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ABSTRACT 

The surface ocean in the western equatorial Pacific contains some of the warmest 

water on the planet in the western Pacific warm pool (WPWP).  Changes in the size and 

scope of the warm pool have a significant impact on global climate.  With the concern of 

changes in the extent of this body of water as a result of anthropomorphic changes in 

atmospheric composition, it is vital to investigate prior changes to the WPWP, the causes 

of such changes, and resultant effects.  For my dissertation, I used several proxies to 

analyze sediments from Kau Bay and the Sulu Sea in Indonesia to examine changes 

within the WPWP over century and glacial-interglacial time scales, respectively.   

Organic matter proxies (δ15N, δ13C, C/N, relative composition and δ13C of fatty 

acids and alkanes) were analyzed at century-scale resolution from a core from Kau Bay, 

Halmahera, that spanned over the last ~3,500 years.  These proxies were used to decipher 

the flushing history of the basin and its relation to El Niño events and warm pool 

dynamics.  Pteropod shells (Creseis acicula) were analyzed from the same cores from 

Kau Bay for δ18O, δ13C, and Sr/Ca in order to test the utility of pteropod shells in 

paleoclimate studies and to determine possible changes in the hydrological cycle within 

Kau Bay and its relation to equatorial Pacific climate.  The C. acicula data showed that 

Kau Bay water and, therefore, WPWP surface water, was likely warmer 3,000yrBP than 

throughout the last 2,200 years.  Comparisons of this data to other records from the 

equatorial Pacific and South China Sea revealed that zonal dynamics and the EAM may 

have had an effect on WPWP and global climate throughout the late Holocene and that 

ENSO may affect climate change at this resolution.   
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In the Sulu Sea, the δ18O of thermocline dwelling foraminifera, Pulleniatina 

obliquiloculata and Neogloboquadrina dutertrei, was analyzed and compared to mixed 

layer foraminifera to determine that the mixed layer was probably more shallow during 

interglacial stages than during glacial stages over the last 800kyr, likely in response to 

changes in sea level and monsoon intensity. 
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CHAPTER 1 
 

Introduction 
 
1. Western Pacific Warm Pool climate dynamics 

Oceanographic and climatologic variability in the Western Pacific Warm Pool 

(WPWP) and Indo Pacific Warm Pool (IPWP) has a global impact.  This region contains 

the warmest open ocean water on earth and changes in the spatial and temporal extent of 

the warm pool have an effect on global atmospheric circulation (figure 1.1).  Oceanic and 

atmospheric circulation in this region can have an enormous impact on the heat storage 

and add positive and negative feedbacks to the global climate system (e.g., Ropelewski 

and Halpert, 1987 and Sun, 2003) For example, models have shown that doubling the 

CO2 concentration of the atmosphere may result in changes of oceanic and atmospheric 

circulation that affect climate by increasing the amplitude of El Niño Southern 

Oscillation (ENSO, e.g., Merryfield, 2006).  The impact of these modifications on ocean 

chemistry and dynamics has not been fully realized.  Looking into past variability of the 

WPWP will give us a better understanding of the natural range of variability of this 

climatically important region and may allow us to forecast future reactions to the current 

anthropogenic forcing that appears to be driving changes in atmospheric and oceanic 

chemistry and temperature. 
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Figure 1.1.  Location of the Western Pacific Warm Pool with mean annual sea surface 
temperatures.  The WPWP is located within the ≥28˚C isotherm (Levitus, 1994). 
 

 
The WPWP lies within the western equatorial Pacific (WEP, figure 1.1).  The 

concentration of heat in this area results in intense convection and rainfall.  The extent of 

the warm pool is not static and is known to vary seasonally and interannually based on 

instrumental data that has been acquired over the last few decades (e.g., Yan et al., 1992; 

Cravatte et al., 2009).   Seasonal variations in the spatial extent of the warm pool are 

determined by the position of the intertropical convergence zone (ITCZ; Waliser and 

Gautier, 1993), while interannual changes in the extent of the warm pool result from 

changes in the phase of El Niño/Southern Oscillation (ENSO).  Lower frequency changes 

have been tracked based on paleoclimatological studies such as marine and lacustrine 

fossil and sediment geochemical studies, dendrochronology records, and ice core 

chemistry (e.g., Fairbanks et al., 1997; Lachniet et al., 2004; Rodriguez et al., 2005; 

Oppo et al., 2009).  Such records have revealed century-scale, millennial, orbital-scale, 

and glacial-interglacial patterns of global climate change.   
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While century-scale and shorter resolution records have been added to the 

literature in increasing numbers over the last decade, patterns of climate change on 

millennial to century scale appear to be the most difficult to resolve because they do not 

coincide with large climatic events such as calculable orbital changes or changes in land 

mass and geography.  However, we may be able to apply current knowledge of 

interdecadal to seasonal climate dynamics to explain and predict future millennial and 

century-scale patterns.  For the WPWP and IPWP, these dynamics include changes in 

summer and winter East Asian Monsoon (EAM) strength, the El Niño/Southern 

Oscillation phenomenon, and seasonal variability of the intertropical convergence zone 

(ITCZ). 

In the following chapters, I will present data obtained from sediment cores in the 

western sector of the WPWP that appear to track the nature of century-scale and glacial-

interglacial scale changes to this region.  Chapters 2 and 3 will discuss geochemical data 

from a ~3,500 year sediment core from Kau Bay, Indonesia that highlights century scale 

changes in the WPWP, while chapter 4 will discuss glacial-interglacial changes in surface 

to thermocline water in the Sulu Sea probably a result of changes in monsoon strength.  

In this chapter, I will discuss the known factors that play a role in current WPWP 

variability, such as the spatial variability of the ITCZ, ENSO dynamics, and the EAM. 

 

1.1. ITCZ variability 

The mean position of the ITCZ today is located near the equator in the northern 

hemisphere along the rising arm of the Hadley circulation (Waliser and Gautier, 1993).  

Although the ITCZ appears as a narrow latitudinal equatorial band over most of the 



 4 

globe, the ITCZ area from the western Pacific to the Indian Ocean is less latitudinally 

constrained.  The equatorial band moves seasonally and appears to migrate on larger time 

scales, as well, based on paleoclimatological data (e.g., Linsley et al., 1994; Koutavas and 

Lynch-Steiglitz, 2006; Sachs et al., 2009).  During boreal summer, the ITCZ migrates 

northward, and during austral summer, the ITCZ migrates equatorward.  Although the 

ITCZ follows the position of the sun, convection and rainfall associated with the ITCZ 

lags about two months behind (Waliser and Gautier, 1993).  When the location of the 

ITCZ is at its most northern position during the mid to late boreal summer (7-14˚N), there 

is increased rainfall.  Meanwhile, when the ITCZ is at or near the equator during the 

boreal winter months, there is less convective activity (Waliser and Gautier, 1993). 

 

1.2. ENSO variability in the WPWP 

The variability in the WPWP related to the phase of ENSO is mostly expressed by 

changes in thermocline depth and the spatial extent of the warm pool.  A typical ENSO 

cycle is 4-7 years (Bjerknes, 1969).  The Southern Oscillation Index (SOI) is used to 

describe phase of ENSO by taking the difference in sea level pressure between Tahiti and 

Darwin, Australia.  During a negative SOI phase, or El Niño conditions, equatorial trade 

winds slacken, upwelling is subdued in the eastern equatorial Pacific, and the warm pool 

in the WEP expands eastward.  This causes the salinity front to migrate eastward as 

warmer, fresher water is brought to the central and eastern equatorial Pacific (Picaut et 

al., 1996).  Convection from the WPWP is therefore shifted to the east.  This action 

causes increased freshening in the central and eastern equatorial Pacific and more arid 

conditions in the WEP.  In addition, the ITCZ reacts with an equatorward expansion in 
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the central to eastern equatorial Pacific in response to El Niño throughout the 

instrumental record (Deser and Wallace, 1990).  Meanwhile, a positive SOI phase, or La 

Niña, is characterized by an increase in equatorial trade wind strength, deeper 

thermocline in the WEP, and a westward migration of the salinity front along the equator.   

 

1.3. East Asian Monsoon 

The EAM consists of the northwesterly winter component, which brings high 

winds and less precipitation than the northeasterly summer component.  The northwest 

winter monsoon tends to increase surface salinity and reduce SST in the South China Sea, 

with less of an effect on the western WPWP region (Wyrtki, 1961).  The East Asian 

summer monsoon (EASM) dominates rainfall in the western WPWP region on an annual 

basis (Wyrtki, 1961).  The EASM can be intensified when El Niño peaks during mid-

summer (Zhang et al., 1996).  A strong summer monsoon tends to follow El Niño 

warming in the eastern Pacific by about 3 seasons (Wang et al., 2001). 

 

2. Century-scale and G-I climate variability in semi-enclosed WPWP basins, Kau 

Bay and the Sulu Sea, Indonesia 

 Data from sediment cores collected from two semi-enclosed, silled basins in the 

WPWP are presented and with their relevance to overall WPWP and Pacific-wide 

paleoclimate variability is discussed.  Silled and poorly ventilated basins lend an 

advantage to paleoclimate studies because oxygen can rapidly become depleted, leading 

to reduced benthic bioturbation of the sediments which results in a more detailed 

sediment record and enhances the preservation of various resources that can be used as 
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environmental proxies.  While the Sulu Sea and Kau Bay records presented here consist 

of various proxy types over different resolutions, flushing of each basin may be 

significantly related to larger-scale changes in WPWP and global climate.   

Kau Bay is a ~470m deep basin with a 30m deep sill that contains well-preserved 

organic matter due to bottom water that has varied from dysoxic to anoxic through time.  

A ~3,500 year δ15N record of the organic matter from a sedimentary core showed 

variability that was probably dependent upon the flushing history of the basin.  During 

long periods of basin stagnation, the nitrate concentration of the entire water column 

became depleted, thus inciting nitrogen fixation and a reduced δ15N within the water 

column and buried in the sedimentary organic matter.  Meanwhile, periods of increased 

flushing replenished the basin’s nitrate, while productivity was generally reduced and the 

δ15N was allowed to increase to levels congruent with those outside the basin in the 

WPWP waters.  This record is in general agreement with other global records that appear 

to vary in accordance with changes in the frequency and/or intensity of ENSO. 

While foraminifera δ18O and Mg/Ca are often used as proxies to track past water 

temperature and salinity variations associated with regional climate dynamics,  Kau Bay 

did not contain sufficient numbers of tests to perform these analyses.  In contrast, the 

highly tolerant aragonitic pteropod, Creseis acicula, was found in excellent condition 

throughout the 3,500 year Kau Bay record.  Although these organisms have not been 

calibrated to track changes in SST and salinity via δ18O and Sr/Ca, variability of these 

records from Kau Bay closely resemble the variability from cores of similar resolution 

from the WPWP and the EEP.  These records likely reflect century-scale zonal climate 

change in the equatorial Pacific not unlike current interannual ENSO variability. 
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The Sulu Sea is a ~5,580m deep basin in the western region of the WPWP.  Its 

relatively shallow sills dissuade deep water circulation and induce dysoxia.  Comparisons 

between the planktonic foraminifera δ18O records of surface dwelling Globigerinoides 

ruber and deeper dwelling Neogloboquadrina dutertrei and Pulleniatina obliquiloculata 

reveal variable stratification in the upper water column.  During most glacial stages over 

the last ~800,000 years, the δ18O varied less among these three species than during 

interglacial stages.  The mixed layer was likely deeper during glacial stages, which was 

possibly the result of cutting off higher salinity water from the Sulawesi Sea, while 

increased stratification occurred between the mixed layer and thermocline due to the 

intrusion of water from the Sulawesi Sea during interglacial stages. 

 

3. Research questions to be evaluated: 

3.1. Can evidence of century-scale WPWP climate variability be found from a high 

resolution sediment core retrieved from Kau Bay, Indonesia? 

Organic and inorganic geochemical proxies will be examined from a ~3,500 year 

long sediment core from Kau Bay, Indonesia.  Sedimentary δ15N will be analyzed to 

determine the ventilation history of the basin since bacterial processes affected by nitrate 

availability, productivity, and dissolved oxygen concentration are closely linked to the 

isotopic concentration of nitrogen in nitrate.  The C/N, δ13C of organic matter, fatty acids, 

and alkanes, and the concentrations of fatty acids and alkanes will be measured to 

determine the relative source of organic matter throughout the record.  δ18O, δ13C, and 

Sr/Ca will be measured from pteropod shells in order to determine possible changes in 
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water column salinity, temperature, and DIC that possibly reflect zonal equatorial Pacific 

climate dynamics. 

 

3.2. How do changes in ventilation control the nitrogen cycle in Kau Bay? 

The δ15N of sedimentary organic matter is dependent upon the frequency and depth 

of flushing events within the basin through changes in bacterial processes linked to the 

basin’s dissolved oxygen content.  The main possible causes for δ15N variability in ocean 

sediments are the bacterial processes of nitrogen fixation and denitrification. When the nitrate 

concentration of the water column is depleted, nitrogen fixing bacteria will fix free nitrogen 

from the atmosphere with a δ15N of 0 into organic compounds and will result in reduced δ15N 

within the water column (e.g., Boyd, 2001).  Meanwhile, the δ15N of the water column and 

sediments can be increased in anoxic conditions when denitrification is the mechanism for 

oxidizing organic matter (e.g., Sigman et al., 2003).  During this process, nitrogen is 

converted from nitrate to N2O and N2 gases.  The lighter isotope is preferred in this 

transaction, leaving residual nitrate enriched in 15N.   Since Kau Bay is known to have a 

variable history over the last century of dissolved oxygen concentration and low nitrate 

availability, it is likely that the sedimentary δ15N record will reflect long-term changes in the 

basin’s ventilation (Van Aken and Verbeek, 1989). 

 

3.3. Can pteropod shells be used as a reliable proxy to interpret paleoenvironmental 

changes in Kau Bay and do these changes relate to global climate patterns? 

Shells from the pteropod Creseis acicula will be analyzed for δ18O, δ13C, and 

Sr/Ca from core 102GGC at decadal to century-scale resolution.  Since this pteropod has 

a high tolerance for salinity and low oxygen, its shell likely reflects the conditions in the 
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upper 30m of surface water from the WPWP because of the homogeneity within the basin 

and its 30m deep sill.   

 

3.4. What are the connections between the Sulu Sea mixed layer and thermocline 

depths and glacial-interglacial stages?  

The relative depths of the mixed layer and thermocline in the Sulu Sea will be 

estimated by differencing the δ18O (Δδ18O) between mixed-layer and thermocline 

dwelling foraminifera over glacial-interglacial intervals.  Δδ18O between the mixed layer 

and thermocline foraminifera should be close to 0 when there is a deeper mixed layer, 

and larger when the mixed layer is shallower.   

 

3.5. What are the implications of Sulu Sea mixed layer depth to WPWP climate 

controls? 

Changes in the depth of the mixed layer within the Sulu Sea are likely related to 

EAM intensity and sea level.  On GI timescales, sea level can be reduced to the point 

where water from the Sulawesi Sea is restricted from entering the Sulu Sea.  Increased 

intensity of the East Asian winter monsoon can result in increased mixing and cooling of 

surface water.  Meanwhile, increased intensity of the summer monsoon corresponds to 

increased atmospheric convection, precipitation, and decreased surface water salinity, 

creating a larger salinity and temperature difference between surface and thermocline 

waters. 
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BPPT, Agency for Assessment and Application of Technology, Jalam M. Thamrin No. 8, 

Jakarta 10340, Indonesia 

ABSTRACT 

We use geochemical data from a sediment core in the shallow-silled and intermittently 

dysoxic Kau Bay in Halmahera (Indonesia, lat 1°N, long 127.5°E), to reconstruct 

century-scale climate variability within the Western Pacific Warm Pool (WPWP) over 

the past ~3,500 yr.  Down-core variations in bulk sedimentary δ15N appear to reflect 

century-scale variability in basin ventilation, attributed to changes in oceanographic 

conditions related to century-scale fluctuations in El Niño Southern Oscillation (ENSO). 

We infer an increase in century-scale El Niño activity beginning ca. 1700 yr BP with 

peaks in El Niño activity at ca. 1500 yr BP, 1150 yr BP, and ca. 700 yr BP. The Kau Bay 

results suggest that there was diminished ENSO amplitude or frequency, or a departure 

from El Niño-like conditions during the Medieval Warm Period, and distinctive, but 

steadily decreasing, El Niño activity during and after the Little Ice Age. 

 

1. INTRODUCTION 

Kau Bay is a small (30 by 60 km), intermittently anoxic, ~470m deep basin that is 

semi-enclosed by the island of Halmahera (Indonesia, lat 1˚N, long 127.5˚E) and 

connected to the equatorial Pacific Ocean and Western Pacific Warm Pool (WPWP) by a 

~30m deep, 15–20 km wide sill (figure 2.1).  Because water exchange is limited to the 

upper 30 m, Kau Bay’s deepwater temperature and salinity are nearly homogenous below 

the mixed layer and reflect the surface water’s hydrography outside the Bay (Van Aken 

and Verbeek, 1988; Van Der Weijden et al., 1989; Van Riel, 1943) (figure 2.2A-D). The 
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deep basin’s dissolved oxygen concentrations vary and indicate intermittent ventilation 

(Van Aken and Verbeek, 1988; Middelburg, 1990). Middelburg (1990) estimated that the 

oxygen minimum zone observed in 1985 may have developed in ~120 days and that the 

150m thick anoxic layer observed in 1930 developed in fewer than 3 yr (figure 2.2E and 

2.2F). 

 

 

Figure 2.1. A: Location of Kau Bay in western tropical Pacific. Contours and grayscale 
shading are sea surface temperature anomalies during peak of very strong 1997–1998 El 
Niño event (Reynolds and Smith, 1994). Arrows represent general direction of ocean 
currents discussed in text. NEC—Northern Equatorial Current; SEC—Southern 
Equatorial Current; NGCC—New Guinea Coastal Current; MC—Mindanao Current; 
ME— Mindanao Eddy; HE—Halmahera Eddy. Locations of sediment cores analyzed by 
Newton et al. (2006) (MD9821–60) and Stott et al. (2004) (MD9821–81) are shown (see 
text). B: Kau Bay bathymetry with contours from 100 m to 400 m. 

 

Temperature and [O2] (figure 2.2) of the upper ~20m surface layer within Kau 

Bay reflect open ocean surface water values above the sill depth (figure 2.2). Freshwater 

input from the surrounding land reduces surface salinity within the Bay relative to outside 

the Bay, and stratifies the water column (figure 2.2). Ventilation of the entire water 

column within the basin may, however, occur when the wind- and current-driven flux of 

saltier and/or denser water entering the basin overcomes the salinity gradient, leading to 

deep mixing.  Van Aken and Verbeek (1988) proposed that flushing of Kau Bay is 
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possible annually during September-November, when the New Guinea Coastal Current 

(NGCC) introduces slightly higher salinity water to the vicinity of Kau Bay (Arruda and 

Nof, 2003; Masumoto et al., 2001; Wyrtki, 1961). The southward flowing Mindanao 

Current (MC) and the seasonally northwest- and southeast-flowing NGCC collide near 

Halmahera to develop the cyclonic Mindanao Eddy (ME) and the anti-cyclonic 

Halmahera Eddy (HE). The strength of these eddies depends upon the strength of the MC 

and NGCC, so their presence may influence Kau Bay flushing (Arruda and Nof, 2003; 

Masumoto et al., 2001; Ueki et al., 2003; Wyrtki, 1961; figure 2.1). 

