sandhu (2017) builds on the previous studies by suggesting that rather than separate groups of officers, all officers have varied repertoires and are “camera shy,” habituated, or “camera friendly” depending on situational factors. Other ethnographic studies have returned similar findings (see Farmer, 2016; Stalcup & Hahn, 2016).

Qualitative research has also recently been done with “cop-watching” organizations, to gather a better sense of public perceptions of citizen sousveillance. Bock (2016) collected ethnographic material in a southern U.S. city with a cop-watching organization over two years, and telephone interviews with police accountability activists across the country. She found that “copwatchers” often believe that the power of their work is not vested in the cameras that they wield, but in their ability to instill in officers’ the belief that they may possibly be recorded (Bock, 2016, p. 26). The overall process of patrolling and following police is emphasized, rather than any individual output of video clips of police misconduct. Thus, Bock (2016, p. 29) emphasizes that the respondents in her study believed, even without realizing it, in a Foucaultian
model of citizen surveillance — with the “gaze having disciplinary force” in and of itself. She reports that while some watchers were motivated by negative experiences with police, many were drawn by an interest in more general political activism. Furthermore, despite the erstwhile label of “citizen journalism” (see e.g., Antony & Thomas, 2010; Farmer, 2016; Greer & McLaughlin, 2010, 2011), even dedicated “cop-watchers” do not often see themselves as journalists. Bock (2016, p. 29) suggests that the members of the cop-watching group she observed are motivated by visceral anger at the police, a deep political idealism, and empathy for members of their community.

Combining investigations of both police and the public, Farmer (2016) conducted semi-structured interviews of 12 community members and 15 police officers in a city in the state of Delaware. Six of the community members had recorded police officers previously (Farmer, 2016, p. 56). Among citizens, while motivations are complex, there was an overall emphasis on ensuring police accountability and affecting future police behavior. Like Sandhu (2017) Farmer (2016) was surprised to find that situational factors were very important — in this case, for community members who were deciding whether to record the police. She notes that this contrasts more traditional cop-watching groups, and suggests recording the police may now be a “much more individualized and informal activity” (Farmer, 2016, p. 148). Among the police officers interviewed, Farmer finds continued support for the notion that the police are aware they are being recorded, and that they are subsequently modifying their behavior accordingly.

Lastly, to my knowledge, only two scholarly studies have engaged in attitudinal survey research on the topic of citizen sousveillance of police that reaches beyond descriptive statistics. Farmer, Sun, and Starks (2015) assessed willingness of citizens to record the police, utilizing a sample of 644 college students at the University of Delaware in Newark, Delaware. In contrast,
Brown, (2016) surveyed 231 frontline police officers in Toronto and Ottawa, Ontario, Canada, along with twenty semi-structured interviews. Farmer and her colleagues (2015, p. 370) found that minority students were more willing to record the police then their White counterparts. Although, racial identification was much less impactful than students’ scores on both a scale measuring their “sense of social justice,” and a scale measuring the “belief in the deterrent effect” of recording the police (Farmer et al., 2015, p. 366). Reporting that one had previously recorded the police, as well as reporting having negative contact with police in the last three years, were also statistically significant predictors of willingness to record among the students.

Brown (2016, p. 302) found that 94% of the officers in his sample believed that they had been recorded at least once, with many believing they had been occurred dozens of times. Unsurprisingly, the majority officers reported that awareness or concern for being recorded was almost always in their consciousness, a significant minority (31%) reported that viral videos involving police citizen interactions were often a primary target for conversation when speaking to other officers (Brown, 2016, p. 303). Also, three-quarters of officers reported that they had in some way changed their behavior on the job in reaction to citizen recording — half of the officers who reported changing their behavior said that they had lowered the degree of force they employed in use of force encounters, and nearly half (48%) reported in employing force less often overall (Brown, 2016, p. 303).

To summarize, there are several gaps in the extant literature on smartphone surveillance of the police. While some research has addressed officers’ estimates of being recorded (Brown, 2016), no study has so far addressed the potential relationship between officers’ perceived likelihood of being recorded by members of the public and their emotional worry of this occurring. Moreover, no study has addressed assessed the attitudinal or demographic predictors
of each of those perceptions. Another notable gap is that no research has yet examined how situational factors influence both police and public behavior during smartphone surveillance incidents. This is despite qualitative work that clearly emphasizes the importance of in situ conditions during those events (Bock, 2016; Farmer). Finally, there is very little literature about overall support for citizen-led smartphone surveillance among the general public. As well, studies have yet to assess the impetus for such support, and to examine whether it is grounded in the belief that monitoring the police can positively impact police behavior overall.

PRIOR LITERATURE ON POLICE BODYWORN CAMERAS

While bodyworn cameras (BWCs) are not the primary focus of this dissertation, it is illuminating to consider the extant literature on their use and the potential effects they might have on police behavior. This literature encompasses both behavioral outcomes (e.g., use of force complaints) as well as perceptions of BWCs themselves. While smartphones have largely been “optional innovation-decisions — choices to adopt or reject and innovation that are made by and individual independent of the decisions of other members of the system” (Rogers, 2003, p. 38), bodyworn cameras are “authority innovation-decisions — choices to adopt or reject an innovation that are made by relatively few individuals in a system who possess power, status, or technical expertise” (Rogers, 2003, p. 38). This top-down implementation is helpful. Unlike the the organic adoption of smartphone devices by the general public, BWC have been systematically implemented by agencies, making them well suited to outcome evaluations. As such, the extant literature on BWC implementation is already quite robust.

Before proceeding, it is important to note a priori theoretical reasons that smartphones are treated as analytically distinct from BWCs in the three studies of this dissertation. While police BWCs and citizen smartphone sousveillance both ostensibly cast “normalizing gazes”
(Foucault, 1977) on police-citizen interaction, the BWC’s gaze is fundamentally limited and inflexible compared to those of the smartphone. First, unlike the smartphone video, BWCs face out from the perspective of the officer and principally record citizens. This simply difference in perspective cannot be understated because a Foucaultian framework places strong emphasis on both who is doing the gazing, and whom is being gazed upon.

Second, bystanders and suspects often outnumber police officers in a given situation, thus there may be many smartphone accounts of an interaction, but perhaps a single BWC account. Differences even more stark once the interaction itself ends. Individual officers and police organizations generally are often restricted by bureaucratic structures, chains of custody, and rules for the treatment of evidence. Indeed, current best practices for departmental BWC initiatives include clear outlines for the purposes of recording, in situ notification of citizens that they are being recorded, in situ compliance (within reason) of citizen requests to turn off bodyworn cameras, restrictions controlling line officers access to bodyworn camera footage, and strict control of when and how footage can be disseminated to the public (The Constitution Project, 2016, pp. 5-6). In contrast, any number of citizens may capture video using their smartphones, and as private individuals they often operate at their own discretion in deciding when and how to disseminate that content, perhaps sending it to friends and family, or sharing on social media immediately after the police-citizen interaction has ended. As a result of these disparities, in questionable controversial police-citizen interaction that includes both BWC and smartphone footage, the smartphone video will most likely gain public attention first, and may proliferate much faster and farther than the BWC video.
Police Bodyworn Camera Prevalence

BWCs began to gain attention national attention in the early 2010s, but the interest of many American law enforcement organizations was piqued in 2014, after a series of high-profile incidents involving police use of force were captured on video by citizens (Crow et al., 2017, p. 2, see also Weitzer, 2015). Just a few years later, a significant portion of medium and large municipal police departments either have implemented, or are committed to implementing BWCs (The Constitution Project, 2016, p. 7; see Maciag, 2016 for survey details). It is important to note that this rush of implementation is not unprecedented in American policing. The use of high-powered and technologically sophisticated tools has long been a hallmark of American policing (Manning, 1977). And in the early 1990s, dashboard cameras also went through a period of rapid expansion in American police organizations (The Constitution Project, 2016, Hayes & Ericson, 2012, p. 3; White, 2014, p. 11). Nevertheless, BWCs carry significant privacy concerns, and their efficacy at improving police accountability (and reducing agency liability) is still disputed (The Constitution Project, 2016, Hayes & Ericson, 2012), despite the fact that a recent national survey suggests “89% of Americans support police body cameras” (Ekins, 2016, p. 5).

Literature on behavioral outcomes from police BWCs

Ariel, Farrar, and Sutherland (2015) utilized randomized controlled trials (RCTs) with a police department in Rialto, California to assess the effect of BWC implementation over a one-year period. They found significant reductions in use-of-force incidents for shifts where BWCs were present. As well, citizen complaints were significantly reduced. Jennings, Lynch and Fridell (2015) produced similar results with an RCT in Orlando, Florida, and also found that total use of force incidents and citizen complaints were also reduced for the control group when compared to the previous year, potentially indicating a diffusion of benefits. Other studies have reported
substantively similar results to Ariel et al. (2015) and Jennings et al. (2015), this time located in the state of Arizona (see e.g., Hedberg, Katz, & Choate, 2016; Katz et al., 2014; Miller, Tolliver, & Forum, 2014). On the other hand, a meta-analysis of multisite, multinational RCTs from ten separate sites (Ariel et al., 2016) suggests no statistically significant difference between the control and experimental conditions regarding police use of force. Indeed, police use of force was reduced in some sites, yet actually rose in others. The reasons for this heterogeneity is unclear, but neutralized any definitive finding on police use of force (Ariel et al., 2016, p. 7). More worrisome, the presence of BWCs on a shift actually increased the likelihood that officers would be assaulted on that shift. Whether this is as a result of emboldened police behavior, as officers felt less fear under the potential aegis of the BWC, is unclear.

Literature on attitudinal outcomes from police bodyworn cameras

Attitudinal research on BWCs has primarily been confined to whether police officers support their use. As part of their RCT study, Jennings, Fridell, and Lynch (2014) conducted a preliminary examination of the Orlando police officers’ perceptions of the possible impact of BWCs before they were introduced. They found that officers were generally supportive of BWC implementation. Jennings and colleagues (2015) then report attitudinal findings for the Orlando officers one year after BWC implementation. The researchers found that three-quarters of officers assigned to wear BWCs in the experimental group believed that all officers in the agency should be assigned the cameras. In addition, large majorities of the experimental group officers reported that the BWCs would improve police processing tasks, such as evidence collection and report writing. On the other hand, those same officers were more skeptical about the impact of BWCs on both police behavior and the behavior of the public. Gaub and colleagues (2016) found substantively similar findings when they surveyed police officers pre- and post-
BWC deployment in Phoenix, Arizona; Tempe, Arizona; and Spokane, Washington. Before deployment, officers in all three departments were hopeful about the impact of BWCs on processing tasks and improving both police and citizen behavior. Postdeployment results were more heterogeneous, with Phoenix police officers holding generally negative views about BWCs, Spokane officers’ being somewhat neutral, and Tempe officers being generally positive. Finally, Smykla and colleagues (2016) surveyed police executives from 36 law enforcement organizations in the southern United States. Roughly half of the respondents were supportive of using BWCs, specifically their use as prophylactic against fraudulent or trivial complaints. Yet crucially, approximately 80% did not feel that BWCs would affect officer behavior.

There are only a few known studies that have examined public perceptions of BWCs in the United States. A very recent national survey of both American police and the public, conducted by the Pew Research Center, indicates that while two-thirds of citizens believe that BWCs would cause police officers to behave more appropriately, the results for officers themselves are much more ambiguous — nearly half of officers believe the presence of BWCs would not impact police behavior (Pew Research Center, 2017, p. 85). Utilizing a national survey of Americans, Sousa, Miethe, and Sakiyama (2015) found that a vast majority of respondents supported the required use of BWCs. Moreover, many respondents felt that BWCs could both improve officer behavior while simultaneously reducing citizen complaints. However, support for BWCs not broken down by demographic characteristics of the respondents in this study. Aiming to investigate the potential predictors for BWC support, Crow and colleagues (2017) conducted a telephone survey in Escambia County and Palm Beach Country, both located in Florida. The researchers hypothesized that respondents who were satisfied with the police would see less need for BWC oversight, and thus less supportive of BWCs overall (Crow et al.,
Their results were quite the opposite, leading Crow and colleagues (2017, p. 17) to argue that, “community members who believe the police are doing a good job and treating people fairly are more likely to support BWCs, not as a mechanism to correct bad police behavior, but as a tool to combat negative views of the police that result from the rare bad act caught on cell phone video.” The notion that BWCs might be utilized as prophylactic strategy — a countering gaze against smartphone sousveillance — is an important idea and consistent with Foucaultian model of competing gazes. It is revisited in the final chapter of this dissertation as an area for future research.

UNANSWERED QUESTIONS

While the extant literature has provided important context, many questions remain unanswered. First, while there is now qualitative and quantitative evidence to suggest that citizen sousveillance is deeply concerning to many American police officers (Brown, 2016; Sandhu, 2016, 2017), no research has thus far assessed the attitudinal or demographic predictors of officers’ perceived likelihood of being recorded or their emotional worry of being recorded. These questions are assessed in Study 1, located in the next chapter. Second, while some of the studies mentioned the importance of situational factors in determining both police and public actions during citizen sousveillance encounters (Bock, 2016; Farmer, 2016), no studies seem to have assessed this issue. Utilizing factorial survey vignettes nested in a broader survey, Study 2 in this dissertation investigates, using an experimental methodology, whether the presence of smartphones and BWCs calm or exacerbate emotional tensions felt by everyday Americans when encountering a hypothetical confrontational scenario with a police officer. Third, and finally,
little is known about the predictors of broad support for smartphone sousveillance, or predictors of the belief that smartphone sousveillance positively impact policing overall. While Farmer et al. (2015) assess predictors of willingness to record, their sample is limited to college students, and directly recording the police is only one way to be involved in casting the “disciplinary gaze” on officers. Other ways include watching viral videos of police interactions that have been captured via smartphone, and reposting and sharing those videos on social media platforms like Twitter and Facebook. Using a national sample of American adults, Study 3 assesses predictors of a robust measure of support for sousveillance practices, encompassing both recording personally, as well as spreading these media to other via social networking websites. It also assesses predictors of the belief that sousveillance will have positive impacts on police behavior.
CHAPTER 5

STUDY 1 — POLICE PERCEPTIONS OF SMARTPHONE SOUSVEILLANCE

INTRODUCTION

Over the last decade, the majority of American citizens have acquired smartphone devices. These devices allow individuals, in conjunction with social media, to systematically document and broadcast aspects of their daily lives and to see pictures and video posted by others (Brown, 2016; Ling, 2012; Pew Research Center, 2015). This in turn has created the necessary conditions for “viral” media events, where layperson-created media spreads quickly across the Internet, often garnering the attention of journalists at traditional media sources like television and print. The neat total saturation of recording devices among the public suggests a form of constant viewing and recording that is akin to the near constant institutionalized surveillance of the Panopticon (Foucault, 1977). While many scholars have lamented the eventuality of a top-down near-dystopia surveillance society (see Marx, 2016 for a detailed review), the current state affairs is actually one where everyday people are increasingly empowered to record and scrutinize those above, including powerful agents of social control like police officers. In doing so, members of the public are practicing sousveillance (or “viewing from below,” see Ganascia, 2010; Mann, Nolan & Wellman, 2003).

This evolution in domestic technology and consequent sousveillance has strong implications for American police officers, who are already highly visible and scrutinized (Goldsmith, 2010), and who are almost always the first point of contact between the criminal justice system and laypeople (Chermak & Weiss, 2005). The burden on police looms even higher since, while all people perform in social interactions (Goffman, 1959), police officers must often
improvise through intense, intricate situations that can lead to the use of physical force
(Manning, 2011; Toch, 2012). Indeed, use of force is not a mere speculative discussion for many
officers. A recent national survey of police officers suggests that while physical confrontations
are not daily events, a significant proportion of officers (~33%) reported physically struggling
with or fighting a suspect in the preceding month (Pew Research Center, 2017, p. 9). Crucially, a
string of high-profile police use of force incidents from across the country suggest that some
police performances, especially those where deadly force is used, can be extremely troubling to
the public (Brown, 2016; Weitzer, 2015), and perhaps to the police themselves (Ekins, 2016).
Whether rightly or wrongly, sousveillance via smartphones may be a key method for citizens to
discourage police behaviors they find troubling, including the use of force.

Foucault (1977) posits that surveillance can be essentially corrective — normalizing
behavior through the discouragement of nonconformity, and controlling those who do deviate
from accepted standards via identification, individualization, and documentation. Crucially,
Foucault’s (1977) “normalizing gaze” depends on observed individuals being aware that they are
being observed, and being concerned about its potential consequences. While there have now
been several claims that the climate of American policing has changed due to the constant
possibility of sousveillance, sometime under the mantle of “the Ferguson effect” (Graham, 2015;
Lichtblau 2016; for empirical investigations, see e.g., Nix & Wolfe, 2016, 2017; Wolfe & Nix,
2016), it is crucial to recall that the intervening link between objective conditions and human
behavior is almost always subjective perceptions. To wit, overall police behavior will only
change if a significant proportion of police officers believe that: (1) citizens can and will record
public police behavior; and (2) citizens’ capacity to record is salient to police officers and their
work. Up until now there has been little scholarship that assesses the predictors of officer’s
estimates of the likelihood of their being recorded, or examines whether estimates of likelihood translate into emotional fear or worry. Study 1 of this dissertation assesses those topics.

Specifically, I first hypothesize that officers’ personal and/or professional engagement with technology, as well as their awareness of viral videos involving police misconduct, will be positively related to police officers’ perceptions of the likelihood that they will be recorded by members of the public. This is consistent with Foucault’s (1977) understanding of surveillance, insofar as when technologies infiltrate or disperse throughout a society (Rogers, 2003) individuals become more aware of the attendance capabilities of those technologies. For instance, officers who use digital technologies like the Internet and smartphones in their personal lives, and/or employ smartphone technologies regularly in their day-to-day work environments, will be more aware of working in a “digital Panopticon.” By being more familiar with these technologies of “gazing” or their outcomes (e.g., viral videos), these officers will be more likely to believe that they themselves are being monitored, as compared to officers who are less familiar with these technologies.

Secondly, I hypothesize that officers’ perceptions of sousveillance likelihood will be positively related to emotional fear or worry of it. Extant criminological literature on fear of victimization suggests that fear is an emotional reaction, and is thus theoretically and empirically distinct from cognitive judgments like perceptions of likelihood (Ferraro, 1995; Ferraro & LaGrange, 1987, Warr, 2000), but also that one of the primary inputs into fear or worry is perceived risk or likelihood (Ferraro, 1995; Warr, 2000). Indeed, this literature suggests that many background factors can exert an indirect effect on fear or worry via perceived likelihood or risk (Chiricos, Hogan, & Gertz, 1997; Farrall, Jackson, & Gray, 2009). This leads to my third and fourth hypotheses — personal technology use, on-duty technology use, viral video exposure
will all have direct positive relationships with officers’ sousveillance worry, and they will have indirect positive relationships via perceived likelihood of being recorded.

METHODS

The goal of Study 1 is to assess: (1) the predictors of police officers’ perceived likelihood of being recorded by members of the public (i.e., sousveillance), and (2) predictors of officers’ emotional worry regarding sousveillance. For perceived likelihood of sousveillance, three contending independent variables — personal technology use, on-duty technology use, and viral video exposure — are individually tested as to whether they significantly predict likelihood while controlling for relevant demographic and contextual covariates. The final model for perceived sousveillance likelihood includes all three independent variables simultaneously. The examination of the statistical significance and size of standardized regression coefficients in the final model allows one to assess which of the three independent variables is most salient for understanding perceived sousveillance likelihood.

For sousveillance worry, this process is largely replicated. The three independent variables — personal technology use, on-duty technology use, and viral video exposure — are individually tested as to whether they significantly predict worry while controlling for relevant demographic and contextual covariates. There is, however, one important difference. Since extant research suggests that risk (i.e., likelihood) is a salient predictor of emotional fear or worry (Pickett, Roche & Pogarsky, in press; Jackson, 2011; Warr, 2000), the final model here includes perceived likelihood of sousveillance as an additional predictor of sousveillance worry alongside the other independent variables.

Study 1’s analyses are descriptive and correlational, and principally accomplished using multivariate linear regression. Exploratory research is valuable and necessary with hard-to-
access populations and emerging topics of inquiry (Brown, 2016). Similar to virtually all studies of criminal justice attitudes (Eschholz, Chiricos, & Gertz, 2003; Kleck, Tark, & Bellows, 2006; Weitzer & Kubrin, 2004), these samples are cross-sectional. Thus, all statistical models examine associations between variables, and not the causal effects of one variable on another. As such, all causal inference is theoretically rather than statistically based. Below, I outline the data and measures, and then proceed to the results of the analysis.

DATA

Like studies of crime, studies of police officers are methodologically difficult for a number of reasons. The most prominent is that there are thousands of individual police departments in the United Stated, making any inclusive sampling frame of police officers very difficult, and the random sampling of American police officers almost impossible. Thus, researchers often rely on convenience samples, sometimes recruited from a single organization, in order to examine police attitudes (e.g., Bradford & Quinton, 2014; Nix & Wolfe, 2017; Tyler, Callahan, & Frost, 2007). To address this issue, I employed both convenience and snowball sampling strategies to reach active police officers from across the United States. The heterogeneity of my sample may also help ensure that any relationships I find are not limited to any one homogenous group, and those relationships are therefore potentially more generalizable to all American police officers (Shadish, Cook, & Campbell, 2002, p. 377).

Only slightly less problematic than the sampling issue is the fact that police officers often do not appreciate being studied, and are often uncooperative (Loftus, 2009). This intransigence is well known to policing scholars (Dawson & Williams, 2009; Rosenbaum, 2010). Rank and file officers are particularly suspicious of efforts to conduct academic research (Marks, 2004). I attempted to overcome police uncooperativeness for this data collection in two ways: (1) by
involving a police officer in the creation and dissemination of the survey instrument, and (2) by using an online portal to discreetly and unobtrusively capture police officers’ attitudes.

First, researchers with current or former police experience, what Brown (1996) calls “outsider insiders” are often better able to overcome police resistance to outside research (see also, Thomas 2014; Brown 2016). The survey instrument for this data collection was co-written by an active duty police officer in a large metropolitan police department. This officer was enrolled in the Master’s program at University at Albany’s School of Criminal Justice during the genesis of the project, and provided invaluable insights on how to phrase survey questions to avoid the alienation of the respondents. This officer was also instrumental in gaining access to sample participants. Secondly, online survey administration has a number of beneficial properties when compared to nationwide in-person, mail, or telephone surveys, including convenience, as well as perceived and actual anonymity from interviewer and peers.

This sample was collected with the cooperation of three organizations that maintain extensive email lists of active police officers: the New York State Association of Chiefs of Police (NYSACOP); the National Criminal Justice Training Center (NCJTC); and Officer.com.8 NYSACOP’s list includes 650 law enforcement executives and upper level supervisors from agencies across the entirety of New York State, while the NCJTC and Officer.com mailing lists have tens of thousands of police officers’ email addresses from across the United States. The data were collected from August to December 2015.9

8 The National Criminal Justice Training Center, located at Fox Valley Technical College in Wisconsin. Officer.com, owned by Cygnus Law Enforcement Group, is one the Internet’s most popular law enforcement community groups. Further information about these organizations and our cooperative agreements with them is available upon request.

9 The survey was thus fielded approximately one year after the civil unrest in Ferguson, Missouri following the death of Michael Brown in August 2014, and approximately three months after the death of Freddie Gray in Baltimore, Maryland in April 2015.
The NYSACOP is a not-for-profit organization made up of police chiefs, commissioners, superintendents, executives, and administrators from a diverse array of New York State’s law enforcement agencies, including village, town, county, city, state and federal agencies, as well as railroad police. The survey was emailed to the full NYSACOP email directory, which includes over 650 law enforcement executives and upper level supervisors from agencies across the entirety of New York State. The initial email blast was conducted on September 30, 2015, and at that time respondents were also urged to forward the survey on to other police officers in their respective organizations. A reminder email was sent to the full email list on October 14, 2015.

The NCJTC coordinates various training programs for a large number of local, state and national criminal justice agencies. The training programs are arranged by participants’ hosting agencies, and the training participants are a mix of line-level officers and supervisors. Over the past twenty years, law enforcement officials from every U.S. state and territory have participated in NCJTC training on applied topics, such as investigative techniques and defensive tactics. The NCJTC maintains a large directory containing the email addresses of individuals who have taken part in its programs. The NCJTC emailed the invitation to the survey on October 19, 2015; a reminder email was sent on December 13, 2015.

For the Officer.com email blast, we were provided with 10,000 randomly selected email addresses from visitors to the website that had personally affirmed their identity as law enforcement personnel, and had agreed to receive mailings of special offers, promotions and opportunities from Officer.com partners and sponsors. These email addresses were drawn exclusively from the pool of website visitors that identified their personal occupation as: Chief, Sheriff, or Marshal; Deputy Sheriff/Chief/Commander; Captain, Major, Lieutenant, Sergeant, Corporal or Head Supervisor; Head Supervisor of Specialized Line or Staff; Member of
Specialized Line or Staff Unit; Patrolman, Officer, Trooper, 911 or SWAT Tactical personnel; Training Officer; Investigator, Inspector, or Detective. In addition, these email addresses were drawn exclusively from the pool of website visitors that identified their employer as a: municipal police or school district police department; county sheriff office or department; state police department; federal agency; or police attached to another government unit. For the present survey, Officer.com emailed an invitation to the survey on August 5, 2015, and sent a reminder email on September 11, 2015.

Concurrent with the large-scale email blast strategy, and similar to previous studies of police (Tyler et al., 2004; Tyler, Callahan, & Frost, 2007), I used a snowball sampling methodology. My police collaborator, an active duty police officer in a large metropolitan police department, distributed the survey to his contacts in law enforcement and urged them to forward on the survey. He also posted links to the survey on the police-only forums of PoliceOne.com, a popular law enforcement community website. I also secured the cooperation of the State University of New York’s (SUNY) university police departments. The survey was distributed to their personnel (41 total, with 25 line officers) on August 27, 2015, and they were also urged to forward the survey on to other police officers.

Online survey administration has a number of beneficial properties when compared to in-person, mail, or telephone surveys: (1) it is more convenient for respondents, which is particularly useful when trying to contact hard to reach populations, and (2) provides both perceived and actual anonymity from interviewers and peers. Prior research suggests online surveys yield more truthful responses due to less social desirability bias (Chang & Krosnick, 2009; Goldenbeld & de Craen, 2013; Kreuter, Presser, & Tourangeau, 2008), and, most
importantly, nonprobability Internet samples very often allow for valid correlational inferences (Ansolabehere & Schaffner, 2014; Bhutta, 2012; Pasek, 2016).

SurveyMonkey allows survey designers to create multiple links, each slightly different from one another, to the same survey. I used this option to help identify which data collection method respondents were using to come to the survey. It also allows us to disaggregate by subsamples. In the final sample, 673 respondents came from both rounds of the NCJTC email blast, 390 came from both rounds of the Officer.com email blast, 102 came from both rounds of the NYSACOP email blast, and 67 came from snowball sampling, for a total initial sample of 1,232. Because the sample is in part a convenience sample and is not drawn from a known sampling frame, I am unable to compute a traditional response rate. \(^{10}\) Instead, the completion rate for the data collection is 81\%.\(^{11}\) A codebook with exact wording for all questions included in the survey is located in Appendix A, and a copy of the survey as it appeared to the respondents themselves is available upon request.

Importantly, this sample is similar to the 2013 Law Enforcement Management and Administrative Statistics (LEMAS) survey in terms of both race/ethnicity (85% White non-Hispanic versus 73% nationally), and gender (14% versus 12% nationally). Unfortunately, because the survey is conducted at the agency level, other relevant demographic characteristics, such as the age distribution of officers, are not well described in the survey (see U.S. Department of Justice, 2015). Still, the 2013 LEMAS survey is the most recent federally sponsored attempt to assess the demographic characteristics of American police agencies (Reaves, 2015). It is also the

\(^{10}\) It is not possible to calculate the response rate for this survey, or to assess whether the police officers that participated differ from those who did not. The survey link was sent to many email addresses, but it unclear how many of those addresses were in use at the time of the survey. Fortunately, research suggests that response rates are very poor indicators of the presence of response bias (Groves & Peytcheva, 2008; Krosnick et al., 2015).

\(^{11}\) For this study, an individual survey is considered incomplete if the final five items of the instrument were not answered, indicating the respondent “broke off” at some point.
benchmark for large-scale attempts to survey American police officers using random sampling (see e.g., Pew Research Center, 2017). The current sample’s similarity to the 2013 LEMAS survey suggests that an online convenience sample does not yield a drastically different population, at least regarding race and gender.