There is also evidence that interannual changes in the mean climate state of the 

western equatorial Pacific, related to ENSO activity, exert significant control on the 

ventilation of Kau Bay. During modern El Niño events, the mixed-layer around 

Halmahera is characterized by colder and saltier water. Sea surface temperature (SST) 

data (Reynolds and Smith, 1994) for the 1 × 1 degree grid near the Kau Bay entrance 

reveal that SST cooled ~1 °C during all El Niño events since 1981.  Mooring data 

collected at long 138°E and 142°E (Ueki et al., 2003) show that the typical seasonal 

variability in the flow direction of the NGCC ceased during the 1997–1998 El Niño and 

that instead the NGCC flowed northwestward all year, advecting cold and salty surface 

water toward Halmahera. Moreover, precipitation in the area of Halmahera is not 

significantly affected by the Asian Monsoon, but is strongly influenced by ENSO, with 

lower precipitation during El Niño events (Aldrian and Susanto, 2003).  Increased 

primary productivity around Halmahera and Kau Bay during the very strong El Niño of 

1997–1998 (Christian et al., 2004) is consistent with the proposed thermocline shoaling 
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associated with El Niño-driven changes in regional circulation (Arruda and Nof, 2003; 

Ueki et al., 2003). 

 

 

Figure 2.2. Water-column profiles of temperature (A and B), salinity (C and D), and 
oxygen (E and F) from 1930 (Van Riel, 1943), 1985 (Van der Weijden et al., 1989), and 
measurements from 2003. 
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2. SEDIMENTARY NITROGEN AND CARBON ISOTOPES 

We measured nitrogen isotope ratios (as δ15N) on the <63µm fraction of bulk 

sediment from Kau Bay gravity core BJ8–03–102GGC at 8cm intervals (4.25m long, 

377m water depth, figure 2.1).  Radiocarbon dates on pteropods indicate that the δ15N 

series has a resolution of ~1 sample per 60 yr (figure 2.3; see Supplementary Information, 

Table 2.2, below).  Over the last 3,500 yr, sedimentary δ15N varied between 2.2‰ and 

5.6‰.  Today, nitrate (NO3
-) is completely consumed in Kau Bay’s surface water (Fig. 4) 

so that sedimentary δ15N records changes in the isotopic composition of subeuphotic zone 

nitrate. Several processes likely contribute to the δ15N of nitrate in Kau Bay: 1) inputs 

from the open ocean; 2) inputs by N-fixation; 3) removal via denitrification in anoxic 

water; and 4) nitrification of ammonium fluxing out of the anoxic water and sediment. 

Western Pacific surface water NO3
- has a δ15N of ~5–6‰ (samples collected during the 

R/V Baruna Jaya VIII 2003 cruise).  Nitrogen fixation reduces surface water NO3
- δ15N 

because nitrogen with a δ15N of 0‰ is fixed from atmospheric N2. In the deep basin, 

water column denitrifying bacteria in the absence of significant oxygen generally enrich 

the water column nitrate pool in 15NO3
-through the preferential conversion of 14NO3

- to 

N2 and N2O gases (Brandes et al., 1998; Liu and Kaplan, 1989; Sigman et al., 2003, 

2005). In contrast, nitrification, the oxidation of ammonium to nitrate, via nitrite, has a 

relatively large negative fractionation (~15‰; Casciotti et al., 2002) that is rarely 

apparent in oxic water columns because of the short turnover time for ammonium. 

Ammonium builds up in high concentrations in anoxic sediment, which may become a 

steady source of ammonium to the overlying oxic water column. The enrichment in Kau 

Bay bottom water δ15N (figure 2.4) is not as high as expected from the observed 
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enrichment in bottom water δ18O of NO3. In culture they increase 1:1 (Granger et al., 

2004a & b). In Kau Bay, δ18O of NO3 increases from 2-12‰ between 350m and the 

bottom, while δ15N increases from 6 to 9‰. This suggests that ~7‰ of the enrichment 

expected from the δ18O is negated by input of isotopically depleted N.  The deviation in 

the expected relationship appears to be originating from the sediment-water interface and 

we infer nitrification of NH4 to be the source. 

In open ocean regions of denitrification such as the eastern tropical Pacific and 

Arabian Sea, sedimentary δ15N is relatively high due to the effects of incomplete 

denitrification in the oxygen minimum zone (Liu et al., 1989; Altabet, 2001; Ganeshram 

et al., 2000). In contrast, nitrate supply to semi-enclosed basins such as Kau Bay is 

limited and denitrification results in the near complete removal of nitrate at depth.  

Moreover, extensive denitrification reduces the N/P in the water column, creating ideal 

conditions for nitrogen fixers (Haug et al., 1998; Thunell et al., 2004).  Ultimately, an 

increase in denitrification enhances nitrogen fixation, which results in lower δ15N, and 

vice versa (Haug et al., 1998; Thunell et al., 2004; Deutsch et al., 2007). In Kau Bay, 

nearly all the nitrate below the oxycline is consumed and the proportion of denitrified 

nitrate bearing the 15NO3
--rich signature of denitrification is low relative to the overlying 

surface water nitrate pool (figure 2.4).  An isotope effect (ε) of ~1.5‰ is calculated in 

Kau Bay assuming a closed system based on the Rayleigh approximation δ15N = δ15Nmid-

water column – ε ln f (Mariotti et al., 1981; Altabet and Francois, 1994), where the fraction of 

unused nitrate, f, is ([NO3
-
sediment water interface])/([NO3

-
mid-water column]) (~10µM). There is 

minimal expression of the denitrification ε of ~20-30‰ (Thunell et al., 2004; Sigman et 

al., 2003) in Kau Bay.   
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Figure 2.3. A: Bulk sediment δ15N. LIA—Little Ice Age; MWP—Medieval Warm 
Period. B: Total number of strong El Niño events per century interpreted from flood 
deposits in Laguna Pallcacocha, Ecuador (Moy et al., 2002). C: δ13C of terrestrial plant 
waxes (n-alkanes with chain lengths of 29 and 31 carbons, fatty acids with chain lengths 
of 32 carbons). D: Ratio of terrestrial to marine fatty acids. 
 

 

Figure 2.4. Nitrate concentrations and δ15N (A) and δ18O (B) of nitrate from center of 
Kau Bay, station 113HC; measurements taken in July 2003. 
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One interpretation of the downcore sedimentary δ15N data in Kau Bay is that the 

isotopic composition of the surface nitrate pool reflects the combined effects of this 

nitrogen fixation-denitrification feedback and inputs from the open ocean (~5‰) (Haug 

et al., 1998; Thunell et al., 2004). Alternatively, the downcore intervals of lower 

sedimentary δ15N may reflect periods of enhanced terrestrial inputs to Kau Bay 

(terrestrial organic matter has an average δ15N of 0‰; Brandes and Devol, 2002) or 

enhanced inputs of isotopically light N via the nitrification pathway.  

The -21 to -22 ‰ δ13C values of sedimentary organic carbon (Table 2.1) indicate 

that there is a lack of C4 plant influence throughout the core.  The organic carbon: total 

nitrogen (Corg/Ntot) and δ13C in the sediments (Table 2.1) indicate that marine organic 

carbon dominates throughout the core.  The concentrations and relative abundance of 

terrestrial to marine fatty acids (figure 2.3D) suggest a gradual decrease in the influence 

of a terrestrial source for organic matter in Kau Bay concomitant with the increase in 

δ15N from ~1,600 yr BP to 700 yr BP. The consistently low δ13C values (from −36 to 

−31‰) of terrestrial n-alkanes and fatty acids clearly indicate that inputs from C3 land 

plants (Makou et al., 2007; Street-Perrott et al., 1997) do not exert the dominant control 

on bulk sedimentary organic δ13C values (Table 2.1) throughout the last 3,500 yr. 
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Table 2.1. %C (organic), %N (total), C/N, and δ13C organics from core BJ8-03-102GGC, 
Kau Bay, Indonesia. The fraction <63um was analyzed and sub-samples for % organic 
carbon and δ13C were acidified prior to analysis. 
 

Age, yrBP 
% Organic 

C % Total N Corg/Ntot δ13C 

163 4.58 0.46 11.68 -21.75 
578 3.83 0.34 13.19 -22.06 

1035 4.24 0.35 13.97 -22.32 
1326 3.78 0.32 13.89 -21.66 
2329 4.53 0.35 15.28 -22.19 
3285 3.89 0.29 15.59 -21.27 

 

Variations in the δ15N and δ13C therefore appear to primarily reflect water column 

processes (Street-Perrott et al., 1997).  Moreover, whether the variations in δ15N are 

related to enhanced N fixation or enhanced nitrification, low δ15N corresponds to 

intervals of intensified stratification and anoxia in the basin and higher δ15N reflects 

periods of increased ventilation and the input of open ocean nitrate. 

The core top (modern) sample from Kau Bay multicore BJ8-03-103MC-F 

(companion to BJ8-03-102GGC) has a δ15N of 2.6‰ while subeuphotic zone nitrate 

bears a δ15N of ~5.5‰ (figures 2.3A and 2.4). The apparent disconnect between the 

modern water column nitrate pool and surface sediment δ15N maybe be accomplished 

through intensified terrestrial inputs or a recent partial flushing of the water column 

(figure 2.4). Recent ventilation is consistent with the long La Niña phase from 1998-2002 

and a transition to more El Niño conditions in 2003. If this is the cause, then this offset 

highlights the extremely dynamic nature of the Kau Bay water column.  
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3. DISCUSSION 

We interpret downcore increases in the δ15N as reflecting enhanced Kau Bay 

ventilation.  Although we cannot unequivocally ascertain which of the proposed 

processes is responsible for the observed changes in sedimentary δ15N, it is important to 

note that whether acting alone or together, all generate the same response to ventilation; 

increased ventilation will lead to higher δ15N while stagnation will reduce the δ15N. 

Increased flushing is most likely stimulated during periods of more frequent and/or 

intense El Niño events or a more El Niño-like mean state in the WPWP.  A reduction in 

El Niño frequency and/or intensity or fresher and warmer mean state in the WPWP would 

result in basin stagnation and an overall decrease in δ15N. Accordingly, the δ15N record 

(figure 2.3A) documents a less El Niño-like (neutral or La Niña-like) mean state or less 

frequent and/or weaker El Niño episodes from ~3,500 to ~1,700 yr BP. During this time 

interval, high runoff likely caused the increase in terrestrial input and may have promoted 

a fresh water cap at the basin’s surface that resulted in basin stagnation. Ventilation 

improved at ~1,700 yr BP, likely due to thermocline shoaling in the WPWP in 

association with more El Niño-like mean surface conditions or stronger and/or more 

frequent El Niño events.  Basin stagnation, signaling less El Niño-like conditions, 

occurred during the time frame of the Medieval Warm Period (MWP), from ~1000–

750yrBP. This episode was followed by an increase in El Niño activity that culminated at 

the beginning of the Little Ice Age (LIA) at ~700yrBP. The Kau Bay record suggests that 

the remainder of the LIA was characterized by a steady decrease in El Niño activity with 

warming and freshening of the surface water that continued to the present. The surface 

freshening is consistent with the results of Stott et al. (2004) and Newton et al. (2006). 
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Within age model uncertainties, other paleoclimatic records support our 

interpretation of the Kau Bay geochemical records as reflecting century-scale ENSO 

variability. Most notably, the chronology of flood deposits in Laguna Pallcacocha, 

Ecuador (Moy et al., 2002; Rodbell et al., 1999), attributed to intense El Niño events, 

shows similar century-scale periods of increased El Niño frequency over the last ~1,500 

yr, with diminished El Niño frequency during the past ~700 yr (figure 2.3). Decreased 

terrestrial input on the Peru margin and in the Cariaco Basin that began at ~1000yrBP has 

been attributed to drought and is also consistent with less frequent or weaker El Niño 

events or less El Niño-like conditions (Haug et al., 2001; Hodell et al., 2005; Rein et al., 

2004; Rein et al., 2005). Not all climatic events recorded in the Kau Bay and Laguna 

Pallcacocha are evident in these other marine records, suggesting that they may be 

influenced by other climatic factors. By contrast, the finding of similar century-scale 

variability in climate archives from two El Niño-sensitive regions on opposite sides of the 

tropical Pacific strongly suggests that they are dominated by the low-frequency 

variability of ENSO or by ENSO-related changes in the mean state of the surface ocean 

in equatorial Pacific. 

 

4. SUMMARY AND CONCLUSIONS 

We used a record of bulk sedimentary δ15N with additional complementary 

organic analyses from Kau Bay cores 102GGC and 103MC-F in order to determine the 

ventilation history of Kau Bay and its relation to WPWP climate.  The δ15N record 

remained reduced throughout much of the record, probably the result of increased 

nitrogen fixation and nitrification of ammonia during periods of extensive basin 
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stagnation.  Increases in δ15N were probably the result of increased basin flushing, most 

likely due to more frequent and/or intense El Niño events, when slackened trade winds 

are likely to cause the NGCC to flow northwestward towards Kau Bay throughout the 

entire year, bringing colder and saltier water to the vicinity of Kau Bay’s sill.  An 

increase in El Niño activity occurred at ca. 1,700yrBP followed by peaks at 1,500yrBP, 

1150yrBP, and 700yrBP.  According to this record, there was an overall increase in El 

Niño activity corresponding to the MWP and a decrease in El Niño activity during the 

LIA.   

 

SUPPLEMENTARY INFORMATION 

5. METHODS 

5.1. C and N Stable Isotope and C/N Analyses 

Gravity core 102GGC (4.25m) and companion multicore 103MC (0.7m) were 

collected during the BJ8-03 cruise in July 2003 from the southern portion of Kau basin at 

377m water depth.  Core 102GGC was split and sampled as 1-cm-thick quarter rounds 

from 0 to 424cm at 2-cm intervals.  These samples were brought to the University at 

Albany, State University of New York, where they were wet-sieved into <63µm and 

>63µm fractions.  The <63µm fractions were dried at room temperature (~25˚C).  The 

<63µm fraction was separated from the bulk sediment sample in order to remove 

biogenic carbonates, coarse grained organics, inorganic carbonates, and ammonium.  

Samples from 8-cm intervals were analyzed for bulk δ15N and 6 samples were selected 

for δ13C measurement.  
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All sediment samples for δ15N were combusted in tin foil capsules in a stream of 

helium and oxygen in a Carlo Erba NA 1500 Series II NC elemental analyzer (EA) in the 

Stable Isotope Ratio Mass Spectrometry (SIRMS) Laboratory at the University at 

Albany.  Weight %C and %N of the ~12mg samples, from which C/N were calculated, 

were determined using the thermoconductivity detector of the EA.  Reagent-grade 

acetanilide standards were interspersed among the samples.  The δ15N of ~12 mg samples 

was determined using a VG Instruments Optima gas-source triple-collector mass 

spectrometer in continuous-flow mode.  All isotopic samples were analyzed in duplicate, 

with the average difference between replicate pairs equal to or better than ±0.25‰, and 

peach tree leaf standard NIST-1547 was analyzed after every 10th sample.  δ15N is 

expressed as per mil deviations relative to nitrogen in air. 

Carbonates were removed from the samples used for δ13C of organic matter by 

acidification in HCl for 60-72 hours at 60-65˚C and then dried over silica gel and Drierite 

at 60-65˚C until the analyses were performed using a Carlo Erba 1107 Elemental 

Analyzer connected via a Conflo III interface to a Finnigan DeltaPlus mass spectrometer 

at the Woods Hole Oceanographic Institution (WHOI). 

5.2. Radiocarbon AMS Dating 

Radiocarbon analyses were performed on 9 samples throughout the core, shown 

in Table 2.2.  Each sample contained ~5mg of shells of the pteropod Creseis acicula.  

These tests were cleaned with deionized H2O and dried in an oven at ~75˚C overnight, re-

weighed, and analyzed by the National Ocean Sciences Accelerated Mass Spectrometry 

(NOSAMS) facility at WHOI for AMS 14C dating. A 300-yr reservoir correction was 

applied based on average reservoir ages obtained from surrounding locations (Dang et 
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al., 2004; Southon et al., 2002) and corrected using the Fairbanks radiocarbon calibration 

curve (Fairbanks et al., 2005). 

 

Table 2.2. Radiocarbon dates on core 102GGC.   The pteropod Creseis acicula was used 
for dating.  Calendar ages were corrected using the Fairbanks et al. (2005) calibration 
curve following a 300-yr reservoir correction. 

Core 102 GGC Age Age Error Calendar Ages Sedimentation rate  NOSAMS 

Depth (cm) 
C-14 
years years 300 yr. Res. Corr.  (cm/100 years) 

Accession # 

20 690 30 333  OS-57842 
40 805 35 528 10.3 OS-53225 
72 1130 40 728 16.0 OS-50536 

153 1520 30 1157 18.9 OS-57841 
200 1790 40 1372 21.9 OS-53236 
264 2120 35 1752 16.8 OS-53237 
312 2400 30 2076 14.8 OS-53238 
361 2600 30 2334 19.0 OS-57847 

   424 3460 35 3385 6.0 OS-50537 
Core 103MC-F Age Age Error Calendar Ages Sedimentation rate   

Depth (cm) 
C-14 
years years 300 yr. Res. Corr.  (cm/100 years) 

 

18 165 30 -135  OS-59327 
49 715 18 667 7.3 OS-59328 

Core 115 GGC Age Age Error Calendar Ages Sedimentation rate  

Depth (cm) 
C-14 
years Years 300 yr. Res. Corr. (cm/100years) 

 

37 575 30 279  OS-50567 
378 1000 30 709 79.3 OS-50568 

      
 

5.3. Water Column Nitrate N and O Isotope Analyses 

N and O isotopes of water column nitrate were measured by the “denitrifier” 

method in Dr. D. Sigman’s Laboratory at Princeton University. 10-20 nmol of NO3
- is 

quantitively transformed to N2O by a strain of denitrifying bacteria that lack N2O 

reductase. The resulting N2O is measured by continuous-flow isotope ratio mass 

spectrometry. Referencing to N2 in air is done through parallel measurement of the 

IAEA-N3 standard with an accepted δ15N of 4.7‰.  Precision of replicate analyses was 

generally within 0.1‰ (1SD) (Casciotti et al., 2002; Sigman et al., 2001). 

 

 



 

 25 

5.4. Fatty Acid and Alkane Analyses 

Bulk samples were dried and then the total lipid extract (TLE) was obtained with a 

Dionex accelerated solvent extractor (ASE) 200 using 90/10 (v/v) dichloromethane 

(DCM)/methanol (MeOH) in 100˚C at 1,000psi pressure (Drenzek et al., 2007).  Fatty acids 

were extracted from the TLE via fully-activated silica gel columns with 2% formic acid in 

DCM and were further purified by elution through aminopropyl columns with 2% formic 

acid in DCM.  The fatty acid fractions were transesterified overnight (70˚C, 95/5 

MeOH/HCl) with a methanol solution of known carbon isotopic composition.  The 

transesterified fatty acid methyl esters (FAMEs) were recovered by extraction into hexane 

and further purified by elution through fully-activated silica gel columns with 5% ethyl 

acetate in hexane.  Alkanes were separated from the TLE in fully-activated silica gel columns 

with 100% hexane.   

n-Alkanes were separated from branched and cyclic alkanes by urea-adduction 

(Ohkouchi et al., 2005).  40g/mL urea/methanol solution was added to alkanes fractions 

previously dissolved in 2/1 hexane/DCM.  The samples were refrigerated for 15 minutes, 

after which the urea clathrate containing the n-alkanes were rinsed twice with solvent to 

remove branched and cyclic compounds.  Finally, elemental sulfur was removed from the 

alkane fraction by the addition of copper powder previously activated with 4N HCl and 

cleaned in distilled water (DCM extracted Milli-Q), MeOH, DCM, and hexane. The FAMEs 

and n-alkanes fractions were dissolved in hexane prior to analysis by gas chromatography 

using a Hewlett Packard 5890 Series II gas chromatograph (GC) equipped with flame 

ionization detection (60m x 0.32mm i.d. x 0.25µm film DB-5 column, H2 carrier gas).  C14-

C34 fatty acid concentrations were determined relative to an in-house FAME standard.  These 
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samples were also submitted for δ13C analysis on a ThermoFinnigan Deltaplus gas source mass 

spectrometer (Drenzek et al., 2007; Ohkouchi et al., 2005).  
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CHAPTER 3 

 

Late Holocene climate variability recorded in pteropods from Kau Bay, Indonesia:  

Evidence for coordinated century-scale zonal climate change in the Pacific Basin 

 

ABSTRACT 

In order to determine long-term changes in heat storage of the Western Pacific Warm 

Pool (WPWP) in reference to the eastern equatorial Pacific, pteropod oxygen and carbon 

stable isotopes (δ18O, δ13C) and Sr/Ca were analyzed from a ~3,500-year-long sediment 

core record from Kau Bay, Indonesia, (0˚N, 127.5˚E).  Radiocarbon dates indicate that 

this gravity core had an average near-linear accumulation rate of 180 to 200 cm/Kyr.  

Temporal variations in pteropod δ18O, δ13C, and Sr/Ca are compared to climate records 

of similar age and temporal resolution from the western Pacific warm pool (WPWP), 

China, Makassar Strait in Indonesia, and the eastern equatorial Pacific (EEP).  The Kau 

Bay pteropod δ18Osw record correlates with East Asian Monsoon records on glacial-

interglacial timescales, while large segments of the pteropod Sr/Ca record are remarkably 

similar to several records from the EEP.  The pteropod Sr/Ca record correlates to the El 

Junco % sand (Conroy et al., 2008) with congruity to the Laguna Pallcacocha record of 

flood events from intense El Niño events (Moy et al., 2002).  This indicates that: 1) Kau 

Bay pteropod shell δ18O, δ13C, and Sr/Ca do contain significant paleoclimate information, 

2) based on Kau Bay pteropod δ18O, δ13C, and Sr/Ca, the surface water in Kau Bay was 

warmer ~3,000-2,500 years ago than during the last 2,200 years, 3) century-scale changes 

in late Holocene zonal dynamics may have had a strong effect on the WPWP and, 
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therefore, global climate, and 4) varying strength of the East Asian Summer Monsoon 

(EASM) in addition to zonal dynamics and variable positioning of the ITCZ have had a 

strong influence on Kau Bay climate.  This may suggest that ENSO-like variability, or 

the mean state of ENSO in the Pacific, occurs in the equatorial Pacific on century-scale 

frequencies. 

 

1. INTRODUCTION 

The Western Pacific Warm Pool (WPWP; part of the Indo-Pacific Warm Pool, 

IPWP) has a significant influence over global climate by storing large quantities of heat 

(e.g., Clement et al., 1999; Klein et al., 1999; Wang and Fu, 2000).  Today, changes in 

the heat distribution from the WPWP cause major global shifts in climate that can, in 

turn, have a large effect on all ecosystems (as discussed in Qu et al., 2005, and Cane, 

2005).  Cross-basin oceanic and atmospheric dynamics play a tremendous role in the 

storage of energy within the WPWP, affecting inter-annual climate phenomena such as El 

Niño Southern Oscillation (ENSO) and the East Asian Monsoon (EAM).  There is a need 

to examine lower resolution changes in the WPWP in order to determine if there were 

any previous large-scale shifts or recurring temporal patterns in WPWP heat distribution 

due to changes in Walker circulation or other unknown phenomena.   

 

1.1. Century-Scale Zonal Climate Variability in the WPWP 

Today, zonal climate variability in the equatorial Pacific is typically characterized 

by interannual ENSO variability.  ENSO is a climate phenomenon during which changes 

of equatorial trade wind strength redistributes heat across the Pacific Ocean.  This 
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phenomenon is fed by sea surface temperature (SST) gradient changes across the Pacific 

and affects global distributions of heat and convection (e.g., Cane, 2005).  Based on the 

instrumental record, this phenomenon appears to vary with a periodicity of 3-7 years.  

Paleoclimate data suggest that processes similar to ENSO may occur in cycles over 

greater periods of time.  For example, changes in the mean state of the Pacific during the 

late Holocene that would induce longer durations of more frequent and/or intense El Niño 

and La Niña episodes and are unrelated to other known forcings, such as solar or orbital 

forcings, may be related to the interannual ENSO phenomenon (e.g., Stott et al., 2002; 

Conroy et al., 2008; Moy et al.,2002; Oppo et al., 2009; Koutavas and Lynch-Steiglitz, 

2004; Mitsuguchi et al., 2008).  However, the connection between lower resolution 

patterns and interannual ENSO remains unclear despite paleo-records from both the 

eastern and western equatorial Pacific that appear to portray decades, centuries, or 

millennia over which ENSO was diminished in frequency and/or strengthened (e.g., Moy 

et al., 2002; Stott et al., 2002; Lachniet et al., 2004; Controy et al., 2008). 

High resolution records that extend back across millennia, like those presented 

here, are valuable because they potentially can document past  environmental variability 

taking place in a region currently dominated by ENSO.  Many other sediment-based 

paleoclimate records from ENSO-sensitive regions do not specifically record interannual 

changes in ENSO.  Records that reach back several thousands of years and show possible 

millennial-scale changes in ENSO include temperature and salinity records derived from 

δ18O and Mg/Ca of planktonic foraminifera from the western equatorial Pacific (Stott et 

al., 2002) and % grain size varying alongside storm intensity likely stemming from 

variability in ENSO frequency and/or intensity from Laguna Pallcacocha in Ecuador 
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(Moy et al., 2002) and El Junco Lake in the Galapagos islands (Conroy et al., 2002).  

More recent Holocene data sets that appear to demonstrate century-scale or shorter-term 

ENSO variability include planktonic foraminifera δ18O and Mg/Ca records from 

Makassar Strait, Indonesia (Newton et al., 2006; Oppo et al., 2009).  Meanwhile, a δD 

record from Makassar Strait reflects century-scale hydrological shifts possibly associated 

with ENSO (Tierney et al., 2010).  Therefore, although ENSO variability is described as 

an interannual phenomenon, century-scale and millennial-scale trends in the frequency 

and/or intensity of ENSO appear to exist and need to be reconciled within records from 

the equatorial Pacific region. 

 

 

1.2. Kau Bay Hydrography 

Kau Bay is a 470m deep, silled basin located in Halmahera, Indonesia within the 

western sector of the WPWP (figures 3.1 and 3.2). Surface water between the basin and 

the WPWP can be exchanged on the northern end of Kau Bay, where there is a restrictive 

sill that is 30m deep (Van Aken and Verbeek, 1988). Temperature and salinity profiles of 

the Kau Bay water column measured in 1930, 1985, and 2003 show that the basin is 

commonly well-mixed and that temperature and salinity throughout the basin reflect 

those properties of the uppermost surface water entering from across the sill (figure 3.3).  

Regional surface oceanographic conditions near Halmahera appear to control mixing with 

external water (Van Aken and Verbeek, 1988).  These conditions are influenced by the 

interaction of the southward flowing Mindanao Current (MC) and by the variable 

northwestward flowing New Guinea Coastal Current (NGCC; figure 3.2).  The 
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interaction of these two currents near the equator leads to the seasonally alternating 

development of the cyclonic Mindanao Eddy (ME) and the anti-cyclonic Halmahera 

Eddy (HE) (e.g., Wyrtki, 1961; Masumoto et al., 2001; Arruda and Nof, 2003).  The 

NGCC seasonally changes direction, but generates a net equator-ward movement.  Van 

Aken and Verbeek (1988) proposed that flushing of Kau Bay was possible annually 

during September-November, when the NGCC introduces slightly higher salinity water 

to the vicinity of Kau Bay and recurves into the North Equatorial Countercurrent (NECC; 

figure 3.2).  This is also the time of year that the HE is fully developed (Masumoto et al., 

2001).  During the northeast monsoon, the ME develops and the HE dissipates 

(Masumoto et al., 2001; Arruda and Nof, 2003). 

 

 

 

 

 

 

 

Figure 3.1: Extent of the IPWP and WPWP, and location of Kau Bay (blue star), 
Makassar Strait (yellow star), Panama and the Galapagos Islands (yellow diamond), and 
the Heshang and Dongge caves (white square) 
(http://earthobservatory.nasa.gov/Features/WarmPool/). 
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Figure 3.2. Map of SST anomalies (left) during January 1998 (peak El Niño conditions) in the 
western Pacific region (Reynolds and Smith, 1994) with the New Guinea Coastal Current 
(NGCC), South Equatorial Current (SEC), North Equatorial Current (NEC), and the Mindanao 
and Halmahera Eddies shown. The location of core 102GGC in Kau Bay is shown in the right 
panel (Van Aken and Verbeek, 1989).   
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Figure 3.3. Temperature, salinity, and oxygen depth profiles from Kau Bay.  A and B: 
temperature; C and D: salinity; E and F: oxygen.  Adapted from Langton et al., 2008. 

 

 

Since the 1970s, El Niño events have brought colder and saltier water to the 

surface ocean mixed layer around Halmahera (figure 3.2).  During strong El Niño events, 

such as during the 1982-1983 and 1997-1998 El Niños, the WPWP was ~1-1.5˚ cooler 

than average in the area of Halmahera.  Meanwhile, Halmahera was up to 2˚ warmer than 

average during strong La Niña events, e.g., 1988-1989, 1998-1999, 2000-2001, and 2010-

2011.  Increased rainfall persists during these strong periods of La Niña, while decreased 
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rainfall and increased salinity is typical of strong El Niño episodes in the vicinity of Kau 

Bay.  SST data (Reynolds and Smith, 1994) for the 1 x 1 degree grid near the Kau Bay 

entrance reveal that SST cooled ~1°C during all El Niño events since 1981, apparently in 

response to regional thermocline shoaling.  Salinity data from Levitus et al. (1994) show 

that the NGCC brings colder, saltier water towards Halmahera during the northwest 

monsoon (figure 3.4).  Mooring data collected at longitudes 138°E and 142°E showed 

that the typical seasonal variability in the flow direction of the NGCC ceased during the 

1997-1998 El Niño and, instead, flowed northwestward all year.  This advected cold, 

salty surface water to the area of Halmahera (Ueki et al., 2003).  Meanwhile, Aldrian and 

Susanto (2003) formulated a double correlation model that showed that precipitation in 

the area of Halmahera is strongly influenced by interannual variations in ENSO.  This 

region exhibits strong negative precipitation anomalies during the already dry months of 

June through November during El Niño episodes, while increased rainfall is present 

during these months in a La Niña episode (Aldrian and Susanto, 2003). This evidence 

suggests that the most significant changes in salinity and temperature within Kau Bay are 

linked to ENSO variability.   
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Figure 3.4.  Maps of surface salinity during the southeast monsoon (July-Sept) (left) and 
northwest monsoon (January-March) (right) in the western Pacific region. Halmahera and 
Kau Bay are indicated by the white box. Note the slightly more saline water in the NGCC 
region and Kau Bay during the boreal winter monsoon. Salinity data are from Levitus et 
al. (1994). Blue arrows denote the flow of the ITF, of which ~ 80% flows through the 
Makassar Strait, between Kalimantan and Sulawesi.  The general latitudinal range of the 
ITCZ convection belt for summer and winter in the Western Pacific based on Waliser and 
Gautier (1993) are shown. 
 

1.3. Rainfall in Kau Bay 

The Kau Bay-Halmahera region receives ~4,000mm of rain on average each year 

(Suparan et al., 2001).  The largest river is the Kau River and it empties into Kau Bay on 

its northwestern shore.  There is little seasonal climate variability, but the months of July 

through September are typically drier.  Prior to the twentieth century and into the WWII 

era, explorers described the lowlands surrounding Kau Bay to be comprised of evergreen 

lowland forest.  The coastal belt along Kau Bay was comprised of secondary forest and 

scrub and natural grasslands, and the interior plain contained large open grassland to 

herbaceous swamps, sago palm swamps, swamp forests, and mangrove stands within the 

Kau River delta (Suparan et al., 2001).   
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In the Kau Bay watershed, precipitation is mainly affected by ENSO variability and 

the mean position of the ITCZ (Aldrian and Susanto, 2003).  The ITCZ enhances 

equatorial upwelling during the peak of the northern hemisphere summer (Aug.-Sept.), 

when southeast trade winds are strongest.  Equatorial upwelling reduces SSTs and creates 

a shallow thermocline.  During the peak of the northern hemisphere winter (Feb.-Mar.), 

the ITCZ migrates to its southernmost point, winds subside, equatorial upwelling is 

diminished, and equatorial SSTs may increase (Chelton et al., 2001).  At present, the 

ITCZ has a northern bias and a southern migration of the ITCZ was apparent during the 

last glacial maximum (LGM; e.g., Koutavas and Lynch-Stieglitz, 2004).   

The position of the ITCZ is affected by ENSO on interannual time periods most 

clearly in the eastern Pacific.  During El Niño, the ITCZ shifts toward the equator in the 

eastern Pacific and migrates north during La Niña.  La Niña peaks during the boreal 

summer while the ITCZ is in its more northern position and this phase of ENSO 

intensifies equatorial upwelling.  Weakened trade winds during El Niño episodes add to 

the diminished upwelling and increased SSTs across the equatorial Pacific that normally 

peak when the ITCZ is in its southernmost position from January to February (Waliser 

and Gautier, 1993).   

Records from the tropical Pacific within the ITCZ show a southward migration of 

the ITCZ from the Medieval Warm Period (~700yrBP) to the Little Ice Age (~200yrBP), 

followed by a return to a more northern position after 200yrBP (e.g., Newton et al., 2006; 

Moy et al., 2002; Sachs et al., 2009).  For example, a δD lipid record from El Junco Lake 

in the Galápagos (1˚S; Sachs et al., 2009) and foraminiferal Mg/Ca records from 

Makassar Strait, Indonesia (2˚S; Newton et al., 2006; Oppo et al., 2009), both display 
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evidence for wet climates during the LIA, which suggests a more southerly location of 

the ITCZ.  Currently, these areas are on the southern edge of the seasonal ITCZ and are 

more arid now than they were during the LIA.  Meanwhile, areas that currently are 

located at the northern extreme of the seasonal ITCZ, e.g., Palau (7˚N, 134˚E, Sachs et 

al., 2009); Washington Island (5˚N, 160˚W, Sachs et al., 2009); Panamá, (8˚N, 82˚W, 

Linsley et al., 1994); and the Cariaco Basin (11˚N, 72˚W; Haug et al., 2001) were drier 

during the LIA than at present.  The more southerly position of the ITCZ during the LIA 

was likely the result of, or led to, a period of decreased ENSO activity. This is 

demonstrated by ENSO records such as the grain size distribution records from El Junco 

Lake, Galápagos, and Laguna Pallcacocha, Ecuador, which show significantly increased 

ENSO activity 1,500-2,000yrBP and during the MWP followed by a decrease in ENSO 

activity during the LIA (Conroy et al., 2008; Moy et al., 2002). 

 

1.4. Basin Sediments: 

Gravity and multi-cores were collected in Kau Bay in 2003. This unique setting has 

resulted in an intermittently dysoxic water column in the basin with high sedimentation 

rates in excess of 180 cm/kyr in many parts of the basin and minimal bioturbation. The 

Kau Bay cores were essentially devoid of benthic and planktonic foraminifera.  As a 

result, other proxies were explored to determine if paleo-environmental signals existed in 

sediments from Kau Bay.  Organic matter proxies, including δ15N, C/N, δ13C, and 

compound specific C and O isotopes were examined in Langton et al., 2008.   

In addition, unbroken and unaltered pristine aragonitic pteropod shells of the 

species Creseis acicula were abundant throughout the cores.  Although it is known that 
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these organisms will migrate to various depths throughout a large temperature range, Kau 

Bay does not display temperature stratification below the shallow thermocline at 50m.  

Although most pteropod species cannot tolerate salinities greater than 34‰ (Rottman, 

1979), which is characteristic of most of Kau Bay’s water column (figure 3.3), C. acicula 

is able to thrive in high salinity environments (Winter et al., 1983).  Pteropod shells were 

analyzed for δ18O, δ13C, and Sr/Ca.  δ18O typically reflects temperature and salinity 

change in other biogenic aragonites (e.g., Grossman and Ku, 1986), while Sr/Ca in 

gastropods often varies in response to water temperature (e.g., Sosdian et al., 2006; Smith 

et al., 1979; Beck et al., 1992), although in pteropods these tracers are very poorly 

calibrated.  We compared our pteropod δ18O and Sr/Ca records to other records from the 

Makassar Strait and eastern equatorial Pacific (EEP). These include a leaf wax δD record 

from cores 31MC and 34GGC from Makassar Strait (Tierney et al., 2010), a grain size 

record from El Junco Lake in the Galápagos (Conroy et al., 2008) and a δ18O record of a 

speleothem from Chilibrillo Cave, Panamá (Lachniet et al., 2004).  These comparisons 

lead to two new findings: 1) pteropod shells in this setting can be used to generate 

detailed paleoclimate reconstructions, and 2) there is a correlation between century-scale 

cross-basin variability in the WPWP and EEP. 

 

1.5. Pteropod Analyses 

The δ18O and δ13C of calcium carbonate precipitated by marine microorganisms 

can vary with temperature, salinity, and changes of the DIC content of the water 

(Broecker and Peng, 1983; Epstein and Mayeda, 1953; Juranek et al., 2003). The co-

precipitation of Sr varies in inorganically precipitated aragonite with respect to water 
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temperature (Elsdon and Gillanders, 2005).  Pteropod shell δ18O, δ13C, and Sr have not 

been used for paleoclimate reconstructions in part because accurate calibration has not 

been possible due to the difficulties of studying live specimens.  Pteropods are often 

poorly preserved in the fossil record due to a shallow or variable aragonite lysocline 

depth (Fabry and Deuser, 1992; Sijinkumar et al., 2010).  However, their ubiquitously 

large populations in many marine environments in addition to their comparatively large 

size would make them potentially useful for paleoclimate and paleoenvironmental 

reconstructions, especially as an accompaniment to foraminifera-based records.  In Kau 

Bay, the abundance of pteropods and scarcity of foraminifera gave us the opportunity to 

more closely examine pteropod shell chemistry as possible proxies for paleoclimate 

reconstructions. 