Dependent Variables

As previously stated, smartphone sousveillance cannot plausibly impact the police if smartphone sousveillance is not perceived to be both likely and salient to individual officers. This study aims to assess police officers’ cognitive assessment of the likelihood they personally will be recorded by members of the public, and their attendant emotional reaction (i.e., worry) to the prospect of being recorded. Thus, there are two primary outcome variables. First, Recording Likelihood examines officers’ beliefs about how likely it is that the citizens will record them during their workday. The variable is a seven-item index equal to a respondent’s mean level of likelihood (1 = “Very Unlikely”; 5 = “Very Likely”) of being recorded while: (1) “Making arrests; (2) “Conducting stop, question, and frisk”; (3) “Conducting traffic stops”; (4) “Dealing with order maintenance incidents (e.g., fights, disorderly groups, protests, domestic incidents, public intoxication, etc.); (5) “Dealing with emotionally disturbed persons”; (6) “Going on routine patrol”, and (7) “Overall…while you are on duty.” This index has a high internal consistency (alpha = .91), and a one-factor model fits the data well.

Secondly, Recording Worry is a single question that asks officers in the sample: “On an AVERAGE WORKDAY, how often do you worry about being photo-, video-, or audio-recorded by a member of the public? (By a "member of the public", we mean someone who is NOT a photographer or videographer employed by a media outlet).” Respondents rated their level of worry on a five-point scale (1 = “Very Rarely”; 2 = “Rarely”; 3 = “Occasionally”; 4 = “Often”; 5
= “Very Often”). This question is similar in language and response scale to items that have been employed to assess fear of victimization among members of the public (e.g., Jackson, 2011).

Independent Variables

There are three primary independent variables in Study 1. First, *Viral Video Exposure* is a single question that states: “Something is said to “go viral” when it is frequently shared on the Internet. How often do you and your colleagues discuss photos or videos of police incidents that have “gone viral”?” Respondents rated the frequency with which they discuss those incidents with colleagues on a five-point scale (1 = “Very Rarely”; 2 = “Rarely”; 3 = “Sometimes”; 4 = “Often”; 5 = “Very Often”).

Second, *Personal Technology Use* is an additive index, made up of ten dichotomous items that describe various personal aspects of modern digital technology use. Eight of the items were originally dichotomous. The first four questions asked respondents to report (1 = Yes; 0 = No) which types of devices they used to access the Internet: (1) “Desktop computers”; (2) “Laptop computers”; (3) “Tablet computers”; and (4) “Smartphones.” The next four questions focused specifically on smartphone use, and asked respondents to report (1 = Yes; 0 = No) whether they used smartphones to: (1) “Access the Internet” (2) “Send or receive text messages”; (3) “Take pictures or videos”; (4) “Get directions.” The final two items in the scale were not originally dichotomous, but were dichotomized for inclusion into the overall scale. Respondents were asked, “On average, how many days a WEEK do you use the Internet?” Since the overwhelming majority (85.5%) reported they used the Internet all seven days of the week, this measure was dichotomized so that anything less than seven days a week equaled zero. For *Texting Use*, respondents were originally asked, “On an AVERAGE DAY, how many TEXT MESSAGES do you receive on your CELL PHONE or SMARTPHONE?” using a six-point
scale (1 = “0-10”; 2 = “11-20”; 3 = “21-50”; 4 = “51-100”; 5 = “101 – 200”, and 6 = “more than 200”). Unlike the measure of Internet use per week, the texting question does not have a clear data-driven splitting point. Instead, I dichotomized the measure in two alternative ways — a simple split where “0-10” equals one, and all other responses equal zero; and a median split where “0-10” and “11-20” equal one, and other responses equal zero. I find that when combined in the overall index, the difference in operationalization is not substantially different and so the simple split is used.\(^{12}\)

Third, *On-Duty Technology Use* assesses the extent to which an officer uses cell and smartphone technology during the normal course of his or her duties.\(^{13}\) The variable is a six-item index equal to a respondent’s mean level of technology use (1 = “Very Rarely”; 5 = “Very Often”) for various everyday policing tasks: (1) “Looked up departmental rules or regulations”; (2) “Looked up legal information (e.g., the penal law article and subdivision to properly charge a prisoner, or classify a crime report)”; (3) “Contacted a fellow officer”; (4) “Contacted a supervisor”; (5) “Contacted a citizen for work-related purposes”; (6) “Contacted a prosecutor or other criminal justice professional.” This index has an acceptable internal consistency (Cronbach’s alpha = .76), and a one-factor model fits the data well.

\(^{12}\) The correlation between the Personal Technology Use index that uses that simple split for texting and the index that uses the median split is 0.96. Note also that, overall, the Personal Technology Use additive index does not have a high internal consistency. However, this is acceptable because the items are not assumed to measure an underlying construct, they simply capture different form of behavior and how applicable they are to the respondent.

\(^{13}\) In a testament to how precipitously on-duty technology use has changed over the last few decades, Manning (1977, p 334, footnote 2) reports that in 1974, in Washington, D.C., it was proposed to outfit officers with a two-pound hand-held digital computer. It would have cost over $2,400 in 2017 dollars.
Control Variables

In addition to the attitudinal questions, the respondents were also asked about their personal demographic characteristics and contextual details of the policing agency where they worked. To minimize omitted variable bias, I control for these variables. Demographic characteristics include respondents’ gender (1 = Female; 0 = Male); political Conservatism (1 = “Very Liberal”; 5 = “Very Conservative”); Education (1 = “High school or less”, 5 = “Graduate degree”); and Age (in years). Policing Experience is a self-report measure of how long (in whole years) the respondents has been employed as police officer (responses ranged from “1” to “50”).

Regarding ethnicity and race, the respondent was asked a dichotomous question about whether or not they considered themselves Hispanic or Latino, and asked a “check all that apply” question about race with categories including “White,” “Black or African-American,” “Asian”, “Indian or Native American,” “Hawaiian or Pacific Islander,” and a fill-in “Other” category. These two questions were used to create a dichotomous measure of race and ethnicity (1 = Nonwhite, 0 = White). Finally, respondents were asked to identify the U.S. state or territory where they reside.

Using the U.S. Census classification system, a dichotomous measure was derived for to denote whether the respondent resided in the Southern region of the United States or not (South = 1, Northeast, Midwest, and West = 0).

The survey asked respondents about the characteristics of their police organization. Department Size is one question, asking respondents to estimate how many sworn officers are

14 As a screening question, respondents were asked “Are you currently employed as a police officer (i.e., a sworn officer in a law enforcement agency)?” (1 = “No”; 0 = “Yes”). This question provides evidence that the data collection has reached the population of interest, and also flags respondents who, while involved in law enforcement, may not be officers themselves. This is particularly important for the respondents who were reached via the NCJTC, which works with a variety of criminal justice personnel. Respondents answered “No” to this question were dropped from the analytic sample.

15 The southern region is comprised of the states of Alabama, Arkansas, Louisiana, Mississippi, Tennessee, Delaware, Florida, Georgia, Kentucky, Maryland, North Carolina, South Carolina, Oklahoma, Texas, Virginia, West Virginia, and the District of Columbia.
employed by their organization on a four-point scale (1 = “1–24”; 2 = “25–74”; 3 = “75–299”; 4 = “300 or more”). Respondents were also asked to characterize their organization as one of seven types (i.e., “General purpose municipal police department”; “General purpose municipal county department”; “State police department”; “Sheriff's department”; “Special police department (e.g., campus police, transit police, airport police, housing police, alcoholic beverage control, natural resources police, park police, etc.)”; and “Federal agency (e.g., FBI, ICE, DEA, ATF)”; or “Other (Fill in)”). The majority of the respondents (59.4%) reported working in a general purpose municipal police department. Reasoning that officers employed at this type of organization may be likely to have regular direct encounters with citizens than the other types, I dichotomize this measure (General Municipal Police Department = 1; all other types = 0).

RESULTS

Please note that all of the tables for Study 1 are located at the end of this chapter. Tables for supplementary analyses are located in Appendix C. None of the regression analyses exhibit evidence of significant multicollinearity, with all variance inflation factors (VIFs) under 2.00, excepting age and police experience, which are still under 4.00 (Menard, 1995, but see also O’Brien, 2007, who suggests VIFs above 10 can be acceptable). Diagnostic tests do reveal evidence of heteroskedasticity, so all models are estimated using robust standard errors.

To begin, Table 1.1 shows descriptive statistics for the respondents in the analytic sample. Figures 1.1 and 1.2 provide a more detailed look at the main dependent variables for the study — perceived recording likelihood and recording worry. Figure 1.1 illustrates that many of the respondents in the police sample found it “Likely” or “Very Likely” that they would be recorded by citizens in a variety of activities, including while making arrests, during traffic stops, and while dealing emotionally disturbed persons (EDPs). The only activity where less than 50%
of respondents reported that it was “likely” or “very likely” they would be recorded was during routine patrol, and even then a significant minority (~33%) still maintained that view. When asked overall how likely or unlikely is it that citizens would record them while on-duty, approximately 70% percent believed it to be “likely” or “very likely” (see Figure 1.1). Since recording worry is captured with one item, Figure 2 illustrates the percentage of respondents who selected each option. Less than one-third (~28%) of respondents worry “very rarely” about being recorded by citizens, and a substantial minority (~20%) of officers worry about it “often” or “very often.” Taken together, Figures 1.1 and 1.2 suggest that significant proportions of the officers in the sample are both highly cognizant of citizen recording and concerned about it.

Table 1.2 shows the simple pairwise bivariate correlations for the variables of interest in Study 1. Notably, perceived recording likelihood and recording worry are positively correlated (.27), as hypothesized. Personal technology use is weakly positively correlated with likelihood (.07), but not with worry, and is positively correlated with on-duty technology use (.33). Yet again, this correlation is not so strong as to suggest that the two measures of technology use are synonymous. On-duty technology use is positively correlated with both likelihood (.19) and worry (.11). And viral video exposure shares a similar relationship to those outcome variables, and indeed is most strongly correlated with worry (.20) and likelihood (.24). Other variables are correlated in intuitive ways. As one would expect, age and policing experience are negatively correlated with personal technology use (−.30; −.23), on-duty technology use (−.26; −.21), and viral video exposure (−.21; −.15). Political conservatism is negatively correlated with being nonwhite (−.17). Department size is positively correlated with education (.13).

Next, Table 1.3 presents the results of OLS regression models predicting perceived recording likelihood (Model 1) and recording worry (Model 2) using baseline models that
include only the demographic and organizational variables. In Model 1, none of the individual demographic characteristics — gender, age, policing experience, education, or political conservatism — constitute statistically significant predictors of perceived recording likelihood. However, turning to the organizational characteristics, both greater department size (beta = .131, p < .001) and municipal departments (beta = .147, p < .001) are associated with higher perceived likelihood of being recorded. Officers in the southern United States are not significantly different from officers in other regions of the nation in regard to perceived likelihood. In Model 2, gender is only variable to have a statistically significant relationship with worry about recording, with women being more concerned than men (beta = .129, p < .001).

Interestingly, neither department size nor municipal department are associated with worry. Thus, although officers who work in larger areas, or have more regular contact with members of the public, perceive that they are more likely to be recorded, this does not translate into worry. Perhaps worry is mitigated because of a perceived ability to cope with potential consequences because of greater departmental resources, or because of desensitization. While the latter explanation is inconsistent with Foucault, it is not without some grounding in the qualitative literature (see “habituation” in Sandhu & Haggerty, 2017). In contrast, although male and female officers do not differ significantly in their perceptions of recording likelihood, females are more worried about the prospect of being recorded by the public. This is consistent with research suggesting that women are more likely to feel and to report worry and fear (Farrall, Jackson, & Gray, 2009; Pickett, Roche, & Pogarsky, in press; Warr, 2000).

Table 1.4 shows the results of regressing the index of perceived recording likelihood on the three main independent variables — personal technology use, on-duty technology use, and

16 The desensitization explanation is supported by supplementary baseline models that included a dichotomous variable indicating whether the respondent believed he or she had ever been recorded. Previously being recorded was associated with recording likelihood (beta = .180, p < .001) but not with worry (beta = .051, p = .132).
viral video exposure — while controlling for the demographic and organizational variables of the baseline model in Table 1.3. The results for Model 1 suggest that personal technology use is not related to perceived recording likelihood at a statistically significant level (beta = .053; p = .157). In contrast, Models 2 and 3 suggest that on-duty technology use (beta = .186; p < .001) and viral video exposure (beta = .230; p < .001) are positively related to the perceived likelihood of being recorded by the public. Both of these relationships are very statistically significant, and they endure in Model 4, where all three independent variables are regressed simultaneously on the outcome variable. Personal technology use remains statistically insignificant in the full model, whereas on-duty technology use (beta = .156, p < .001) and viral video exposure (beta = .206, p < .001) predict the perceived recording likelihood most strongly, more so than either department size (beta = .125, p < .001) or municipal department (beta = .149, p < .001). As in Table 1.3’s baseline models, department size and the dichotomous municipal department measure exhibit positive relationships with perceived recording likelihood that are statistically significant in all four models. Finally, it does bear noting that, even the full model does not explain a large proportion of the variation in perceived likelihood of being recorded (R-squared = .115). This perhaps reflects ambiguity among the respondents about the future potential of being recorded by the public, or that other unmeasured factors play an important role in fostering this perception (e.g., media exposure).

Tables 1.5 and 1.6 present the results of regressing the measure of recording worry on the three main independent variables, while controlling for the demographic and organizational variables. Table 1.5’s Models 1 through 3 show each of the independent variables entered in separately. As with perceived recording likelihood, Model 1 suggests that again personal technology use (beta = -.022; p = .560) is not a statistically significant predictor of recording
worry. In Model 2, on-duty technology use (beta = .092, p = .013) does exhibit a positive and statistically significant relationship. Model 3 suggests the same result for viral video exposure (beta = .185, p < .001), with officers who regularly discuss viral police incidents being, unsurprisingly, more worried about being recorded by the public, as hypothesized.

Table 1.6’s Model 1 shows all three independent variables estimated simultaneously. On-duty technology use and viral video exposure remain statistically significant positive predictors of recording worry, with viral video exposure (beta = .179, p < .001) being the strongest predictor in the model. This suggests that on-duty technology use and viral video exposure each have a unique relationship with recording worry. One would expect this theoretically since on-duty technology use exposes officers to the means of digital sousveillance, while viral video exposure depicts the outcomes of that sousveillance and the potential consequences for police officers in performing in ways that are perceived as socially unacceptable by the public.

Finally, Model 2 adds perceived recording likelihood as a predictor of recording worry. As hypothesized, recording likelihood has a positive and statistically significant relationship with recording worry, and stands as the strongest predictor in the model (beta = .225, p < .001). Note also that after the introduction of recording likelihood, the magnitude of each of the relationships between the other independent variables and worry is reduced (in the case of viral video exposure, beta = .132, p < .001) or completely obviated (in the case of on-duty technology use, beta = .044, p = .250). This suggests a potential mediation, with an indirect effect of on-duty technology use and viral video exposure on recording worry via perceived recording likelihood.

Mediation Analyses

I use bias-corrected bootstrap (k = 1,000) confidence intervals (95%) to test whether perceived recording likelihood mediates the relationship between the two key independent
variables that were associated with recording worry at a statistically significant level (Hayes, 2013; Zhao, Lynch, & Chen, 2010). Consistent with prior literature on how perceived risk and emotional fear behave in relation to background factors, both on-duty technology use ($b = .059, p < .001, CI = .033 to .094$) and viral video exposure ($b = .059, p < .001, CI = .033 to .087$) have significant indirect relationships with recording worry via perceived recording likelihood. This indicates that features of officers’ occupational environment (i.e., on-duty technology use and discussion of viral videos) are both directly positively related to worry of being recorded by citizens, and that they seem to increase officers’ perceptions of the likelihood of being recorded, which is also a powerful predictor of recording worry.

Supplementary Analyses

In three instances, additional analyses were performed in order to bolster the findings from the main analyses. First, in addition to the other individual demographic and organizational questions, respondents were also asked if they now held a “supervisory or management position” (1 = Yes, 0 = No) in their police organization. While including age and policing experience in the main analyses may be helpful proxies for organizational rank, differences in perceptions of sousveillance may persistent and meaningful. For instance, patrol officers and supervisory or managerial officers differ substantially in their endorsement of traditional police culture (see, e.g., Silver et al., 2017). Thus, it is prudent to examine each subsample separately, and I replicate the full regression analyses, first with supervisors only, and then non-supervisory officers. These results are in Appendix C on Tables S1.1 through S1.8. For each subsample, the findings are quite similar to the findings from the main sample presented in Tables 1.3, 1.4, 1.5, and 1.6. Although statistical significance at the $p < .05$ level is not always achieved, likely owing to the reduce sample size, coefficients and signs of the main independent variables remain quite
similar. Yet, it bears noting that the subsamples do at first glance seem to quite dissimilar from one another in the full model predicting recording worry (Table 1.6 in the main analyses, Tables S1.4 and S1.8 in the supplementary analyses). In the supervisor subsample, in Model 1, the viral video exposure and being female are the only variables that have statistically significant relationships with recording worry. And as in the main analyses, once recording likelihood is introduced as an independent variable in Model 2, the effect of viral video exposure is significantly reduced, suggesting mediation. In contrast, the non-supervisor sample features several more statistically significant relationships. Both personal technology use (beta = −.134, p < .05) and political conservatism (beta = −.115, p < .05) and have significant negative relationships with recording worry in Model 2.

While this seems like to indicate a substantial difference between supervisors and non-supervisors, a more formal statistical test for inequality would be enlightening. Following the procedure outlined in Paternoster et al. (1998) for testing the equality of regression coefficients, I examine whether the coefficients for personal technology use and political conservatism are differ at a statistically significant level. The results from this statistical test indicate that the differences in both sets of coefficients are not statistically significant, and thus that despite the seeming differences in the tables, the impact of political conservatism and personal technology use on recording worry is similar for supervisors and non-supervisors, and likely insignificant.

The second group of supplementary analyses was conducted because cases with missing data on key variables in Study 1 were deleted using the listwise procedure. Since the police survey was entirely without monetary compensation, and police officers are notoriously suspicious group (Dawson & Williams, 2009; Rosenbaum, 2010), item non-response was not

\[Z = \frac{b_1 - b_2}{\sqrt{SEb_1^2 + SEb_2^2}} \]
(Paternoster et al., 1998, p. 862).
uncommon in the sample, and thus a listwise deletion procedure does reduce the size of sample. In order to partially address this, as well as broader missing data issues, I impute the missing data using mean imputation, and then replicate the full regression analyses. The findings here are substantively the same as those presented in Tables 1.4, 1.5, and 1.6. These results can be found in Appendix C as Tables S1.9 through S1.11.

Third and lastly, ordinary least squares may not be the appropriate estimation strategy for one of the main outcome variables. While perceived recording likelihood is the mean score seven-item index, and thus is functionally continuous (i.e., the scale possesses over forty unique values), recording worry is derived from a single five-point scale. It may therefore be more accurately considered as an ordinal variable. Thus, I replicated all regression analyses where recording worry was the outcome variable, using an ordered logistic regression estimation strategy. Once again, the findings are substantively the same as those presented in in Tables 1.5 and 1.6. These results can be found in Appendix C as Tables S1.12 through S1.13.

SUMMARY

Study 1’s purpose was to examine a necessary linkage in a broader theoretical framework for understanding how citizen’s technology use might influence police behavior. First, it assessed whether police officers are aware of citizen recording (i.e., sousveillance), how likely they perceive it to be, and the extent they worry about sousveillance. As shown in Figure 1.1, a significant majority of police respondents — almost three-quarters of them — perceived that it is likely or very likely that they will be recorded by citizens, and they anticipate that citizen recording is likely in variety of contexts. Figure 1.2 illustrates that while a smaller proportion of officers worry about being recorded compared to thinking recording is likely, nevertheless a significant minority — approximately one in five — worries often or very often about being
recorded, and less than one-third worries very rarely about it. This suggests that citizen sousveillance is both perceived by many officers, and emotionally salient to many of them.

Next I had four specific hypotheses: (1) officers’ personal and/or professional engagement with technology, as well as their awareness of viral videos involving police misconduct, would be positively related to police officers’ perceptions of sousveillance likelihood; (2) officers’ perceptions of sousveillance likelihood would be positively related to emotional worry of it; (3) personal technology use, on-duty technology use, and viral video exposure would have direct positive relationships with officer’s sousveillance worry, and (4) personal technology use, on-duty technology use, and viral video exposure would have indirect positive relationships with officer’s sousveillance worry via sousveillance likelihood.

Results from the study are somewhat mixed, but overall in agreement with the hypotheses. On-duty technology use and viral video exposure both have positive relationships with perceived sousveillance likelihood, and sousveillance worry, with viral video exposure being the strongest. Moreover, mediation analyses suggest that both on-duty technology use and viral video exposure both exert indirect effects on worry via perceived likelihood. These findings are strongly in line with previous literature on fear in criminological contexts (e.g., Ferraro, 1995, Warr, 2000). And it is particularly meaningful when taking it account research that suggests that human behavior is strongly influenced by affective reactions to environmental stimuli (Camerer, Loewenstein, & Prelec, 2005). This study thus provides solid foundational evidence for one of the attitudinal preconditions important for a Foucaultian model for how smartphone recording of the police may indeed change police behavior — many officers are worried about sousveillance, but sensitivity to recording is not invariant, and rather potentially
results from factors like personal familiarity with technology in the workplace, or exposure to the results of sousveillance (e.g., viral videos).

Still, it is important to note that personal technology use did not exhibit the relationship that I hypothesized. There are several potential explanations for this. First, the personal technology use scale was designed to capture the diversity rather than magnitude of respondent’s engagement with social technologies such as desktop computers, laptops, tablets, and smartphones. Second, it may be that personal technology use among American police officers has reached a state of saturation such that identifying true heavy users is difficult. The distribution of responses to the question “how many days a week do you use the Internet?” suggests that most respondents are engaging with these social technologies on at least a cursory level on a daily basis. More detailed questions regarding how officers use their personal technology might be necessary going forward. Finally, it may be that personal technology use, however it is measured, simply does not have the associative power that on-duty technology use and viral video exposure possess, since these latter two constructs may directly link technology, policing, and potential riskiness in respondents’ minds.
Table 1.1 Descriptive Statistics for Study 1’s Analytic Sample (N = 830)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perceived likelihood of being recorded</td>
<td>3.79</td>
<td>.81</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Worry of being recorded</td>
<td>2.42</td>
<td>1.23</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Personal technology use</td>
<td>8.37</td>
<td>1.67</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>On-duty technology use</td>
<td>3.49</td>
<td>.73</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Viral video exposure</td>
<td>3.57</td>
<td>.96</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Female</td>
<td>.14</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.15</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Age</td>
<td>47.01</td>
<td>9.76</td>
<td>18</td>
<td>74</td>
</tr>
<tr>
<td>Police experience</td>
<td>20.93</td>
<td>10.01</td>
<td>1</td>
<td>50</td>
</tr>
<tr>
<td>Education</td>
<td>3.35</td>
<td>1.14</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Conservatism</td>
<td>3.65</td>
<td>.75</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>South</td>
<td>.31</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Size of Police Department</td>
<td>2.50</td>
<td>1.12</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Municipal Police Department</td>
<td>.59</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 1.1 Percentage of Respondents Who Answered “Likely” or “Very Likely” to each of the Items in the Perceived Recording Likelihood Scale

Figure 1.2 Percentage of Respondents for Each Category of Recording Worry
<table>
<thead>
<tr>
<th>Variable</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Perceived likelihood of recording</td>
<td>.27*</td>
<td>.07*</td>
<td>.19*</td>
<td>.24*</td>
<td>.06</td>
<td>−.03</td>
<td>−.07*</td>
<td>−.06</td>
<td>.01</td>
<td>.04</td>
<td>−.04</td>
<td>.11*</td>
<td>.13*</td>
</tr>
<tr>
<td>2 Worry of recording</td>
<td>1.00</td>
<td>.01</td>
<td>.11*</td>
<td>.20*</td>
<td>.15*</td>
<td>.02</td>
<td>−.10*</td>
<td>−.08*</td>
<td>−.00</td>
<td>−.04</td>
<td>.01</td>
<td>.06</td>
<td>.04</td>
</tr>
<tr>
<td>3 Personal technology use</td>
<td>1.00</td>
<td>.33*</td>
<td>.17*</td>
<td>.10*</td>
<td>−.04</td>
<td>−.30*</td>
<td>−.23*</td>
<td>.12*</td>
<td>−.02</td>
<td>−.00</td>
<td>.09*</td>
<td>−.01</td>
<td></td>
</tr>
<tr>
<td>4 On-duty technology use</td>
<td>1.00</td>
<td>.21*</td>
<td>.03</td>
<td>.04</td>
<td>−.26*</td>
<td>−.21*</td>
<td>.01</td>
<td>.03</td>
<td>−.00</td>
<td>.06</td>
<td>−.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Viral video exposure</td>
<td>1.00</td>
<td>.07</td>
<td>−.04*</td>
<td>−.21*</td>
<td>−.15*</td>
<td>.03</td>
<td>.03</td>
<td>−.03</td>
<td>.04</td>
<td>.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Female</td>
<td>1.00</td>
<td>.04</td>
<td>−.16*</td>
<td>−.17*</td>
<td>.07*</td>
<td>−.13*</td>
<td>.03</td>
<td>.11*</td>
<td>−.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Nonwhite</td>
<td>1.00</td>
<td>−.07*</td>
<td>−.14*</td>
<td>−.06*</td>
<td>−.17*</td>
<td>.11*</td>
<td>.12*</td>
<td>−.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Age</td>
<td>1.00</td>
<td>.83*</td>
<td>−.03</td>
<td>.10*</td>
<td>.04*</td>
<td>−.07*</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Police experience</td>
<td>1.00</td>
<td>.01</td>
<td>.09*</td>
<td>−.02</td>
<td>−.14*</td>
<td>.02*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Education</td>
<td>1.00</td>
<td>−.02</td>
<td>−.08</td>
<td>.13*</td>
<td>.03*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Conservatism</td>
<td>1.00</td>
<td>.10*</td>
<td>.05</td>
<td>.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 South</td>
<td>1.00</td>
<td>.12*</td>
<td>−.10*</td>
<td></td>
</tr>
<tr>
<td>13 Size of police department</td>
<td>1.00</td>
<td>−.18*</td>
<td></td>
</tr>
<tr>
<td>14 Municipal police department</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

*p < .05 (two-tailed).
Table 1.3 Baseline OLS Regression Models Predicting Perceived Likelihood of Recording and Worry of Recording

<table>
<thead>
<tr>
<th>Variables</th>
<th>DV: Recording Likelihood (Model 1)</th>
<th></th>
<th>DV: Recording Worry (Model 2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
</tr>
<tr>
<td>Female</td>
<td>.100</td>
<td>.085</td>
<td>.043</td>
<td>.453***</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>–.087</td>
<td>.089</td>
<td>–.039</td>
<td>.019</td>
</tr>
<tr>
<td>Age</td>
<td>–.002</td>
<td>.005</td>
<td>–.028</td>
<td>–.010</td>
</tr>
<tr>
<td>Experience</td>
<td>–.002</td>
<td>.005</td>
<td>–.025</td>
<td>.002</td>
</tr>
<tr>
<td>Education</td>
<td>–.017</td>
<td>.024</td>
<td>–.024</td>
<td>–.022</td>
</tr>
<tr>
<td>Conservatism</td>
<td>.042</td>
<td>.038</td>
<td>.039</td>
<td>–.033</td>
</tr>
<tr>
<td>Southern</td>
<td>–.077</td>
<td>.062</td>
<td>–.044</td>
<td>.016</td>
</tr>
<tr>
<td>Department Size</td>
<td>.095***</td>
<td>.027</td>
<td>.131</td>
<td>.048</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.241***</td>
<td>.060</td>
<td>.147</td>
<td>.130</td>
</tr>
</tbody>
</table>

R^2-squared

<table>
<thead>
<tr>
<th>DV: Recording Likelihood (Model 1)</th>
<th></th>
<th>DV: Recording Worry (Model 2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>.044</td>
<td></td>
<td>.031</td>
</tr>
</tbody>
</table>

NOTES: N = 830

ABBREVIATIONS: b = unstandardized coefficient; Beta = standardized coefficient; DV = dependent variable; SE = robust standard error.