One of the hindrances of using pteropods for paleothermometry or paleo-

environmental studies is that their calcification depths are poorly known.  Fabry and 

Deuser (1992) initially determined that several species of pteropods calcify their shells 

within the upper 75m of the water column in the Sargasso Sea.  In this study, C. acicula 

(the pteropod present in Kau Bay) appeared to calcify its shell only within the upper 25m 

of the surface water.  However, Juranek et al. (2003) found that C. acicula has a diel 

migration down to 250m in order to follow food sources that vary from day to night and 

seasonal vertical migration may be in excess of 1000m, which clearly affected the shell 

δ18O and apparently contradicted the previously estimated shallow calcification depths.  

Although more research is necessary to determine the correct calcification depths for C. 

acicula, the calcification depth of C. acicula probably does not affect their shell δ18O 

stable isotope geochemistry in Kau Bay for several reasons: 1) Kau Bay does not exhibit 
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significant temperature and salinity stratification (1°C and ~0.5 p.s.u. difference between 

top and bottom of thermocline and halocline respectively); 2) Kau Bay is dysoxic and the 

low dissolved oxygen levels should discourage deeper calcification of pteropods; and 3) 

the water column in the basin reflects conditions of only the Pacific Ocean surface water 

directly over the bay’s sill, down to ~30m depth (figure 3.3). 

There are several advantages of using pteropod shells for paleoclimate 

reconstruction in Kau Bay.  Since Kau Bay temperature and salinity are well mixed and 

the basin water is only fed by surface water from the upper 30m across the sill connecting 

it with the open Pacific and WPWP, pteropod shells should approximate temperature and 

salinity variability in the WPWP assuming they calcify in the mixed layer.  A previous 

study (Chapter 2 and Langton et al., 2008) showed that Kau Bay is periodically flushed 

by water from the WPWP.  This study evaluated the ventilation history of Kau Bay via 

changes in nitrogen isotope composition of sedimentary organic matter.  Significant 

changes in nitrogen isotope variability occurred when the basin bottom waters were 

flushed with water from the WPWP, but this record did not record subtle changes in 

water composition due to partial mixing with water from over the sill.  The pteropod shell 

records possibly show greater variability in relation to partial mixing with surface water 

from the WPWP in addition to rainfall because this variability is not dependent on 

complete flushing of the basin’s bottom water. 

 

1.5.1. Pteropod Oxygen and Carbon Isotopes  

According to Grossman and Ku (1986) and Juranek et al. (2003), pteropods 

appear to build their aragonitic shells at or near aragonite-water equilibrium so that their 
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shell 18O/16O is controlled by a combination of ambient temperature and the 

precipitation/evaporation cycle.  The entire water column in Kau Bay is above the 

aragonite lysocline and alkalinity throughout the entire 470m depth reflects the alkalinity 

of the upper 50m of surface water from over the sill just to the northeast of the basin 

(table 3.1), so there is no reason to suspect alteration of oxygen or carbon isotopes from 

dissolution.  This is supported by the pristine preservation of pteropods in the Kau Bay 

cores we collected. The ratio of 18O/16O in biogenic carbonates often bears an inverse 

relationship with sea surface temperature (SST).  However, since marine biogenic 

carbonate 18O/16O is also a function of 18O/16O in seawater (linear relationship with 

salinity), calcium carbonate can preserve a record of absolute SST and surface water 

salinity from the time of calcification.   

 
Table 3.1. Alkalinity within Kau Bay and to the east of Kau Bay measured during the 
BJ8-03 expedition in 2003. 

Kau Bay (0˚N, 127˚E) 
Depth, m Alkalinity (µmol/eq) 

East of Kau Bay Sill 
(1˚N, 128˚E) Depth, m 

Alkalinity (µmol/eq) 

14.67 2255.84 25.58 2269.25 
59.55 2258.68 50.38 2257.73 
80.44 2258.31 100.00 2313.46 
99.67 2259.06 150.12 2331.64 

150.25 2259.17 199.92 2332.72 
300.00 2260.23 400.31 2312.35 
350.36 2272.95 500.75 2328.52 
400.28 2283.15 749.93 2350.51 
424.94 2282.11 1000.04 2364.25 

  1399.89 2381.33 
  1849.52 2404.08 

 

Records of δ18O in calcitic and aragonitic foraminifera tests from ocean sediments 

have been extensively utilized as paleotemperature and paleosalinity tracers because of 

their widespread abundance in ocean sediments.  Mollusk shell δ18O has been shown to 

correlate well with the aragonitic foraminifera Hoeglundina elegans (Grossman and Ku, 
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1986).   In addition, the δ18O in coral aragonite is often analyzed to determine 

temperature and salinity variations on monthly to interannual timescales in tropical 

regions for shorter periods of time.  While the use of pteropods in geochemistry is limited 

by inadequate numbers of calibrated datasets and the inability to preserve and to culture 

living specimens for calibration studies, there is great potential to expand their use to 

other basins with parameters like Kau Bay (Fabry and Deuser, 1992; Juranek et al., 

2003).  Finally, pteropods have the potential to expand paleoclimate studies in such 

basins because of their robust size that encourages easier analytical procedures, 

ubiquitous range, salinity tolerance, and year-round life spans. 

While the effect growth rate and other biological factors on pteropod aragonite 

δ18O is not defined, their shells are developed close to equilibrium with seawater less a 

possible enrichment of δ18O by ~0.8‰ compared to calcite, which is equal to the amount 

of offset from inorganic precipitates (Grossman and Ku, 1986; Tarutani et al., 1969).  

Since the extent and magnitude of this offset is thought to be constant, relative changes in 

the timing and amplitude of downcore pteropod δ18O remains unaffected.  Fabry and 

Deuser (1992) determined that the magnitude of the non-equilibrium δ18O fractionation 

for C. acicula was 0.3‰.  These pteropods appear to have faster growth rates with a total 

developmental time of only a few months compared to a rate that extends up to a year in 

other species (Fabry and Deuser, 1992).  Pteropods in the Sargasso Sea calcify their 

shells at different depths and water temperatures seasonally (Juranek et al., 2003).  In 

addition, C. acicula does not show a seasonal preference for calcification, so δ18O from a 

group of specimens likely reflects annual averages. 
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The δ13C of pteropods is affected by a combination of salinity, DIC content, and 

[CO3
2-] (Grossman and Ku, 1986; Juranek et al., 2003).  Pteropod δ13C appears to vary 

inversely with DIC and [CO3
2-] (Fabry and Deuser, 1992; Grossman and Ku, 1986; 

Juranek et al., 2003).  The amount of the carbonate ion effect (CIE) is similar in at least 

two species of pteropod (Juranek et al., 2003) and the foraminifer Globigerina bulloides 

(Spero et al., 1997).  [CO3
2-] and alkalinity vary with water depth and temperature, so the 

variability of pteropod δ13C has previously been shown to reflect variability in water 

temperature (Juranek et al., 2003; Grossman and Ku, 1986).  Although many of the same 

parameters affect δ13C and δ18O, unknown metabolic and microhabitat controls can affect 

δ13C, adding to the difficulty and uncertainty of the interpretation.   

 

1.5.2. Variability of Strontium in Pteropod Shells 

Trace metals with long residence times (~100,000 years) that are incorporated into 

the calcite and aragonite of marine organisms and act in a conservative manner in the 

oceans may be used as paleoclimate and paleoenvironment tracers if the Metal:Ca ratio 

(Me/Ca) in the organism is in equilibrium or at a constant offset with ratios in seawater 

(Allison, 1996; Russell et al., 2004; Elsdon and Gillanders, 2005a).  Trace metals may 

form a solid solution in CaCO3 by the following processes: 1. aqueous speciation and 

diffusion, 2. adsorption and desorption onto mineral surfaces, 3. ligand exchange 

reactions, 4. rearrangement of ligand coordination, and 5. coordination changes and 

diffusion within the solid (Meece and Benninger, 1993; Russell et al., 2004).  All of these 

processes combined will affect the total co-precipitation of trace metals in biogenic 

precipitation of calcium carbonate.  Environmental parameters affect each of these 
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processes and thus influence the incorporation of trace metals into shell calcium 

carbonate, which is why calibration experiments are important to paleoclimate records 

using trace metal abundances.  

While Sr/Ca in biogenic calcite tends to increase with temperature (Lea et al., 1999), 

there have been discrepancies in the water temperature effects on Sr/Ca in aragonite.  In 

corals, Sr is incorporated into the aragonite lattice in an inverse relationship with 

temperature change (e.g., Kinsman and Holland, 1969; Smith et al., 1979; Beck et al., 

1992; deVilliers et al., 1994, 1995).  Inorganically precipitated aragonite also displays an 

inverse relationship between Sr incorporation and water temperature (Elsdon and 

Gillanders, 2005b). Sr incorporation into some gastropods covaries with growth rate 

(Sosdian et al., 2006; Zacherl et al., 2003).  Sosdian et al. (2006) found a positive 

correlation between water temperature and Sr/Ca in aragonitic shells from the gastropod 

Conus ermineus.  Meanwhile, the growth rate dependency on Sr incorporation may only 

exert an effect on aragonite that has a relatively large growth rate as shown by a study on 

larval gastropods—more quickly precipitated aragonite (protoconchs) had a positive 

Sr/Ca and temperature relationship, while more slowly deposited aragonite within the 

same larvae (statoliths) resembled the inorganic inverse relationship between Sr 

incorporation and temperature (Zacherl et al., 2003).   

Gastropods and bivalves typically live for up to several years, while pteropods 

generally live and grow their shells over a period of less than one year.  The rate of 

pteropod shell development and the influence of extrapallial fluid in growth is poorly 

known, which makes it difficult to determine whether the Sr precipitated in their shells 

covaries more closely as a result of changes in growth rate or directly in response to 



 45 

water temperature.  In order to attempt to resolve the dependence of Sr incorporation on 

pteropod shells as a direct function of temperature change or growth rate, we compared 

the paleo-records of pteropod Sr/Ca to other paleo-records from the WPWP that display 

temperature change in the region at the same temporal scale. 

 

2. METHODS 

Gravity core 102 GGC, multi core 103 MC, and hydrocast HC113 were collected 

from Kau Bay as part of the Baruna Jaya 8-03 Cruise to Indonesia in July 2003 (BJ8-03).  

Core 102 GGC is 4.25m in length and 103 MC-F is 0.56m in length. 102 GGC was stored 

in ~1.5 m sections and later cut in half lengthwise to store as the working and archived 

halves at WHOI.  Quarter rounds at 1cm intervals were sampled and brought to the Stable 

Isotope Laboratory at the University at Albany.  103 MC-F was slabbed on the cruise and 

1cm thick samples were refrigerated and stored in plastic bags.  These samples were 

soaked in deionized water overnight and then shaken in Erlenmyer flasks for 1 hour.  

Samples were transferred to sieves where they were sieved into <63µm and >63µm 

sections and stored in separate beakers.  These samples were dried in a low temperature 

oven (50˚C) and then dry sieved into 63-150µm and >150µm sections and stored in glass 

vials.   

 

2.1. Age Model 

A total of 11 AMS radiocarbon dates were acquired to produce age models for 

sediment cores 102GGC and 103MC, 9 samples from 102GGC and 2 samples from 

103MC (see table 3.2 and figure 3.5). Each sample contained ~5mg of shells of the 
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pteropod Creseis acicula. These shells were cleaned with deionized H2O and dried in an 

oven at ~50˚C overnight, re-weighed, and analyzed by the National Ocean Sciences 

Accelerated Mass Spectrometry (NOSAMS) facility at WHOI for AMS 14C dating.  A 

200-yr reservoir correction was applied based on correlation of pteropod data to shallow 

marine records showing similar variability from Makassar Strait (Tierney et al., 2010).  

Reservoir correction dates from other parts of the western Pacific show an average 

reservoir correction of ~318 years (Reimer and Reimer, 2001).  The reservoir correction 

for Kau Bay is likely less than that for other open ocean areas in the region because water 

from below the surface layer is completely restricted from entering and interacting with 

the water within the basin.  Furthermore, young carbon may be introduced from 

prominent rivers on Halmahera, in particular, the Kau River, that drains into Kau Bay.  In 

addition, records from Makassar Strait cores used 210Pb in addition to radiocarbon dating 

to more accurately determine the reservoir age of Indonesian surface water (Tierney et 

al., 2010; Oppo et al., 2009).  This data suggests that a much younger reservoir 

correction should be applied in Kau Bay. 

Table 3.2. Radiocarbon AMS data from NOSAMS for 102GGC and 103MC-F.  The 
pteropod Creseis acicula was used for dating. Calendar ages were corrected using the 
Fairbanks0107 calibration curve following a 200-year reservoir correction (Fairbanks et 
al., 2005).  
Core 102 GGC Age Age Error Calendar Ages Sedimentation rate  NOSAMS 

Depth (cm) 
C-14 
years years 200 yr. Res. Corr.  (cm/100 years) 

Accession # 

20 690 30 519  OS-57842 
40 805 35 594 26.67 OS-53225 
72 1130 40 837 13.17 OS-50536 

153 1520 30 1266 20.23 OS-57841 
200 1790 40 1477 22.27 OS-53236 
264 2120 35 1864 16.54 OS-53237 
312 2400 30 2218 13.56 OS-53238 
361 2600 30 2397 27.37 OS-57847 

   424 3460 35 3474 5.85 OS-50537 
Core 103MC-F Age Age Error Calendar Ages Sedimentation rate   

Depth (cm) 
C-14 
years years 200 yr. Res. Corr.  (cm/100 years) 

 

18 165 30 -35  OS-59327 
49 715 18 529 9.26 OS-59328 
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Figure 3.5.  Depth vs. age plot for core 102GGC including a 200-year reservoir 
correction and 14C calibration using Fairbanks0107 calibration curve (Fairbanks et al., 
2005).  
 

The downcore dates in 102GGC revealed approximately linear sedimentation 

rates above 3.6m in the core near 200 cm/kyr with lower rates of 59cm/kyr from 3.6m to 

the core bottom at 4.2m.  This depth-age relationship was applied to the depth-data using 

the Arand Ager software (Howell et al., 2006) and interpolating ages between depths 

with AMS 14C dates.  The top 17cm of 103MC-F did not contain enough whole pteropod 

shells for AMS radiocarbon dating, so the uppermost date was obtained from a depth of 

18cm down core and contained bomb carbon.   

 

2.2. δ18O and δ13C Isotope Ratio Mass Spectrometry 

Sediment samples were collected as 1-cm-thick quarter rounds at 2cm intervals 

from core 102GGC and at ~3cm intervals from its companion on-ship slabbed multicore, 

103MC-F.  The average sampling resolution was ~17 years based on the current age 
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model.  Whole pteropods were picked from the >150µm fraction of each sample and then 

each pteropod was individually cleaned with deionized water from a garden sprayer and 

dried in aluminum trays.  Cleaned pteropods were analyzed on a VG Instruments Optima 

gas-source triple collecting mass spectrometer at the University at Albany.  A total of 190 

samples were analyzed from 102GGC, 25 samples were replicated, and 43 samples of the 

NBS-19 standard were interspersed.  The average difference between replicates for δ13C was 

0.07‰ and the average difference between replicates for δ18O was 0.058‰.  The standard 

deviation for NBS-19 δ13C was 0.019 and for δ18O the standard deviation was 0.035.  16 

samples were analyzed from 103MC-F at a resolution of ~3cm with a total of 2 replicates.  

The average replicate difference for δ13C was 0.016‰ and the average difference for δ18O 

was 0.113‰ (one sample had an error of 0.153‰ and the other had a difference of 0.072‰). 

The δ18Osw record was generated from relating WPWP surface water temperatures 

determined from 50yr binned averages of Mg/Ca of G. ruber from cores 31MC and 34GGC 

from the Makassar Strait (Oppo et al., 2009) to 50yr binned averages of the 102GGC δ18O of 

pteropod aragonite spanning the last 2,300yr.  The following equation to relate the total 

aragonite δ18O (δ18Oa) to temperature and the δ18O of seawater (δ18Osw) was determined in 

Bohm et al., 2000: 

 

T = 20.0 – 4.42 * (δ18Oa - δ18Osw)      (1) 

δ18Osw = -[(T – 20.0)/-4.42 - δ18Oa]      (2) 

 

2.3. Sr/Ca ICP-MS 

Inductively coupled plasma mass spectrometry (Element XR, ICP-MS) at Rutgers 

University was used to analyze Sr variability in pteropods from 102 GGC and its 
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companion multicore, 103MC-F, at 2cm intervals.  ~500µg of deionized water-cleaned 

pteropods (~2-6 individual tests) from every 2cm of the gravity core and at about every 

3cm from the multicore (see Age Model section under METHODS above) were broken 

into visible pieces.  These samples were transferred into 5mL polypropylene 

microcentrifuge tubes that were acid washed in 20% reagent grade nitric acid.   

Fine clay particles were removed by adding ~1mL of distilled H2O into each tube 

and ultrasonicating for 1-2 minutes.  More water was added to agitate the sample and mix 

the clay particles, then allowed to resettle.  Nearly all of the water was siphoned off with 

a 1000µL Eppendorf pipet tip.  This step was repeated three times with distilled H2O and 

two times with methanol. 

Metal oxides were removed through a reducing procedure.  100µL of 3.75% 

anhydrous hydrazine in a solution of half NH4OH and half 5% citric acid in NH3 solution 

were added to each sample vial.  The vials were placed into a hot bath of distilled H2O at 

80-90˚C for 30 minutes and then briefly ultrasonicated every 2 minutes.  The reagent was 

then siphoned off from the samples and the samples were once again rinsed with 

deionized H2O three times. 

Organic matter was removed from the samples using an oxidizing procedure.  

250µL of 33% H2O2 in 0.1N NaOH solution was added to each sample, which were then 

heated in a bath of distilled water at ~80-90˚C for 5 minutes, followed by briefly 

ultrasonicating the samples.  This step was repeated once more and the samples were 

transferred into clean, acid-leached microcentrifuge vials. 

A weak acid leach followed the oxidation by adding 100µL 0.001 HNO3 to each 

sample.  The samples were ultrasonicated for 30 seconds and then allowed to settle for ~1 
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minute.  The nitric acid was siphoned off and this step was repeated 4 times.  The entire 

samples were then dissolved in 300µL of 0.5 HNO3 and ultrasonicated for about 5 

minutes.  These samples were then centrifuged for 5 minutes before being analyzed in the 

ICP-MS. 

 

3. RESULTS AND DISCUSSION 

3.1. Creseis acicula δ18O, δ13C, and Sr/Ca variability in Kau Bay 

The C. acicula δ13C, δ18O, δ18Osw, and Sr/Ca data are shown in figure 3.6.  These 

records were compared to various records of similar resolution from different Pacific 

Basin and East Asian locations in order evaluate the regional climatic significance of the 

results.  Records with similar resolution were available from the EEP and the EAM 

regions, which allowed comparisons between Kau Bay pteropod chemistry and paleo-

records thought to reflect changes in the EAM and ENSO.   

Below the thermocline in Kau Bay, temperature and salinity are relatively constant 

reflecting the ~30m sill depth (figure 3.3).  The salinity and temperature profiles 

measured in Kau Bay’s water column in 1930, 1985, and 2003 do not vary significantly 

as the oxygen profiles do.  Temperature and salinity vary from around 28-28.5˚C and 

33.5-34.5p.s.u., respectively (figure 3.3).  Changes in temperature and salinity appear to 

affect only the mixed layer, which reaches down to ~150m depth.  This suggests that 

flushing of the basin with water from the Pacific does not have a lasting effect on the 

water column temperature and salinity like it does with oxygen. Salinity is increased and 

temperature is diminished when cold and salty water is able to break the threshold over 

Kau Bay’s shallow sill, for instance, during the northwest monsoon, when saltier water 
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may be brought to the area of Halmahera by the NGCC (figure 3.4). In turn, salinity 

decreases and temperature may increase when the WPWP is warmer and there is 

increased precipitation. 

Increased rainfall reduces the δ18O of precipitation through Rayleigh fractionation 

and also lowers surface water salinity and δ18O.  Near the equator the relationship 

between salinity and δ18Osw is approximately is ~0.27‰ per 1.0 p.s.u. (e.g., Fairbanks et 

al., 1997),  Kau Bay rainfall is currently affected by interannual ENSO-related variability 

(Aldrian and Susanto, 2003).  It is unclear what forces rainfall variability at decadal-scale 

frequency and less in this region, the reconstruction of which is one of the goals of 

analyzing the sediment record in Kay Bay.  

In an enclosed basin, such as Kau Bay, surrounded on three sides by mountainous 

tropical jungle, surface water δ18O could be tightly coupled to regional hydrology and 

river discharge.  Meanwhile, Kau Bay SSTs are currently >28˚C.  If we assume that SST 

in Kau Bay has remained relatively constant near ~28˚C, then the δ18O variability 

recorded by the pteropod shells should predominantly reflect changes in the hydrology of 

Kau Bay and the WPWP.  Support for this conclusion comes from the magnitude of 

downcore pteropod δ18O and δ18Osw variability in 102GGC.  From BC 500 to AD 500, 

pteropod δ18O became more enriched in 18O by ~0.8‰ (figure 3.6).  If this were all due 

to water temperature, it would indicate that the mixed layer in Kau Bay cooled ~3˚ since 

BC 500.  Put another way, the water column, which is now 28.5˚C below the thermocline 

to the bottom, would be unrealistically warmer (~32˚C) 2,500 years ago.  Meanwhile, 

Kau Bay δ18Osw calculated using SST derived from Mg/Ca of G. ruber from Makassar 
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Strait in the WPWP for the last 2,500yr shows a 9‰ increase in δ18Osw (Oppo et al., 

2009), which suggests an overall decrease in rainfall. 

 

Figure 3.6.  Data from Kau Bay cores 103MC-F and 102GGC.  (a) C. acicula δ13C; (b) 
C. acicula δ18O, (c) δ18Osw generated from 50yr binned averages of SST from 31MC and 
34GGC (Oppo et al., 2009) and C. acicula δ18O (d) C. acicula Sr/Ca. 
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δ13C of pteropods has been correlated to the carbonate ion concentration in water, 

which is related to changes in alkalinity within the surface water (Juranek et al., 2003; 

Chou et al., 2007).  Alkalinity is affected by surface water salinity, pH, and DIC, so 

pteropod δ13C must reflect these parameters to some extent since it inversely correlates to 

water column DIC (Juranek et al., 2003; Bates et al., 1996).  Although pteropods can 

calcify their shells vertically throughout the water column, Kau Bay’s entire water 

column salinity and temperature is homogenous and also reflects the salinity and 

temperature of the surface water outside the basin, above the ~30m sill depth.  Both the 

δ13C and δ18O reached minima at BC 500 and have steadily become more enriched since 

that time, reflecting a trend towards dryer conditions (figure 3.6).  Kau Bay water 

temperature generally reflects surface water in the WPWP, which has been shown to not 

vary more than 1˚C during the last 3,500yr based on foraminifera Mg/Ca results (Oppo et 

al., 2009; Linsley et al., 2010).  The variability seen in Kau Bay pteropod δ13C and δ18O 

records has a distinct positive correlation throughout much of the record.  Since the 

pteropod δ13C is controlled mainly by alkalinity in Kau Bay, which is directly related to 

salinity, the generally positive correlations between pteropod δ13C and δ18O throughout 

the record may reflect changes in salinity. 

Overall, C. acicula δ18O varied as much as 1.2 to 1.5‰ from BC 500 until AD 

1850 (figure 3.6).  This would suggest an overall temperature decrease of ~5 to 6˚C 

(Grossman and Ku, 1986).  Since such a large surface water temperature change is highly 

implausible over this time period (see Figure 3.3 and WPWP lateral SST gradients), there 

must have been significant changes in the salinity of Kau Bay assuming that only 

temperature and δ18Osw control C. acicula δ18O in Kau Bay.  The C. acicula δ18O is most 
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depleted from BC 500 to AD 0.  During this period of time, it is possible that there was an 

increase in precipitation in the central WPWP, however, this change is not reflected in the 

C. acicula δ13C record.  Algal and plant wax compound-specific abundances showed that 

Kau Bay experienced a decrease in terrestrial influence after AD 0 (Langton et al., 2008), 

which would have led to a DIC source change. 

Although we lack a C. acicula Sr/Ca- SST calibration, the fact that the C. acicula 

Sr/Ca record correlates with the C. acicula δ18O from BC 500 to AD 400 may indicate that 

pteropod δ18O was affected by changes in temperature during this time.  If downcore C. 

acicula Sr/Ca variability is due to water temperature, then there was a maximum 

temperature in Kau Bay near BC 400, which was also during a period of maximum 

precipitation according to the C. acicula δ18O and the δ18Osw records.  The Sr/Ca record 

possibly reflects a reduction in surface water temperature from BC 500 to AD 400, 

concordant with an increase in salinity according to the C. acicula δ18O record.  The 

Sr/Ca rapidly dropped from 1.8mmol/mol at AD 400 to 0.8mmol/mol at AD 600.  Lower 

Sr/Ca, and possibly elevated surface water temperature at AD 700, matches minima in 

both the δ18O and δ13C records, which relay periods of increased surface water 

temperature and precipitation.  Overall, the δ18O and Sr/Ca records convey a trend of 

increasing surface water temperature from AD 1700 to present. 

 

3.2. Kau Bay and the East Asian Summer Monsoon 

The relative strength of the East Asian Summer Monsoon (EASM) over the last 

~9ka has been interpreted from Dongge Cave stalagmite DA (Wang et al., 2005).  

Overall, speleothem records from the EASM region in China show that the EASM has 
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gotten progressively weaker over the last ~3,000yr (Hu et al., 2008).  In order to more 

clearly evaluate the general multi-decadal influence of the EASM on the Kau Bay C. 

acicula records, the δ18O record of stalagmite DA averaged at 50 yr intervals was 

compared to the Kau Bay δ18Osw record and δ18Osw records from Makassar Strait, derived 

from δ18O and Mg/Ca from the foraminifer Globigerinoides ruber from cores MD9821-

60 (Newton et al., 2006), BJ8-03 31MC and 34GGC.  The Makassar Strait δ18Osw records 

are highly correlated to EASM variability (Oppo et al., 2009).   

At this resolution, the Dongge Cave δ18O record correlates in some intervals with 

Kau d18O.  The enrichment in our estimated δ18Osw from Kau Bay (using paleo-SST data 

from the Makassar St.) corresponds to an enrichment in δ18O from the Dongge Cave from 

BC 500 to AD 500, a time period interpreted to have had a weakened EASM.  The Dongge 

Cave record also showed a strengthening of the EASM towards the conclusion of the 

LIA, which corresponds to reductions in δ18Osw from Kau Bay, or increased aridity from 

a weakened IM.  Peaks in precipitation seen in both the Kau Bay and the Makassar Strait 

records from AD 500-1000, reflecting increased IM precipitation, occurred 

simultaneously when the Dongge Cave record reflected a period of reduced EASM.  The 

MWP in both the Makassar Strait and Kau Bay records were characterized by relatively 

enriched δ18Osw presumably due to decreased mean annual precipitation.  The most recent 

segment of these records suggests increased aridity and a reduction in the EASM similar 

to levels experienced during the MWP.  Overall, the comparison of the Kau Bay δ18Osw to 

other EASM records shows that the EASM does exert some control over the hydrology of 

Kau Bay and this is reflected in pteropod shell δ18O. 
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Figure 3.7.  (a) Kau Bay cores 102GGC and 103MC-F δ18Osw, (b) 50yr binned averages 
from δ18O of Dongge Cave speleothem DA (Wang et al., 2005), and (c) 50yr binned 
averages of δ18Osw from Makassar Strait cores MD9821-60, 34GGC and 31MC (Newton 
et al., 2006; Oppo et al., 2009).  Approximate timing of the MWP and LIA are shown. 
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3.3. Comparison to Eastern Equatorial Pacific 

In order to determine the zonal relevance of the records from Kau Bay, 

comparisons were made to climate records from the EEP.  Interestingly, the Kau Bay 

pteropod Sr/Ca record shows similarities to records that have been interpreted to reflect 

ENSO variability such as the El Junco Lake (Galápagos islands) down-core % sand 

(>63µm) fraction (Conroy et al., 2008), and a record of flood events from Laguna 

Pallcacocha, Ecuador (Moy et al., 2002; figure 3.8).  Distinct maxima in the Kau Bay 

pteropod Sr/Ca record occur at AD 1500, 1100, 750, 500, and BC 800.  These increases in 

pteropod Sr/Ca, probably due to cooling of Kau Bay, correspond to increases in % sand 

size fraction in El Junco (figure 3.8).  Minima in the Sr/Ca record occur from BC 750 to 

300 and AD 600 and 1000.  These periods were possibly warmer in Kau Bay and more La 

Niña-like as they correspond to periods of less frequent or intense flooding in both El 

Junco and Laguna Pallcacocha.  El Junco is in the Niño 1.2 region and elevated grain size 

deposition occurs during times of increased precipitation as periodically occur during El 

Niño events today.   

The record of grain size variability from El Junco Lake over the last 3,000 years 

suggests that century-scale changes in rainfall have occurred in the Galápagos possibly 

related to El Niño recurrence interval.  Meanwhile, red color intensity units from Laguna 

Pallcacocha, Ecuador, represent clastic sediment laminae deposited during periods of 

intense flooding during intense El Niño episodes (Moy et al., 2002).  Kau Bay is located 

in the western Pacific region that experiences the opposite effects during El Niño with 

cooler and dryer conditions (figure 3.9).  We previously asserted that Kau Bay water 

temperature can be reduced when colder water from the NGCC is able to flush the basin, 
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which is more likely to occur during strong El Niño events, when the NGCC flows in a 

northwestern direction throughout the year due to slackened trade winds and a shallow 

thermocline in the WPWP (Langton et al., 2008).  If pteropod Sr/Ca is inversely 

correlated with temperature (as in corals, and as also discussed above), then it is possible 

that the changes in Sr/Ca indicate century-scale changes in Kau Bay temperatures over 

the last 3,000 years.  The noted similarities between our Kau Bay results and ENSO 

related proxy records in the EEP indicates that these changes were potentially driven by 

El Niño activity per century.  It is also possible that changes in the mean WPWP SST 

state are responsible for Kau Bay upper thermocline and mixed layer temperature 

variability and/or that changes in El Niño frequency influenced mean upper water column 

temperatures in Kau Bay. 
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Figure 3.8.  % sand from El Junco Lake, Galápagos (top, Conroy et al., 2008), Kau Bay 
C. acicula Sr/Ca (center), and the red color intensity bands from Laguna Pallcacocha, 
Ecuador (bottom, Moy et al., 2002). 

 

Whereas the Kau Bay nitrogen isotope record in Langton et al. (2008) was 

interpreted to reflect changes in basin flushing, the higher temporal resolution Kau Bay 

pteropod δ18O and Sr/Ca records likely display more subtle and higher resolution changes 

(figure 3.7).  This is apparently because larger, basin-wide changes are necessary in order 
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to either establish or prohibit the biological processes that would result in a great enough 

shift in the nitrogen isotope record to become stored in the sediments.  Meanwhile, 

pteropods probably live throughout the water column and the isotopic changes within 

their shells are more directly a result of hydrological and temperature changes.   

The nitrogen isotope record from Kau Bay presented by Langton et al. (2008) 

suggests that down-core variations in bulk sedimentary δ15N reflect century-scale 

alternations between basin ventilation and stagnation during this period.  Langton et al. 

(2008) interpreted downcore increases in δ15N as a consequence of increased basin 

flushing during periods of more frequent/intense El Niño events or a more El Niño-like 

mean state in the WPWP.  Increased basin flushing during El Niño events, or times of 

more frequent El Niño activity, results from a shallower thermocline in the WPWP 

bringing water with higher δ15N into the basin.  Lower δ15N reflects basin stagnation and 

reduced flushing during periods of fewer/weaker El Niño events or less El Niño-like 

conditions, when denitrification removes most of the nitrate pool, prompting intensified 

nitrogen fixation and an overall reduction in δ15N. 

In Kau Bay, a broad δ15N maximum occurred between AD 300 and 700, and then 

again between AD 1200 and 1400 (figure 3.9).  These intervals of relatively enriched 15N 

are similar in timing to distinct maxima in the Kau Bay pteropod Sr/Ca record and 

probably reflect increased basin flushing.  These intervals of inferred Kau Bay flushing 

are also times of  maxima δD (in the organic fraction) in Makassar Strait cores 31MC and 

34GGC (Tierney et al., 2010) and % sand maxima in El Junco Lake (figure 3.9, Conroy 

et al., 2008).  These geochemical records on opposite sides of the Pacific may indicate 
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similar variability in the state of the equatorial Pacific over the last 2,000 years and 

suggest a coherent zonal response in the Pacific basin. 

 

Figure 3.9.  (a) Kau Bay C. acicula Sr/Ca, (b) El Junco % sand record (Conroy et al., 
2008), (c) Makassar Strait δD (Tierney et al., 2010), and (d) Kau Bay δ15N (Langton et 
al., 2008).  Dashed lines outline similarities between the records. 
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4. CONCLUSIONS 

The following conclusions were made from the analysis of down-core variability 

of δ18O, δ13C, and Sr/Ca in the pteropod Creseis acicula from Kau Bay sediments: 

1) The pteropod, C. acicula, may be used in paleoclimate reconstructions within 

Kau Bay.  Kau Bay’s unique setting accommodates the use of pteropod shells as markers 

for the surface water from the WPWP because of its homogenous water column that 

reflect properties of the upper 30m of surface water from the WPWP.  Therefore, 

regardless of where the pteropods reside within the water column, in Kau Bay their shells 

will reflect the properties of the upper WPWP surface water.  Pteropod δ13C, δ18O, and 

Sr/Ca clearly reflect similar parameters, particularly during the last 1,600yr, and are 

likely reflecting temperature and salinity change in the surface water of the central 

WPWP after that time. 

In addition, this study implicates that pteropods may have an extended use in 

global basins that display similar hydrography to Kau Bay, for instance, in basins that are 

characteristically homogeneous in temperature and salinity.  Pteropod shells may be used 

in paleoclimate studies in order to decipher past change in δ18Osw and possibly to show 

variability in basin alkalinity and temperature through time. 

2) The EASM probably affects Kau Bay δ18Osw by modulating precipitation in the 

WPWP as seen through the relationship between various records that display hydrologic 

variability throughout the late Holocene in the WPWP. This rainfall signal appears to be 

amplified by the hydrologic configuration of the Halmahera drainages feeding fresh 

water into Kau Bay. 
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3) The Kau Bay pteropod records suggest that century-scale changes in late 

Holocene zonal dynamics may have a strong effect on the WPWP and, therefore, global 

climate.  The zonal dynamics may have been caused by low-resolution patterns in ENSO, 

long-term shifts in the mean position of the ITCZ, or a combination of the two.   

 



 64 

Chapter 4 

Glacial-Interglacial changes in stratification of the Sulu Sea mixed layer and upper 

thermocline 

 

ABSTRACT 

The Sulu Sea is a deep and poorly ventilated silled basin located in the western 

region of the Western Pacific Warm Pool.  The basin is ~5,580m deep with main 

ventilating sills ranging in depth from 340m to 570m. Today, East Asian monsoon 

strength affects oceanographic conditions that, in part, control changes in the mixed layer 

depth in the Sulu Sea. On glacial-interglacial time scales, ventilation into the basin would 

have been controlled by changes in sea level and density differences between water from 

the intruding South China Sea and the Sulawesi Sea.  In order to assess these changes on 

glacial-interglacial time scales, the δ18O of two upper thermocline dwelling foraminifera, 

Neogloboquadrina dutertrei and Pulleniatina obliquiloculata, were analyzed and 

compared to previous analyses of Globigerinoides ruber from core site ODP 769 over the 

past ~800,000 years.  The difference between the shallow and deeper dwelling planktonic 

foraminifera δ18O were calculated to assess the stratification of the mixed layer to the 

upper thermocline on glacial-interglacial timescales.  Most of the interglacial stages over 

this time period were characterized by significant differences (>1‰) between the δ18O of 

the shallow and deeper dwelling foraminifera, which we interpret as evidence of a 

shallower mixed layer and thermocline, while glacial stages had reduced differences 

indicative of a deeper mixed layer.  The deep mixing of the Sulu Sea during glacial stages 

confirms the increased intensity of the winter monsoon (Beaufort et al., 2003), which 
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brings cold northeasterly winds towards the WPWP, while the freshening of the mixed 

layer and shallower thermocline during interglacial stages argues for extremely 

intensified atmospheric convection as a result of increased summer monsoon with a 

concomitant decrease in winter monsoonal strength. 

 

1. INTRODUCTION 

1.1. Geographic and Oceanographic Setting 

The Sulu Sea is a poorly ventilated, 5,580m deep basin (Wang, 1999) located within 

the WPWP (Figure 4.1).  The average depth of the mixed layer is currently ~30m 

(Wyrtki, 1961).  This basin is surrounded by very shallow shelves and contains 

ventilation passageways from the South China Sea and the Sulawesi Sea, through the 

Mindoro Strait [sill depth = 570 (Gordon, unpublished data, measurements from off the 

coast of Panay) or 420m according to Wyrtki, 1961] and the Sibutu Strait (sill depth = 

340m), respectively (Wyrtki, 1961).  The ventilation of this basin throughout geologic 

history is not entirely understood.  However, there are clues that link the Sulu Sea’s 

ventilation to regional climate change. 
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Figure 4.1.  Map of the Sulu Sea with bathymetry contours 
(http://stommel.tamu.edu/~baum/paleo/seamaps/sulu-sea-c.gif).  ODP Site 769, 8° 47’N, 
121° 17’E, is shown. 
 

In the Sulu Sea, water ventilation depends on its interaction with bordering bodies 

of water (Frische and Quadfasel, 1990; Quadfasel et al., 1990; Gamo et al., 2007).  In 

this respect, the Sulu Sea does not form its own bottom water and relies upon lower 

thermocline water from surrounding basins for ventilation.  If bottom water dissolved 
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oxygen within a basin is not replenished at a rate greater than the rate of oxygen 

consumption, it will become anoxic.  Although the Sulu Sea is hypoxic today, it remains 

unclear as to whether the basin was completely anoxic at any depth over the last ~2.4Ma 

(Gamo et al., 2007; Wyrtki, 1961). 