*p < .05; **p < .01; ***p < .001 (two–tailed).
Table 1.4 OLS Regression Models Predicting Perceived Likelihood of Being Recorded

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Personal Technology use only</th>
<th>Model 2: On-Duty Technology Use only</th>
<th>Model 3: Viral Video Exposure only</th>
<th>Model 4: All Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
</tr>
<tr>
<td>Personal Tech Use</td>
<td>.026</td>
<td>.018</td>
<td>.053</td>
<td>—</td>
</tr>
<tr>
<td>On-Duty Tech Use</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.207***</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>.094</td>
<td>.085</td>
<td>.040</td>
<td>.100</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.080</td>
<td>.089</td>
<td>-.036</td>
<td>-.101</td>
</tr>
<tr>
<td>Age</td>
<td>-.001</td>
<td>.005</td>
<td>-.010</td>
<td>.002</td>
</tr>
<tr>
<td>Experience</td>
<td>-.002</td>
<td>.005</td>
<td>-.028</td>
<td>.003</td>
</tr>
<tr>
<td>Education</td>
<td>-.021</td>
<td>.024</td>
<td>-.030</td>
<td>-.017</td>
</tr>
<tr>
<td>Conservatism</td>
<td>.042</td>
<td>.038</td>
<td>.039</td>
<td>.029</td>
</tr>
<tr>
<td>Southern</td>
<td>-.080</td>
<td>.062</td>
<td>-.046</td>
<td>-.076</td>
</tr>
<tr>
<td>Department Size</td>
<td>.093***</td>
<td>.027</td>
<td>-.129</td>
<td>.092***</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.243***</td>
<td>.060</td>
<td>.148</td>
<td>.248***</td>
</tr>
</tbody>
</table>

R-squared | .046 | .076 | .094 | .115 |

NOTES: N = 830.

ABBREVIATIONS: b = unstandardized regression coefficient; SE = robust standard error; Beta = standardized regression coefficient
*p < .05; **p < .01; ***p < .001 (two-tailed).
Table 1.5 OLS Regression Models Predicting Worry of Recording – Select Predictors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Personal Technology Use only</th>
<th>Model 2: On-Duty Technology Use Only</th>
<th>Model 3: Viral Video Exposure Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b)</td>
<td>SE</td>
<td>Beta</td>
</tr>
<tr>
<td>Personal Technology Use</td>
<td>-.016</td>
<td>.028</td>
<td>-.022</td>
</tr>
<tr>
<td>On-Duty Technology Use</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>.457***</td>
<td>.128</td>
<td>.130</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.015</td>
<td>.123</td>
<td>.004</td>
</tr>
<tr>
<td>Age</td>
<td>-.011</td>
<td>.007</td>
<td>-.087</td>
</tr>
<tr>
<td>Policing Experience</td>
<td>.002</td>
<td>.007</td>
<td>.014</td>
</tr>
<tr>
<td>Education</td>
<td>-.020</td>
<td>.037</td>
<td>-.019</td>
</tr>
<tr>
<td>Conservatism</td>
<td>-.033</td>
<td>.059</td>
<td>-.020</td>
</tr>
<tr>
<td>Southern</td>
<td>.017</td>
<td>.093</td>
<td>.006</td>
</tr>
<tr>
<td>Department Size</td>
<td>.049</td>
<td>.039</td>
<td>.045</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.128</td>
<td>.087</td>
<td>.051</td>
</tr>
<tr>
<td>R-squared</td>
<td></td>
<td>.032</td>
<td></td>
</tr>
</tbody>
</table>

NOTES: \(N = 830\)

ABBREVIATIONS: \(b\) = unstandardized regression coefficient; DV = dependent variable; SE = robust standard error; Beta = standardized coefficient.

\(^*p < .05; \ **p < .01; \ ***p < .001\) (two-tailed).
Table 1.6 OLS Regression Models Predicting Worry of Recording – Full Models

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: All Predictors except Likelihood</th>
<th>Model 2: All Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
</tr>
<tr>
<td>Perceived Recording Likelihood</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Tech Use</td>
<td>−.047</td>
<td>.029</td>
</tr>
<tr>
<td>On-Duty Tech Use</td>
<td>.134*</td>
<td>.065</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>.228***</td>
<td>.044</td>
</tr>
<tr>
<td>Female</td>
<td>.438***</td>
<td>.125</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.019</td>
<td>.120</td>
</tr>
<tr>
<td>Age</td>
<td>−.004</td>
<td>.007</td>
</tr>
<tr>
<td>Experience</td>
<td>−.000</td>
<td>.007</td>
</tr>
<tr>
<td>Education</td>
<td>−.017</td>
<td>.036</td>
</tr>
<tr>
<td>Conservatism</td>
<td>−.056</td>
<td>.058</td>
</tr>
<tr>
<td>Southern</td>
<td>.032</td>
<td>.091</td>
</tr>
<tr>
<td>Department Size</td>
<td>.046</td>
<td>.038</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.129</td>
<td>.086</td>
</tr>
</tbody>
</table>

R–squared: .071 | .115

NOTES: N = 830

ABBREVIATIONS: b = unstandardized coefficient; SE = standard error; Beta = standardized coefficient.

*p < .05; **p < .01; ***p < .001 (two–tailed).
CHAPTER 6

STUDY 2 — EXAMINING POLICE-CITIZEN INTERACTIONS USING EXPERIMENTAL SURVEY VIGNETTES

INTRODUCTION

In the introductory chapters, I have reviewed scholarship arguing that much of modern policing is inherently performative (Manning, 1977), and that police-citizen interactions are dynamic dramaturgical events that are constructed extemporaneously by the actors within the situation. Traditionally, police officers have been empowered by their uniformity and relative anonymity, and their monopoly on the legitimate use of force up, to and including deadly force. The introduction of smartphone technology, and its constituent ability to record detailed pictures and videos, suggests that police performances are now fixed and permanent in ways that they previously were not (Brown, 2016; Goldsmith, 2010). Moreover, these performance are now delivered via social media to secondary and tertiary audiences far beyond the original police-citizen interaction, where the possibility to reframe the interaction — either positively or negatively — is vast (Toch, 2012). Study 1 provides evidence that police officers are aware of, and concerned about, public sousveillance. Study 2 now focuses attention on members of the public, and how the presence of smartphones — as well as other situational factors — may influence their feelings and compliance during encounters with the police. As Manning (1977, p. 142) notes, policing is fundamentally a situational endeavor, and police must always work to situationally justify their actions.

In his work, Foucault (1977) treats power and knowledge as aspects of a single underlying construct, so much so that he often streamlines them into the simple term, “power/knowledge.” From this framework, it follows that if citizens increasingly have the ability
to create and disseminate data and knowledge about police officers, then those citizens are consequently empowered in their interactions with police. This empowered stance might manifest behaviorally in two potentially countervailing ways. On the one hand, a citizen may feel calmer and more secure, because the presence of a smartphone in a police-citizen encounter means he or she may have the opportunity to redress any grievances at a later time, either through official channels, by posting their encounter on Internet, or both. Thus, in the moment, the citizen may be more likely to comply with the officer, believing that he or she can get just desserts later. On the other hand, the presence of a smartphone in the moment might embolden a citizen to directly challenge the police, if that citizen reasons that the officer is already in the wrong or that the view of the camera will actively deter the officer. This should also stand in sharp contrast to the presence of a police bodyworn camera (BWC), which should uniformly reduce fear and anger (because there is a tangible record of the encounter), but also induce compliance since the recording’s gaze is turned to the respondent and its discretionary power is in the hands of the police officer.

To assess these predictions, Study 2 examines how members of the public react to the presence of smartphones given hypothetical police-citizen encounter scenarios, specifically how they are affected emotionally (specifically, fear and anger), and if respondents feel emboldened to disobey the police. It follows in the same vein of other empirical studies that have utilized randomized survey vignettes and/or videos to assess the impacts of police behavior on citizen’s attitudes (Braga et al., 2014; Dai, Frank, & Sun, 2011; Lowrey, Maguire & Bennett, 2016). I also take this opportunity to build on a small but promising literature that suggests an important role of emotions in mediating the relationship between procedurally just treatment and compliance, (Barkworth & Murphy, 2015; Murphy & Tyler, 2008), by including a situational manipulation
where respondents are either treated in a procedurally just or unjust matter by a police officer interlocutor. Finally, I examine whether being wrongly accused of committing an offense also influences emotional affect and intent to comply in respondents.

Given the lack of previous literature on the situational impacts of smartphone on police-citizen interactions, I first present two contrasting hypotheses: **either the presence of a smartphone will reduce fear and anger, and through these emotions reactions increase compliance, or the presence of a smartphone will directly embolden respondents to not comply with the officer in the vignette.** Second, I expect that **the presence of a bodyworn camera will reduce fear and anger, and this will indirectly increase compliance, and also have a direct positive effect on compliance.** Third, I predict that **innocence should influence anger and compliance, with respondents whose vignette text tells them that they are innocent, but who nevertheless are addressed by a police officer, being more likely to report anger and less likely to comply.** Fourth, in line with previous literature (Barkworth & Murphy, 2015; Murphy & Tyler, 2008), I hypothesize that **the presence of non-procedurally just treatment should influence fear, anger, and compliance, with respondents who encounter in an aggressive and rude officer in the vignette being more likely to report fear and anger, and less likely comply.**

METHODS

To test my hypotheses, I embedded a pair of experimental vignettes in a survey administered in early spring 2017. Randomization was carried out independently for each experiment. The experiments primarily involved what Mutz (2011, p. 37) has characterized as “indirect treatments,” where participants are unaware of the presence of manipulations. Thus, I never informed respondents that they were participating in experiments but instead only asked them to complete the survey. Specifically, along with institutional review board (IRB)
information, the description of each survey included the following information: “This is a non-profit survey being conducted on behalf of a doctoral student researcher at the State University of New York at Albany. It asks individuals to provide their opinions about policing and technology in America.” Both vignettes utilize randomized post-test–only designs. If one assumes initial equality between groups (via randomization), observed group differences in fear, anger, and intent to comply are considered evidence of effects caused by the situational characteristics.

DATA

The participants in Study 2, a nationwide sample of adult (18 and over) residents of the United States, were recruited from Amazon’s Mechanical Turk (MTurk). MTurk samples are widely used in studies published in top journals across academic disciplines (e.g., Dowling & Wichowsky, 2014; Ratner et al., 2014; Stern et al., 2014). A large literature has demonstrated the suitability of MTurk surveys for academic research (Buhrmester, Kwang, & Gosling, 2011; Mason & Suri, 2012; Paolacci & Chandler, 2014; Shapiro, Chandler, & Mueller, 2013; Simons & Chabris, 2012). Weinberg, Freese, & McElhatten (2014) showed that that MTurk workers provided higher quality responses than a probability sample. They were less likely to fail comprehension checks, speed through the questionnaire at an unrealistic pace, and have item-nonresponse. Mullinix et al. (2015) were able to replicate both the direction and statistical significance of 81% (29 of 36) treatment effects, previously documented in probability samples of the American public, using MTurk samples (see also Weinberg, Freese, & McElhatten, 2014).

MTurk “workers” are paid to perform various human intelligence tasks (HITs), which are posted daily by MTurk “requesters.” These tasks include translating text, reviewing products or videos, and taking surveys. There are several hundred thousand workers from different countries,
working on a task-to-task basis. MTurk “requesters” have the ability to review and rate the performance of individual workers, and even to deny them payment.

In administering the survey, I followed the current best practices for research with MTurk samples. First, to minimize issues with non-naiveté (see Chandler, Mueller, & Paolacci, 2014), I allow respondents without an extensive MTurk history to participate by setting the experience threshold at only fifty prior HITs. Second, to improve response quality, I limit participation to workers with an approval rating on prior HITs of at least 95% (see Peer, Vosgerau, & Acquisti, 2013), which means that other MTurk requesters have rated these workers highly on the quality of their work on previous HITs.

As with all MTurk surveys, the links to the surveys were posted as HITs on the MTurk website, and workers were offered a small payment to participate. I chose a payment amount based on the estimated completion time for the survey and payment norms in prior research. Scholars using MTurk often pay participants between $0.15 and $0.75 to participate, depending on survey length (Berinsky, Huber, & Lenz, 2012; Mullinix et al., 2015). Weinberg Freese, and McElhattan (2014: 298) paid respondents $3 for a survey taking approximately one hour. I strove for a similar hourly pay rate. I estimated that the survey took approximately 15 minutes to complete, so workers were offered $0.75 to participate, and thus the effectively hourly pay rate for the survey was approximately $3.00. The survey was advertised as the “National Survey on Technology and Policing 2017.” A codebook with exact wording for all questions included in the survey is located in Appendix B. A copy of the survey as it appeared to the respondents themselves is available upon request.

Instances of missing data in the survey—both from breakoff and item nonresponse—were quite low. In total, 1,009 workers began the survey, and 1,000 (or 99%) finished it. After
excluding cases with item nonresponse on the variables used in the analysis, the analytic sample for Study 2 is 962. Consistent with prior research using MTurk samples (Levay, Freese, & Druckman, 2016; Shank, 2016; Weinberg, Freese, & McElhatten, 2014), the sample is whiter, younger, better educated, and with lower income than the general public. Full descriptive statistics for Study 2’s analytic sample is available in Table 2.1 at the end of this chapter.

Lastly, in order to specifically assess how comparable this MTurk sample is to a nationally representative sample, two questions from the General Social Survey (GSS) were included in the survey instrument. The first question inquired whether the respondent could ever imagine a situation where they would approve of a police officer striking an adult male citizen. The second question asked if, at the national level, the U.S. is spending too much, too little, or about the right amount on law enforcement. The MTurk survey results for these two questions are substantially similar to those of the unweighted results from the 2016 wave of the GSS — in both surveys, a significant majority of respondents indicated that they could approve of a police officer striking an adult male (MTurk – 76.5%, GSS – 68.9%), and very few respondents in either sample believed that the U.S. is spending too much on law enforcement (MTurk – 16.4%, GSS – 10.7%). This helps strengthen confidence that, despite demographic differences, this sample’s respondents are attitudinally similar to Americans generally regarding the police.

Independent Variables

Study 2 examines the impact of three separate situational manipulations on respondent’s reported fear, anger, and intent to comply. These manipulations are: (1) the presence of recording technology; (2) the relative innocence of the respondent, in the sense of whether they were in fact at fault for the act that the officer is accusing them of; and (3) the procedurally just or unjust behavior of the police officer in the situation. Please note that while procedural justice
has been conceptualized in a variety of ways, it often encompasses respectfulness, neutrality, and giving a voice to the citizen involved in the situation (Barkworth & Murphy, 2015; Tyler, 2007). Therefore, the “procedurally unjust” manipulation presents a police officer who exhibits procedurally unjust behavior by being disrespectful, emotionally compromised, and unwilling to allow the respondent to explain themselves.

In measuring these variables, I employed an experimental approach (see e.g., Nagin & Paternoster, 1993; Pogarsky, Roche, & Pickett, 2017). Specifically, respondents were presented with two experimental vignettes describing specific interactions with police officers, in which situational characteristics were randomized. Each vignette is a 2 x 2 x 3 factorial design, with two conditions for innocence (i.e., innocent or guilty), two conditions for the behavior of the officer in the encounter (i.e., procedurally just or unjust), and three conditions for recording device (smartphone present, bodyworn camera present, or no device present). Each vignette, with the experimental manipulations underlined, appears below:

Speeding: “Please imagine that you are driving down the street with two friends as passengers. You are traveling [just over / 15 miles over] the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, [he is relaxed and friendly. He is polite and respectful, but / he is angry. He yells, “Do you know how fast you were going? You could’ve killed someone!” When you try to speak he cuts you off,] says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely [and you notice that one of them is video-recording the officer using a smartphone / and you notice that the officer is wearing a body-worn camera that is recording your interaction].”
Littering: “Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it [so you drop some trash on the street too]. Just then, a police officer approaches your group. [He is quiet and calm, but says he saw you throw trash on the street. He politely asks you not to do that in the future / He is loud and angry, and accuses you of throwing trash on the street. When you try to explain, he cuts you off, and yells, “Just watch where you’re throwing your garbage, idiot”]. Your friends are watching attentively [and you notice that one of them is video-recording the officer using a smartphone / and you notice that the officer is wearing a body-worn camera that is recording your interaction].”

Dependent Variables

After reading each vignette, respondents were first asked how afraid or unafraid they would be if they found themselves in the situation described therein (1 = “Very Unafraid”; 2 = “Somewhat Unafraid”; 3 = “Neither Afraid nor Unafraid”; 4 = “Somewhat Afraid”; 5 = “Very Afraid”), which is the basis for the variable *Encounter-Based Fear*. Second, they were asked how calm or angry they would be if they found themselves in the situation described therein (1 = “Very Calm”; 2 = “Somewhat Calm”; 3 = “Somewhat Angry”; 4 = “Very Angry”), which is the basis for the variable *Encounter-Based Anger*. Finally, respondents were asked about whether they would act out against the officer in the situation described therein. *Intent to Comply* is a three-item index equal to a respondent’s self-reported mean level of likelihood (1 = “Very Unlikely”; 2 = “Somewhat Unlikely”; 3 = “Neither Likely nor Unlikely”; 4 = “Somewhat Likely; 5 = “Very Unlikely”) that the respondent would, in the situation described, perform the following
actions: (1) “Argue with the officer”; (2) “Raise [his or her] voice”; and (3) “Talk back to the officer.” There is high internal consistency in the Intent to Comply indices for both the Speeding vignette (alpha = .89) and the Littering vignette (alpha = .89). In an exploratory factor analysis, both indices are described well using a single-factor model.

Control Variables

To minimize omitted variable bias, I control for variables that may simultaneously influence both the independent and dependent variables, including respondents’ gender (1 = Male; 0 = Female); political Conservatism (1 = “Very Liberal”; 5 = “Very Conservative”); Education (1 = “High school or less”, 5 = “Graduate degree”); Age (in years), whether the respondent has a personal Prior Arrest (1 = Yes, 0 = No); and if any of their family members friends or close friends have ever been arrested (1 = Vicarious Arrest, 0 = None). Regarding ethnicity and race, the respondent was asked a dichotomous question about whether or not they considered themselves Hispanic or Latino. Then, respondents were asked to self-identify their race. Categories included “White,” “Black or African-American,” “Asian,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” and a fill-in “Other” category. These two questions were used to create a dichotomous measure of race and ethnicity (1 = Nonwhite, 0 = White). Finally, just as in Study 1, respondents were asked to identify the U.S. state or territory where they reside. Using the U.S. Census classification system, a dichotomous measure was derived for whether the respondent resided in the southern region of the United States of America or not (South = 1, Northeast, Midwest, and West = 0).18

18 This region is comprised of the states of Alabama, Arkansas, Louisiana, Mississippi, Tennessee, Delaware, Florida, Georgia, Kentucky, Maryland, North Carolina, South Carolina, Oklahoma, Texas, Virginia, West Virginia, and the District of Columbia.
RESULTS

Main Analyses

Please note that all tables for Study 2’s main analyses are located at the end of this chapter. Tables for supplementary analyses are located in Appendix C. None of the regression analyses exhibit evidence of significant multicollinearity, with all variance inflation factors (VIFs) under 2.50 (Menard, 1995). Diagnostic tests do reveal evidence of heteroskedasticity in some models, so all models are estimated using robust standard errors.

Table 3.2 shows the simple pairwise bivariate correlations for the variables of interest in Study 3. Experienced-based fear, anger, and intent to comply all show coherence within and across the vignettes. Other correlations also suggest relationships in the sample data are coherent. In line with previous research, men are less likely to report being afraid in both vignettes (for speeding, -.07; for littering, -.08). Men are also more likely to report a prior arrest (.15).

Turning to the speeding vignette, Table 2.3 presents the results from four OLS regression models. Experience-based fear is the outcome variable in Model 1, experienced-based anger is the outcome variable in Model 2, and the intent to comply index is the outcome in Models 3 and 4. Model 1 contains coefficients for the associations between experienced-based fear and the experimental manipulations, net of the control variables. As predicted, the presence of a smartphone is negatively associated with fear, however this relationship does not reach statistical significance. Non-procedurally just treatment (beta = .370, p < .001) and being nonwhite (beta = .082, p =.006) are significantly and positively associated with fear, and the innocence of the respondent has a positive and marginally significant positive relationship (beta = .049, p =.097). On the other hand, the presence of a bodyworn camera (beta = -.149, p < .001), being male (beta
and being conservative (beta = –.096, p = .001) are all significantly negatively associated with reported fear.

Model 2 contains coefficients for the associations between experienced-based anger and both the experimental manipulations and controls. Once again, respondent innocence (beta = .063, p = .041) and non-procedurally just treatment from the police officer (beta = .302, p < .001) are positively associated with reported anger, and the presence of a bodyworn camera is negatively associated (beta = –.078, p = .027). The presence of a smartphone is negatively associated with anger, but once again this relationship does not reach statistical significance. Interestingly, none of the demographic controls reach statistical significance in Model 2.

In Model 3, the associations between the experimental manipulations and the controls on intent to comply are examined. Model 4 then adds perceived experience-based fear and experienced-based anger as predictors of intent to comply. The presence of a smartphone does not have a statistically significant relationship in either model, but once again the coefficient is in the anticipated direction, as one of my hypotheses suggested that the presence of a smartphone would increase intent to comply. In Model 3, as expected, respondent innocence (beta = –.064, p = .037) and non-procedurally just treatment (beta = –.229, p < .001) are significantly negatively associated with intent to comply, along with being male (beta = –.095, p = .003), being nonwhite (beta = –.119, p <.001), and having a prior arrest (beta = –.070, p = .048). Age has a statistically significant positively relationship, with older respondents being more likely to report that they would comply with the officer (beta = .166, p < .001). In Model 4, when the two experience-based emotion variables are introduced into the model, experience-based anger (but not fear) has a strong negative relationship with intent to comply (beta = –.318, p < .001). Respondent innocence (beta = –.044, p = .128) and non-procedurally just treatment (beta = –.135, p < .001)
continue to have negative associations with intent to comply. However, the magnitude of each of these relationships is reduced in comparison to Model 3, with innocence no longer remaining statistically significant. In contrast, the relationships between being male and nonwhite are virtually unchanged. This suggests a potential mediation, with an indirect effect of the experimental manipulations — respondent innocence and non-procedurally just treatment — on the intent to comply index via experience-based anger. That is explored in the next section.

Table 2.4 presents the results from four OLS regression models using variables from the littering vignette. As in Table 2.3, experience-based fear is the outcome variable in Model 1, experienced-based anger is the outcome variable in Model 2, and the intent to comply index is the outcome in Models 3 and 4. Many of the results are substantively similar to those from the first vignette. In Model 1, the presence of a smartphone camera has a marginally significant negative relationship with fear (beta = -.063, p = .058), and the presence of a bodyworn camera (beta = -.083, p = .011) and being conservative (beta = -.083, p < .001) are significantly negatively associated with reported fear. On the other hand, non-procedurally just treatment (beta = .414, p < .001), nonwhite (beta = .063, p = .043), and age (beta = .084, p = .005) are significantly and positively associated with fear, and the innocence of the respondent has a positive and marginally significant positive relationship (beta = .052, p = .071). In Model 2, respondent innocence (beta = .117, p < .001) and non-procedurally just treatment from the police officer (beta = .555, p < .001) are positively associated with reported anger. As in the first vignette, none of the demographic controls reach statistical significance in Model 2.

In Model 3, in agreement with the first vignette, neither the presence of bodyworn cameras nor smartphones is significantly related with intent to comply. Meanwhile, respondent innocence (beta = -.120, p < .001) and non-procedurally just treatment (beta = -.390, p < .001)
are significantly negative associated with intent to comply, along with being male (beta = –.073,
p = .015) and being nonwhite (beta = –.075, p = .014). Age again has a statistically significant
positively relationship, with older respondents being more likely to report that they would
comply with the officer (beta = .120, p < .001). In Model 4, when the two experience-based
emotion variables are introduced into the model, experience-based anger and fear both have
statistically significant relationships with intent to comply. However, anger’s association is
negative (beta = –.535, p < .001), while fear’s association is positive (beta = .110, p = .001),
suggesting that respondents may alternatively be intimidated into compliance or angered into
defiance by situational factors. Respondent innocence (beta = –.064, p = .015) and non-
procedurally just treatment (beta = –.139, p < .001) continue to have statistically significant
direct negatively associations with intent to comply. Yet once again, the magnitude of each of
these relationships is reduced in comparison to Model 3. As in the first vignette, this suggests a
potential mediation, with an indirect effect of the experimental manipulations — respondent
innocence and non-procedurally just treatment — on the intent to comply index via experience-
based anger. This is explored below.

Mediation Analyses

For the speeding vignette, the main results of which are detailed in Table 2.3, I use bias-
corrected bootstrap (k = 1,000) confidence intervals (95%) to test whether encounter-based anger
mediates the relationship between two situational manipulations — the innocence of the
respondent and non-procedurally just officer behavior — and intent to comply in the vignette
(Hayes, 2013; Zhao, Lynch, & Chen, 2010). Non-procedurally just officer behavior does indeed
have a significant indirect relationship with intent to comply through experience-based anger (b
= –.111, p < .001, CI = –.161 to –.071). However, innocence of the respondent does not (b = –
For the littering vignette, illustrated in Table 2.4, I repeat the bias-corrected bootstrap \((k = 1,000)\) confidence intervals \((95\%)\) procedure to test whether encounter-based anger mediates the relationship between the same two situational manipulations — the innocence of the respondent and non-procedurally just officer behavior — and intent to comply in that vignette. And indeed, both respondent innocence \((b = -.122, p < .001, CI = -.184 \text{ to } -.062)\) and non-procedurally just officer behavior \((b = -.502, p < .001, CI = -.605 \text{ to } -.403)\) have significant indirect relationships with intent to comply through experience-based anger.

This suggests that, consistent with some prior research, being both wrongfully accused and/or treated in a procedurally unjust manner directly spur citizens into noncompliance, but also that a considerable impetus for that defiance is via the negative emotional affect, specifically anger, that these police behaviors produce (Barkworth & Murphy, 2015; Murphy & Tyler, 2008).

Supplementary Analyses

In two cases, additional analyses were performed in order to bolster the main analyses. First, I have used OLS regressions for the main to better understand the relationships between background variables and fear, anger, and intent to comply. Nevertheless, if one assumes initial equality between groups via randomization, observed group differences in the outcome variables are evidence of effects caused by the situational manipulations: respondent innocence or guilt, procedurally just or unjust behavior on the part of the officer, and the presence of a bodyworn camera, a smartphone, or no recording device at all. In fact, the addition of control unnecessarily in models can introduce bias (Berk et al., 2014; Robinson & Jewell, 1991).

Thus, I also test for simple inequality across groups in each of the vignettes using t-tests, in the case of the innocence and procedural justice manipulations, and one-way analyses of variance (ANOVA) in the case of the presence of recording device manipulation. Many of the
results are substantively similar to those in the regression analyses. For example, the difference between the respondents who were treated in a procedurally just manner versus those who were not is statistically significant in virtually all of the outcome variables, mirroring the strong effect of the non-procedurally just treatment variable in the regression models. However, the results do differ from the regression results in one important respect — the presence of smartphones does seem to exert an effect in some instances. In the first vignette, as hypothesized, a one-way analysis of variance (F = 3.11, p = .045) reveals that the group where a smartphone was present was significantly more likely to comply with the officer (b = .178, p = .015). In the second vignette, as anticipated, the group where a smartphone was present was less likely to report feeling afraid (b = -.268, p = .007) and feeling angry (b = -.162, p = .034), but interestingly were no more or less likely to comply with the officer. The tables detailing these findings can be found in Appendix C as Tables S2.1 and S2.2.

Secondly, OLS regression may not be the appropriate estimation strategy for four of the six main outcome variables. While intent to comply in each vignette is measured as the mean score of three-item index, and thus is functionally continuous, experienced-based fear and anger are each derived from single five-point scales. They are therefore more accurately considered ordinal variables. Thus, I replicated all regression analyses where experienced-based fear and experienced-based anger were outcome variable, using an ordered logistic regression estimation strategy. The findings are substantively the same as those presented in in Tables 2.3 and 2.4. These results can be found in Appendix C as Tables S2.3 and S2.4.
Study 2 examined how members of the public reacted to the presence of smartphones — and other situational manipulations — in hypothetical police-citizen encounter scenarios. It specifically assessed how these manipulations affected experienced fear, experienced anger, and intent to comply with the scenario’s police officer. Recall the hypotheses: (1a) the presence of a smartphone would be comforting, and thus negatively related to fear and anger and consequently positively related to intent to comply, (1b) the presence of a smartphone would be emboldening, and thus directly negatively related to compliance; (2) the presence of a bodyworn camera would also be negatively related to fear and anger, and positively related compliance; (3) innocence would be positively related to anger and negatively related compliance; (4) the presence of non-procedurally just treatment would positively influence fear and anger and would have a negative relationship with compliance;

Support for Study 2’s four hypotheses is mixed. Hypotheses 1a, 1b, and 2 were partially supported at best. As hypothesized, the presence of bodyworn cameras reduces fear in both vignettes, and also reduces anger in speeding vignette. Although the coefficients were in the anticipated direction, the presence of a smartphone is not statistically significantly related to anger or fear at the $p < .05$ level, in either vignette, although it approaches significance in the littering vignette. Lastly, neither the presence of the bodyworn camera nor presence of the smartphone is related with intent to comply in either vignette. Thus, it appears that the presence of smartphones is primarily comforting rather than emboldening, if that. Indeed, the presence of a bodyworn camera had a stronger comforting effect — reducing fear and anger.