The ventilation of the Sulu Sea is greatly affected by the East Asian Monsoon 

(EAM) and possibly ENSO because of the effect these systems have on rainfall and 

salinity within the basin (figure 4.2).  The summer monsoon occurs from May to 

November (figure 4.3).  Precipitation in the Sulu Sea is greatest during this time and 

salinity is lowest.  The ITCZ is in its southernmost location by November.  During this 

time, the East Asian monsoon merges with Pacific trade winds over the South China Sea 

(Beaufort et al., 2003).  Sulu Sea salinity is reduced because of southerly winds that force 

the flow of fresher water from the South China Sea (Wyrtki, 1961; Oppo et al., 2003).  

Surface salinity reaches its maximum during June, when the summer monsoon causes the 

water to flow from the Sulawesi Sea located to the southeast.  Overall, the change in the 

intensity of the precipitation during the winter EAM as well as changes in the mean state 

of ENSO may have appreciable affects on the ventilation, salinity, and temperature of the 

Sulu Sea and this is likely reflected in various geochemical proxies.  The stratification of 

the surface water and thermocline may be affected by the EAM and the mean state of 

ENSO by changes in wind stress that might affect the source of surface water into the 

Sulu Sea and by moderating the amount of precipitation in the WEP.  For example, 

diminished summer monsoon strength in combination with increased winter monsoon 

strength may result in a deeper mixed layer due to increased wind stress and mixing, 
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whereas increased summer monsoon intensity may result in more stratified surface waters 

due to increased precipitation in the upper mixed layer and reduced mixing. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2.  Average surface temperature and salinity from the Indo-Pacific during the 
end of the winter monsoon (top panels) and the end of the summer monsoon (lower 
panels) (modified from Dannenmann et al., 2003). 
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Figure 4.3. (A) Monsoonal regions in 
East Asia, India, Africa, and Australia.  
(B) Surface wind pressure during 
winter.  (C) Surface wind pressure 
during summer (Wang et al., 2005).  
 

 

 

 

 

1.2. Previous Research in the Sulu Sea 

The Sulu Sea contains well-preserved carbonate sediments due to its isolation, 

relatively warm bottom water and deep carbonate lysocline (Wyrtki, 1961; Linsley et al., 

1985; Linsley and Thunell, 1990).  Long and undisturbed records have been recovered 

from the Sulu Sea, which have provided insight into WPWP climate variability.  Previous 

paleoclimate research in the Sulu Sea has focused on SST and salinity variability of the 

surface water (Linsley and Thunell, 1990; Linsley and von Breymann 1991; Linsley, 

1996; Oppo et al., 2003; Rosenthal et al., 2003, Dannenmann et al., 2003).    

ODP Site 769 was previously dated by radiocarbon, oxygen isotope stratigraphy, 

and paleomagnetic reversal methods and extends back to ~4 m.y. (Linsley and von 

Breymann 1991, Linsley 1991; Linsley, 1996).  The entire Pliocene record of the core is 

devoid of carbonates, which first appear at ~2.47Ma, at the Gauss-Matuyama 
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paleomagnetic boundary.  This is concomitant with the onset of the Pleistocene 

Glaciation (Linsley, 1991).  It is apparent that glacial-interglacial climate variability 

affects primary productivity and the deposition of calcium carbonate in the Sulu Sea 

(Beaufort et al., 2003; Garidel-Thoron et al., 2001; Linsley, 1991).  Linsley (1996) 

presented a record of surface water δ18O from planktonic foraminifera (Globeriginoides 

ruber) at millennial resolution for the last 150kyr.  This record correlates with the glacial-

interglacial changes in climate resolved from the GRIP and Antarctic ice cores. In 

addition, primary productivity in the Sulu Sea was measured using coccolithophorid 

assemblages to assess East Asian winter monsoon strength, which appears to control 

winter monsoon dynamics on orbital-sale cycles (Beaufort et al., 2003).  Higher 

frequency (20kyr-10kyr) cycles appear to be in the inverse phase to records from the 

eastern Pacific, which convey an ENSO-like mechanism controlling the East Asian 

summer monsoon dynamics. 

While the δ18OG.ruber record alone did not fully explain what was causing the 

variability of the δ18O in the Sulu Sea, the addition of high-resolution records of G. ruber 

δ18O with Mg/Ca SST from Sulu Sea core MD97-2141 revealed a possible explanation 

(Rosenthal et al., 2003).  The Mg/Ca record showed that Sulu Sea SST was ~2.3˚ C 

cooler and the mixed layer fresher during the LGM than at present. The freshening of the 

Sulu Sea during the LGM corresponded to a freshening of the South China Sea that 

resulted in depleted foraminifera δ18O in the Sulu Sea even as the surface temperature 

was reduced (Oppo et al., 2003; Rosenthal et al., 2003; Pelejero et al., 1999).  

Meanwhile, other WEP records displayed increasing salinity and diminished SST during 

the LGM, which construes decreased precipitation alongside a decrease in the total zonal 
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gradient of SST in the region, for example, along the Ontong Java Plateau and in the 

central equatorial Pacific (Lea et al., 2000; Lyle et al., 1992).  The surface water δ18O 

records from the Sulu Sea were probably influenced primarily by hydraulic controls and 

that the source of surface water was in the South China Sea, which had an identical δ18O 

signature (Rosenthal et al., 2003). 

On glacial-interglacial time scales, lower sea level during the LGM in addition to 

decreased summer monsoon intensity led to a greater proportion of inflow from the South 

China Sea to the Sulu Sea (Oppo et al., 2003; Dannenmann et al., 2003).  Shintani et al. 

(2008) used alkenone-derived SSTs to determine that the SST difference between the 

Sulu Sea and the South China Sea was diminished during the LGM, which suggests that 

the Sulu Sea follows a similar SST trend to the South China Sea during interglacials than 

during glacials due to the increased strength of the winter monsoon during glacials.  

Holocene δ18OG. ruber values from the Sulu Sea reflect a greater influence from the 

Sulawesi Sea as compared to glacial values, which are closest in value to those of the 

South China Sea (Oppo et al., 2003; Rosenthal et al., 2003; Wang et al., 2001; Lea et al., 

2000).  On suborbital timescales of ~4-10kyr, the Sulu Sea is fresher during warmer 

periods, as ice volume does not exert as much influence (Oppo et al., 2003).  It is 

uncertain whether ENSO or high-latitude climate may affect the Sulu Sea at this 

resolution. 

Changes in thermocline depth and circulation of surface water between the Sulu 

Sea, the Sulawesi Sea, and the South China Sea remains unresolved on glacial-

interglacial timescales.  To attempt to directly address these questions, this study focused 

on the determination of glacial/interglacial changes in the mixed layer and thermocline 
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depth in the Sulu Sea by comparing δ18O of mixed layer- and thermocline-dwelling 

foraminifera.  The contrast in δ18O between shallow- and deep-dwelling foraminifera 

reflects sharp temperature and/or salinity differences between the mixed layer and upper 

thermocline (Lin et al., 2007).  This study will discuss how this depth is related to 

changes in the strength of the EAM and the flow of surface and mixed layer water 

between the Sulu Sea and neighboring seas through the Mindoro Strait, the Sibutu Strait, 

and other shallow openings. 

 

2. METHODS 

The initial sampling procedures for δ18O of Globigerinoides ruber and age model 

determinations for site ODP 769 were explained in Linsley and Dunbar, 1994.  Samples 

were previously obtained from the top 65m of this core at 20cm intervals.  Each sample 

was wet-sieved to remove the fine (<63µm) fraction.  G. ruber was initially picked from 

the coarse fraction of these samples within the size range of 150-350µm for δ18O and 

δ13C analyses.  N. dutertrei was occasionally used in place of G. ruber at intervals where 

G. ruber tests were insufficient for stable isotope analyses (see Linsley and Dunbar 

1994).  These samples were normalized to estimate G. ruber δ18O values given an 

average N. dutertrei enrichment of ~1.09‰ (+/- 0.21‰) (Linsley and Dunbar 1994). 

For this current study, Pulleniatina obliquiloculata and Neogloboquadrina 

dutertrei were picked from the >150µm size fraction.  No additional cleaning procedures 

were performed as these foraminifera were visibly free of clay and/or organic material. 

δ18O from P. obliquiloculata and N. dutertrei were analyzed at a resolution of ~0.3-0.4m 

at glacial-interglacial (G-I) time scales from ODP 769A at the SUNY Albany isotope 
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ratio mass spectrometer laboratory on a Micromass Optima triple collecting mass 

spectrometer with replicates run every 5-10 samples.  Approximately 10 tests were 

analyzed for each sample.  62 analyses of standard NBS-19 were run in between samples 

with a standard deviation of 0.014‰ for δ13C and 0.029‰ for δ18O.   The average 

difference of δ18O replicates was 0.21‰ for P. obliquiloculata (n=21) and 0.17‰ for N. 

dutertrei (n=19).   

 

3. RESULTS AND DISCUSSION 

The depth habitats of planktonic foraminifera may cover a large vertical scope, 

but calcification takes place over a much more narrow range for many species (e.g., 

Ravelo and Fairbanks, 1982; Lin et al., 2011).  The δ18O of a mixed-layer dwelling 

foraminifera in the South China Sea, such as G. ruber, is clearly more depleted than that 

of thermocline dwellers, such as N. dutertrei and P. obliquiloculata (Lin et al., 2011).  

Therefore, the difference between the δ18O of these foraminifera over periods of time has 

the potential to show changes in the depth of the mixed layer.  P. obliquiloculata appears 

to preferentially follow the temperature range of ~24-25˚C within the lower mixed layer 

to the upper thermocline (Lin and Hsieh, 2007; Pflaumann and Jian, 1999).  Given the 

δ18O range of N. dutertrei from this and other studies, this foraminifer calicifies at a 

similar depth as P. obliquiloculata (Lin and Hsieh, 2007).  In the South China Sea, G. 

ruber demonstrated the most narrow depth migration range of these three foraminifera 

and globally calcifies within the upper 30-60m of surface water (Lin et al., 2011; 

Hemleben et al., 1989). 
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The δ18O data of the thermocline dwelling species of foraminifera, P. 

obliquiloculata, and N. dutertrei, from ODP 769 is compared to the previously measured 

δ18O data of mixed layer dwelling Globigerinoides ruber (figure 4.3).  The difference 

between the δ18O of each of these species is shown as Δδ18O (figure 4.4).  The average 

difference between δ18O of G. ruber and both P. obliquiloculata and N. dutertrei was 

~0.90‰.  We interpret more negative values to represent periods of greater stratification 

between the upper mixed and thermocline layers due to diminished surface mixing with 

increased surface precipitation or changes in surface temperature.  Values that were 

closer to 0 indicate that there was less difference between the three species and, therefore, 

less stratification and possibly increased mixing between the mixed and thermocline 

layers. 

The Δδ18O between G. ruber and the thermocline foraminifera represent the 

general depth between the mixed layer and the thermocline, while the Δδ18O between the 

two thermocline species may portray variations of the depth habitats of these species at 

different times and possible stratification within the thermocline layer in the Sulu Sea.  

While each marine isotope stage (MIS) has characteristic differences within the records 

shown here, there are general similarities between interglacials and glacial cycles that 

may be related to broader changes in climate and surface ocean dynamics. 

Thermocline depth in the Sulu Sea over the last 400kyr was previously inferred 

by determing the percentage of the coccolithophorid species, Florisphaera profunda 

(%Fp)  in piston core IMAGES MD97-2141 (Beaufort et al., 2003).  However, the %Fp 

also reflects changes in productivity so that greater productivity occurs during times 

when the thermocline is shallower.  Although greater percentages of F. profunda were 
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associated with a deeper thermocline in the Sulu Sea, this record did not appear to 

correlate with the Δδ18O records presented here.  Whereas the productivity rate in the 

Sulu Sea is probably increased by upwelling and a shallower thermocline, factors other 

than thermocline depth may affect productivity.  Meanwhile, the foraminifera Δδ18O 

records here are not a direct reflection of productivity, but the difference between the 

δ18O of the mixed layer and upper thermocline, which may also reflect parameters other 

than thermocline depth such as micro-thermal structures in the water column, changes in 

source water, and salinity variability due to precipitation and global ice volume. 

These δ18O records display glacial-interglacial (G-I) variability (see Figure 4.3).  

The average G-I δ18O amplitude of N. dutertrei and P. obliquiloculata is 1.4-1.5‰, and 

1.2‰ for G. ruber (Linsley and Dunbar, 1994; Linsley et al., 1996).  The amount of δ18O 

change due to ice volume is ~1-1.2‰ (Fairbanks, 1989).  As expected, the δ18O of G. 

ruber was always more depleted than that of the deeper-dwelling foramifera.  The δ18O of N. 

dutertrei and P. obliquiloculata are within the same range of 0 to -1.5‰.  Interestingly, these 

foraminifera do not always display equal amounts of variability.  For example, during the 

interglacial-glacial transition from marine isotope stage (MIS) 11 to 10, the G. ruber δ18O 

became enriched by nearly 1.5‰ (figure 4.3).  During the same transition, the δ18O change of 

both P. obliquiloculata and N. dutertrei was half that amount. 

In order to estimate the timing of possible shifts in the source of the thermocline and 

upper mixed layer water in the Sulu Sea, the differences between N. dutertrei and P. 

obliquiloculata δ18O (Δδ18ON-P), G. ruber and N. dutertrei (Δδ18OG-N), and G. ruber and 

P. obliquiloculata (Δδ18OG-P) were determined and are shown below in figure 4 as a 

representation of changes in thermocline depth.  The Δδ18O was calculated based on 
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shallow – deep planktonic foraminifera.  Table 1 can be used as a guide to show general 

differences between the average values and ranges of Δδ18OG-N and Δδ18OG-P for each 

MIS in the Sulu Sea.  The total average glacial stage difference for Δδ18OG-P was -0.80‰ 

and for Δδ18OG-N was -0.85‰.  The total average interglacial stage difference for Δδ18OG-

P was -1.02‰ and for Δδ18OG-N was -1.05‰.  These differences may reflect the level of 

stratification of the water column with greater isotopic differences indicating more 

pronounced stratification in the upper water column.   

A visual comparison between Δδ18ON-P, Δδ18OG-P and Δδ18OG-N helps to 

distinguish between periods when stratification was the result of increased salinity in the 

mixed layer or shoaling of the thermocline.  The greatest variances in Δδ18ON-P can 

possibly reflect periods when one of these two thermocline dwelling foraminifera was 

calcifying at a different depth and that there may have been greater stratification within 

the thermocline.  Since both N. dutertrei and P. obliquiloculata appear to calcifiy within 

a narrow temperature range and vary in their depths accordingly, it is unlikely that one 

would go far above or below the other in calcification depth range, so changes in Δδ18ON-

P from 0 may be due to biologic differences between the species (Lin et al., 2011).  

Meanwhile, there was increased salinity stratification or varying thermal structure 

between the mixed layer and upper thermocline when the Δδ18OG-P and Δδ18OG-N 

displayed the greatest differences.   

The mean Δδ18ON-P is -0.04‰ with significant excursions from 0‰ occurring at 

interglacial stages and values closer to 0‰ or within error occurring during glacial stages.  

This demonstrates that, in general, P. obliquiloculata and N. dutertrei were calcifying at 
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the same general depth, but also that the thermocline in the Sulu Sea was possibly more 

stratified during some interglacial stages and less stratified during glacial stages.   

 

Table 4.1.  Average and range of Δδ18OG-P and Δδ18OG-N for MIS 1-18 from ODP 769A. 

MIS Stage 
Average 
Δδ18OG-P 

Average 
Δδ18OG-N 

Range of 
Δδ18OG-P 

Range of 
Δδ18OG-N 

1 -0.95 -1.21 -0.71     -1.29 -1.017   -1.51 
2 -0.94 -0.94 -0.87     -1.01 -0.62    -1.27 
3 -1.15 -1.08 -1.00     -1.28 -1.05   -1.26 
4 -0.94 -1.07 -0.90     -0.99 -1.03    -1.11 
5 -0.77 -0.91 -0.59     -1.05 -0.74    -1.17 
6 -0.9 -0.85 -0.61     -1.17 -0.53    -1.24 
7 -1.01 -1.01 -0.85     -1.22 -0.65    -1.23 
8 -0.66 -0.77 -0.19     -1.06 -0.32    -1.22 
9 -0.78 -0.76 -0.5     -1.06 -0.58    -1.10 

10 -0.62 -0.86 -0.04     -1.10 -0.15    -1.33 
11 -1.35 -1.29 -0.83     -1.72 -0.88    -1.71 
12 -0.8 -0.84 -0.69     -0.99 -0.64    -1.05 
13 -1.1 -1.08 -0.34     -1.51 -0.57    -1.59 
14 -1.08 -0.98 -0.69     -1.57 -0.37    -1.52 
15 -1.1 -1.13 -0.69     -2.05 -0.55    -2.00 
16 -0.66 -0.65 -0.53     -0.92 -0.33    -1.21 
17 -1.05 -1 -0.38     -1.59 -0.44    -1.65 
18 -0.66 -0.77 -0.43     -0.88 -0.41    -1.14 

Total Average Glacial Values: Δδ18OG-P = -0.80‰; Δδ18OG-N = -0.85‰ 
Total Average Interglacial Values: Δδ18OG-P = -1.02‰; Δδ18OG-N = -1.05‰.   

 

The Δδ18OG-P and Δδ18OG-N records display differences between the mixed layer 

and the upper thermocline in the Sulu Sea. The similarity between these two records are 

due to the greater similarities of the calcification depth and δ18O of P. obliquiloculata and 

N. dutertrei in comparison to the relatively larger δ18O and calcification depth difference 

between these two foraminifera and G. ruber.  The average of all Δδ18OG-P and Δδ18OG-N 

values are -0.90‰ for Δδ18OG-P and -0.95‰ for Δδ18OG-N (table 4.1).  The lowest value of 

these records was ~-2.00‰.  The average values for all of the interglacial stages with the 

exception of MIS 5 and MIS 9 were ~-1.00‰ or more negative.  These more negative 
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values were likely caused by larger differences in temperature and salinity between the 

upper mixed and thermocline layers.  The greatest extent of change in these records 

occurred at G-I boundaries (figure 4.4).  In the Δδ18OG-P and Δδ18OG-N shown here, MIS 9 

resembles the glacial stages more than other interglacials, possibly denoting a period that 

was characterized by a deeper mixed layer within the Sulu Sea. 

Throughout many of the glacial stages, the Δδ18OG-P and Δδ18OG-N average values 

were more enriched than -1.00‰ and the ranges were, in general, less than 1.00‰ and 

more reduced as compared to ranges from interglacial stages.  During these glacial 

stages, the Sulu Sea appeared to have a deeper mixed layer and thermocline than during 

interglacials based on the greater difference between δ18O from mixed to thermocline 

foraminifera.  δ18O enrichment of G. ruber, P. obliquiloculata, and N. dutertrei was 

probably the result of increased influence from the South China Sea lower salinity water 

and restricted input from the Sulawesi Sea, which was cut off from interaction with the 

Sulu Sea by the exposed Sunda shelf (Oppo et al., 2003).  Meanwhile, my results support 

other studies that have concluded that EASM intensity was greatly reduced during 

glacials with an increased winter monsoon (Wang et al., 1999; Oppo et al., 2003), which 

led to increasing monsoon winds during the winter season, while the ITCZ was in its 

most southern position.  These additional factors added to the freshening and deepening 

of the mixed layer in the Sulu Sea (Wang et al., 2009; Wang et al., 2008; Wang et al., 

2005). 