There may be several reasons for this pattern of findings. First, perhaps smartphone sousveillance is primarily voyeuristic or prophylactic. This does not mean that the “disciplinary
gaze” of citizen sousveillance is necessarily dampened in its potential effects on police behavior, especially in the aggregate. Yet it does suggest citizens might use smartphones in a defensive way that involves long-term planning — to wit, as an insurance policy. This stands in contrast to some scholars’ characterization of citizens as actively combative or looking to “catch” police in a negative light (e.g., Brown, 2016). Second, it may also be that smartphones are used in a combative or emboldening fashion, but primarily among members of the public that are unlikely to be fully captured in my sample (i.e., young, poor, urban respondents). Third, personally wielding a smartphone in the presence of a police officer requires agency, and it is possible that a passive survey vignette, especially one where an unnamed friend has produced the device, does not elicit the same effect.

Hypotheses 3 and 4 are largely supported, with non-procedurally just treatment exerting an effect on fear, anger, and intent to comply in both vignettes, and innocence exerting an effect on anger and intent to comply in both vignettes as well. Furthermore, there is an indirect effect of non-procedurally just treatment on intent to comply via experience-based anger in both vignettes. However, for innocence, this indirect effect only appears in the second vignette regarding littering. These findings corroborate and extended existing research on the relationship between procedural justice and affect (Barkworth & Murphy, 2015; Murphy & Tyler, 2008), and they provide initial evidence that beyond the long-term projects of building institutional legitimacy, procedurally just strategies may decrease crime directly by dampening non-compliant behavior (which might escalate into resisting arrest) before it can even begin.
Table 2.1 Descriptive Statistics for Study 2’s Analytic Sample (\(N = 962\))

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encounter-based fear</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speeding (Vignette 1)</td>
<td>2.91</td>
<td>1.27</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Littering (Vignette 2)</td>
<td>2.58</td>
<td>1.31</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Encounter-based anger</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speeding (Vignette 1)</td>
<td>2.20</td>
<td>.86</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Littering (Vignette 2)</td>
<td>2.26</td>
<td>1.01</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Encounter-based intentions to comply</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Speeding (Vignette 1)</td>
<td>4.28</td>
<td>.94</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Littering (Vignette 2)</td>
<td>3.95</td>
<td>1.17</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Male</td>
<td>.50</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.22</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Age</td>
<td>39.36</td>
<td>12.90</td>
<td>19</td>
<td>88</td>
</tr>
<tr>
<td>Education</td>
<td>3.25</td>
<td>1.25</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Conservatism</td>
<td>2.73</td>
<td>1.11</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>South</td>
<td>.37</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Prior arrest</td>
<td>.17</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Vicarious arrest</td>
<td>.49</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Variable</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>1 Fear (speeding)</td>
<td>.31*</td>
<td>.39*</td>
<td>.11*</td>
<td>-.17*</td>
</tr>
<tr>
<td>2 Fear (littering)</td>
<td>1.00</td>
<td>.15*</td>
<td>.55*</td>
<td>-.02</td>
</tr>
<tr>
<td>3 Anger (speeding)</td>
<td>1.00</td>
<td>.23*</td>
<td>-.37*</td>
<td>-.13*</td>
</tr>
<tr>
<td>4 Anger (littering)</td>
<td>1.00</td>
<td>-.08*</td>
<td>-.57*</td>
<td>-.06</td>
</tr>
<tr>
<td>5 Compliance (speeding)</td>
<td>1.00</td>
<td>.41*</td>
<td>-.12*</td>
<td>-.13*</td>
</tr>
<tr>
<td>6 Compliance (littering)</td>
<td>1.00</td>
<td>-.07*</td>
<td>-.09*</td>
<td>.15*</td>
</tr>
<tr>
<td>7 Male</td>
<td>1.00</td>
<td>-.03</td>
<td>-.10*</td>
<td>.05</td>
</tr>
<tr>
<td>8 Nonwhite</td>
<td>1.00</td>
<td>-.16*</td>
<td>.02</td>
<td>-.10*</td>
</tr>
<tr>
<td>9 Age</td>
<td>1.00</td>
<td>-.00</td>
<td>.09*</td>
<td>.01*</td>
</tr>
<tr>
<td>10 Education</td>
<td>1.00</td>
<td>-.06</td>
<td>.00</td>
<td>-.12*</td>
</tr>
<tr>
<td>11 Conservatism</td>
<td>1.00</td>
<td>.04</td>
<td>-.02</td>
<td>.03</td>
</tr>
<tr>
<td>12 Southern</td>
<td>1.00</td>
<td>.07*</td>
<td>.07*</td>
<td></td>
</tr>
<tr>
<td>13 Prior arrest</td>
<td>1.00</td>
<td>.36*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Vicarious arrest</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*p < .05 (two-tailed).
Table 2.3 OLS Regression Models Predicting Outcomes in Vignette 1 (Speeding)

<table>
<thead>
<tr>
<th>Variables</th>
<th>DV: Experience-Based Fear (Model 1)</th>
<th>DV: Experience-Based Anger (Model 2)</th>
<th>DV: Intent to Comply (Model 3)</th>
<th>DV: Intent to Comply (Model 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
</tr>
<tr>
<td>Situational Fear</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Situational Anger</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Situational Characteristics</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Guilty (reference)</td>
<td>.125</td>
<td>.075</td>
<td>.049</td>
<td>.108*</td>
</tr>
<tr>
<td>PJ treatment (reference)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Non-PJ treatment</td>
<td>.942***</td>
<td>.075</td>
<td>.370</td>
<td>.517***</td>
</tr>
<tr>
<td>No recording (reference)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Smartphone camera</td>
<td>—119</td>
<td>.091</td>
<td>—044</td>
<td>—012</td>
</tr>
<tr>
<td>Bodyworn camera</td>
<td>—409***</td>
<td>.094</td>
<td>—149</td>
<td>—144*</td>
</tr>
<tr>
<td>Male</td>
<td>.245**</td>
<td>.077</td>
<td>.096</td>
<td>.002</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.251**</td>
<td>.092</td>
<td>.082</td>
<td>.005</td>
</tr>
<tr>
<td>Age</td>
<td>.000</td>
<td>.003</td>
<td>.005</td>
<td>.003</td>
</tr>
<tr>
<td>Education</td>
<td>.045</td>
<td>.031</td>
<td>.044</td>
<td>.012</td>
</tr>
<tr>
<td>Conservatism</td>
<td>—110**</td>
<td>.035</td>
<td>.096</td>
<td>—044</td>
</tr>
<tr>
<td>South</td>
<td>—094</td>
<td>.078</td>
<td>.036</td>
<td>—102</td>
</tr>
<tr>
<td>Prior arrest</td>
<td>.150</td>
<td>.113</td>
<td>.044</td>
<td>.096</td>
</tr>
<tr>
<td>Vicarious arrest</td>
<td>—191*</td>
<td>.080</td>
<td>—075</td>
<td>—021</td>
</tr>
</tbody>
</table>

Adjusted R^2
.184 .109 .123 .212

NOTES:
$N = 962$

ABBREVIATIONS:
DV = dependent variable; b = unstandardized regression coefficient; SE = standard error; Beta = standardized regression coefficient; PJ = procedurally just
*p < .05; **p < .01; ***p < .001 (two-tailed).
<table>
<thead>
<tr>
<th>Variables</th>
<th>DV: Experience-Based Fear (Model 1)</th>
<th>DV: Experience-Based Anger (Model 2)</th>
<th>DV: Intent to Comply (Model 3)</th>
<th>DV: Intent to Comply (Model 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
</tr>
<tr>
<td>Situational Fear</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Situational Anger</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Situational Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guilty (reference)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Innocent</td>
<td>.137</td>
<td>.076</td>
<td>.052</td>
<td>.236***</td>
</tr>
<tr>
<td>PJ treatment (reference)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Non-PJ treatment</td>
<td>1.089***</td>
<td>.076</td>
<td>.414</td>
<td>1.121***</td>
</tr>
<tr>
<td>No recording (reference)</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Smartphone camera</td>
<td>−.174</td>
<td>.092</td>
<td>−.063</td>
<td>−.081</td>
</tr>
<tr>
<td>Bodyworn camera</td>
<td>−.237*</td>
<td>.092</td>
<td>−.083</td>
<td>−.071</td>
</tr>
<tr>
<td>Male</td>
<td>−.144</td>
<td>.079</td>
<td>−.055</td>
<td>−.082</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.197*</td>
<td>.097</td>
<td>.063</td>
<td>.077</td>
</tr>
<tr>
<td>Age</td>
<td>.009**</td>
<td>.003</td>
<td>.084</td>
<td>−.002</td>
</tr>
<tr>
<td>Education</td>
<td>.032</td>
<td>.031</td>
<td>.031</td>
<td>−.007</td>
</tr>
<tr>
<td>Conservatism</td>
<td>−.143***</td>
<td>.035</td>
<td>−.121</td>
<td>−.073**</td>
</tr>
<tr>
<td>South</td>
<td>−.101</td>
<td>.079</td>
<td>−.037</td>
<td>−.089</td>
</tr>
<tr>
<td>Prior arrest</td>
<td>−.044</td>
<td>.111</td>
<td>−.013</td>
<td>.033</td>
</tr>
<tr>
<td>Vicarious arrest</td>
<td>−.023</td>
<td>.082</td>
<td>−.009</td>
<td>.010</td>
</tr>
</tbody>
</table>

Adjusted R^2: .216 .343 .212 .375

Notes: N = 962

Abbreviations: DV = dependent variable; b = unstandardized regression coefficient; SE = standard error; Beta = standardized regression coefficient; PJ = procedurally just

*p < .05; **p < .01; ***p < .001 (two-tailed).
CHAPTER 7

STUDY 3 — PUBLIC PERCEPTIONS OF SMARTPHONE SOUSVEILLANCE

INTRODUCTION

The preceding chapters have argued that the overwhelming majority of American adults now have smartphone devices, and that due to police officers’ highly public and often controversial role in civil society, these devices have the potential to fundamentally alter how American citizens and police interact. Studies 1 and 2 have, respectively, assessed the general impact of these devices among a national sample of police officers, and examined how these devices might influence American citizens at a situational level. Yet it is also important to understand generally how members of the public view sousveillance — its potential effects and overall support for it — and understand the predictors for those views and attitudes. While Foucault (1977) posited that the “normalizing gaze” can control those who do deviate from accepted standards, he anticipated a constant, systematic surveillance, and not the emergent, crowd-sourced, and altogether unsystematic sousveillance of the 21st century. Thus, a Foucaultian model of citizen smartphone surveillance requires a significant proportion of the public to support the recording of images and video of the police, and sharing those images and videos with others, and doing so because they believe it will discipline or correct police behavior. Study 3 assesses those topics.

Understanding support for sousveillance, and what fuels it, are not just theoretical questions. They have important policy implications. Some research suggests that criminal justice policy decisions may be particularly sensitive to public opinion (Canes-Wrone & Shotts, 2004).
Moreover, Packer (1968, p. 242) notes that criminal justice reform “thrives on visibility,” and notes that “No one, Supreme Court justices included, is immune to the horrible example” (Packer, 1968, p. 242-243). Thus, in theory, each new outrage captured on a smartphone may fuel the tendency of the public to monitor the police with their handheld technology. This may be especially damaging to police legitimacy among segments of the population who are predisposed to see even good-faith actions by the police as incidents of misconduct (Son & Rome, 2004, p. 201, see also Brunson, 2007; Brunson & Miller, 2006). For instance, in their recent study Crow et al. (2017) predicted that members of the public would be more likely to support police bodyworn camera implementation if they held negative opinions of the police. They found the opposite. It is possible that this prediction would be have been more apt if it concerned smartphone sousveillance.

In Study 3, I pose four main hypotheses. First, respondents’ perceptions of the procedural justice of police in their communities, satisfaction with the performance of the police in their communities, and interpersonal experiences with police misconduct, will all be significantly related to perceived positive effects of sousveillance on police behavior, with procedural justice and performance satisfaction being negatively related, and misconduct being positively related. Second, drawing from qualitative research on cop-watching organizations and individuals (Bock, 2016; Farmer, 2017), I anticipate that individuals do not support citizen sousveillance nihilistically or aggressively (e.g., Thompson, 2005), but rather that the primary predictor of support is the belief that citizen sousveillance can positively impact police and society in the long run. Thus, I predict that respondents’ perceptions of the perceived positive effects of sousveillance will be positively related to support for sousveillance activities. Third, elaborating on the work of Crow and colleagues (2017), but adapting it to smartphone
sousveillance, I hypothesize that perceived procedural justice, performance satisfaction, and experienced misconduct will all have significant direct relationships with sousveillance support, but again in differing ways. Finally, I also predict that the three main independent variables will have indirect relationships with sousveillance support via the perceived sousveillance effects.

METHODS

The goal of Study 3 is to assess: (1) the predictors of the perceived beneficial effects of members of the public recording the police (i.e., sousveillance), and (2) predictors of overall support for sousveillance practices. For the perceived beneficial effects of sousveillance, three contending independent variables — perceived procedural justice of the police in the respondent’s community, satisfaction with the performance of the police in the respondent’s community, and self-reported personal and vicarious experiences with police misconduct — are individually tested as to whether they significantly predict perceived sousveillance effects while controlling for relevant demographic and contextual covariates. The final model for perceived sousveillance effects includes all three independent variables simultaneously. The examination of the statistical significance and size of standardized regression coefficients in the final model allows one to assess which of the three independent variables is most salient to perceived sousveillance effects.

For sousveillance support, this process is similar. The three independent variables — procedural justice, police performance satisfaction, and experienced police misconduct — are individually tested as to whether they significantly predict likelihood while controlling for relevant demographic and contextual covariates. There is, however, one important difference. Since ostensibly greater perceived positive effects of recording on police behavior should be a salient predictor of sousveillance support, the final model here includes perceived beneficial
effects of sousveillance as a competing predictor for sousveillance support alongside the other independent variables.

As in Study 1, Study 3’s analyses are descriptive and correlational, and principally accomplished using multivariate linear regression. Exploratory research is valuable and necessary with hard-to-access populations and emerging topics of inquiry (Brown, 2016). Similar to virtually all studies of criminal justice attitudes (Eschholz, Chiricos, & Gertz, 2003; Weitzer & Kubrin, 2004), these samples are cross-sectional. All statistical models only examine associations between variables, and not the causal effects of one variable on another. Thus, all causal inference is theoretically rather than statistically based. Below, I outline the data, measures, and other details for this data collection, and then proceed to the results.

DATA

The data for Study 3 comes from the same nationwide sample of adult (18 and over) residents of the United States, collected in Spring 2017 and recruited from Amazon’s Mechanical Turk (MTurk), which was used for the analyses in Sample 2. Please see Chapter 6 for more details of the data collection, and for information on the validity and suitability of MTurk surveys for academic research. A codebook with exact wording for all questions included in the survey is located in Appendix B. A copy of the survey as it appeared to the respondents themselves is available upon request.

Dependent Variables

Study 3 has two main outcome variables. First, Perceived Sousveillance Effects assesses the respondents’ perception of the costs and benefits of recording police behavior with smartphones. The variable is a six-item index equal to a respondent’s mean-level of agreement (1
that recording the police is beneficial. Because this is a contentious topic, and to avoid swaying respondents, I endeavored to present the issues as evenly as possible. Four of the items highlight possible drawbacks, when members of the public record police officers, it makes those officers: (2) “More distracted”; (4) “More afraid to do their jobs”; (5) “Less likely to listen”; and (6) “More angry.” The other two of the items highlight benefits, asking respondents to agree or disagree that when members of the public record police officers, it makes those officers: (1) “More polite”; and (3) “Less likely to use excessive force.” These latter two items are reverse-coded to form the scale. This index has a relatively low internal consistency (alpha = .66). This may be because of the way the scale was balanced by including negative and positive items, or it could speak to the public’s ambivalent views on the effects of recording the police. Nevertheless, exploratory factor analysis suggests that a one-factor model is an appropriate fit for the data.

The second outcome variable in Study 3 is Sousveillance Support. This variable is a four-item index equal to a respondent’s mean-level of support (1 = “Very Unacceptable”; 2 = “Somewhat Unacceptable”; 3 = “Neither Acceptable nor Unacceptable”; 4 = “Somewhat Acceptable”; 5 = “Very Acceptable”) for behaviors by members of the public that constitute the public monitoring police officers: (1) “A person using a smartphone to record the police when he or she is PERSONALLY dealing with the police”; (2) “A person using a smartphone to record the police when he or she is a BYSTANDER to a police interaction”; (3) “A person uploading photos and videos of the police that HE OR SHE has taken onto the Internet”; and (4) “A person sharing or re-posting on the Internet photos and videos of the police that OTHERS have taken.” This index has a high internal consistency (alpha = .85), and an exploratory factor analysis suggests that a one-factor model fits the data well.
Independent Variables

There are three principal independent variables in Study 3. First, Procedural Justice assesses the extent to which the respondent feels that the police officers in his or her community acts in a fair, trustworthy, and appropriate fashion, and moreover that the officers are responsive to citizens’ feedback when making those decision (La Vigne, Fontaine & Dwivedi 2017). The variable is a six-item index equal to a respondent’s mean-level of agreement (1 = “Strongly Disagree”; 5 = “Strongly Agree”) that police in the respondent’s community: (1) “Treat everyone equally”; (2) “Clearly explain the reasons for their actions”; (3) “Treat people with dignity and respect”; (4) “Treat people fairly”; (5) “Respect people's rights”; and (6) “Listen to suspects before making any decisions about how to handle a case.” This index has a very high internal consistency (alpha = .96), and a one-factor model describes the data very well.

Secondly, and separate from concerns of procedural fairness, Police Performance Satisfaction measures the extent to which the respondent is satisfied with the effectiveness of the police in their community (e.g., Brandl et al., 1994; Weitzer & Tuch, 2005). The variable is a six-item index equal to a respondent’s mean-level of satisfaction (1 = “Very Dissatisfied”; 2 = “Somewhat Dissatisfied”; 3 = “Neither Satisfied or Dissatisfied”; 4 = “Somewhat Satisfied”; 5 = “Very Satisfied”) that police in the respondent’s community: (1) “Respond quickly to calls for help and assistance”; (2) “Solve the problems of those who call them”; (3) “Support victims and witnesses”; (4) “Patrol the streets”; (5) “Prevent crimes”; and (6) “Catch people who break the law.” This index has a high internal consistency (alpha = .91), and a one-factor model describes the data well.

Third, and finally, Experienced Police Misconduct measures the extent to which the respondent has personally and vicariously experienced instances of perceived police misconduct
This scale is inspired by Weitzer’s (1999) investigation into perceptions of experienced police misconduct among Washington, DC residents. The variables is a six-item index equal to a respondent’s self-reported mean level of frequency (0 = “Never”; 1 = “Once”; 2 = “Twice” 3 = “Three times or more”) for often the police have: (1) “Stopped you on the street without good reason?”; (2) “Stopped your close friends or family members on the street without good reason?”; (3) “Used insulting language toward you?”; (4) “Used insulting language toward your close friends or family members?”; (5) “Used excessive force against you?”; and (6) “Used excessive force against your close friends or family members?” This index has a relatively high internal consistency (alpha = .85), and a one-factor model describes the data well.

Control Variables

To minimize omitted variable bias, I control for a number of potentially influential variables. Viral Video Exposure is a single question that states: “Something is said to “go viral” when it is frequently shared on the Internet. How often do you see photos or videos of police incidents that have “gone viral”? Respondents rated the frequency with which they see those incidents with colleagues on a five-point scale (1 = “Very Rarely”; 2 = “Rarely”; 3 = “Sometimes”; 4 = “Often”; 5 = “Very Often”). The public survey also includes several demographic questions, including respondents’ gender (1= Male; 0 = Female); political Conservatism (1 = “Very Liberal”; 5 = “Very Conservative”); Education (1 = “High school or less”, 5 = “Graduate degree”); Age (in years), whether the respondent has a personal Prior Arrest (1 = Yes, 0 = No); and if any of their family members friends or close friends have ever been arrested (1 = Vicarious Arrest, 0 = None). Regarding ethnicity and race, the respondent was asked a dichotomous question about whether or not they considered themselves Hispanic or
Latinos. Respondents then self-identified their race, with categories including “White,” “Black or African-American,” “Asian,” “American Indian or Alaska Native,” “Native Hawaiian or Other Pacific Islander,” and a fill-in “Other” category. These two questions were used to create a dichotomous measure of race and ethnicity ($1 = \text{Nonwhite}, 0 = \text{White}$). Finally, respondents were asked to identify the U.S. state or territory where they reside. Using the U.S. Census classification system, a dichotomous measure was derived for whether the respondent resided in the southern region of the United States or not ($\text{South} = 1$, Northeast, Midwest, and West $= 0$).

\section*{RESULTS}

\textit{Main Analyses}

Please note that all of the tables for Study 3 are located at the end of this chapter. Tables for supplementary analyses are located in Appendix C. None of the regression analyses exhibit evidence of significant multicollinearity, with all variance inflation factors (VIFs) under 2.00 (Menard, 1995). Diagnostic tests do reveal evidence of heteroskedasticity in some models, so all models are estimated using robust standard errors.

Table 3.1 shows descriptive statistics for the respondents in this analytic sample, while Figures 3.1 and 3.2 provide detailed accounts of the main dependent variables for the study — perceived sousveillance effects and sousveillance support. Figure 3.1 presents each of the items in the perceived sousveillance effects scale. Dark-colored bars indicate proposed negative effects of recording the police, including officers being “more angry” and “less likely to listen,” while the light-colored denotes potential positive outcomes like officers being “more polite” or being

\footnote{This region is comprised of the states of Alabama, Arkansas, Louisiana, Mississippi, Tennessee, Delaware, Florida, Georgia, Kentucky, Maryland, North Carolina, South Carolina, Oklahoma, Texas, Virginia, West Virginia, and the District of Columbia.}
“less likely to use excessive force.” Respondents appear to be largely ambivalent on these outcomes, while a clear majority (~64%) agree or strongly agree that smartphone sousveillance will make police officers less likely to use excessive force, and a clear minority (~21%) believe it will make officers less likely to listen, the rest of items have a great deal of variance. For instance, similar proportions of respondents believe that smartphone sousveillance will make police more polite and also more distracted (49% versus 46%). Sousveillance support on the other hand, shown in Figure 3.2, is much more clear. The overwhelming majority of respondents (~80%) believe that it is “acceptable” or “very acceptable” to record the police when personally interacting with them or as a bystander to police-citizen interactions. Interestingly, support for posting those videos online or sharing them vicariously is actually more tepid than direct recording. While still enjoying majority (~66% and 63%, respectively), respondents are apparently more ambivalent about the acceptability of proliferating police videos online.

Table 3.2 shows the simple pairwise bivariate correlations for the variables of interest in Study 3. As expected, perceived sousveillance effects and sousveillance support are positively correlated (.26). Procedural justice is weakly negatively correlated with perceived sousveillance effects (-.08), but strongly negatively correlated with sousveillance support (-.26). This is also true for police performance satisfaction. Experienced police misconduct is positively correlated with sousveillance support (.11), but not with perceived sousveillance effects. Unsurprisingly, procedural justice and police satisfaction are strongly positively correlated (.69), and experienced police misconduct is substantially negatively correlated with both perceptions of procedural justice (-.38) and police performance satisfaction (-.37).

Next, Table 3.3 presents the results of OLS regression models predicting perceived sousveillance effects (Model 1) and sousveillance support (Model 2) using baseline models that
include only the demographic and organizational variables. In Model 1, while viral video exposure is not related to perceived effects of sousveillance (beta = -.005, p = .879), being male is (beta = .075, p = .020). Education and conservatism are negatively related to perceived sousveillance effects at a statistically significant level, with conservatism emerging as the strongest predictor in this model (beta = -.174, p < .001). In Model 2, viral video exposure (beta = .139, p < .001) and male (beta = -.124, p < .001) are both positively related to sousveillance support. As with perceived effects of sousveillance, conservatism is negatively related to sousveillance support, and conservatism is once again the strongest predictor in the model (beta = -.207, p < .001).

Table 3.4 shows the results of regressing the index of perceived effects of sousveillance on the three main independent variables — procedural justice, police performance satisfaction, and experienced police misconduct — while controlling for the demographic and organizational variables of the baseline model in Table 3.3. In sharp contrast to the hypotheses, none of the main independent variables exhibits a statistically significant relationship with perceived effects of sousveillance. This is true both for the individual models (Models 1 – 3), as well as the final model where all three independent variables are regressed simultaneously on the outcome variable (Model 4). Nevertheless, there are consistent relationships across the four models — male is consistently positively related to perceived sousveillance effects, while education and conservatism are consistently negative. Given the generally null findings in Table 3.4, it also bears noting that even the full model (R-squared = .044) explains very little of the variation in perceived effects of sousveillance.

Tables 3.5 and 3.6 present the results of regressing the measure of sousveillance support on the three main independent variables while controlling for the demographic and
organizational variables. Table 3.5’s Models 1 through 3 show each of the independent variables entered in separately. Unlike with perceived sousveillance effects, but consistent with my hypotheses, Model 1 suggests procedural justice is a statistically significant predictor of sousveillance support (beta = -.177; p < .001), with respondents who more strongly feel that the police in their communities act in a procedurally just manner being less supportive of sousveillance. Model 2 is also consistent with the proposed hypotheses. Police performance satisfaction does exhibit a negative and statistically significant relationship with sousveillance (beta = -.113, p = .001). However, surprisingly, Model 3 shows experienced police misconduct is not at all related to sousveillance support (beta = .016, p = .647). As with the baseline model in Table 3.2, viral video exposure, being male, and conservatism have consistent statistically significant relationships across all models.

Table 3.6’s Model 1 shows all three independent variables estimated simultaneously. Procedural Justice remains a statistically significant negative predictors of sousveillance support (beta = -.185, p < .001), while the relationship between police performance satisfaction and sousveillance support virtually disappears (beta = -.008, p = .864). Finally, Model 2 adds perceived sousveillance effects as a predictor of sousveillance support. As hypothesized, perceived effects has a positive and statistically significant relationship with sousveillance support, and stands as the strongest predictor in the model (beta = .219, p < .001), more so than perceptions of procedural justice (beta = -.182, p < .001), being male (beta = .116, p = .001), viral video exposure (beta = .106, p < .001), or conservatism (beta = -.129, p < .001). The coefficient for procedural justice is slightly lessened in this full model, so I also test for a potential indirect effect of procedural justice on sousveillance support via perceived sousveillance effects.
Mediation Analyses

I am interested in testing one potential mediated relationship — whether perceived sousveillance effects mediates the relationship between procedural justice and sousveillance support. I use bias-corrected bootstrap \(k = 1,000 \) confidence intervals (95%) to do so (Hayes, 2013; Zhao, Lynch, & Chen, 2010). I find no evidence of an indirect effect \(b = –.003, p = .746, CI = –.023 \) to .017), and thus the effect of procedural justice is direct only.

SUMMARY

Study 3’s purpose was to assess, among a national sample of American adults, the coherence of perceived sousveillance effects on police behavior, and the extent of sousveillance support. The univariate statistics presented in Figures 3.1 and 3.2 suggest that while large majorities of the sample believe that sousveillance is acceptable behavior, respondents are largely ambivalent on the effects that smartphone surveillance have on police behavior. Majorities seem to believe that both positive and negative outcomes are possible.

Moving to inferential statistics, the relationships between three key independent variables (i.e., perceived procedural justice, police performance satisfaction, and experience interpersonal police misconduct), and a number of demographic variables on the perceived effects of sousveillance and overall sousveillance support were assessed. Recall that there were four main hypotheses for this study: (1) perceived procedural justice, police performance satisfaction, and experienced interpersonal police misconduct, will be significantly related to perceived effects of sousveillance (the former two positively, the latter negatively); (2) perceived sousveillance effects will be positively related to sousveillance support; (3) perceived procedural justice, performance satisfaction, and experienced misconduct will all have significant direct
relationships with sousveillance support (the former two positively, the latter negatively); (4) each of three main independent variables will have indirect relationships with sousveillance support via perceived sousveillance effects.

Support for these four hypotheses is mixed. Regarding Hypothesis 1, none of the independent variables are related to the perceived effects of sousveillance at a statistically significant level. Nevertheless, Hypotheses 2 is fully supported, with perceived sousveillance effects positively related to sousveillance support at a statistically significant level, net of the demographic controls. As well, Hypothesis 3 is largely supported, with both procedural justice and police performance satisfaction significantly related to sousveillance support. Given that there is literature suggesting procedural justice is itself an antecedent to police performance satisfaction (e.g., Sunshine & Tyler, 2003), it seems likely that the relationship between performance satisfaction and sousveillance support is spurious, with procedural justice causing both. Lastly, Hypothesis 4 is unsupported — none of the independent variables exerts a statistically significant indirect effect on sousveillance support via perceived sousveillance effects.

The overall lack of consistent predictors for perceived sousveillance effects is unexpected and puzzling. This may reflect a key insight into sousveillance — namely, that the public perceives recording the police as multivalent, with ranges of both positive and negative effects. Moreover, the perceived sousveillance effects questions were framed specifically in terms of their effects on police behavior. It may be that some members of the public see the benefits of sousveillance more in terms of personal protection or sheer voyeurism, and thus effects on police behavior are unintended from those people. There are nevertheless consistent predictors perceived sousveillance effects — men are more likely to find sousveillance beneficial, while
conservatives and more educated people are less likely to do so. While male and conservatism are not necessarily unexpected, the consistent negative relationship with education is surprising. Perhaps more educated people are skeptical about the possibility that entrenched police tactics will change with public scrutiny.

Turning to the predictors of sousveillance support, perceptions that one’s local police are procedurally just emerges as consistently negatively related to sousveillance support. This comports well the findings of Crow et al. (2017), and it seems to suggest that some respondents are adopting a “if it’s not broken, don’t fix it” mentality towards police when it comes to citizen sousveillance. That is to say, when a respondent is satisfied with the impartiality and fairness of the police in his or her community, they are more likely to find citizen smartphone sousveillance to be unacceptable, conceivably because they view it as needless. Although this survey did not address support for bodyworn cameras, it seems quite possible that those respondents with high perceptions of procedural justice would be likely to support bodyworn cameras, perhaps as a means to counteract the smartphone surveillance that they find unacceptable. On the other hand, and in a most surprising turn, experiences with police misconduct was not significant in any of the models predicting sousveillance support. This perhaps is owed to the fact that few respondents reported serious incidents of experienced police misconduct, and speaks to the fact that more research is needed on how smartphone are used to film the police is traditionally disadvantaged areas where relationships with police are particularly strained. Lastly, and perhaps most importantly, perceived sousveillance effects is the strongest predictor of sousveillance support in the full model, which suggests that at least some American citizens at least partially support sousveillance specifically because of a perception that sousveillance has the ability to make the police behave better.
Table 3.1 Descriptive Statistics for Study 3’s Analytic Sample (N = 972)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for sousveillance</td>
<td>3.97</td>
<td>.98</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Perceived beneficial effects of sousveillance</td>
<td>3.11</td>
<td>.65</td>
<td>1.17</td>
<td>5</td>
</tr>
<tr>
<td>Perceived procedural justice of community police</td>
<td>3.45</td>
<td>.97</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Satisfaction with community police performance</td>
<td>3.66</td>
<td>.88</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Experienced perceived police misconduct</td>
<td>.41</td>
<td>.59</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Viral video exposure</td>
<td>3.30</td>
<td>1.03</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Male</td>
<td>.50</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.22</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Age</td>
<td>39.40</td>
<td>12.89</td>
<td>19</td>
<td>88</td>
</tr>
<tr>
<td>Education</td>
<td>3.25</td>
<td>1.25</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Conservatism</td>
<td>2.74</td>
<td>1.11</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>South</td>
<td>.36</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Prior arrest</td>
<td>.17</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Vicarious arrest</td>
<td>.49</td>
<td>—</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Figure 3.1 Percentage of Respondents Who Answered “Agree” or “Strongly Agree” to each of the Items in the Perceived Sousveillance Effects Scale

Figure 3.2 Percentage of Respondents Who Answered “Somewhat Acceptable” or “Very Acceptable” to each of the Items in the Sousveillance Support Scale
Table 3.2 Bivariate Correlations for the Variables Used in Study 3

<table>
<thead>
<tr>
<th>Variable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sousveillance support</td>
<td>.26*</td>
<td>-.26*</td>
<td>-.20*</td>
<td>.11*</td>
<td>.17*</td>
<td>.13*</td>
<td>.05</td>
<td>-.11*</td>
<td>.01</td>
<td>-.22*</td>
<td>.02</td>
<td>.08*</td>
<td>.06*</td>
<td></td>
</tr>
<tr>
<td>2 Sousveillance effects</td>
<td>1.00</td>
<td>-.08*</td>
<td>-.08*</td>
<td>.01</td>
<td>.00</td>
<td>.06</td>
<td>.03</td>
<td>-.01</td>
<td>-.05</td>
<td>-.16*</td>
<td>-.02</td>
<td>-.01</td>
<td>-.05</td>
<td></td>
</tr>
<tr>
<td>3 Procedural justice</td>
<td>1.00</td>
<td>.69*</td>
<td>-.38*</td>
<td>-.22*</td>
<td>-.04</td>
<td>-.11*</td>
<td>.14*</td>
<td>-.02</td>
<td>.28*</td>
<td>.02</td>
<td>-.13*</td>
<td>-.13*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Police satisfaction</td>
<td>1.00</td>
<td>-.37*</td>
<td>-.18*</td>
<td>-.07*</td>
<td>-.11*</td>
<td>.14*</td>
<td>-.00</td>
<td>.20*</td>
<td>-.01*</td>
<td>-.17*</td>
<td>-.11*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Police misconduct</td>
<td>1.00</td>
<td>.23*</td>
<td>.12*</td>
<td>.13*</td>
<td>-.10*</td>
<td>-.09*</td>
<td>-.12*</td>
<td>.04</td>
<td>.28*</td>
<td>.28*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Viral video exposure</td>
<td>1.00</td>
<td>-.03</td>
<td>.10*</td>
<td>-.17*</td>
<td>-.07*</td>
<td>-.09*</td>
<td>-.00</td>
<td>.06</td>
<td>.15*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Male</td>
<td>1.00</td>
<td>-.03</td>
<td>-.11*</td>
<td>.04</td>
<td>.03</td>
<td>-.00</td>
<td>.15*</td>
<td>-.05*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Nonwhite</td>
<td>1.00</td>
<td>-.16*</td>
<td>.02</td>
<td>-.10*</td>
<td>.07*</td>
<td>-.02</td>
<td>.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Age</td>
<td>1.00</td>
<td>-.00</td>
<td>.09*</td>
<td>.00</td>
<td>.08*</td>
<td>.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Education</td>
<td>1.00</td>
<td>-.06*</td>
<td>.01</td>
<td>-.13*</td>
<td>-.14*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Conservatism</td>
<td>1.00</td>
<td>.04</td>
<td>-.02</td>
<td>-.04</td>
<td></td>
</tr>
<tr>
<td>12 South</td>
<td>1.00</td>
<td>.07*</td>
<td>.07*</td>
<td></td>
</tr>
<tr>
<td>13 Prior Arrest</td>
<td>1.00</td>
<td>.36*</td>
<td></td>
</tr>
<tr>
<td>14 Vicarious Arrest</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

*p < .05 (two-tailed).
Table 3.3. Baseline OLS Regression Models Predicting Perceived Effects of Sousveillance and Sousveillance Support

<table>
<thead>
<tr>
<th>Variables</th>
<th>DV: Sousveillance Effects (Model 1)</th>
<th>DV: Sousveillance Support (Model 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>−.003</td>
<td>.021</td>
</tr>
<tr>
<td>Male</td>
<td>.098*</td>
<td>.042</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.031</td>
<td>.050</td>
</tr>
<tr>
<td>Age</td>
<td>.001</td>
<td>.002</td>
</tr>
<tr>
<td>Education</td>
<td>−.038*</td>
<td>.018</td>
</tr>
<tr>
<td>Conservatism</td>
<td>−.102***</td>
<td>.020</td>
</tr>
<tr>
<td>Southern</td>
<td>−.018</td>
<td>.044</td>
</tr>
<tr>
<td>Prior Arrest</td>
<td>−.041</td>
<td>.057</td>
</tr>
<tr>
<td>Vicarious Arrest</td>
<td>−.065</td>
<td>.046</td>
</tr>
</tbody>
</table>

R–squared

.040

.099

NOTES: N = 969

ABBREVIATIONS: DV = dependent variable; b = unstandardized coefficient; SE = robust standard error; Beta = standardized coefficient.

*p < .05; **p < .01; ***p < .001 (two–tailed).
<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Procedural Justice only</th>
<th>Model 2: Police Satisfaction only</th>
<th>Model 3: Experienced Police Misconduct only</th>
<th>Model 4: All Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
</tr>
<tr>
<td>Procedural Justice</td>
<td>−.029</td>
<td>.025</td>
<td>−.044</td>
<td>−</td>
</tr>
<tr>
<td>Police Satisfaction</td>
<td>−</td>
<td></td>
<td>−</td>
<td>.042</td>
</tr>
<tr>
<td>Police Misconduct</td>
<td>−</td>
<td></td>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>−.008</td>
<td>.022</td>
<td>−.013</td>
<td>−.008</td>
</tr>
<tr>
<td>Male</td>
<td>.096*</td>
<td>.042</td>
<td>.074</td>
<td>.094*</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.028</td>
<td>.050</td>
<td>.018</td>
<td>.026</td>
</tr>
<tr>
<td>Age</td>
<td>.001</td>
<td>.002</td>
<td>.023</td>
<td>.001</td>
</tr>
<tr>
<td>Education</td>
<td>−.038*</td>
<td>.018</td>
<td>−.073</td>
<td>−.037*</td>
</tr>
<tr>
<td>Conservatism</td>
<td>−.095***</td>
<td>.020</td>
<td>.350</td>
<td>−.096***</td>
</tr>
<tr>
<td>Southern</td>
<td>−.016</td>
<td>.044</td>
<td>−.012</td>
<td>−.018</td>
</tr>
<tr>
<td>Prior Arrest</td>
<td>−.048</td>
<td>.057</td>
<td>−.028</td>
<td>−.056</td>
</tr>
<tr>
<td>Vicarious Arrest</td>
<td>−.069</td>
<td>.046</td>
<td>−.053</td>
<td>−.068</td>
</tr>
</tbody>
</table>

R-squared | .042 | | .043 | | .040 | | .044 | |

NOTES: N = 969

ABBREVIATIONS: b = unstandardized regression coefficient; SE = robust standard error; Beta = standardized regression coefficient.

*p < .05; **p < .01; ***p < .001 (two-tailed).
Table 3.5 OLS Regression Models Predicting Support for Sousveillance – Select Predictors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Procedural Justice only</th>
<th>Model 2: Police Satisfaction only</th>
<th>Model 3: Experienced Police Misconduct only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b)</td>
<td>SE</td>
<td>Beta</td>
</tr>
<tr>
<td>Procedural Justice</td>
<td>–.179***</td>
<td>.034</td>
<td>–.177</td>
</tr>
<tr>
<td>Police Satisfaction</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Experienced Police Misconduct</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>.103**</td>
<td>.031</td>
<td>.109</td>
</tr>
<tr>
<td>Male</td>
<td>.232***</td>
<td>.061</td>
<td>.118</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.004</td>
<td>.073</td>
<td>.002</td>
</tr>
<tr>
<td>Age</td>
<td>–.003</td>
<td>.003</td>
<td>–.040</td>
</tr>
<tr>
<td>Education</td>
<td>.005</td>
<td>.025</td>
<td>.006</td>
</tr>
<tr>
<td>Conservatism</td>
<td>–.145***</td>
<td>.027</td>
<td>–.165</td>
</tr>
<tr>
<td>Southern</td>
<td>.059</td>
<td>.063</td>
<td>.029</td>
</tr>
<tr>
<td>Prior Arrest</td>
<td>.084</td>
<td>.087</td>
<td>.033</td>
</tr>
<tr>
<td>Vicarious Arrest</td>
<td>.025</td>
<td>.066</td>
<td>.013</td>
</tr>
</tbody>
</table>

\(R^2 \)-squared: \(.126 \) \(.110 \) \(.099 \)

Notes: \(N = 969 \)

Abbreviations: \(b \) = unstandardized regression coefficient; SE = robust standard error; Beta = standardized coefficient.

*\(p < .05 \); **\(p < .01 \); ***\(p < .001 \) (two-tailed).
<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: All Predictors except Effects</th>
<th></th>
<th></th>
<th>Model 2: All Predictors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
</tr>
<tr>
<td>Sousveillance Effects</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.330***</td>
<td>.046</td>
<td>.219</td>
</tr>
<tr>
<td>Procedural Justice</td>
<td>-.187***</td>
<td>.045</td>
<td>-.185</td>
<td>-.183***</td>
<td>.044</td>
<td>-.182</td>
</tr>
<tr>
<td>Police Satisfaction</td>
<td>-.008</td>
<td>.046</td>
<td>-.007</td>
<td>.006</td>
<td>.045</td>
<td>.005</td>
</tr>
<tr>
<td>Experienced Police Misconduct</td>
<td>-.071</td>
<td>.060</td>
<td>-.043</td>
<td>-.062</td>
<td>.058</td>
<td>-.038</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>.108***</td>
<td>.031</td>
<td>.114</td>
<td>.110***</td>
<td>.030</td>
<td>.116</td>
</tr>
<tr>
<td>Male</td>
<td>.239***</td>
<td>.061</td>
<td>.122</td>
<td>.207**</td>
<td>.059</td>
<td>.106</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.012</td>
<td>.073</td>
<td>.005</td>
<td>.002</td>
<td>.072</td>
<td>.001</td>
</tr>
<tr>
<td>Age</td>
<td>-.003</td>
<td>.003</td>
<td>-.041</td>
<td>-.004</td>
<td>.003</td>
<td>-.047</td>
</tr>
<tr>
<td>Education</td>
<td>.003</td>
<td>.025</td>
<td>.004</td>
<td>.016</td>
<td>.024</td>
<td>.020</td>
</tr>
<tr>
<td>Conservatism</td>
<td>-.145***</td>
<td>.027</td>
<td>-.165</td>
<td>-.114***</td>
<td>.027</td>
<td>-.129</td>
</tr>
<tr>
<td>Southern</td>
<td>.060</td>
<td>.064</td>
<td>.029</td>
<td>.065</td>
<td>.062</td>
<td>.032</td>
</tr>
<tr>
<td>Prior Arrest</td>
<td>.101</td>
<td>.088</td>
<td>.039</td>
<td>.117</td>
<td>.087</td>
<td>.045</td>
</tr>
<tr>
<td>Vicarious Arrest</td>
<td>.038</td>
<td>.067</td>
<td>.019</td>
<td>.059</td>
<td>.066</td>
<td>.030</td>
</tr>
<tr>
<td>R–squared</td>
<td>.127</td>
<td></td>
<td></td>
<td>.173</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: N = 969

ABBREVIATIONS: b = unstandardized coefficient; SE = robust standard error; Beta = standardized coefficient.

*p < .05; **p < .01; ***p < .001 (two–tailed).
CHAPTER 7 – SUMMARY AND DISCUSSION

In December 2014, in the wake of several high profile police use of force incidents, President Barack Obama assembled the Task Force on 21st Century Policing (Constitution Project, 2016). Six months later, the Task Force concluded its final report emphasizing the need for both accountability by law enforcement officials and the importance of confidence in American policing organizations (President’s Task Force on 21st Century Policing, 2015). Today, the ubiquitous presence of smartphone technology in American life is perhaps poised to deliver that accountability, and yet this technology also presents fundamental challenges for the legitimacy of American law enforcement (Gallagher et al., 2016, p. 16).

Using data from two recent national surveys, one of police officers and the other of members of the American public, I conducted three studies. Each study investigated a particular feature of the relationship between police officers and sousveillance (i.e. citizen recording using smartphones). Study 1 examined the predictors of police officers’ belief that the public frequently records them, and also assessed officers’ emotional worry of being recorded. Study 2 used experimental vignettes to investigate whether the presence of smartphones empowers members of the public in their interactions with officers. The effect of other situational manipulations is also assessed. Study 3 evaluated the extent to which the public believes the police should be monitored using sousveillance, and also considered the public’s beliefs regarding the manner in which sousveillance impacts public behavior. Several important findings emerged from the analyses. Each is described in detail below, followed by a discussion of the overall implications for theory, research, and policy. I conclude by noting some limitations, and I include some final thoughts about the future of police-citizen relations in the United States.
SUMMARY OF FINDINGS

The purpose of Study 1 was to assess if and to what extent police officers are aware of citizen recording (i.e., sousveillance), how likely they perceive it to be, and the extent to which they worry about it. There are four principal findings from this study. First, significant proportions of the police officers surveyed indicated that they both believed it was likely members of the public would record them in the future, and that the potential for being recorded worried them. Second, on-duty technology use and viral video exposure both have positive relationships with perceived sousveillance likelihood, and sousveillance worry. Third, mediation analyses suggest that both on-duty technology use and viral video exposure exert indirect effects on worry via perceived likelihood. Fourth, personal technology use did not exhibit the relationship that I hypothesized, and instead was not significantly related to perceived recording likelihood or recording worry. Taken together, these results suggest that American police officers today are sincerely concerned with smartphone sousveillance, but that individual officers’ concerns vary by their exposure to both the means of sousveillance in a policing context (i.e., on-duty technology use) and the outcomes of that sousveillance (i.e., viral videos of police).

Using a public sample, Study 2 presented respondents with two randomized survey vignettes depicting police-citizen encounters. Each vignette had three experimental manipulations: (a) the level of true culpability of the respondent, (b) the level of procedurally just treatment afforded the respondent, and (c) the presence (or lack thereof) of recording devices. The study assessed how these manipulations affected experienced fear, experienced anger, and intent to comply with the scenario’s fictional police officer. There are four principal findings from this study. First, non-procedurally just treatment exerts an effect on fear, anger, and intent to comply in both vignettes. This is consistent with previous work in this area (Braga et al., 2014;
Furthermore, there is an indirect effect of non-procedurally just treatment on intent to comply via experience-based anger in both vignettes. Second, innocence exerts an effect on anger and intent to comply in both vignettes as well. The indirect effect of innocence on intent to comply appears only in the second vignette. Third, the presence of bodyworn cameras reduces fear in both vignettes, and reduces anger in the speeding vignette. Fourth, the presence of a smartphone is not statistically significantly related to anger or fear in either vignette, although it approaches significance in the littering vignette. In sum, the results from this study suggest that while the other situational manipulations are influential, neither the presence of the bodyworn camera nor presence of the smartphone is consistently related with intent to comply in either vignette. Thus, it does not appear that the presence of a smartphone has the situational emboldening effect that I anticipated, but rather more modest comforting effect at best, which was also reflected in the bodyworn camera results.

Lastly, Study 3’s purpose was to assess, among a national sample of American adults, the relationships between perceived procedural justice, police performance satisfaction, and experienced interpersonal police misconduct on the perceived effects of sousveillance and overall sousveillance support, controlling for a number of demographic variables. There are three principal findings from this study. First, none of the independent variables are related to the perceived effects of sousveillance at a statistically significant level, meaning that the antecedents for believing that sousveillance has strong effects, either positive or negative, are still largely unknown. I have however been able to eliminate a number of likely “usual suspects,” including gender, age, and race, and show that the perception of positive effects seems tied into political consciousness (since the only consistent relationship was a negative one with political conservatism). As well, Farmer (2016) and Sandhu (2017) both stress the situational character of
smartphone sousveillance in their respective qualitative works, and this may explain the absence of consistent predictors of perceived sousveillance effects — they are context-dependent.

The second major finding of Study 3 is that perceived sousveillance effects is positively related to sousveillance support at a statistically significant level, net of the demographic controls. In addition, in the full model, perceived sousveillance effects is the strongest predictor of support for sousveillance practices the full model, even more than perceptions of procedural justice which suggests that some respondents support sousveillance because they view it as functionally beneficial as a means to improve police behavior. This is consistent with my predictions, and provides evidence that at least some people do not support sousveillance nihilistically, or aggressively in an effort to solely out of animus to the police (Brown, 2016; Thompson, 2005). Third and lastly, both procedural justice and police performance satisfaction are negatively related to sousveillance support at a statistically significant level. These results suggest that respondents who are dissatisfied with the efficiency of the police in their communities, or the way those officers treat citizens, are more likely to find sousveillance activities (e.g., taking video of the police; posting those videos on social media) to be acceptable. And conversely, it implies that people who are satisfied with officer performance actively oppose sousveillance practices that would continue to hold the police accountable.

THEORETICAL IMPLICATIONS

Taken together, the findings from all three studies suggest mixed support for the attitudinal preconditions important for smartphone technology to eventually affect American policing under a Foucaultian model. Recall that Foucault’s (1977) key argument is that power in modern society is achieved by systems of surveillance, which work to normalize citizens’ behavior by discouraging nonconformity, and identifying, individualizing, and documenting
those who do deviate from accepted standards. Surveillance’s ability to discourage nonconformity is strongest when the subjects of that surveillance being both aware of being watched and being concerned about it. The results of Study 1 strongly suggest that this is true of modern American police officers regarding citizen sousveillance. Additionally, to borrow Foucault’s metaphor, the Panoptic machinery works best when those in charge of it are in agreement of whom to monitor, and are determined to use it in an essentially corrective manner (Garland, 1990). Study 3 provides evidence that members of public believe the police should be the subject of citizen sousveillance, and the perception that this sousveillance improves police behavior is the strongest predictor of that support. Once again, the Foucaultian model of smartphone sousveillance on police is essentially supported. Where the model falters is in the predictions, derived from Foucault’s concept of power-knowledge, of how members of the public — empowered by the sousveillance-capable devices they now carry — may interact situationally with police officers. Study 2’s results do not suggest that respondents are less afraid or more likely to defy the police in situational encounters when smartphones are present. Conversely, though, they are no less likely to defy the police when bodyworn cameras are present. This may suggest that the Foucaultian model, while useful on the societal level, is less useful for understanding police-citizen interactions at the situational-level. Alternatively, a Foucaultian model, based as it is in a critical view of social control, may be most useful when considering interactions where the police and the public have deeply sometimes antagonistic relationships, such as with young African-Americans.

Turning to additional theoretical concerns, Study 1’s findings are consistent with research on both citizens’ fear of victimization (e.g., Ferraro, 1995; Warr 2000), and potential offenders’ fear of apprehension (Pickett, Roche, & Pogarsky, in press), and suggest that police officer
respond to risk in much the same way — outside factors impact worry or fear, but perceived likelihood is a primary input to affect and often mediates the impact of background factors. Since human behavior is strongly influenced by affective reactions to environmental stimuli (Camerer, Loewenstein, & Prelec, 2005), this provides initial evidence to support arguments that smartphone sousveillance may affect police behavior in the long run.

In Study 2, the hypothesized impact of smartphones on emotional outcomes (e.g., fear and anger) and intent to comply is not present. Nevertheless, the results of the other experimental manipulations — innocence of the respondent and procedurally unjust treatment findings — do produce affective responses, which then mediate on reported intentions to comply or defy authority. These results specifically corroborate and extended existing research on the relationship between procedural justice and affect (Barkworth & Murphy, 2015; Murphy & Tyler, 2008), which suggests procedurally unjust action produces visceral, negative emotional reactions. Thus, procedurally just strategies may decrease crime directly by deescalating situations and dampening non-compliance before it can begin. More generally, along with the results in Study 1, Study 2’s findings underscore the importance of emotions in criminal justice decision making broadly (Pickett, Roche & Pogarsky, in press).

RESEARCH IMPLICATIONS

The results from this dissertation offer fertile ground for future research. Three avenues of future work are immediately apparent. First, Study 1’s results suggest that significant proportions of police believe that citizens will record them, and that police officers worry about being recorded. Marx (2016, p. 145) outlines several strategies that subjects of recording can use to thwart surveillance. They include but are not limited to: discovering details about who is recording; avoiding areas and situations where one might be recorded; distorting, blocking, or
breaking recording devices; refusing to acknowledge recording devices and declining to acquiesce to what they are meant to deter; and finally attempting to explain and/or engaging in counter-surveillance (see also, Simon, 2012, Wilson & Serisier, 2010). While these strategies are typically considered in the context of private citizens fighting back against government or corporate surveillance, they may be equally applicable to police efforts to manage sousveillance. The advent of police body worn cameras seem to be a clear case of attempting to both engage in counter-surveillance of the public and to gather evidence to combat public claims of police misconduct. Meanwhile, there is research suggest that some police are pulling back from engaging with the public (see e.g., Shjarback et al., 2017), which suggests attempts at avoidance. Future research should examine the extent to which different police departments are utilizing these strategies to manage citizen sousveillance. Particular attention should be paid to differences across department size and scope, since the results from Study 1 suggests that police officers in larger departments are more likely to perceive risk of being recorded, but no more likely to be worried. This may indicate these officers in larger departments feel more supported or able to cope with the potential consequences of being recorded by citizens. Perhaps most importantly, broader studies on the effects of sousveillance on officer behavior are needed.

Second, Study 2’s results suggest that future research should continue to explore the situational effects of recording technologies in police-citizen interactions. While the presence of smartphones in each of the experimental vignettes failed to reach a statistically significant association with anger or fear in all but one case, nevertheless the coefficients are all consistently negative. This suggests that the presence of smartphones, as well as body worn cameras, may have a calming effect in the moment by giving suspects a potential future outlet for the redress of grievances later, but additional studies are needed to test this possibility. As well, there may be
differential effects among certain segments of the population, such that the presence of smartphones does reduce compliance, but primarily among young, poor, urban respondents. Since these types of respondents were not fully captured in the current public sample, future research should examine this possibility.

Third, the results for perceived sousveillance effects in Study 3 also beg further investigation. They may suggest that the public has ambivalent perceptions of the outcomes that citizen sousveillance has on police behavior, with ranges of both positive and negative effects. Note that the perceived sousveillance effects questions were framed specifically in terms of their effects on police behavior. Future research should examine different but still salient perceived outcomes of sousveillance, including effects on overall police-community relationships, police relationships with particular demographic groups, civil or criminal penalties for police misconduct, and direct reactions by police to the citizens conducting sousveillance. As well, given that my model was unable to account for perceived effects, future research should examine other potential predictors.

Lastly, while this dissertation has focused on smartphones’ ability to conduct sousveillance by recording pictures and videos, there are also other ways to leverage these technologies to track the police. A number of smartphone applications have been created or repurposed to utilize crowd-sourced user data to systematically track and monitor the police, including “Waze” (Bever, 2015), “Five-O” (The Economist, 2015), and “OpenOversight” (Joseph, 2016). Researchers should examine the popularity of these “apps” — who uses them, and how often do they do so — as well as assess the potential effects on police practices, morale, and even overall crime rates.
POLICY IMPLICATIONS

If nothing else, the studies of this dissertation provide empirical evidence that smartphone-based sousveillance is salient to both the public and the police. With this in mind, there are at least two potential policy implications. First, police organizations should extensively familiarize officers with state laws and departmental policies relevant to citizen smartphone sousveillance. If there are no written policies regarding the management of citizen sousveillance, creation of such policies is imperative (Farmer, Sun & Starks, 2015). Furthermore, police organizations should train officers to expect sousveillance actions from the public, and conduct themselves in ways that deescalate potentially tense situations involving smartphone recordings. For instance, police organizations might look to examples of how celebrities deal with paparazzi for inspiration.

Second, police organizations should cooperate with researchers, both internal and external, to better note when members of the public are recording police interactions. Although the impact of smartphone sousveillance can never be systematically tested using randomized trials as bodyworn cameras can (e.g., Ariel et al., 2015; Jennings et al., 2015), it would be still illuminating to compare interactions where smartphones were present versus where they were not. Indeed, the increasing popularity of bodyworn camera, and the consequent video footage they produce, might provide valuable in this regard by allowing the unobtrusive assessment of whether the officer was being recorded by immediate bystanders. Moreover, there is great promise in systematically examining BWC footage to better understand how policing encounters play out generally (Willits & Makin, 2017).
LIMITATIONS

There are two principal limitations to the three studies included in this dissertation. First, and most prominently, both the police and public sample are convenience samples. This casts some doubt on the generalizability of my findings to both American police officers generally, as well as the American public generally. My police sample is demographically similar to recent systematic samples of police officers sponsored by the federal government (Reaves, 2015), and regarding the public sample, there is a robust body of research that suggests that MTurk samples can very often replicate results previously documented in probability samples (Mullinix et al., 2015; Weinberg, Freese, & McElhatten, 2014; Pasek, 2016). Nevertheless, it is possible that conducting both surveys using an online methodology attracted both police officers and members of the public that more technologically savvy, and are therefore more likely to think about the public using smartphones to record the police. This might bias or artificially inflate some of the estimates. Yet, recent research on Internet and smartphone prevalence in the United States suggests that these technologies are virtually omnipresent among both the police and the American public generally (Pew Research Center, 2017).