During the transition of MIS 11 to 10 and then again during MIS 8, Δδ18OG-P was 

reduced to almost 0, while Δδ18ON-P became very negative.  P. obliquiloculata was much 

more depleted in 18O than N. dutertrei and closer in value to G. ruber.  G. ruber δ18O 
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ranged from ~-1.7 to -2.2‰, which implies warmer or fresher surface water.  The wide 

gap between the two thermocline species and the narrow gap between P. obliquiloculata 

and G. ruber implies 1.) P. obliquiloculata may have migrated up in the water column 

and 2.) the thermocline was more shallow, but with steeper temperature gradations.  In 

this respect, glacial stages 8 and 10 were very different from other glacial stages within 

this record. 

Throughout many interglacials, sea level rose to allow surface water from the 

Sulawesi Sea with higher salinity into the Sulu Sea.  The mixed layer was shallower 

probably due to decreased mixing from a diminished winter monsoon as recognized from 

GI records from the neighboring South China Sea (Steinke et al., 2010; Wang et al., 

1999; Wang et al., 2008; Wang et al., 2005).  Meanwhile, the increased intensity of the 

summer monsoon attributed to the increase in freshening of the upper surface water 

within the Sulu Sea.  Altogether, these factors led to a fresher surface layer and a 

shallower thermocline during most of the interglacial stages in this record. 
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Figure 4.3. δ18O of G. ruber (Linsley and Dunbar, 1994), P. obliquiloculata, and N. 
dutertrei from ODP 769.  The SPECMAP δ18O time series and marine isotope 
interglacial stages shown above (Imbrie and McIntyre, 2006; δ13C data for P. 
obliquiloculata, and N. dutertrei listed in Appendix C1 and C2).  
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Figure 4.4.  Δδ18O of P. obliquiloculata – N. dutertrei (black), G. ruber – P. 
obliquiloculata (red), and G. ruber – N. dutertrei (blue).  Numbers above the SPECMAP 
curve represent interglacial marine isotope stages (Imbrie and McIntyre, 2006). 
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4. CONCLUSIONS  

The δ18O of thermocline dwelling foraminifera, P. obliquiloculata and N. 

dutertrei, were analyzed and compared to a previous record of δ18O of G. ruber from the 

Sulu Sea core ODP 769.  The difference between the δ18O of these species was calculated 

as Δδ18O in order to determine the stratification of the Sulu Sea upper water column over 

G-I timescales.  Changes in the intensity of the summer and winter EAM in addition to 

sea level likely played important roles in the stratification of the upper water column 

(Wang et al., 1999; Oppo et al., 2003; Tian et al., 2005; Wang et al., 2008; Wang et al., 

2005).  Tracking the δ18O of mixed layer and thermocline dwelling species of 

foraminifera can be used to determine the degree of stratification and hence the strength 

of the EAM and source water variability between G-I stages.  Mixed-layer and 

thermocline dwelling foraminifera δ18O signatures relay information in reference to the 

salinity and temperature of different source waters driven by monsoon strength or 

changes in sea level, while a deeper mixed layer may pertain to increased monsoon 

intensity. Therefore, determining the similarities or disparities between the δ18O of 

different water depths at GI intervals may lead to the determination of flow between the 

Sulu Sea and its neighboring bodies of water.   

Interglacial stages were primarily expressed by higher values of Δδ18ON-P, 

Δδ18OG-N and Δδ18OG-P.  This conveyed that the mixed layer was more shallow, while the 

thermocline may have been more sharply stratified.  The Δδ18OG-P and Δδ18OG-N from 

MIS 5 and 9 were uncharacteristically higher than during other interglacials and showed 

greater resemblance to glacial stages.  Meanwhile, for most interglacials, greater salinity 

contrast between the mixed layer and thermocline may have existed in the Sulu Sea due 
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to increased freshening of the mixed layer because of strengthened summer EAM that 

brought higher salinity water from the Sulawesi Sea and weakened winter EAM that 

would have reversed the current and added fresher water from the South China Sea.  

Glacial stages were characterized by overall Δδ18OG-N and Δδ18OG-P higher than -1.00‰.  

This conveys a deeper mixed layer and thermocline.  The deeper mixed layer is probably 

the result of intensified winter EAM in addition to a diminished summer monsoon, which 

reduced the influence of higher salinity water into the Sulu Sea. 

These findings are in general agreement with previous conclusions that 1.Winter 

monsoon caused increased glacial surface water mixing in the WPWP, 2. Increased 

summer monsoon intensity powered freshening in the Sulu Sea mixed layer, and 3. Sea 

level controlled the source of surface water entering the Sulu Sea by restricting salty 

water from the Sulawesi Sea from entering during glacial stages (Oppo et al., 2003; 

Wang et al., 2008; Wang et al., 2005).  Interglacial stages 7, 9, and 11 experienced 

anomalous cooling and freshening of the mixed layer that contrasted the salinity and 

temperature of the thermocline. 
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APPENDIX A 

Chapter 2 Data 

 
Table A.1. Kau Bay 102GGC and 103MC-F δ15N (top sample only).  Age model 
calculated using a 300-yr reservoir correction and Fairbanks et al. (2005) calibration 
curve. 
 

Depth, cm Age, yrBP δ15N, ‰ 

0-2 (103MC-F) 0 2.6 

   
0 163.00 3.28 
8 225.63 3.77 
16 297.21 3.76 
24 372.00 3.99 
32 450.00 4.47 
40 528.00 5.09 
48 578.00 5.06 
56 628.00 5.08 
64 678.00 5.59 
72 728.00 4.75 
80 770.37 4.66 
88 812.74 3.76 
96 855.11 4.13 
104 897.48 3.66 
112 939.85 3.68 
120 982.22 3.6 
128 1024.59 4.08 
136 1066.96 4.08 
144 1109.33 4.65 
152 1151.70 4.02 
160 1189.02 3.97 
168 1225.62 4.37 
176 1262.21 4.24 
184 1298.81 4.11 
192 1335.40 4.06 
200 1372.00 3.97 
208 1419.50 3.69 
216 1467.00 3.63 
224 1514.50 3.61 
232 1562.00 3.81 
240 1609.50 3.74 
248 1657.00 3.19 
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256 1704.50 2.74 
264 1752.00 2.74 
272 1806.00 2.56 
280 1860.00 2.48 
288 1914.00 2.68 
296 1968.00 2.16 
304 2022.00 2.72 
312 2076.00 2.3 
320 2118.12 2.65 
328 2160.24 2.61 
336 2202.37 2.45 
344 2244.49 2.53 
352 2286.61 2.5 
360 2328.73 2.46 
368 2450.78 2.37 
376 2584.24 2.42 
384 2717.70 2.68 
392 2851.16 2.43 
400 2984.62 2.84 
408 3118.08 2.61 
416 3251.54 2.89 
424 3385.00 4.1 

 
 
Table A.2. δ13C of fatty acid methyl esters (FAMEs, even numbered chains) and alkanes 
(odd numbered chains), core BJ08-03 102GGC.  Cn = carbon chain of n number of 
carbon atoms.   

Depth, 
cm 

C34 
δ13C 
‰ 

C32 
δ13C 
‰ 

C30 
δ13C 
‰ 

C28 
δ13C 
‰ 

C26 
δ13C 
‰ 

C29 
δ13C 
‰ 

C31 
δ13C 
‰ 

1  -33.9 -33 -31.9 -31.7 -27.3 -33.58 -34.75 
63 -35.2 -32.9 -32.6 -33.3 -27.2 -33.75 -36.06 
87 -32.9 -32.6 -32.8 -34.6 -27.8 -32.38 -34.32 
143 -33.3 -33.6 -32.2 -33.7 -25.5 -32.73 -34.21 
298 -33.8 -32.6 -31.6 -33.7 -26.9 -31.41 -33.67 
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Table A.3. Ratio of terrestrial (C32, long chain) to marine (C16, short chain) FAMEs in 
Kau Bay core BJ08-03 102GGC. 
 

Depth, 
cm C32/(C16+C32) 

1 0.20 

3 0.27 
5 0.89 
7 0.63 
31 0.47 
63 0.55 
73 0.67 
87 0.40 
99 0.67 
103 0.56 
121 0.90 
143 0.67 
155 0.51 
167 0.53 
179 0.80 
191 0.53 
209 0.62 
231 0.66 
259 0.69 
279 0.56 
298 0.69 
321 0.83 
353 0.70 
393 0.90 
417 0.47 
419 0.88 
421 0.68 
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Table A.4. Concentration of FAMEs (ppb) in core 102 GGC. 
 

Depth, 
cm C14  C16  C18 C20  C22 C24  C26  C28  C30  C32  C34  C36  

1 0.00 0.28 0.00 0.00 0.00 0.74 0.22 0.33 0.19 0.07 0.00 0.33 
3 0.28 1.48 0.28 0.06 0.19 0.93 0.76 0.71 0.59 0.54 0.21 0.00 
5 0.00 0.07 0.03 0.00 0.09 0.59 0.59 0.60 0.48 0.58 0.35 0.00 
7 0.00 0.35 0.07 0.03 0.12 0.68 0.61 0.64 0.45 0.60 0.38 0.00 
9 0.00 0.00 0.00 0.00 0.00 0.68 0.35 0.40 0.16 0.05 0.00 0.21 

31 0.22 0.53 0.05 0.04 0.11 0.63 0.67 1.11 0.54 0.48 0.24 0.00 
47 0.00 0.00 0.00 0.00 0.00 0.94 0.48 1.26 0.43 0.39 2.80 0.42 
63 0.08 0.42 0.04 0.00 0.07 0.43 0.51 1.04 0.50 0.51 0.30 0.19 
73 0.03 0.41 0.06 0.00 0.11 0.69 0.81 1.00 0.75 0.83 0.46 0.28 
87 0.07 1.52 0.06 0.06 0.22 0.95 1.12 1.31 0.91 1.01 0.59 0.37 
99 0.00 0.98 0.07 0.03 0.10 0.38 0.52 0.96 1.38 1.95 1.14 0.17 

103 0.00 0.31 0.04 0.00 0.16 0.75 0.80 0.92 0.55 0.39 0.16 0.23 
121 0.00 0.33 0.04 0.03 0.15 0.92 1.35 2.13 2.22 2.93 1.67 0.00 
143 0.04 0.31 0.03 0.02 0.06 0.45 0.56 0.62 0.54 0.63 0.35 0.14 
155 0.10 0.37 0.02 0.02 0.06 0.66 0.54 0.58 0.37 0.39 0.23 0.11 
167 0.10 0.48 0.07 0.00 0.11 0.79 0.73 0.71 0.49 0.54 0.30 0.22 
179 0.10 0.47 0.06 0.06 0.24 1.06 0.98 1.13 1.41 1.94 1.06 0.42 
191 0.09 0.32 0.02 0.00 0.05 0.33 0.44 0.55 0.34 0.35 0.19 0.15 
209 0.19 0.33 0.02 0.02 0.06 0.37 0.55 0.70 0.48 0.55 0.33 0.16 
231 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
239 0.03 0.13 0.00 0.00 0.03 0.14 0.28 0.39 0.23 0.26 0.13 0.09 
259 0.10 0.57 0.06 0.04 0.13 0.77 1.14 1.94 1.15 1.28 0.75 0.31 
279 0.00 0.45 0.00 0.00 0.04 0.32 0.57 0.99 0.59 0.58 0.26 0.00 
298 0.04 0.29 0.02 0.02 0.06 0.22 0.42 0.63 0.54 0.64 0.43 0.22 
321 0.06 0.35 0.03 0.04 0.16 0.47 0.98 1.24 1.30 1.69 1.11 0.48 
353 0.12 0.35 0.05 0.03 0.11 0.35 0.49 0.55 0.62 0.83 0.40 0.20 
393 0.06 0.35 0.05 0.03 0.09 0.33 0.76 1.23 1.90 3.16 2.01 0.25 
417 0.08 0.19 0.02 0.01 0.04 0.23 0.24 0.40 0.19 0.17 0.09 0.21 
419 0.01 0.10 0.02 0.01 0.03 0.19 0.31 0.43 0.50 0.74 0.41 0.11 
421 0.14 0.70 0.06 0.07 0.24 1.28 1.13 1.27 1.25 1.50 0.93 0.50 
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Table A.5. Hydrocast Temperature and Salinity from BJ08-03 HC113, Kau Bay. 
 

Water 
depth, m 

Temperature, 
˚C 

Potential 
Temperature, 

˚C 

Salinity, 
p.s.u. 