Secondly, both Study 1 and Study 3 rely on cross-sectional descriptive and correlational analyses, accomplished using multivariate linear regression. This is a limitation because all statistical models in those studies are only suitable to examine associations between variables, and not causal effects. Instead, all causal inference is based in theory rather than strict statistical tests of causality, leaving open the possibility that my models are mis-specified. Still, Studies 1 and 3 are similar to virtually all studies of crime and criminal justice attitudes (Eschholz, Chiricos, & Gertz, 2003; Weitzer & Kubrin, 2004). As well, exploratory research is valuable and
necessary with hard-to-access populations (e.g., the police), and with emerging topics of inquiry (Brown, 2016).

CONCLUDING THOUGHTS

This dissertation has largely remained hopeful about the prospect of citizen sousveillance to ultimately improve police-citizen relationships. Unfortunately, a much darker future is also possible. As mentioned in Chapter 2, Foucault (1977) argues that surveillance as a societal organizing principle only began concurrently with the Enlightenment Era in Europe. Before the Enlightenment, the state, through the symbol of the monarch, wielded absolute power against the bodies of citizens generally and criminals in particular. These spectacles of punishment were completely unlike the later panoptic regime because they were episodes of the many (i.e. the crowd) watching the few (i.e. the executioner and the offender), rather than the few gazing on the many (Thompson, 2005, p. 39). “Ceremonies of might” were public, physical, and brutal, ending in the degradation if not outright destruction of the offender’s body (Garland, 1990, p. 134). These spectacles of punishment were designed to showcase the overwhelming might of the monarch, consistent with his or her political supremacy and religious significance. However, these spectacles of punishment, if they had any use to begin with, eventually became a political danger to the legitimacy of the monarch and the state itself. Foucault (1977, p. 63) claims, “the people never felt closer to those who paid the penalty than in those rituals intended to show the horror of the crime and the invincibility of power; never did the people feel more threatened, like them, by a legal violence exercised without moderation or restraint.” Thus, rather than holding the public in awe, state-sponsored episodes of brutal violence began to have iatrogenic effects. They engendered fear and anger, and threatened to destabilize societies.
In response to a number of factors, political and economic, the modern state gradually evolved criminal justice systems and punishment regimes that are largely removed from public scrutiny (Foucault, 1977, p. 218, see also, Durkheim, 1983). Instead of the public scaffold, offenders are now sequestered away in prisons, often in rural areas, out of sight and mind. Nevertheless, unlike prisons or courts, policing is unsuitable for complete obfuscation from the public gaze. They are perhaps the most common and visible symbols of the state (Huq et al., 2016; Loader & Mulcahy, 2003). Thus, if any part of the modern criminal justice system perhaps approximates the monarch’s use of naked force, it is police use of force on suspects. As Manning (1977, p. 361) observes, “The ineluctable fact is that the police deal in and dispense violence in protection of the interests of the state.” Yet, crucially, up until very recently private citizens’ ability to record police use of force episodes and disseminate those recordings publicly has been virtually nonexistent (The Constitution Project, 2016).

What Foucault did not anticipate in his Panopticon, and even what later elaborations like Mathiesen’s (1997) synopticon did not imagine, is a society where the public writ large can exert a normalizing gaze on especially police officers. By putting physical confrontation between the state and citizens back into the spotlight, smartphones may be “re-spectaclizing” punishment in modern society. Foucault (1977, p. 217) argues that “Antiquity had been a civilization of spectacle…our society is one not of spectacle but of surveillance…we are much less Greeks than we believe. We are neither in the amphitheatre, nor on the stage, but in the panoptic machine.” But, as I have reviewed, there is much evidence to suggest that modern policing is indeed a form of stagecraft (Alpert & Dunham, 2004; Sykes & Brent, 1980; Manning, 1977; Toch, 2012).

20 I am not equating police use of force generally to medieval public executions. Rather, I am drawing a parallel between the two to suggest that state-sanctioned use of force may be deeply disconcerting to citizens, regardless of its moral rightness or situational exigency. This is in keeping with research that suggests that people are increasingly uncomfortable with violence generally (Pinker, 2011).
Moreover, smartphone users can act as a Greek chorus, neither purely a part of the audience nor a part of the unfolding drama, but rather influencing how the audience perceives the actors, especially police officers (Toch, 2012, p. 6). Some citizens that record the police may have ulterior motives “know[ing] very well that mediated visibility can be a weapon in the struggles that they wage in their day-to-day lives” (Thompson, 2005, p. 31).

Seen in this way, the majority of Americans may come to have the same reaction to spectacles of state-sponsored force as Enlightenment-era audiences — shock, horror, and identification with those who are suffering. This is in line with some police research on negativity bias and perceptual asymmetry, which suggests that negative police-citizen interactions are far more influential than positive ones (Li, Ren, & Luo, 2016; Mastrofski, Snipes, & Supina, 1996; Skogan, 2006). And indeed, in discussing the predicament of police in the 21st century, Weitzer (2015, p. 479) predicts “a growing public perception that misconduct is dramatically increasing, even if this is simply an artifact of greater reporting of altercations, including footage from video recordings.”

Unfortunately, police conduct is not deliberately being made visible to the public by the state, as was the case with the monarch’s public executions. Instead, the power to gaze is increasingly in the hands of the public, and police behavior cannot be sequestered away by the state in order to quell tensions. If the public responds intensely to the spectacle of the police using force against citizens, and citizen recording continues to highlight these events (despite their rarity), this may further widen the trust gap between police and citizens, and further damage police legitimacy. Thus, police officers may be caught in an untenable dilemma — unable to disappear, nor to remain in their current form.
Ultimately, though it is also possible that the countervailing gazes of police bodyworn cameras and citizens’ smartphones will, in the long run, be essentially corrective for both cops and citizens. Packer (1968) suggests that reform is grounded in visibility. Though they have traditionally sequestered themselves away from the public, police organizations certainly have the power to adjust to this new era of “police visibility” (Goldsmith, 2010; Brown, 2016). Perhaps the police will be able to humanize and demystify themselves to the public by engaging in radical transparency, and by fostering difficult yet honest discussions on the realities of policing, and on what the police can and cannot be expected to accomplish. Only time will tell.
APPENDIX A: POLICE SURVEY CODEBOOK

NATIONAL SURVEY OF POLICE 2015

CODEBOOK

Sean Patrick Roche
Jasmine R. Silver
Justin T. Pickett
School of Criminal Justice
University at Albany, SUNY

Thomas Bilach
Deputy Commissioner’s Office of Management Analysis & Planning
The City of New York Police Department
Survey Introduction and Informed Consent (Albany version)

Dear Participant,

This is a non-profit survey being conducted on behalf of doctoral student researchers at the State University of New York at Albany. It asks individuals to provide their opinions about policing and technology for a study entitled, "Policing in the 21st Century". Your participation would be greatly appreciated.

This online survey is voluntary and your answers will be anonymous to the researchers. Thus, it will be impossible for them to link your answers back to you. The survey should take less than 20 minutes to complete. You must be at least 18 years old to participate. Participants in this study have the right to choose not to answer specific questions or to leave the survey at any time. Please note, you will not be monetarily compensated for completing the survey. However, your participation and thoughtful responses are critical for advancing our understanding of policing in the United States.

To begin, just scroll down and click the “next” button. By clicking the "next" button and completing the survey it will be presumed that you have consented to be in the study.

The results of the survey will be used solely for instructional purposes and academic research. If you have any questions about the survey or would like a copy of the results, please contact the principal investigator and/or the faculty advisor for the project. Their contact information is provided below.

Sean Patrick Roche, MS
School of Criminal Justice
State University of New York at Albany
135 Western Avenue
Albany, NY 12222
Phone: (716) 866-5740
Email: sroche@albany.edu

Justin T. Pickett, PhD
School of Criminal Justice
State University of New York at Albany
135 Western Avenue
Albany, NY 12222
Phone: (518) 442-5224
Email: jpickett@albany.edu

Note that research at the State University of New York at Albany is carried out under the oversight of the Institutional Review Board (IRB). This research has been reviewed and approved by the IRB. If you have any questions concerning your rights as a research subject or if you wish to report any concerns about the study, you may contact the University at Albany Office of Regulatory & Research Compliance at 1-866-857-5459 or hsconcerns@albany.edu.
Dear Participant:

The National Criminal Justice Training Center (NCJTC) is conducting a survey of community stakeholders, law enforcement, and criminal justice personnel to examine issues related to policing and technology. As a law enforcement professional, your experiences and perceptions are instrumental to gaining knowledge about legal decision-making and criminal justice practices.

This online survey is voluntary and your answers will be anonymous. Thus, it will be impossible for them to link your answers back to you. The survey should take less than 15 minutes to complete. You must be at least 18 years old to participate. Participants in this study have the right to choose not to answer specific questions or to leave the survey at any time. Please note, you will not be monetarily compensated for completing the survey. However, your participation and thoughtful responses are critical for advancing our understanding of policing in the United States.

To begin, just scroll down and click the “next” button. By clicking the "next" button and completing the survey it will be presumed that you have consented to be in the study.

If you have any questions regarding this research or your participation in it, feel free to contact Ofc.Thomas Bilach at thomas.bilach@nypd.org.
Final Disposition of Cases and Response Outcomes

Case dispositions:
1. Total number of respondents who started survey: 1,232
2. Completions: 1,000
3. Partial completions: 232

Response outcomes:
1. Completion rate: 81.17%
Survey Measures and Value Labels

<table>
<thead>
<tr>
<th>Measure</th>
<th>Description</th>
<th>Value Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>CASE</td>
<td>Unique identifier for each survey.</td>
<td></td>
</tr>
<tr>
<td>DISP</td>
<td>Final disposition for respondent</td>
<td>0 = Completion, 1 = Breakoff</td>
</tr>
<tr>
<td>CollectorNm</td>
<td>Original collector name</td>
<td></td>
</tr>
<tr>
<td>RespondentID</td>
<td>Original respondent identification number</td>
<td></td>
</tr>
<tr>
<td>CollectorID</td>
<td>Original collector identification number</td>
<td></td>
</tr>
<tr>
<td>StartDate</td>
<td>Date and time when survey was begun</td>
<td></td>
</tr>
<tr>
<td>EndDate</td>
<td>Date and time when survey was exited</td>
<td></td>
</tr>
</tbody>
</table>

Please indicate how important or unimportant you think the following actions are for POLICE WORK.

Q1_1 Listening carefully to what citizens say, even if it isn't directly relevant to what you need to do.

<table>
<thead>
<tr>
<th>Value Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 = Very Important</td>
</tr>
<tr>
<td>2 = Important</td>
</tr>
<tr>
<td>3 = Neither Important Nor Unimportant</td>
</tr>
<tr>
<td>4 = Unimportant</td>
</tr>
<tr>
<td>5 = Very Unimportant</td>
</tr>
</tbody>
</table>
Q1_2 Explaining to citizens the reasoning and/or legal basis behind decisions.

Value Label:
- 1 = Very Important
- 2 = Important
- 3 = Neither Important Nor Unimportant
- 4 = Unimportant
- 5 = Very Unimportant

Q1_3 Treating citizens respectfully at all times, even if you are personally frustrated with them.

Value Label:
- 1 = Very Important
- 2 = Important
- 3 = Neither Important Nor Unimportant
- 4 = Unimportant
- 5 = Very Unimportant

Q1_4 Listening to all sides of a story before making a decision.

Value Label:
- 1 = Very Important
- 2 = Important
- 3 = Neither Important Nor Unimportant
- 4 = Unimportant
- 5 = Very Unimportant

Q1_5 Helping citizens in ways that go above and beyond what is necessary to resolve a situation.

Value Label:
- 1 = Very Important
- 2 = Important
- 3 = Neither Important Nor Unimportant
- 4 = Unimportant
- 5 = Very Unimportant
How much do you agree or disagree with each of the following statements?

Q2_1 Police officers have reason to be distrustful of most citizens.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither Agree Nor Disagree
- 4 = Disagree
- 5 = Strongly Disagree

Q2_2 A good police officer patrols aggressively by stopping cars, checking out people, running license checks, and so forth.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither Agree Nor Disagree
- 4 = Disagree
- 5 = Strongly Disagree

Q2_3 In order to prevent crime and maintain order, police officers must sometimes violate procedural safeguards, such as search and seizure laws.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither Agree Nor Disagree
- 4 = Disagree
- 5 = Strongly Disagree

Q2_4 An officer who reports another officer's misconduct should be given the cold shoulder by his or her fellow officers.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither Agree Nor Disagree
- 4 = Disagree
- 5 = Strongly Disagree
Q2_5 Police officers should turn a blind eye to improper conduct by other officers.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither Agree Nor Disagree
- 4 = Disagree
- 5 = Strongly Disagree

How much do you agree or disagree with each of the following statements?

Q3_1 Police should be permitted to use more force against suspects.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither Agree Nor Disagree
- 4 = Disagree
- 5 = Strongly Disagree

Q3_2 To control someone who physically assaults an officer, it is sometimes acceptable to use more force than is legally allowable.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither Agree Nor Disagree
- 4 = Disagree
- 5 = Strongly Disagree

Q3_3 Breaking the rules is sometimes necessary to get the job done.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither Agree Nor Disagree
- 4 = Disagree
- 5 = Strongly Disagree
Now we want to ask you about your experiences with recording technology, while you are ON DUTY.

Q4 On an AVERAGE WORKDAY, how often do you worry about being photo-, video-, or audio-recorded by a member of the public? (By a "member of the public", we mean someone who is NOT a photographer or videographer employed by a media outlet).

Value Label:
- 1 = Very Often
- 2 = Often
- 3 = Occasionally
- 4 = Rarely
- 5 = Very Rarely

Q5 In your opinion, overall, how likely or unlikely is it that citizens will record your actions while you are ON DUTY?

Value Label:
- 1 = Very Likely
- 2 = Likely
- 3 = Neither Likely Nor Unlikely
- 4 = Unlikely
- 5 = Very Unlikely

In your opinion, how likely or unlikely is it that your actions will be recorded while you are:

Q6_1 Making arrests?

Value Label:
- 1 = Very Likely
- 2 = Likely
- 3 = Neither Likely Nor Unlikely
- 4 = Unlikely
- 5 = Very Unlikely
Q6_2 Conducting Stop, Question, and Frisk Incidents?

Value Label:
- 1 = Very Likely
- 2 = Likely
- 3 = Neither Likely Nor Unlikely
- 4 = Unlikely
- 5 = Very Unlikely

Q6_3 Conducting traffic stops?

Value Label:
- 1 = Very Likely
- 2 = Likely
- 3 = Neither Likely Nor Unlikely
- 4 = Unlikely
- 5 = Very Unlikely

Q6_4 Dealing with order maintenance incidents (e.g., fights, disorderly groups, protests, domestic incidents, public intoxication, etc.)?

Value Label:
- 1 = Very Likely
- 2 = Likely
- 3 = Neither Likely Nor Unlikely
- 4 = Unlikely
- 5 = Very Unlikely

Q6_5 Dealing with emotionally disturbed persons (EDPs)?

Value Label:
- 1 = Very Likely
- 2 = Likely
- 3 = Neither Likely Nor Unlikely
- 4 = Unlikely
- 5 = Very Unlikely
Q6.6 Going on routine patrol?

Value Label:
- 1 = Very Likely
- 2 = Likely
- 3 = Neither Likely Nor Unlikely
- 4 = Unlikely
- 5 = Very Unlikely

Q7 Something is said to “go viral” when it is frequently shared on the Internet. How often do you and your colleagues discuss photos or videos of police incidents that have “gone viral”?

Value Label:
- 1 = Very Often
- 2 = Often
- 3 = Sometimes
- 4 = Rarely
- 5 = Very Rarely

Q8 To your knowledge, have YOU EVER been recorded by a member of the public while you were ON DUTY? (By a "member of the public", we mean someone who is NOT a photographer or videographer employed by a media outlet).

Value Label:
- 1 = Yes
- 2 = No

Q9 Do you currently have a working mobile or cell phone, or not?

Value Label:
- 1 = Yes, I do
- 2 = No, I do not

Q10 A "smartphone" is a cell phone that has many of the functions of a computer, especially Internet access. Do you currently have a working smartphone, or not?

Value Label:
- 1 = Yes, I do
- 2 = No, I do not
We're going to list some things that POLICE OFFICERS in general may do. Please indicate how much you approve or disapprove of each one.

Q11_1 Audio- or video-record a crime scene with a personal cell phone/smartphone.

Value Label:
- 1 = Strongly Approve
- 2 = Approve
- 3 = Neither Approve Nor Disapprove
- 4 = Disapprove
- 5 = Strongly Disapprove

Q11_2 Search the digital contents of an arrestee's cell phone/smartphone WITHOUT warrant or exigency.

Value Label:
- 1 = Strongly Approve
- 2 = Approve
- 3 = Neither Approve Nor Disapprove
- 4 = Disapprove
- 5 = Strongly Disapprove

Q11_3 Use the entertainment features of a cell phone/smartphone (e.g. watching movies, listening to music, using social media, etc.) while on patrol.

Value Label:
- 1 = Strongly Approve
- 2 = Approve
- 3 = Neither Approve Nor Disapprove
- 4 = Disapprove
- 5 = Strongly Disapprove

Q11_4 Use a cell phone/smartphone to audio or video record an encounter with a CITIZEN.

Value Label:
- 1 = Strongly Approve
- 2 = Approve
- 3 = Neither Approve Nor Disapprove
- 4 = Disapprove
- 5 = Strongly Disapprove
Q11_5 Use a cell phone/smartphone to audio- or video-record another POLICE OFFICER's actions.

Value Label:
- 1 = Strongly Approve
- 2 = Approve
- 3 = Neither Approve Nor Disapprove
- 4 = Disapprove
- 5 = Strongly Disapprove

We're going to list some more things that POLICE OFFICERS may do. Once again, please indicate how much you approve or disapprove of each one.

Q12_1 Accept free meals, cigarettes, and other items of small value from business owners.

Value Label:
- 1 = Strongly Approve
- 2 = Approve
- 3 = Neither Approve Nor Disapprove
- 4 = Disapprove
- 5 = Strongly Disapprove

Q12_2 Find a lost wallet and keep the money inside.

Value Label:
- 1 = Strongly Approve
- 2 = Approve
- 3 = Neither Approve Nor Disapprove
- 4 = Disapprove
- 5 = Strongly Disapprove

Q12_3 Neglect to fill out required paperwork following a minor use of force.

Value Label:
- 1 = Strongly Approve
- 2 = Approve
- 3 = Neither Approve Nor Disapprove
- 4 = Disapprove
- 5 = Strongly Disapprove
Q12_4 Let a drunk driver go if he or she is an off-duty police officer.

Value Label:
- 1 = Strongly Approve
- 2 = Approve
- 3 = Neither Approve Nor Disapprove
- 4 = Disapprove
- 5 = Strongly Disapprove

Think about how you may use a cell phone or smartphone while on duty. Please indicate how often or rarely you have used a CELL PHONE or SMARTPHONE to do the following things in the past MONTH.

Q13_1 Looked up departmental rules and regulations.

Value Label:
- 1 = Very Often
- 2 = Often
- 3 = Sometimes
- 4 = Rarely
- 5 = Very Rarely / Never

Q13_2 Looked up legal information (e.g., the penal law article and subdivision to properly charge a prisoner, or classify a crime report).

Value Label:
- 1 = Very Often
- 2 = Often
- 3 = Sometimes
- 4 = Rarely
- 5 = Very Rarely / Never

Q13_3 Contacted a fellow officer.

Value Label:
- 1 = Very Often
- 2 = Often
- 3 = Sometimes
- 4 = Rarely
- 5 = Very Rarely / Never
Q13_4 Contacted a supervisor.

Value Label:
- 1 = Very Often
- 2 = Often
- 3 = Sometimes
- 4 = Rarely
- 5 = Very Rarely / Never

Q13_5 Contacted a citizen for work-related purposes.

Value Label:
- 1 = Very Often
- 2 = Often
- 3 = Sometimes
- 4 = Rarely
- 5 = Very Rarely / Never

Q13_6 Contacted a prosecutor or other criminal justice professional.

Value Label:
- 1 = Very Often
- 2 = Often
- 3 = Sometimes
- 4 = Rarely
- 5 = Very Rarely / Never

Please indicate whether your CELL PHONE or SMARTPHONE makes each of the following activities easier or harder for YOU. (If you do not have a cell phone or smartphone, please select 'Not Applicable').

Q14_1 Completing paperwork in the field.

Value Label:
- 1 = 0 days
- 2 = 1
- 3 = 2
- 4 = 3
- 5 = 4
- 6 = 5
Q14_2 Processing arrests.

Value Label:
- 1 = 0 days
- 2 = 1
- 3 = 2
- 4 = 3
- 5 = 4
- 6 = 5

Q14_3 Giving citizens undivided attention.

Value Label:
- 1 = 0 days
- 2 = 1
- 3 = 2
- 4 = 3
- 5 = 4
- 6 = 5

Q14_4 Communicating with citizens.

Value Label:
- 1 = Much Easier
- 2 = Somewhat Easier
- 3 = Neither Easier Nor Harder
- 4 = Somewhat Harder
- 5 = Much Harder
- 6 = Not Applicable

Q14_5 Communicating with fellow officers.

Value Label:
- 1 = Much Easier
- 2 = Somewhat Easier
- 3 = Neither Easier Nor Harder
- 4 = Somewhat Harder
- 5 = Much Harder
- 6 = Not Applicable
Q14_6 Remaining fully attentive to surroundings.

Value Label:
- 1 = Much Easier
- 2 = Somewhat Easier
- 3 = Neither Easier Nor Harder
- 4 = Somewhat Harder
- 5 = Much Harder
- 6 = Not Applicable

Q14_7 Communicating with supervisors.

Value Label:
- 1 = Much Easier
- 2 = Somewhat Easier
- 3 = Neither Easier Nor Harder
- 4 = Somewhat Harder
- 5 = Much Harder
- 6 = Not Applicable

Q15 Now think about your everyday life. On average, how many days a WEEK do you use the Internet?

Value Label:
- 1 = 0 days
- 2 = 1
- 3 = 2
- 4 = 3
- 5 = 4
- 6 = 5
- 7 = 6
- 8 = 7 days

Which of the following devices do you use to access the Internet?

Q16_1 Desktop computers

Value Label:
- 1 = Yes
Q16_2 Laptop computers

Value Label:
- 1 = Yes

Q16_3 Tablet computers

Value Label:
- 1 = Yes

Q16_4 Smartphones

Value Label:
- 1 = Yes

Q17 In your everyday life, how easy or hard would it be to live without a CELL PHONE or SMARTPHONE for a WEEK?

Value Label:
- 1 = Very Easy
- 2 = Easy
- 3 = Neither Easy Nor Hard
- 4 = Hard
- 5 = Very Hard

Q18 In your everyday life, how easy or hard would it be to live without the INTERNET for a WEEK?

Value Label:
- 1 = Very Easy
- 2 = Easy
- 3 = Neither Easy Nor Hard
- 4 = Hard
- 5 = Very Hard

Q19 When did you first start using the Internet? (If you cannot recall the exact year, please approximate)

Value Label:
Q20 Think about the relationships you have with FAMILY and FRIENDS. Overall, how has online communication strengthened or weakened those relationships?

Value Label:
- 1 = Greatly Strengthened
- 2 = Strengthened
- 3 = Neither Strengthened Nor Weakened
- 4 = Weakened
- 5 = Greatly Weakened

Q21 Think about the relationships you have with OTHER POLICE OFFICERS. Overall, how has online communication strengthened or weakened those relationships?

Value Label:
- 1 = Greatly Strengthened
- 2 = Strengthened
- 3 = Neither Strengthened Nor Weakened
- 4 = Weakened
- 5 = Greatly Weakened

Q22 On an AVERAGE DAY, how many text messages do you receive?

Value Label:
- 1 = 0–10
- 2 = 11–20
- 3 = 21–50
- 4 = 51–100
- 5 = 101–200
- 6 = 200 or more

Please indicate whether you use a CELL PHONE or SMARTPHONE to do any of the following things.

Q23_1 Access the Internet.

Value Label:
- 1 = Yes
- 2 = No
Q23_2 Send or receive text messages.

Value Label:
- 1 = Yes
- 2 = No

Q23_3 Take pictures or videos.

Value Label:
- 1 = Yes
- 2 = No

Q23_4 Get directions.

Value Label:
- 1 = Yes
- 2 = No

Q24 Are you currently employed as a police officer (i.e., a sworn officer in a law enforcement agency)?

Value Label:
- 1 = Yes
- 2 = No

Q25 For how many YEARS have you been a police officer? Please answer with the number of WHOLE YEARS using numerals (e.g., "17"). If less than ONE year, please write "1".

Value Label:
- 1–50 = Valid response

Q26 Within your law enforcement agency, do you hold a supervisory or management position?

Value Label:
- 1 = Yes
- 2 = No
Q27 How many sworn officers are employed by your law enforcement agency?

Value Label:
- 1 = 1–24
- 2 = 25–74
- 3 = 75–299
- 4 = 300 or more

Q28 Which of the categories below best describes your law enforcement agency?

Value Label:
- 1 = General purpose municipal police department
- 2 = General purpose municipal county department
- 3 = State police department
- 4 = Sheriff's department
- 5 = Special police department (e.g., campus police, transit police, airport police, housing police, alcoholic beverage control, natural resources police, park police, etc.)
- 6 = Federal agency (e.g., FBI, ICE, DEA, ATF)

Q28_other (No question text. Fill-in category for Q29)

Q29 What is your gender?

Value Label:
- 1 = Female
- 2 = Male

Q29_other (No question text. Fill-in category for Q29)

What is your race? (Check all that apply).
- White
- Black
- Hispanic, Latino, Mexican American
- Asian, Pacific Islander
- American Indian, Eskimo, Aleut
Q31_1 White.

Value Label:
- 1 = Yes

Q31_2 Black.

Value Label:
- 1 = Yes

Q31_3 Asian.

Value Label:
- 1 = Yes

Q31_4 American Indian or Alaska Native.

Value Label:
- 1 = Yes

Q31_5 Native Hawaiian or Other Pacific Islander.

Value Label:
- 1 = Yes

Q31_other (No question text. Fill-in category for Q31)

Q32 In what year were you born?

Please enter 4-digit birth year (YYYY):

Value Label:
- 1900–1997 = Valid response

Q33 What is the highest level of school you have completed or the highest degree you have received?
Q34 How would you describe yourself politically?

Value Label:
- 1 = Very Liberal
- 2 = Liberal
- 3 = Moderate
- 4 = Conservative
- 5 = Very Conservative

Q35 In what state or U.S. territory do you live?

Value Label:
- Fifty U.S. states, and the District of Columbia
- Five territories: American Samoa, Guam, Northern Marianas Islands, Puerto Rico, Virgin Islands

Q35_other (No question text. Fill-in category for Q35)

Q36 Finally, how did you reach this survey?

Value Label:
- 1 = I received an email from Officer.com
- 2 = I saw a post on the PoliceOne forums
- 3 = My department sent me the link

Q36_other (No question text. Fill-in category for Q36)
NCJTC Flag for respondent data source.

Value Label:
- 0 = Albany
- 1 = National Criminal Justice Training Center

NotCop Flag for respondents who do not affirmatively identify as police officer (Derived from response to Q24).

Value Label:
- 0 = Yes
- 1 = No or Missing
APPENDIX B: PUBLIC SURVEY CODEBOOK

NATIONAL SURVEY OF TECHNOLOGY
AND CRIMINAL JUSTICE 2017

CODEBOOK

Sean Patrick Roche
Justin T. Pickett
School of Criminal Justice
University at Albany, SUNY
Dear Participant,

This is a non-profit survey being conducted on behalf of a doctoral student researcher at the State University of New York at Albany. It asks individuals to provide their opinions about policing and technology in America. Your participation would be greatly appreciated.

This online survey is voluntary and your answers will be anonymous to the researchers. Thus, it will be impossible for them to link your answers back to you. The survey should take about 15 minutes to complete. You must be at least 18 years old to participate. Participants in this study have the right to choose not to answer specific questions or to leave the survey at any time.

To begin, just scroll down and click the “next” button. By clicking the "next" button and completing the survey it will be presumed that you have consented to be in the study.

The results of the survey will be used solely for instructional purposes and academic research. If you have any questions about the survey or would like a copy of the results, please contact the principal investigator and/or the faculty advisor for the project. Their contact information is provided below.

Sean Patrick Roche, MS
School of Criminal Justice
State University of New York at Albany
135 Western Avenue
Albany, NY 12222
Phone: (716) 866-5740
Email: sroche@albany.edu

Justin T. Pickett, PhD
School of Criminal Justice
State University of New York at Albany
135 Western Avenue
Albany, NY 12222
Phone: (518) 442-5224
Email: jpickett@albany.edu

Note that research at the State University of New York at Albany is carried out under the oversight of the Institutional Review Board (IRB). This research has been reviewed and approved by the IRB. If you have any questions concerning your rights as a research subject or if you wish to report any concerns about the study, you may contact the University at Albany Office of Regulatory & Research Compliance at 1-866-857-5459 or hsconcerns@albany.edu.
Final Disposition of Cases and Response Outcomes

Case dispositions:
4. Total number of respondents who started survey: 1,009
5. Completions: 1,000
6. Partial completions: 9

Response outcomes:
2. Completion rate: 99.11%
Survey Measures and Value Labels

<table>
<thead>
<tr>
<th>RespondentID</th>
<th>Original respondent identification number</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP_Add</td>
<td>Respondent IP address</td>
</tr>
</tbody>
</table>

We would like to ask you some questions about how people use smartphones. A "smartphone" is a cell phone that has many of the functions of a computer, especially Internet access.

Q1_1 A person using a smartphone to record the police when he or she is PERSONALLY dealing with the police.

Value Label:
- 1 = Very Unacceptable
- 2 = Somewhat Unacceptable
- 3 = Neither
- 4 = Somewhat Acceptable
- 5 = Very Acceptable

Q1_2 A person using a smartphone to record the police when he or she is a BYSTANDER to a police interaction.

Value Label:
- 1 = Very Unacceptable
- 2 = Somewhat Unacceptable
- 3 = Neither
- 4 = Somewhat Acceptable
- 5 = Very Acceptable

Q1_3 A person uploading photos and videos of the police that HE OR SHE has taken onto the Internet.

Value Label:
- 1 = Very Unacceptable
- 2 = Somewhat Unacceptable
- 3 = Neither
- 4 = Somewhat Acceptable
- 5 = Very Acceptable
Q1.4 A person sharing or re-posting on the Internet photos and videos of the police that OTHERS have taken.

Value Label:
- 1 = Very Unacceptable
- 2 = Somewhat Unacceptable
- 3 = Neither
- 4 = Somewhat Acceptable
- 5 = Very Acceptable

Q2R (Randomized text for Q2).

(Text 1) Over the PAST ten years, do you think the crime-fighting effectiveness of American police officers has become:

(Text 2) Over the NEXT ten years, do you think the crime-fighting effectiveness of American police officers will become:

(Text 3) Over the PAST ten years, do you think the way American police officers treat members of the public has become:

(Text 4) Over the NEXT ten years, do you think the way American police officers treat members of the public will become:

Value Label:
- 1 = Past10 Effective
- 2 = Next10 Effective
- 3 = Past10 Fair
- 4 = Next10 Fair

Q2 Over the (PAST/NEXT) ten years, do you think (the way American police officers treat members of the public/ the crime-fighting effectiveness of American police officers) will become:

Value Label:
- 1 = Much Worse
- 2 = Somewhat Worse
- 3 = About the Same
- 4 = Somewhat Better
- 5 = Much Better
Q2R_BV (Dummy for police behavior in Q2R)

Value Label:
- 0 = Effectiveness
- 1 = Fairness

Q2R_BV (Dummy for time period in Q2R)

Value Label:
- 0 = Past 10 years
- 1 = Next 10 years

Q3R (Randomized text for Vignette 1).

(Text 1) Please imagine that you are driving down the street with two friends as passengers. You are traveling just over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is relaxed and friendly. He is polite and respectful, but says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely.

(Text 2) Please imagine that you are driving down the street with two friends as passengers. You are traveling just over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is relaxed and friendly. He is polite and respectful, but says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely, and you notice that the officer is wearing a body-worn camera that is recording your interaction.

(Text 3) Please imagine that you are driving down the street with two friends as passengers. You are traveling just over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is relaxed and friendly. He is polite and respectful, but says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely, and you notice that one of them is video-recording the officer using a smartphone.

(Text 4) Please imagine that you are driving down the street with two friends as passengers. You are traveling just over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is angry. He yells, “Do you know how fast you were going? You could’ve killed someone!” When you try to speak he cuts you off, says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely.
(Text 5) Please imagine that you are driving down the street with two friends as passengers. You are traveling just over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is angry. He yells, “Do you know how fast you were going? You could’ve killed someone!” When you try to speak he cuts you off, says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely, and you notice that the officer is wearing a body-worn camera that is recording your interaction.

(Text 6) Please imagine that you are driving down the street with two friends as passengers. You are traveling just over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is angry. He yells, “Do you know how fast you were going? You could’ve killed someone!” When you try to speak he cuts you off, says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely, and you notice that one of them is video-recording the officer using a smartphone.

(Text 7) Please imagine that you are driving down the street with two friends as passengers. You are traveling 15 miles over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is relaxed and friendly. He is polite and respectful, but says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely.

(Text 8) Please imagine that you are driving down the street with two friends as passengers. You are traveling 15 miles over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is relaxed and friendly. He is polite and respectful, but says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely, and you notice that the officer is wearing a body-worn camera that is recording your interaction.

(Text 9) Please imagine that you are driving down the street with two friends as passengers. You are traveling 15 miles over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is relaxed and friendly. He is polite and respectful, but says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely, and you notice that one of them is video-recording the officer using a smartphone.

(Text 10) Please imagine that you are driving down the street with two friends as passengers. You are traveling 15 miles over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is angry. He yells, “Do you know how fast you were going? You could’ve killed someone!” When you try to speak he cuts you off, says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely.

(Text 11) Please imagine that you are driving down the street with two friends as passengers. You are traveling 15 miles over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your
window, he is angry. He yells, “Do you know how fast you were going? You could’ve killed someone!” When you try to speak he cuts you off, says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely, and you notice that the officer is wearing a body-worn camera that is recording your interaction.

(Text 12) Please imagine that you are driving down the street with two friends as passengers. You are traveling 15 miles over the speed limit. Suddenly, a police car with flashing lights appears in your rearview mirror, and you pull over. When the police officer walks up to your window, he is angry. He yells, “Do you know how fast you were going? You could’ve killed someone!” When you try to speak he cuts you off, says that you were speeding and gives you ticket with a $150 fine. Your friends are watching closely, and you notice that one of them is video-recording the officer using a smartphone.

Value Label:
- 1 = Innocent/Goodcop/Control
- 2 = Innocent/GoodCop/Bodycam
- 3 = Innocent/GoodCop/Smartp
- 4 = Innocent/BadCop/Control
- 5 = Innocent/BadCop/Bodycam
- 6 = Innocent/BadCop/Smartp
- 7 = Guilty/GoodCop/Control
- 8 = Guilty/GoodCop/Bodycam
- 9 = Guilty/GoodCop/Smartp
- 10 = Guilty/BadCop/Control
- 11 = Guilty/BadCop/Bodycam
- 12 = Guilty/BadCop/Smartp

Q3R_Inn (Dummy for respondent innocence in Q3R)

Value Label:
- 0 = Guilty
- 1 = Innocence

Q3R_Cop (Dummy for police behavior in Q3R)

Value Label:
- 0 = Good Cop
- 1 = Bad Cop

Q3R_Rec (Categorical variable for recording overall in Q3R)

Value Label:
- 0 = Guilty
- 1 = Bodyworn recording
- 2 = Smartphone recording

Q3R_Smart (Dummy for smartphone in Q3R)

Value Label:
- 0 = No smartphone
- 1 = Smartphone present

Q3R_Body (Dummy for bodyworn camera in Q3R)

Value Label:
- 0 = No bodyworn
- 1 = Bodyworn present

Q3R_None (Dummy for ANY recording in Q3R)

Value Label:
- 0 = No recording
- 1 = Bodycam or smartphone present

Q3_1 How afraid or unafraid would you be in this situation?

Value Label:
- 1 = Very Unafraid
- 2 = Somewhat Unafraid
- 3 = Neither
- 4 = Somewhat Afraid
- 5 = Very Afraid

Q3_2 Now, how angry or calm would you be in this situation?

Value Label:
- 1 = Very Calm
- 2 = Calm
- 3 = Angry
- 4 = Very Angry
How likely or unlikely is it that you would do the following things in this situation?

Q3_3a Argue with the officer.

Value Label:
- 1 = Very Likely
- 2 = Somewhat Likely
- 3 = Neither Likely nor Unlikely
- 4 = Somewhat Unlikely
- 5 = Very Unlikely

Q3_3b Raise your voice.

Value Label:
- 1 = Very Likely
- 2 = Somewhat Likely
- 3 = Neither Likely nor Unlikely
- 4 = Somewhat Unlikely
- 5 = Very Unlikely

Q3_3c Talk back to the officer.

Value Label:
- 1 = Very Likely
- 2 = Somewhat Likely
- 3 = Neither Likely nor Unlikely
- 4 = Somewhat Unlikely
- 5 = Very Unlikely

Q4R (Randomized text for Vignette 2).

(Text 1) Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it. Just then, a police officer approaches your group. He is quiet and calm, but says he saw you throw trash on the street. He politely asks you not to do that in the future. Your friends are watching attentively.

(Text 2) Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it. Just then, a police officer approaches your group. He is quiet and calm, but says he saw you throw trash on the street. He politely asks you not to do that in the future. Your friends are watching attentively, and you notice that the officer is wearing a body-worn camera that is recording your interaction.
Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it. Just then, a police officer approaches your group. He is quiet and calm, but says he saw you throw trash on the street. He politely asks you not to do that in the future. Your friends are watching attentively, and you notice that one of them is video-recording the officer using a smartphone.

Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it. Just then, a police officer approaches your group. He is loud and angry, and accuses you of throwing trash on the street. When you try to explain, he cuts you off, and yells, “Just watch where you’re throwing your garbage, idiot.” Your friends are watching attentively.

Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it. Just then, a police officer approaches your group. He is loud and angry, and accuses you of throwing trash on the street. When you try to explain, he cuts you off, and yells, “Just watch where you’re throwing your garbage, idiot.” Your friends are watching attentively, and you notice that the officer is wearing a body-worn camera that is recording your interaction.

Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it. Just then, a police officer approaches your group. He is loud and angry, and accuses you of throwing trash on the street. When you try to explain, he cuts you off, and yells, “Just watch where you’re throwing your garbage, idiot.” Your friends are watching attentively, and you notice that one of them is video-recording the officer using a smartphone.

Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it, so you drop some trash on the street too. Just then, a police officer approaches your group. He is quiet and calm, but says he saw you throw trash on the street. He politely asks you not to do that in the future. Your friends are watching attentively.

Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it, so you drop some trash on the street too. Just then, a police officer approaches your group. He is quiet and calm, but says he saw you throw trash on the street. He politely asks you not to do that in the future. Your friends are watching attentively, and you notice that the officer is wearing a body-worn camera that is recording your interaction.

Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it, so you drop some trash on the street too. Just then, a police officer approaches your group. He is quiet and calm, but says he saw you throw trash on the street. He politely asks you not to do that in the future. Your friends are watching attentively, and you notice that one of them is video-recording the officer using a smartphone.
(Text 10) Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it, so you drop some trash on the street too. Just then, a police officer approaches your group. He is loud and angry, and accuses you of throwing trash on the street. When you try to explain, he cuts you off, and yells, “Just watch where you’re throwing your garbage, idiot.” Your friends are watching attentively.

(Text 11) Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it, so you drop some trash on the street too. Just then, a police officer approaches your group. He is loud and angry, and accuses you of throwing trash on the street. When you try to explain, he cuts you off, and yells, “Just watch where you’re throwing your garbage, idiot.” Your friends are watching attentively, and you notice that the officer is wearing a body-worn camera that is recording your interaction.

(Text 12) Now imagine that you are at a large outdoor festival, walking around with friends. You pass a trashcan that is so full that garbage covers the street around it, so you drop some trash on the street too. Just then, a police officer approaches your group. He is loud and angry, and accuses you of throwing trash on the street. When you try to explain, he cuts you off, and yells, “Just watch where you’re throwing your garbage, idiot.” Your friends are watching attentively, and you notice that one of them is video-recording the officer using a smartphone.

Value Label:
- 1 = Innocent/GoodCop/Control
- 2 = Innocent/GoodCop/Bodycam
- 3 = Innocent/GoodCop/Smartp
- 4 = Innocent/BadCop/Control
- 5 = Innocent/BadCop/Bodycam
- 6 = Innocent/BadCop/Smartp
- 7 = Guilty/GoodCop/Control
- 8 = Guilty/GoodCop/Bodycam
- 9 = Guilty/GoodCop/Smartp
- 10 = Guilty/BadCop/Control
- 11 = Guilty/BadCop/Bodycam
- 12 = Guilty/BadCop/Smartp

Q4R_Inn (Dummy for respondent innocence in Q4R)

Value Label:
- 0 = Guilty
- 1 = Innocence

Q4R_Cop (Dummy for police behavior in Q4R)

Value Label:
- 0 = Good Cop
Q4R_Rec (Categorical variable for recording overall in Q4R)

Value Label:
- 0 = Guilty
- 1 = Bodyworn recording
- 2 = Smartphone recording

Q4R_Smart (Dummy for smartphone in Q4R)

Value Label:
- 0 = No smartphone
- 1 = Smartphone present

Q4R_Body (Dummy for bodyworn camera in Q4R)

Value Label:
- 0 = No bodyworn
- 1 = Bodyworn present

Q4R_None (Dummy for ANY recording in Q4R)

Value Label:
- 0 = No recording
- 1 = Bodycam or smartphone present

Q4_1 How afraid or unafraid would you be in this situation?

Value Label:
- 1 = Very Unafraid
- 2 = Somewhat Unafraid
- 3 = Neither
- 4 = Somewhat Afraid
- 5 = Very Afraid
Q4_2 Now, how angry or calm would you be in this situation?

Value Label:
- 1 = Very Calm
- 2 = Calm
- 3 = Angry
- 4 = Very Angry

How likely or unlikely is it that you would do the following things in this situation?

Q4_3a Argue with the officer.

Value Label:
- 1 = Very Likely
- 2 = Somewhat Likely
- 3 = Neither Likely nor Unlikely
- 4 = Somewhat Unlikely
- 5 = Very Unlikely

Q4_3b Raise your voice.

Value Label:
- 1 = Very Likely
- 2 = Somewhat Likely
- 3 = Neither Likely nor Unlikely
- 4 = Somewhat Unlikely
- 5 = Very Unlikely

Q4_3c Talk back to the officer.

Value Label:
- 1 = Very Likely
- 2 = Somewhat Likely
- 3 = Neither Likely nor Unlikely
- 4 = Somewhat Unlikely
- 5 = Very Unlikely

Q5 We are faced with many problems in this country, none of which can be solved easily or inexpensively. Are we spending too much, too little, or about the right amount on law enforcement?
Q6 Are there any situations you can imagine in which you would approve of a police officer striking an adult male citizen?

Value Label:
- 0 = No
- 1 = Yes

How much do you agree or disagree that when members of the public record police officers, it makes those officers:

Q7_1RC More polite (reverse coded from original survey).

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree

Q7_2 More distracted.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither
- 4 = Disagree
- 5 = Strongly Disagree

Q7_3RC Less likely to use excessive force (reverse coded from original survey).

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree
Q7_4 More afraid to do their jobs.

Value Label:
- 1 = Very Likely
- 2 = Likely
- 3 = Neither Likely Nor Unlikely
- 4 = Unlikely
- 5 = Very Unlikely

Q7_4 Less likely to listen.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither
- 4 = Disagree
- 5 = Strongly Disagree

Q7_5 More angry.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither
- 4 = Disagree
- 5 = Strongly Disagree

How much do you agree or disagree that the police in your community do the following?

Q8_1 Treat everyone equally.

Value Label:
- 1 = Strongly Agree
- 2 = Agree
- 3 = Neither
- 4 = Disagree
- 5 = Strongly Disagree

Q8_2 Clearly explain the reasons for their actions.

Value Label:
Q8_3 Treat people with dignity and respect.

Value Label:
 1 = Strongly Agree
 2 = Agree
 3 = Neither
 4 = Disagree
 5 = Strongly Disagree

Q8_4 Treat people fairly.

Value Label:
 1 = Strongly Agree
 2 = Agree
 3 = Neither
 4 = Disagree
 5 = Strongly Disagree

Q8_5 Respect people's rights.

Value Label:
 1 = Strongly Agree
 2 = Agree
 3 = Neither
 4 = Disagree
 5 = Strongly Disagree

Q8_6 Listen to suspects before making any decisions about how to handle a case.

Value Label:
 1 = Strongly Agree
 2 = Agree
 3 = Neither
 4 = Disagree
 5 = Strongly Disagree
How satisfied or dissatisfied are you with how well the police in your community do each of the following?

Q9_1 Respond quickly to calls for help and assistance.

Value Label:
- 1 = Very Dissatisfied
- 2 = Dissatisfied
- 3 = Neither
- 4 = Satisfied
- 5 = Very Satisfied

Q9_2 Solve the problems of those who call them.

Value Label:
- 1 = Very Dissatisfied
- 2 = Dissatisfied
- 3 = Neither
- 4 = Satisfied
- 5 = Very Satisfied

Q9_3 Support victims and witnesses

Value Label:
- 1 = Very Dissatisfied
- 2 = Dissatisfied
- 3 = Neither
- 4 = Satisfied
- 5 = Very Satisfied

Q9_4 Patrol the streets.

Value Label:
- 1 = Very Dissatisfied
- 2 = Dissatisfied
- 3 = Neither
- 4 = Satisfied
- 5 = Very Satisfied
Q9_5 Prevent crimes.

Value Label:
- 1 = Very Dissatisfied
- 2 = Dissatisfied
- 3 = Neither
- 4 = Satisfied
- 5 = Very Satisfied

Q9_6 Catch people who break the law.

Value Label:
- 1 = Very Dissatisfied
- 2 = Dissatisfied
- 3 = Neither
- 4 = Satisfied
- 5 = Very Satisfied

Q10 A "smartphone" is a cell phone that has many of the functions of a computer, especially Internet access. Do you currently have a working smartphone, or not?

Value Label:
- 0 = No
- 1 = Yes

Thinking about yourself, please indicate whether YOU ever use a CELL PHONE or SMARTPHONE (yours or someone else's) to do the following things:

Q11_1 Access the Internet.

Value Label:
- 0 = No
- 1 = Yes

Q11_2 Send or receive text messages.

Value Label:
- 0 = No
- 1 = Yes
Q11_3 Take pictures or videos.

Value Label:
- 0 = No
- 1 = Yes

Q12 Something is said to "go viral" when it is frequently shared on the Internet. How often do you see photos or videos of police incidents that have "gone viral"?

Value Label:
- 1 = Very Rarely
- 2 = Rarely
- 3 = Sometimes
- 4 = Often
- 5 = Very Often

The following questions are concerned with YOUR OWN BELIEFS about obeying the law. Thinking about yourself, how much do you agree or disagree with each of the following statements?

Q13_1 I feel a moral obligation to obey the law.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree

Q13_2 Laws are made to be broken.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree
Q13_3 It is morally wrong to break the law.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree

Now we would like to know more about your personal experiences with the police. How OFTEN have the police:

Q14_1 Stopped you on the street without good reason?

Value Label:
- 0 = Never
- 1 = Once
- 2 = Twice
- 3 = Three times or more

Q14_2 Stopped your close friends or family members on the street without good reason?

Value Label:
- 0 = Never
- 1 = Once
- 2 = Twice
- 3 = Three times or more

Q14_3 Used insulting language toward you?

Value Label:
- 0 = Never
- 1 = Once
- 2 = Twice
- 3 = Three times or more

Q14_4 Used insulting language toward your close friends or family members?

Value Label:
- 0 = Never
1 = Once
2 = Twice
3 = Three times or more

Q14_5 Used excessive force against you?

Value Label:
0 = Never
1 = Once
2 = Twice
3 = Three times or more

Q14_6 Used excessive force against your close friends or family members?

Value Label:
0 = Never
1 = Once
2 = Twice
3 = Three times or more

Q15 Have you ever been arrested?

Value Label:
0 = No
1 = Yes

Q16 Have any of your close friends or family members ever been arrested?

Value Label:
0 = No
1 = Yes

Q17 Are you, or have you ever been, employed in law enforcement?

Value Label:
0 = No
1 = Yes
Q18 Are any of your close friends or family members employed in law enforcement?

Value Label:
- 0 = No
- 1 = Yes

Q19 Have you, or any of your close friends or family members, ever recorded an ON-DUTY police officer using a smartphone?

Value Label:
- 0 = No
- 1 = Yes

Now please think about everyday interactions between members of the public. How much do you agree or disagree with each of the following statements?

Q20_1 Most people are polite when dealing with others.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree

Q20_2 Most people treat other people fairly.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree

Q20_3 Most people treat other people equally, regardless of their race, gender, or sexuality.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
Q20_4 Most people treat other people with dignity and respect.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree

Q20_5 In a dispute or argument, most people will give the other person the opportunity to express his or her views before making decisions.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree

Q20_6 In a dispute or argument, most people will listen to the other person.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree

Q20_7 In most cases, people will try to explain the reasons for their action if they do something that upsets someone else.

Value Label:
- 1 = Strongly Disagree
- 2 = Disagree
- 3 = Neither
- 4 = Agree
- 5 = Strongly Agree
Q21 What is your gender?

Value Label:
- 1 = Female
- 2 = Male

Q22 Are you of Hispanic or Latino origin or descent?

Value Label:
- 0 = No, not Hispanic or Latino
- 1 = Yes, Hispanic or Latino

Q23 What is your race?

Value Label:
- 1 = White
- 2 = Black or African-American
- 3 = Asian
- 4 = American Indian or Alaska Native
- 5 = Native Hawaiian or Other Pacific Islander

OtherRace (No question text. Fill-in category for Q23).

Q23RC (Dummy for Nonwhite in Q22, Q23, and OtherRace)

Value Label:
- 0 = White
- 1 = Nonwhite

Q24 In what year were you born?

Please enter 4-digit birth year (YYYY):

Value Label:
- 1900–1999 = Valid response
Q24RC (No question text. Variables derived from 2017 minus Q24 answer).

Value Label:
- 18–110 = Valid response

Q25 What is the highest level of school you have completed or the highest degree you have received?

Value Label:
- 1 = Less than high school degree
- 2 = High school degree or equivalent (e.g., GED)
- 3 = Some college but no degree
- 4 = Associate degree
- 5 = Bachelor degree
- 6 = Graduate degree

Q25RC (No question text. Recoded version of Q25 with “less than high school degree” and “High school degree or equivalent (e.g., GED)” collapsed into one variable.)

Q26 How would you describe yourself politically?

Value Label:
- 1 = Very Liberal
- 2 = Liberal
- 3 = Moderate
- 4 = Conservative
- 5 = Very Conservative

Q27 In what state do you reside?

Value Label:
- Fifty U.S. states, and the District of Columbia

Q27RC1 (No question text. Recode of Q27 into US Census Regions).

Value Label:
- 1 = Northeast
- 2 = Midwest
- 3 = South
- 4 = West
Q27RC2 (No question text. Recode of Q27 into dummy of South).

Value Label:
- 0 = Not South
- 1 = South

Q28 In the state where you reside, is it legal to record on-duty police officers?

Value Label:
- 1 = Yes, it is.
- 2 = No, it is not.
- 3 = I don’t know.

Q29 Lastly, did you take this survey using a smartphone or tablet device?

Value Label:
- 0 = No
- 1 = Yes

HIT50 Flag for if respondent took survey when it first went live.

Value Label:
- 0 = No
- 1 = Yes

DISP Final disposition for respondent

Value Label:
- 0 = Completion
- 1 = Breakoff
APPENDIX C: SUPPLEMENTARY ANALYSES

Figure S1.1 Percentage of Respondents Who Answered “Likely” or “Very Likely” to each of the Items in the Perceived Recording Likelihood Scale, Supervisors Only

![Percentage of Respondents Who Answered “Likely” or “Very Likely” to each of the Items in the Perceived Recording Likelihood Scale, Supervisors Only](image1)

Figure S1.2 Percentage of Respondents Who Answered “Likely” or “Very Likely” to each of the Items in the Perceived Recording Likelihood Scale, Non-Supervisors Only

![Percentage of Respondents Who Answered “Likely” or “Very Likely” to each of the Items in the Perceived Recording Likelihood Scale, Non-Supervisors Only](image2)
Figure S1.3 Percentage of Respondents for Each Category of Recording Worry, Supervisors Only

Figure S1.4 Percentage of Respondents for Each Category of Recording Worry, Non-Supervisors Only
Table S1.1 Baseline OLS Regression Models Predicting Perceived Likelihood of Recording and Worry of Recording, Supervisors only

<table>
<thead>
<tr>
<th>Variables</th>
<th>DV: Recording Likelihood (Model 1)</th>
<th>DV: Recording Worry (Model 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
</tr>
<tr>
<td>Female</td>
<td>.067</td>
<td>.133</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.058</td>
<td>.120</td>
</tr>
<tr>
<td>Age</td>
<td>-.006</td>
<td>.007</td>
</tr>
<tr>
<td>Experience</td>
<td>-.000</td>
<td>.007</td>
</tr>
<tr>
<td>Education</td>
<td>-.017</td>
<td>.031</td>
</tr>
<tr>
<td>Conservatism</td>
<td>.033</td>
<td>.051</td>
</tr>
<tr>
<td>Southern</td>
<td>.035</td>
<td>.078</td>
</tr>
<tr>
<td>Department Size</td>
<td>.112**</td>
<td>.036</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.252**</td>
<td>.080</td>
</tr>
</tbody>
</table>

R^{2}-squared
- .048
- .024

NOTES: N = 481

ABBREVIATIONS: $b =$ unstandardized coefficient; Beta = standardized coefficient; DV = dependent variable; SE = robust standard error.

*p $< .05; **p $< .01; ***p $< .001$ (two–tailed).
Table S1.2 OLS Regression Models Predicting Perceived Likelihood of Being Recorded, Supervisors only

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Personal Technology use only</th>
<th>Model 2: On-Duty Technology Use only</th>
<th>Model 3: Viral Video Exposure only</th>
<th>Model 4: All Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
</tr>
<tr>
<td>Personal Tech Use</td>
<td>.026</td>
<td>.022</td>
<td>.055</td>
<td>—</td>
</tr>
<tr>
<td>On-Duty Tech Use</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.153**</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>.062</td>
<td>.132</td>
<td>.023</td>
<td>.046</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.056</td>
<td>.120</td>
<td>-.023</td>
<td>-.072</td>
</tr>
<tr>
<td>Age</td>
<td>-.004</td>
<td>.007</td>
<td>-.046</td>
<td>-.001</td>
</tr>
<tr>
<td>Experience</td>
<td>-.000</td>
<td>.007</td>
<td>-.004</td>
<td>-.002</td>
</tr>
<tr>
<td>Education</td>
<td>-.024</td>
<td>.031</td>
<td>-.035</td>
<td>-.019</td>
</tr>
<tr>
<td>Conservatism</td>
<td>.032</td>
<td>.051</td>
<td>.030</td>
<td>.025</td>
</tr>
<tr>
<td>Southern</td>
<td>.031</td>
<td>.078</td>
<td>.018</td>
<td>.023</td>
</tr>
<tr>
<td>Department Size</td>
<td>.110**</td>
<td>.036</td>
<td>.151</td>
<td>.112**</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.255**</td>
<td>.080</td>
<td>.156</td>
<td>.255**</td>
</tr>
</tbody>
</table>

R-squared | .051 | .066 | .089 | .102 | | | | | | | | |

NOTES: N = 481.

ABBREVIATIONS: b = unstandardized regression coefficient; SE = robust standard error; Beta = standardized regression coefficient
*p < .05; **p < .01; ***p < .001 (two-tailed).
Table S1.3 OLS Regression Models Predicting Worry of Recording – Select Predictors, Supervisors only

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Personal Technology Use only</th>
<th>Model 2: On-Duty Technology Use Only</th>
<th>Model 3: Viral Video Exposure Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b)</td>
<td>SE</td>
<td>Beta</td>
</tr>
<tr>
<td>Personal Technology Use</td>
<td>.019</td>
<td>.037</td>
<td>.025</td>
</tr>
<tr>
<td>On-Duty Technology Use</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.006</td>
<td>.185</td>
<td>-.001</td>
</tr>
<tr>
<td>Age</td>
<td>-.006</td>
<td>.010</td>
<td>-.042</td>
</tr>
<tr>
<td>Policing Experience</td>
<td>.001</td>
<td>.010</td>
<td>.005</td>
</tr>
<tr>
<td>Education</td>
<td>-.028</td>
<td>.050</td>
<td>-.025</td>
</tr>
<tr>
<td>Conservatism</td>
<td>.028</td>
<td>.078</td>
<td>.017</td>
</tr>
<tr>
<td>Southern</td>
<td>.099</td>
<td>.129</td>
<td>.037</td>
</tr>
<tr>
<td>Department Size</td>
<td>.006</td>
<td>.052</td>
<td>.006</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.218</td>
<td>.118</td>
<td>.086</td>
</tr>
</tbody>
</table>

R-squared | .025 | .029 | .042 |

NOTES: \(N = 481 \)

ABBREVIATIONS: \(b \) = unstandardized regression coefficient; \(DV \) = dependent variable; \(SE \) = robust standard error; \(Beta \) = standardized coefficient.

*p < .05; **p < .01; ***p < .001 (two-tailed).
<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: All Predictors except Likelihood</th>
<th>Model 2: All Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
</tr>
<tr>
<td>Perceived Recording Likelihood</td>
<td>.354***</td>
<td>.066</td>
</tr>
<tr>
<td>Personal Tech Use</td>
<td>-.003</td>
<td>.039</td>
</tr>
<tr>
<td>On-Duty Tech Use</td>
<td>.101</td>
<td>.090</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>.175*</td>
<td>.061</td>
</tr>
<tr>
<td>Female</td>
<td>.418*</td>
<td>.207</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.010</td>
<td>.178</td>
</tr>
<tr>
<td>Age</td>
<td>-.000</td>
<td>.010</td>
</tr>
<tr>
<td>Experience</td>
<td>-.002</td>
<td>.010</td>
</tr>
<tr>
<td>Education</td>
<td>-.029</td>
<td>.050</td>
</tr>
<tr>
<td>Conservatism</td>
<td>.019</td>
<td>.078</td>
</tr>
<tr>
<td>Southern</td>
<td>.086</td>
<td>.127</td>
</tr>
<tr>
<td>Department Size</td>
<td>-.000</td>
<td>.052</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.226</td>
<td>.118</td>
</tr>
</tbody>
</table>

R–squared

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>.045</td>
<td>.092</td>
</tr>
</tbody>
</table>

NOTES: N = 481
ABBREVIATIONS: b = unstandardized coefficient; SE = standard error; Beta = standardized coefficient.
*p < .05; **p < .01; ***p < .001 (two–tailed).
Table S1.5 Baseline OLS Regression Models Predicting Perceived Likelihood of Recording and Worry of Recording, Non-Supervisors only

<table>
<thead>
<tr>
<th>Variables</th>
<th>DV: Recording Likelihood (Model 1)</th>
<th>DV: Recording Worry (Model 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
</tr>
<tr>
<td>Female</td>
<td>.148</td>
<td>.116</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>−.100</td>
<td>.134</td>
</tr>
<tr>
<td>Age</td>
<td>.001</td>
<td>.006</td>
</tr>
<tr>
<td>Experience</td>
<td>−.009</td>
<td>.008</td>
</tr>
<tr>
<td>Education</td>
<td>−.032</td>
<td>.041</td>
</tr>
<tr>
<td>Conservatism</td>
<td>.057</td>
<td>.060</td>
</tr>
<tr>
<td>Southern</td>
<td>−.280**</td>
<td>.103</td>
</tr>
<tr>
<td>Department Size</td>
<td>.084*</td>
<td>.040</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.231*</td>
<td>.092</td>
</tr>
</tbody>
</table>

R^2–squared .067 .040

NOTES: N = 348

ABBREVIATIONS: b = unstandardized coefficient; Beta = standardized coefficient; DV = dependent variable; SE = robust standard error.

*p < .05; **p < .01; ***p < .001 (two-tailed).
Table S1.6 OLS Regression Models Predicting Perceived Likelihood of Being Recorded, Non-Supervisors only

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Personal Technology use only</th>
<th>Model 2: On-Duty Technology Use only</th>
<th>Model 3: Viral Video Exposure only</th>
<th>Model 4: All Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
</tr>
<tr>
<td>Personal Tech Use</td>
<td>.012</td>
<td>.033</td>
<td>.024</td>
<td>—</td>
</tr>
<tr>
<td>On-Duty Tech Use</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.261</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>.144</td>
<td>.116</td>
<td>.072</td>
<td>.170</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.096</td>
<td>.135</td>
<td>-.046</td>
<td>-.110</td>
</tr>
<tr>
<td>Age</td>
<td>.002</td>
<td>.007</td>
<td>.022</td>
<td>.005</td>
</tr>
<tr>
<td>Experience</td>
<td>-.010</td>
<td>.008</td>
<td>-.110</td>
<td>-.007</td>
</tr>
<tr>
<td>Education</td>
<td>-.032</td>
<td>.041</td>
<td>-.043</td>
<td>-.024</td>
</tr>
<tr>
<td>Conservatism</td>
<td>.057</td>
<td>.060</td>
<td>.053</td>
<td>.035</td>
</tr>
<tr>
<td>Southern</td>
<td>-.279</td>
<td>**</td>
<td>-.152</td>
<td>-.242</td>
</tr>
<tr>
<td>Department Size</td>
<td>.084</td>
<td>*</td>
<td>.115</td>
<td>.077</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.232</td>
<td>**</td>
<td>.139</td>
<td>.251</td>
</tr>
</tbody>
</table>

R-squared

$\begin{array}{cccc}
.068 & .116 & .123 & .154 \\
\end{array}$

NOTES: N = 348

ABBREVIATIONS: b = unstandardized regression coefficient; SE = robust standard error; Beta = standardized regression coefficient

*p < .05; **p < .01; ***p < .001 (two-tailed).
<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Personal Technology Use only</th>
<th>Model 2: On-Duty Technology Use Only</th>
<th>Model 3: Viral Video Exposure Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
</tr>
<tr>
<td>Personal Technology Use</td>
<td>-.065</td>
<td>.044</td>
<td>-.087</td>
</tr>
<tr>
<td>On-Duty Technology Use</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>.419*</td>
<td>.162</td>
<td>.143</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.048</td>
<td>.170</td>
<td>-.016</td>
</tr>
<tr>
<td>Age</td>
<td>-.016</td>
<td>.011</td>
<td>-.129</td>
</tr>
<tr>
<td>Policing Experience</td>
<td>.007</td>
<td>.010</td>
<td>.054</td>
</tr>
<tr>
<td>Education</td>
<td>-.020</td>
<td>.055</td>
<td>-.019</td>
</tr>
<tr>
<td>Conservatism</td>
<td>-.117</td>
<td>.089</td>
<td>-.074</td>
</tr>
<tr>
<td>Southern</td>
<td>-.059</td>
<td>.136</td>
<td>-.022</td>
</tr>
<tr>
<td>Department Size</td>
<td>.084</td>
<td>.059</td>
<td>.079</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.010</td>
<td>.133</td>
<td>.004</td>
</tr>
<tr>
<td>R-squared</td>
<td>.047</td>
<td></td>
<td>.054</td>
</tr>
</tbody>
</table>

NOTES: $N = 348$

ABBREVIATIONS: $b =$ unstandardized regression coefficient; DV = dependent variable; SE = robust standard error; Beta = standardized coefficient.

* $p < .05$; ** $p < .01$; *** $p < .001$ (two-tailed).
Table S1.8 OLS Regression Models Predicting Worry of Recording – Full Models, Non-Supervisors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: All Predictors except Likelihood</th>
<th></th>
<th></th>
<th>Model 2: All Predictors</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
</tr>
<tr>
<td>Perceived Recording Likelihood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Tech Use</td>
<td>-.108*</td>
<td>.045</td>
<td>-.145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On-Duty Tech Use</td>
<td>.151</td>
<td>.096</td>
<td>.093</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>.328***</td>
<td>.066</td>
<td>.271</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>.424**</td>
<td>.155</td>
<td>.145</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonwhite</td>
<td>-.071</td>
<td>.170</td>
<td>-.024</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>-.006</td>
<td>.010</td>
<td>-.049</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience</td>
<td>.008</td>
<td>.010</td>
<td>.063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Education</td>
<td>-.006</td>
<td>.054</td>
<td>-.006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservatism</td>
<td>-.177*</td>
<td>.087</td>
<td>-.112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern</td>
<td>.033</td>
<td>.128</td>
<td>.012</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Department Size</td>
<td>.087</td>
<td>.057</td>
<td>.082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Municipal Department</td>
<td>-.008</td>
<td>.129</td>
<td>-.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R–squared</td>
<td></td>
<td>.129</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES: N = 348

ABBREVIATIONS: b = unstandardized coefficient; SE = standard error; Beta = standardized coefficient.

*p < .05; **p < .01; ***p < .001 (two-tailed).
Table S1.9 OLS Regression Models Predicting Perceived Likelihood of Being Recorded, Missing Values Mean-Substituted

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Personal Technology use only</th>
<th>Model 2: On-Duty Technology Use only</th>
<th>Model 3: Viral Video Exposure only</th>
<th>Model 4: All Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>Beta</td>
<td>b</td>
</tr>
<tr>
<td>Personal Tech Use</td>
<td>.021</td>
<td>.017</td>
<td>.044</td>
<td>—</td>
</tr>
<tr>
<td>On-Duty Tech Use</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.186</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>.096</td>
<td>.081</td>
<td>.042</td>
<td>.096</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>−.061</td>
<td>.085</td>
<td>−.027</td>
<td>−.072</td>
</tr>
<tr>
<td>Age</td>
<td>−.003</td>
<td>.004</td>
<td>−.033</td>
<td>−.000</td>
</tr>
<tr>
<td>Experience</td>
<td>.001</td>
<td>.004</td>
<td>.002</td>
<td>.000</td>
</tr>
<tr>
<td>Education</td>
<td>−.023</td>
<td>.023</td>
<td>−.033</td>
<td>−.018</td>
</tr>
<tr>
<td>Conservatism</td>
<td>.035</td>
<td>.037</td>
<td>.033</td>
<td>.026</td>
</tr>
<tr>
<td>Southern</td>
<td>−.096</td>
<td>.060</td>
<td>−.055</td>
<td>−.095</td>
</tr>
<tr>
<td>Department Size</td>
<td>.079</td>
<td>**</td>
<td>.116</td>
<td>.078</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.220</td>
<td>***</td>
<td>.135</td>
<td>.220</td>
</tr>
</tbody>
</table>

R^2-squared: .039 .065 .083 .101

NOTES: N = 893.

ABBREVIATIONS: b = unstandardized regression coefficient; SE = robust standard error; Beta = standardized regression coefficient
*p < .05; **p < .01; ***p < .001 (two-tailed).
Table S1.10 OLS Regression Models Predicting Worry of Recording – Select Predictors, Missing Values Mean-Substituted

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Personal Technology Use only</th>
<th>Model 2: On-Duty Technology Use Only</th>
<th>Model 3: Viral Video Exposure Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b)</td>
<td>SE</td>
<td>Beta</td>
</tr>
<tr>
<td>Personal Technology Use</td>
<td>-.016</td>
<td>.027</td>
<td>-.021</td>
</tr>
<tr>
<td>On-Duty Technology Use</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>.416**</td>
<td>.123</td>
<td>.118</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.043</td>
<td>.122</td>
<td>.012</td>
</tr>
<tr>
<td>Age</td>
<td>-.006</td>
<td>.007</td>
<td>-.043</td>
</tr>
<tr>
<td>Policing Experience</td>
<td>-.004</td>
<td>.007</td>
<td>-.032</td>
</tr>
<tr>
<td>Education</td>
<td>-.020</td>
<td>.036</td>
<td>-.018</td>
</tr>
<tr>
<td>Conservatism</td>
<td>-.042</td>
<td>.057</td>
<td>-.026</td>
</tr>
<tr>
<td>Southern</td>
<td>.024</td>
<td>.091</td>
<td>.009</td>
</tr>
<tr>
<td>Department Size</td>
<td>.046</td>
<td>.038</td>
<td>.042</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.093</td>
<td>.085</td>
<td>.037</td>
</tr>
</tbody>
</table>

\(R \)-squared: .027 .033 .066

NOTES: \(N = 893 \)

ABBREVIATIONS: \(b \) = unstandardized regression coefficient; DV = dependent variable; SE = robust standard error; Beta = standardized coefficient.

*\(p < .05 \); **\(p < .01 \); ***\(p < .001 \) (two-tailed).
Table S1.11 OLS Regression Models Predicting Worry of Recording – Full Models, Missing Values Mean-Substituted

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: All Predictors except Likelihood</th>
<th></th>
<th></th>
<th>Model 2: All Predictors</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Perceived Recording Likelihood</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>.321***</td>
<td>.048</td>
<td>.208</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Personal Tech Use</td>
<td>—</td>
<td>.049</td>
<td>.028</td>
<td>.028</td>
<td>.045</td>
<td>.027</td>
<td>.062</td>
<td>.062</td>
<td>.037</td>
</tr>
<tr>
<td>On-Duty Tech Use</td>
<td>—</td>
<td>.113</td>
<td>.062</td>
<td>.062</td>
<td>.062</td>
<td>.037</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>.255***</td>
<td>.043</td>
<td>.202***</td>
<td>.043</td>
<td>.159</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>—</td>
<td>.399**</td>
<td>.119</td>
<td>.372**</td>
<td>.115</td>
<td>.105</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>—</td>
<td>.051</td>
<td>.119</td>
<td>.071</td>
<td>.116</td>
<td>.021</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Age</td>
<td>—</td>
<td>.000</td>
<td>.077</td>
<td>—</td>
<td>.000</td>
<td>.007</td>
<td>.000</td>
<td>.007</td>
<td>.000</td>
</tr>
<tr>
<td>Experience</td>
<td>—</td>
<td>.040</td>
<td>.077</td>
<td>.037</td>
<td>.044</td>
<td>.007</td>
<td>.033</td>
<td>.037</td>
<td>.000</td>
</tr>
<tr>
<td>Education</td>
<td>—</td>
<td>.013</td>
<td>.035</td>
<td>.015</td>
<td>.015</td>
<td>.037</td>
<td>.007</td>
<td>.037</td>
<td>.000</td>
</tr>
<tr>
<td>Conservatism</td>
<td>—</td>
<td>.062</td>
<td>.056</td>
<td>.068</td>
<td>.055</td>
<td>.041</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Southern</td>
<td>—</td>
<td>.040</td>
<td>.089</td>
<td>.067</td>
<td>.087</td>
<td>.025</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Department Size</td>
<td>—</td>
<td>.039</td>
<td>.037</td>
<td>.015</td>
<td>.037</td>
<td>.014</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>—</td>
<td>.083</td>
<td>.083</td>
<td>.015</td>
<td>.082</td>
<td>.006</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

| R–squared | .072 | .111 |

NOTES: N = 893

ABBREVIATIONS: b = unstandardized coefficient; SE = standard error; Beta = standardized coefficient.

*p < .05; **p < .01; ***p < .001 (two–tailed).
Table S1.12 Ordered Logistic Regression Models Predicting Worry of Recording – Select Predictors

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: Personal Technology Use only</th>
<th>Model 2: On-Duty Technology Use Only</th>
<th>Model 3: Viral Video Exposure Only</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td>b</td>
</tr>
<tr>
<td>Personal Technology Use</td>
<td>-.027</td>
<td>.043</td>
<td>—</td>
</tr>
<tr>
<td>On-Duty Technology Use</td>
<td>—</td>
<td>—</td>
<td>.218*</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Female</td>
<td>.658***</td>
<td>.177</td>
<td>.658***</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.021</td>
<td>.171</td>
<td>.022</td>
</tr>
<tr>
<td>Age</td>
<td>-.016</td>
<td>.011</td>
<td>-.010</td>
</tr>
<tr>
<td>Policing Experience</td>
<td>.002</td>
<td>.011</td>
<td>.001</td>
</tr>
<tr>
<td>Education</td>
<td>-.024</td>
<td>.055</td>
<td>-.024</td>
</tr>
<tr>
<td>Conservatism</td>
<td>-.051</td>
<td>.088</td>
<td>-.058</td>
</tr>
<tr>
<td>Southern</td>
<td>.037</td>
<td>.136</td>
<td>.033</td>
</tr>
<tr>
<td>Department Size</td>
<td>.073</td>
<td>.058</td>
<td>.068</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.140</td>
<td>.129</td>
<td>.150</td>
</tr>
<tr>
<td>Pseudo R-squared</td>
<td>.010</td>
<td>.013</td>
<td>.020</td>
</tr>
</tbody>
</table>

NOTES: $N = 830$

ABBREVIATIONS: $b =$ unstandardized regression coefficient; DV = dependent variable; SE = robust standard error.

*p < .05; **p < .01; ***p < .001 (two-tailed).
Table S1.13 Ordered Logistic Regression Models Predicting Worry of Recording – Full Models

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: All Predictors except Likelihood</th>
<th>Model 2: All Predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(b)</td>
<td>(SE)</td>
</tr>
<tr>
<td>Perceived Recording Likelihood</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Personal Tech Use</td>
<td>-.080</td>
<td>.046</td>
</tr>
<tr>
<td>On-Duty Tech Use</td>
<td>.201*</td>
<td>.099</td>
</tr>
<tr>
<td>Viral Video Exposure</td>
<td>.324***</td>
<td>.069</td>
</tr>
<tr>
<td>Female</td>
<td>.637***</td>
<td>.177</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.016</td>
<td>.172</td>
</tr>
<tr>
<td>Age</td>
<td>-.007</td>
<td>.012</td>
</tr>
<tr>
<td>Experience</td>
<td>-.001</td>
<td>.011</td>
</tr>
<tr>
<td>Education</td>
<td>-.022</td>
<td>.055</td>
</tr>
<tr>
<td>Conservatism</td>
<td>-.088</td>
<td>.091</td>
</tr>
<tr>
<td>Southern</td>
<td>.056</td>
<td>.136</td>
</tr>
<tr>
<td>Department Size</td>
<td>.077</td>
<td>.058</td>
</tr>
<tr>
<td>Municipal Department</td>
<td>.153</td>
<td>.129</td>
</tr>
<tr>
<td>Pseudo (R)-squared</td>
<td>.022</td>
<td>.037</td>
</tr>
</tbody>
</table>

NOTES: \(N = 830 \)

ABBREVIATIONS: \(b \) = unstandardized coefficient; \(SE \) = robust standard error.

*p < .05; **p < .01; ***p < .001 (two–tailed).
Table S2.1 Vignette 1 Outcomes by Dichotomous Experimental Manipulations

<table>
<thead>
<tr>
<th>Outcome Variables</th>
<th>Treatment Group: Innocent</th>
<th>Control Group: Guilty</th>
<th>Difference Between Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
</tr>
<tr>
<td>Experienced-Based Fear</td>
<td>2.972</td>
<td>1.266</td>
<td>501</td>
</tr>
<tr>
<td>Experienced-Based Anger</td>
<td>2.261</td>
<td>.870</td>
<td>505</td>
</tr>
<tr>
<td>Intent to Comply</td>
<td>4.222</td>
<td>.978</td>
<td>505</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outcome Variables</th>
<th>Treatment Group: Non-PJ Treatment</th>
<th>Control Group: PJ Treatment</th>
<th>Difference Between Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
</tr>
<tr>
<td>Experience-Based Fear</td>
<td>3.374</td>
<td>1.143</td>
<td>486</td>
</tr>
<tr>
<td>Experience-Based Anger</td>
<td>2.468</td>
<td>.829</td>
<td>489</td>
</tr>
<tr>
<td>Intent to Comply</td>
<td>4.050</td>
<td>1.044</td>
<td>490</td>
</tr>
</tbody>
</table>

ABBREVIATIONS: $p =$ two-tailed p-value; $SD =$ standard deviation; $t =$ t statistic (for test of the equality of means); $PJ =$ procedurally just
Table S2.2 Vignette 2 Outcomes by Dichotomous Experimental Manipulations

<table>
<thead>
<tr>
<th>Outcome Variables</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>N</th>
<th>Diff.</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vignette 2: Littering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experienced-Based Fear</td>
<td>2.653</td>
<td>1.315</td>
<td>518</td>
<td>2.481</td>
<td>1.306</td>
<td>478</td>
<td>.171</td>
<td>2.062</td>
<td>.040</td>
</tr>
<tr>
<td>Experienced-Based Anger</td>
<td>2.385</td>
<td>.990</td>
<td>520</td>
<td>2.121</td>
<td>1.017</td>
<td>478</td>
<td>.263</td>
<td>4.142</td>
<td>.000</td>
</tr>
<tr>
<td>Intent to Comply</td>
<td>3.800</td>
<td>1.207</td>
<td>521</td>
<td>4.111</td>
<td>1.112</td>
<td>479</td>
<td>−.311</td>
<td>−4.224</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Mean</td>
<td>SD</td>
<td>N</td>
<td>Diff.</td>
<td>t</td>
<td>p</td>
</tr>
<tr>
<td>Experience-Based Fear</td>
<td>3.098</td>
<td>1.244</td>
<td>510</td>
<td>2.016</td>
<td>1.145</td>
<td>486</td>
<td>1.082</td>
<td>14.260</td>
<td>.000</td>
</tr>
<tr>
<td>Experience-Based Anger</td>
<td>2.810</td>
<td>.868</td>
<td>511</td>
<td>1.680</td>
<td>.806</td>
<td>487</td>
<td>1.131</td>
<td>21.285</td>
<td>.000</td>
</tr>
<tr>
<td>Intent to Comply</td>
<td>3.511</td>
<td>1.226</td>
<td>513</td>
<td>4.410</td>
<td>.909</td>
<td>487</td>
<td>−.899</td>
<td>−13.121</td>
<td>.000</td>
</tr>
</tbody>
</table>

ABBREVIATIONS: *p* = two-tailed p-value; SD = standard deviation; *t* = *t* statistic (for test of the equality of means); PJ = procedurally just
Table S2.3 Vignette 1 ANOVA Models of the Causal Effect of Exposure to Recording Device (Relative to Control Group)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: DV = Experience-Based Fear</th>
<th>Model 2: DV = Experience-Based Anger</th>
<th>Model 3: DV = Intent to Comply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contrast</td>
<td>SE</td>
<td>Contrast</td>
</tr>
<tr>
<td>Experimental group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodyworn camera only</td>
<td>–.417***</td>
<td>.099</td>
<td>–.204**</td>
</tr>
<tr>
<td>Smartphone camera only</td>
<td>–.132</td>
<td>.097</td>
<td>–.064</td>
</tr>
<tr>
<td>Model F-test</td>
<td>9.260***</td>
<td></td>
<td>4.850**</td>
</tr>
<tr>
<td>Eta-squared</td>
<td>.018</td>
<td></td>
<td>.010</td>
</tr>
<tr>
<td>N</td>
<td>1000</td>
<td></td>
<td>1002</td>
</tr>
</tbody>
</table>

ABBREVIATIONS: b = unstandardized regression coefficient; DV = dependent variable; SE = robust standard error.
*p < .05; **p < .01; ***p < .001 (two-tailed).

Table S2.4 Vignette 2 ANOVA Models of the Causal Effect of Exposure to Recording Device (Relative to Control Group)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1: DV = Experience-Based Fear</th>
<th>Model 2: DV = Experience-Based Anger</th>
<th>Model 3: DV = Intent to Comply</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Contrast</td>
<td>SE</td>
<td>Contrast</td>
</tr>
<tr>
<td>Experimental group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bodyworn camera only</td>
<td>–.230</td>
<td>.102</td>
<td>–.083</td>
</tr>
<tr>
<td>Smartphone camera only</td>
<td>–.265*</td>
<td>.099</td>
<td>–.157</td>
</tr>
<tr>
<td>Model F-test</td>
<td>4.170*</td>
<td></td>
<td>2.130</td>
</tr>
<tr>
<td>Eta-squared</td>
<td>.008</td>
<td></td>
<td>.004</td>
</tr>
<tr>
<td>N</td>
<td>1000</td>
<td></td>
<td>1002</td>
</tr>
</tbody>
</table>

ABBREVIATIONS: b = unstandardized regression coefficient; DV = dependent variable; SE = robust standard error.
*p < .05; **p < .01; ***p < .001 (two-tailed).
Table S2.5 Ordered Logistic Regression Models Predicting Fear and Anger Outcomes in Vignette 1 (Speeding)

<table>
<thead>
<tr>
<th>Variables</th>
<th>DV: Experience-Based Fear (Model 1)</th>
<th></th>
<th>DV: Experience-Based Anger (Model 2)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
<td></td>
<td>b</td>
</tr>
<tr>
<td>Situational Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guilty (reference)</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Innocent</td>
<td>.198</td>
<td>.121</td>
<td>.252*</td>
<td>.122</td>
</tr>
<tr>
<td>PJ treatment (reference)</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Non-PJ treatment</td>
<td>1.448***</td>
<td>.122</td>
<td>1.202***</td>
<td>.128</td>
</tr>
<tr>
<td>No recording (reference)</td>
<td>—</td>
<td></td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Smartphone camera</td>
<td>—.239</td>
<td>.146</td>
<td>—.020</td>
<td>.147</td>
</tr>
<tr>
<td>Bodyworn camera</td>
<td>—.651***</td>
<td>.153</td>
<td>—.331</td>
<td>.150</td>
</tr>
<tr>
<td>Male</td>
<td>—.383**</td>
<td>.125</td>
<td>—.019</td>
<td>.125</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.417**</td>
<td>.148</td>
<td>.023</td>
<td>.146</td>
</tr>
<tr>
<td>Age</td>
<td>—.001</td>
<td>.005</td>
<td>—.005</td>
<td>.005</td>
</tr>
<tr>
<td>Education</td>
<td>.066</td>
<td>.050</td>
<td>.041</td>
<td>.051</td>
</tr>
<tr>
<td>Conservatism</td>
<td>—.170**</td>
<td>.056</td>
<td>—.099</td>
<td>.056</td>
</tr>
<tr>
<td>South</td>
<td>—.168</td>
<td>.125</td>
<td>—.252*</td>
<td>.128</td>
</tr>
<tr>
<td>Prior arrest</td>
<td>.206</td>
<td>.183</td>
<td>.189</td>
<td>.198</td>
</tr>
<tr>
<td>Vicarious arrest</td>
<td>—.284*</td>
<td>.129</td>
<td>—.032</td>
<td>.131</td>
</tr>
</tbody>
</table>

Pseudo R^2-squared | .066 | | .047 |

NOTES: N = 962

ABBREVIATIONS: b = unstandardized coefficient; DV = dependent variable; SE = robust standard error.
*p < .05; **p < .01; ***p < .001 (two-tailed).
Table S2.6 Ordered Logistic Regression Models Predicting Fear and Anger Outcomes in Vignette 2 (Littering)

<table>
<thead>
<tr>
<th>Variables</th>
<th>DV: Experience-Based Fear (Model 1)</th>
<th>DV: Experience-Based Anger (Model 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>b</td>
<td>SE</td>
</tr>
<tr>
<td>Situational Characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guilty (reference)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Innocent</td>
<td>.223</td>
<td>.120</td>
</tr>
<tr>
<td>PJ treatment (reference)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Non-PJ treatment</td>
<td>1.663***</td>
<td>.126</td>
</tr>
<tr>
<td>No recording (reference)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Smartphone camera</td>
<td>−.259</td>
<td>.146</td>
</tr>
<tr>
<td>Bodyworn camera</td>
<td>−.341*</td>
<td>.144</td>
</tr>
<tr>
<td>Male</td>
<td>−.200</td>
<td>.125</td>
</tr>
<tr>
<td>Nonwhite</td>
<td>.318*</td>
<td>.154</td>
</tr>
<tr>
<td>Age</td>
<td>.014**</td>
<td>.005</td>
</tr>
<tr>
<td>Education</td>
<td>.067</td>
<td>.051</td>
</tr>
<tr>
<td>Conservatism</td>
<td>−.240***</td>
<td>.056</td>
</tr>
<tr>
<td>South</td>
<td>−.152</td>
<td>.126</td>
</tr>
<tr>
<td>Prior arrest</td>
<td>.047</td>
<td>.176</td>
</tr>
<tr>
<td>Vicarious arrest</td>
<td>−.058*</td>
<td>.128</td>
</tr>
</tbody>
</table>

Pseudo R–squared

NOTES: N = 962

$\text{ABBREVIATIONS: } b = \text{unstandardized coefficient; DV = dependent variable; SE = robust standard error.}$

*p < .05; **p < .01; ***p < .001 (two–tailed).
REFERENCES

Antony, Mary Grace, & Ryan J. Thomas. (2010). ‘This is citizen journalism at its finest’: YouTube and the public sphere in the Oscar Grant shooting incident. New Media & Society, 12(8), 1280-1296.

Greer, Chris, & Eugene McLaughlin. (2010). We predict a riot? Public order policing, new media environments and the rise of the citizen journalist.” *British Journal of Criminology, 50*(6), 1041-1059.

215

Pickett, Justin T., Sean Patrick Roche, & Greg Pogarsky (in press). Toward a bifurcated theory of emotional deterrence. *Criminology*.

Silver, Jasmine R., Sean Patrick Roche, Thomas Bilach, Stephanie Bontrager Ryon. (2017). Toward a better understanding of politicized policing attitudes: Conflicted conservatism and support for police use of force. Working Paper, School of Criminal Justice, University at Albany, SUNY.