1 29.30 29.20 34.11 
2 29.31 29.30 34.11 
3 29.38 29.30 34.11 
4 29.44 29.40 34.11 
5 29.48 29.40 34.11 
6 29.47 29.40 34.11 
7 29.44 29.40 34.11 
8 29.41 29.40 34.11 
9 29.29 29.20 34.11 
10 29.31 29.30 34.11 
11 29.37 29.30 34.11 
12 29.39 29.30 34.11 
13 29.36 29.30 34.11 
14 29.39 29.30 34.11 
15 29.31 29.30 34.11 
16 29.11 29.10 34.11 
17 29.09 29.00 34.11 
18 29.09 29.00 34.11 
19 29.09 29.00 34.11 
20 29.08 29.00 34.11 
21 29.08 29.00 34.11 
22 29.08 29.00 34.11 
23 29.08 29.00 34.11 
24 29.07 29.00 34.12 
25 29.03 29.00 34.14 
26 28.98 28.90 34.17 
27 28.93 28.90 34.19 
28 28.89 28.80 34.21 
29 28.87 28.80 34.22 
30 28.85 28.80 34.23 
31 28.85 28.80 34.23 
32 28.84 28.80 34.23 
33 28.83 28.80 34.24 
34 28.81 28.80 34.24 
35 28.78 28.70 34.25 
36 28.77 28.70 34.26 
37 28.76 28.70 34.26 
38 28.74 28.70 34.27 
39 28.73 28.70 34.27 
40 28.72 28.70 34.27 
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41 28.71 28.60 34.27 
42 28.71 28.60 34.27 
43 28.71 28.60 34.27 
44 28.70 28.60 34.27 
45 28.70 28.60 34.27 
46 28.70 28.60 34.27 
47 28.69 28.60 34.27 
48 28.69 28.60 34.27 
49 28.69 28.60 34.27 
50 28.68 28.60 34.28 
51 28.68 28.60 34.28 
52 28.67 28.60 34.28 
53 28.67 28.60 34.28 
54 28.65 28.60 34.29 
55 28.65 28.60 34.29 
56 28.63 28.60 34.31 
57 28.61 28.50 34.33 
58 28.60 28.50 34.34 
59 28.60 28.50 34.34 
60 28.60 28.50 34.34 
61 28.59 28.50 34.34 
62 28.57 28.50 34.34 
63 28.55 28.50 34.34 
64 28.54 28.50 34.34 
65 28.54 28.50 34.34 
66 28.55 28.50 34.34 
67 28.55 28.50 34.34 
68 28.55 28.50 34.35 
69 28.54 28.50 34.34 
70 28.54 28.50 34.34 
71 28.54 28.50 34.34 
72 28.54 28.50 34.35 
73 28.53 28.50 34.35 
74 28.53 28.50 34.35 
75 28.53 28.50 34.35 
76 28.53 28.50 34.35 
77 28.53 28.50 34.35 
78 28.53 28.50 34.35 
79 28.53 28.50 34.35 
80 28.53 28.50 34.35 
81 28.52 28.50 34.35 
82 28.52 28.50 34.35 
83 28.52 28.40 34.35 
84 28.51 28.40 34.35 
85 28.50 28.40 34.35 
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86 28.50 28.40 34.35 
87 28.50 28.40 34.36 
88 28.51 28.40 34.36 
89 28.51 28.40 34.36 
90 28.53 28.50 34.38 
91 28.54 28.50 34.39 
92 28.55 28.50 34.39 
93 28.55 28.50 34.39 
94 28.55 28.50 34.39 
95 28.55 28.50 34.39 
96 28.55 28.50 34.39 
97 28.55 28.50 34.39 
98 28.55 28.50 34.39 
99 28.55 28.50 34.40 
100 28.55 28.50 34.40 
101 28.55 28.50 34.40 
102 28.55 28.50 34.40 
103 28.55 28.50 34.40 
104 28.56 28.50 34.40 
105 28.56 28.50 34.41 
106 28.56 28.50 34.41 
107 28.56 28.50 34.41 
108 28.56 28.50 34.41 
109 28.55 28.50 34.41 
110 28.54 28.50 34.41 
111 28.54 28.50 34.40 
112 28.54 28.50 34.41 
113 28.54 28.50 34.41 
114 28.53 28.50 34.41 
115 28.53 28.50 34.41 
116 28.53 28.40 34.41 
117 28.52 28.40 34.41 
118 28.52 28.40 34.41 
119 28.52 28.40 34.41 
120 28.52 28.40 34.41 
121 28.52 28.40 34.41 
122 28.52 28.40 34.41 
123 28.52 28.40 34.41 
124 28.53 28.40 34.41 
125 28.53 28.50 34.42 
126 28.53 28.50 34.41 
127 28.53 28.50 34.42 
128 28.54 28.50 34.42 
129 28.55 28.50 34.43 
130 28.55 28.50 34.43 
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131 28.55 28.50 34.43 
132 28.54 28.50 34.43 
133 28.54 28.50 34.43 
134 28.54 28.50 34.43 
135 28.54 28.50 34.43 
136 28.54 28.50 34.43 
137 28.53 28.50 34.43 
138 28.53 28.40 34.43 
139 28.53 28.50 34.43 
140 28.53 28.40 34.43 
141 28.52 28.40 34.43 
142 28.52 28.40 34.43 
143 28.52 28.40 34.43 
144 28.52 28.40 34.43 
145 28.52 28.40 34.43 
146 28.52 28.40 34.43 
147 28.52 28.40 34.43 
148 28.52 28.40 34.43 
149 28.52 28.40 34.43 
150 28.51 28.40 34.43 
151 28.51 28.40 34.43 
152 28.51 28.40 34.43 
153 28.51 28.40 34.43 
154 28.49 28.40 34.42 
155 28.48 28.40 34.42 
156 28.48 28.40 34.42 
157 28.48 28.40 34.42 
158 28.48 28.40 34.42 
159 28.46 28.40 34.41 
160 28.45 28.40 34.41 
161 28.45 28.40 34.41 
162 28.45 28.40 34.41 
163 28.45 28.40 34.41 
164 28.45 28.40 34.41 
165 28.46 28.40 34.41 
166 28.48 28.40 34.42 
167 28.48 28.40 34.43 
168 28.48 28.40 34.43 
169 28.48 28.40 34.43 
170 28.48 28.40 34.42 
171 28.48 28.40 34.43 
172 28.48 28.40 34.43 
173 28.48 28.40 34.43 
174 28.49 28.40 34.43 
175 28.49 28.40 34.43 
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176 28.49 28.40 34.44 
177 28.50 28.40 34.44 
178 28.50 28.40 34.44 
179 28.50 28.40 34.44 
180 28.49 28.40 34.44 
181 28.49 28.40 34.44 
182 28.49 28.40 34.44 
183 28.49 28.40 34.44 
184 28.49 28.40 34.44 
185 28.49 28.40 34.44 
186 28.49 28.40 34.44 
187 28.49 28.40 34.44 
188 28.49 28.40 34.44 
189 28.49 28.40 34.44 
190 28.48 28.40 34.43 
191 28.48 28.40 34.43 
192 28.48 28.40 34.43 
193 28.47 28.40 34.43 
194 28.47 28.40 34.43 
195 28.47 28.40 34.43 
196 28.47 28.40 34.43 
197 28.46 28.40 34.43 
198 28.45 28.40 34.42 
199 28.44 28.30 34.42 
200 28.44 28.30 34.42 
201 28.44 28.30 34.42 
202 28.44 28.30 34.42 
203 28.45 28.30 34.43 
204 28.45 28.40 34.43 
205 28.45 28.40 34.43 
206 28.45 28.30 34.43 
207 28.45 28.40 34.43 
208 28.46 28.40 34.44 
209 28.46 28.40 34.44 
210 28.46 28.40 34.44 
211 28.47 28.40 34.44 
212 28.47 28.40 34.44 
213 28.46 28.40 34.44 
214 28.46 28.40 34.43 
215 28.46 28.40 34.43 
216 28.46 28.40 34.43 
217 28.45 28.30 34.43 
218 28.43 28.30 34.43 
219 28.43 28.30 34.43 
220 28.42 28.30 34.42 
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221 28.42 28.30 34.42 
222 28.41 28.30 34.42 
223 28.40 28.30 34.42 
224 28.40 28.30 34.41 
225 28.40 28.30 34.41 
226 28.40 28.30 34.41 
227 28.40 28.30 34.41 
228 28.39 28.30 34.41 
229 28.39 28.30 34.41 
230 28.39 28.30 34.41 
231 28.39 28.30 34.41 
232 28.39 28.30 34.41 
233 28.39 28.30 34.41 
234 28.39 28.30 34.41 
235 28.39 28.30 34.41 
236 28.39 28.30 34.41 
237 28.39 28.30 34.41 
238 28.39 28.30 34.41 
239 28.39 28.30 34.41 
240 28.39 28.30 34.41 
241 28.39 28.30 34.41 
242 28.38 28.30 34.41 
243 28.38 28.30 34.41 
244 28.37 28.30 34.41 
245 28.37 28.30 34.41 
246 28.37 28.30 34.41 
247 28.37 28.30 34.41 
248 28.37 28.30 34.41 
249 28.37 28.30 34.41 
250 28.37 28.30 34.41 
251 28.37 28.30 34.41 
252 28.37 28.30 34.41 
253 28.37 28.30 34.41 
254 28.37 28.30 34.41 
255 28.37 28.30 34.41 
256 28.37 28.30 34.41 
257 28.37 28.30 34.41 
258 28.37 28.30 34.41 
259 28.38 28.30 34.41 
260 28.38 28.30 34.41 
261 28.38 28.30 34.41 
262 28.38 28.30 34.42 
263 28.39 28.30 34.42 
264 28.39 28.30 34.42 
265 28.39 28.30 34.42 
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266 28.39 28.30 34.42 
267 28.39 28.30 34.42 
268 28.39 28.30 34.42 
269 28.38 28.30 34.42 
270 28.38 28.30 34.42 
271 28.38 28.30 34.42 
272 28.38 28.30 34.42 
273 28.38 28.30 34.42 
274 28.38 28.30 34.42 
275 28.37 28.30 34.41 
276 28.37 28.30 34.41 
277 28.37 28.30 34.41 
278 28.37 28.30 34.41 
279 28.37 28.20 34.41 
280 28.37 28.20 34.41 
281 28.36 28.20 34.41 
282 28.36 28.20 34.41 
283 28.36 28.20 34.41 
284 28.36 28.20 34.41 
285 28.36 28.20 34.41 
286 28.36 28.20 34.41 
287 28.36 28.20 34.41 
288 28.36 28.20 34.41 
289 28.36 28.20 34.41 
290 28.35 28.20 34.41 
291 28.35 28.20 34.41 
292 28.35 28.20 34.41 
293 28.35 28.20 34.41 
294 28.35 28.20 34.41 
295 28.37 28.20 34.42 
296 28.37 28.30 34.42 
297 28.37 28.30 34.42 
298 28.37 28.30 34.42 
299 28.37 28.30 34.42 
300 28.37 28.30 34.42 
301 28.37 28.30 34.42 
302 28.37 28.20 34.42 
303 28.36 28.20 34.42 
304 28.36 28.20 34.42 
305 28.36 28.20 34.41 
306 28.36 28.20 34.41 
307 28.36 28.20 34.41 
308 28.36 28.20 34.41 
309 28.36 28.20 34.41 
310 28.36 28.20 34.41 
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311 28.35 28.20 34.41 
312 28.35 28.20 34.41 
313 28.35 28.20 34.41 
314 28.35 28.20 34.41 
315 28.35 28.20 34.41 
316 28.36 28.20 34.41 
317 28.36 28.20 34.42 
318 28.36 28.20 34.42 
319 28.36 28.20 34.42 
320 28.36 28.20 34.42 
321 28.36 28.20 34.42 
322 28.36 28.20 34.42 
323 28.36 28.20 34.42 
324 28.36 28.20 34.42 
325 28.36 28.20 34.42 
326 28.36 28.20 34.42 
327 28.36 28.20 34.42 
328 28.35 28.20 34.42 
329 28.35 28.20 34.41 
330 28.35 28.20 34.41 
331 28.34 28.20 34.41 
332 28.34 28.20 34.41 
333 28.33 28.20 34.41 
334 28.33 28.20 34.41 
335 28.33 28.20 34.41 
336 28.33 28.20 34.41 
337 28.33 28.20 34.41 
338 28.33 28.20 34.41 
339 28.33 28.20 34.41 
340 28.33 28.20 34.41 
341 28.33 28.20 34.41 
342 28.33 28.20 34.41 
343 28.33 28.20 34.41 
344 28.33 28.20 34.41 
345 28.33 28.20 34.41 
346 28.33 28.20 34.41 
347 28.33 28.20 34.41 
348 28.33 28.20 34.41 
349 28.34 28.20 34.41 
350 28.34 28.20 34.41 
351 28.34 28.20 34.41 
352 28.34 28.20 34.41 
353 28.34 28.20 34.42 
354 28.34 28.20 34.41 
355 28.33 28.20 34.41 
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356 28.32 28.20 34.41 
357 28.32 28.20 34.41 
358 28.32 28.20 34.41 
359 28.32 28.20 34.41 
360 28.31 28.20 34.41 
361 28.31 28.20 34.41 
362 28.31 28.20 34.40 
363 28.31 28.20 34.40 
364 28.31 28.20 34.40 
365 28.31 28.20 34.40 
366 28.31 28.20 34.40 
367 28.31 28.20 34.40 
368 28.31 28.20 34.40 
369 28.30 28.20 34.40 
370 28.30 28.20 34.40 
371 28.29 28.20 34.40 
372 28.29 28.20 34.40 
373 28.29 28.20 34.40 
374 28.29 28.20 34.40 
375 28.30 28.20 34.40 
376 28.30 28.20 34.40 
377 28.29 28.20 34.40 
378 28.30 28.20 34.40 
379 28.30 28.20 34.40 
380 28.30 28.20 34.40 
381 28.30 28.20 34.40 
382 28.30 28.20 34.41 
383 28.31 28.20 34.41 
384 28.30 28.20 34.40 
385 28.30 28.20 34.40 
386 28.30 28.20 34.40 
387 28.30 28.20 34.40 
388 28.30 28.20 34.40 
389 28.30 28.20 34.40 
390 28.30 28.20 34.41 
391 28.30 28.20 34.41 
392 28.30 28.20 34.41 
393 28.30 28.20 34.41 
394 28.30 28.20 34.41 
395 28.30 28.20 34.41 
396 28.30 28.20 34.41 
397 28.30 28.20 34.41 
398 28.30 28.20 34.41 
399 28.30 28.20 34.41 
400 28.30 28.20 34.41 
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401 28.30 28.20 34.41 
402 28.30 28.20 34.41 
403 28.30 28.20 34.41 
404 28.30 28.20 34.41 
405 28.30 28.20 34.41 
406 28.30 28.20 34.41 
407 28.30 28.20 34.41 
408 28.31 28.20 34.41 
409 28.31 28.20 34.41 
410 28.31 28.20 34.41 
411 28.31 28.20 34.41 
412 28.32 28.20 34.41 
413 28.32 28.20 34.42 
414 28.32 28.20 34.42 
415 28.32 28.20 34.42 
416 28.32 28.20 34.42 
417 28.32 28.20 34.42 
418 28.33 28.20 34.42 
419 28.33 28.20 34.42 
420 28.33 28.20 34.42 
421 28.33 28.20 34.43 
422 28.34 28.20 34.43 
423 28.34 28.20 34.43 
424 28.34 28.20 34.43 
425 28.35 28.20 34.43 
426 28.35 28.20 34.43 
427 28.35 28.20 34.43 
428 28.35 28.20 34.43 
429 28.35 28.20 34.43 
430 28.35 28.20 34.43 
431 28.35 28.20 34.43 
432 28.35 28.20 34.43 
433 28.35 28.20 34.43 
434 28.35 28.20 34.44 
435 28.36 28.20 34.44 
436 28.36 28.20 34.44 
437 28.36 28.20 34.44 
438 28.36 28.20 34.44 
439 28.36 28.20 34.44 
440 28.36 28.20 34.44 
441 28.36 28.20 34.44 
442 28.37 28.20 34.45 
443 28.37 28.20 34.45 
444 28.37 28.20 34.45 
445 28.37 28.20 34.45 
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446 28.37 28.20 34.45 
447 28.37 28.20 34.45 
448 28.37 28.20 34.45 
449 28.37 28.20 34.45 
450 28.37 28.20 34.45 
451 28.37 28.20 34.45 
452 28.37 28.20 34.45 
453 28.37 28.20 34.45 
454 28.37 28.20 34.45 
455 28.37 28.20 34.45 
456 28.37 28.20 34.45 
457 28.37 28.20 34.45 
458 28.37 28.20 34.45 
459 28.37 28.20 34.45 
460 28.37 28.20 34.45 
461 28.37 28.20 34.45 
462 28.37 28.20 34.45 
463 28.37 28.20 34.45 
464 28.37 28.20 34.45 
465 28.37 28.20 34.45 
466 28.37 28.20 34.45 

 
 
Table A.5.  Oxygen concentration in Kau Bay from the BJ08-03 cruise in 2003. 
 

Depth, m [O2] µM 
20 186 
60 79 
75 70 
100 65 
150 56 
200 26 
300 41 
350 34 
400 30 
425 9 
450 4 
465 3 
466 0 
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Table A.6. Kau Bay water column NO3
- concentration, δ15N NO3

-, and δ18O NO3
- from 

2003, BJ08-03 cruise. 
 

Depth (m) [NO3
-] µM δ15N NO3

- δ18O NO3
- 

444.05 2.7 8.39  
424.94 4.8 8.77 8.82 
400.28 6.8 6.18 9.16 
400.28  6.72  
350.36 7.9 6.26 2.70 
300.00 8.6 5.82 4.29 
200.22 9.0 5.82 2.74 
150.25 9.1 5.59 3.41 
99.67  5.65 0.94 
99.67 9.5 5.33  
80.44 9.3 5.38 1.89 

   2.44 
59.55 9.1 5.06 0.72 
14.67 0.6   
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APPENDIX B 
Chapter 3 data 

 
Table B.1. δ13C and δ18O of Creseis acicula from core 102GGC.  The age model 
includes a 200 year reservoir correction and Fairbanks0107 calibration (Fairbanks et al., 
2005). 

Depth, cm Age, yrBP δ13C‰ δ18O‰ 
2 451.50 0.81 -1.54 
6 466.50 0.98 -1.06 
8 474.00 0.33 -1.46 
10 481.50 0.71 -1.34 
12 489.00 0.97 -1.38 
14 496.50 0.81 -1.32 
16 504.00 0.67 -1.51 
18 511.50 0.71 -1.52 
20 519.00 0.79 -1.35 
22 526.50 0.49 -1.27 
23 530.25 0.58 -1.45 
26 541.50 0.87 -1.38 
28 549.00 0.32 -1.71 
30 556.50 0.36 -1.76 
32 564.00 0.80 -1.70 
35 575.25 0.49 -1.09 
38 586.50 0.38 -1.63 
40 594.00 0.37 -1.68 
44 624.38 0.71 -1.45 
46 639.56 0.28 -1.73 
48 654.75 0.23 -1.55 
52 685.13 0.43 -1.01 
54 700.31 0.23 -1.45 
56 715.50 -0.06 -1.67 
58 730.69 0.54 -1.09 
60 745.88 0.32 -1.61 
62 761.06 0.37 -1.37 
64 776.25 0.03 -1.73 
67 799.03 0.12 -1.41 
68 806.63 0.11 -1.42 
71 829.41 0.19 -1.37 
72 837.00 -0.23 -1.69 
76 858.19 -0.17 -1.61 
78 868.78 0.42 -1.27 
80 879.37 -0.06 -1.85 
82 889.96 -0.42 -1.57 
84 900.56 0.33 -1.47 
86 911.15 0.41 -1.52 
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88 921.74 0.46 -1.52 
92 942.93 0.37 -1.71 
94 953.52 0.38 -1.65 
96 964.11 0.46 -1.71 
100 985.30 0.55 -1.40 
104 1006.48 0.46 -1.45 
106 1017.07 0.65 -1.41 
108 1027.67 0.09 -1.97 
110 1038.26 0.33 -1.81 
112 1048.85 0.65 -1.62 
114 1059.44 1.03 -1.51 
116 1070.04 0.25 -1.15 
118 1080.63 0.40 -1.61 
120 1091.22 0.24 -1.44 
122 1101.81 0.62 -1.55 
124 1112.41 0.46 -0.91 
126 1123.00 0.49 -1.04 
128 1133.59 0.28 -1.67 
130 1144.19 0.56 -1.13 
132 1154.78 0.65 -1.42 
134 1165.37 0.71 -1.60 
136 1175.96 -0.34 -2.13 
138 1186.56 -0.04 -1.60 
140 1197.15 -0.16 -1.74 
142 1207.74 0.41 -1.79 
144 1218.33 0.09 -1.81 
148 1239.52 0.73 -1.57 
150 1250.11 0.46 -1.44 
152 1260.70 0.86 -1.46 
154 1270.49 0.16 -2.04 
156 1279.47 0.44 -1.82 
158 1288.45 0.65 -1.32 
160 1297.43 0.26 -1.85 
162 1306.40 0.61 -1.35 
164 1315.38 0.55 -1.42 
166 1324.36 0.55 -1.21 
170 1342.32 0.48 -1.56 
172 1351.30 0.37 -1.56 
174 1360.28 0.86 -1.29 
176 1369.26 0.12 -1.57 
178 1378.23 0.53 -1.53 
180 1387.21 0.14 -1.80 
182 1396.19 0.35 -1.70 
184 1405.17 0.19 -1.65 
186 1414.15 0.16 -1.66 
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188 1423.13 0.30 -1.75 
190 1432.11 0.45 -1.67 
192 1441.09 0.18 -1.60 
194 1450.06 0.55 -1.73 
196 1459.04 0.19 -1.53 
198 1468.02 0.61 -1.68 
202 1489.09 0.72 -1.74 
204 1501.19 0.61 -1.45 
206 1513.28 0.30 -1.37 
210 1537.47 0.20 -1.58 
212 1549.56 0.28 -1.67 
214 1561.66 0.02 -1.88 
216 1573.75 -0.26 -1.86 
218 1585.84 0.02 -1.97 
220 1597.94 0.41 -1.67 
222 1610.03 0.01 -1.29 
224 1622.13 -0.39 -1.51 
226 1634.22 -0.03 -1.39 
228 1646.31 -0.11 -1.41 
230 1658.41 0.06 -1.41 
232 1670.50 -0.27 -1.54 
234 1682.59 0.38 -1.23 
236 1694.69 0.31 -1.48 
238 1706.78 0.38 -1.22 
240 1718.88 -0.01 -1.53 
242 1730.97 0.55 -1.46 
244 1743.06 0.24 -1.49 
246 1755.16 0.06 -1.86 
248 1767.25 0.05 -1.64 
250 1779.34 0.08 -1.70 
252 1791.44 -0.12 -1.31 
254 1803.53 -0.16 -1.89 
256 1815.63 -0.31 -1.83 
258 1827.72 0.31 -1.69 
260 1839.81 0.27 -1.56 
262 1851.91 0.05 -1.72 
264 1864.00 0.31 -1.54 
266 1878.75 0.45 -1.57 
268 1893.50 -0.15 -1.84 
270 1908.25 -0.12 -1.92 
272 1923.00 0.11 -1.80 
274 1937.75 0.52 -1.44 
276 1952.50 -0.03 -1.74 
278 1967.25 -0.09 -1.81 
280 1982.00 -0.29 -1.74 
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282 1996.75 0.31 -1.75 
284 2011.50 0.25 -1.72 
286 2026.25 0.37 -1.69 
288 2041.00 0.05 -1.52 
292 2070.50 0.22 -1.77 
293 2077.88 0.45 -1.63 
296 2100.00 -0.10 -1.91 
299 2122.13 0.43 -2.11 
300 2129.50 0.27 -1.83 
302 2144.25 -0.17 -1.77 
304 2159.00 0.07 -2.15 
306 2173.75 0.39 -1.88 
308 2188.50 0.10 -2.15 
310 2203.25 0.21 -2.05 
314 2225.31 0.50 -1.48 
316 2232.61 0.36 -2.21 
318 2239.92 0.23 -2.14 
320 2247.22 -0.17 -2.40 
322 2254.53 -0.34 -2.37 
324 2261.84 -0.39 -2.24 
326 2269.14 0.20 -2.54 
328 2276.45 -0.23 -2.11 
332 2291.06 -0.15 -1.79 
334 2298.37 0.58 -1.72 
336 2305.67 -0.13 -2.15 
338 2312.98 -0.51 -2.10 
340 2320.29 0.62 -2.20 
344 2334.90 0.34 -2.06 
346 2342.20 0.18 -2.18 
348 2349.51 -0.03 -1.86 
350 2356.82 0.03 -2.35 
352 2364.12 0.08 -2.37 
354 2371.43 0.10 -2.10 
356 2378.73 -0.39 -1.77 
358 2386.04 0.08 -1.89 
360 2393.35 0.25 -2.45 
362 2414.10 0.36 -2.18 
364 2448.29 -0.02 -2.01 
366 2482.48 -0.68 -2.29 
368 2516.67 0.33 -2.46 
370 2550.86 0.44 -2.27 
374 2619.24 0.23 -1.85 
376 2653.43 0.00 -2.30 
378 2687.62 0.09 -2.01 
380 2721.81 0.47 -1.86 
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382 2756.00 0.25 -2.09 
384 2790.19 0.39 -1.73 
388 2858.57 -0.47 -2.30 
390 2892.76 0.17 -1.78 
392 2926.95 0.21 -2.43 
394 2961.14 -0.26 -1.64 
396 2995.33 0.38 -1.76 
398 3029.52 -0.36 -1.71 
400 3063.71 0.15 -2.14 
402 3097.90 0.13 -1.53 
404 3132.10 -0.06 -2.09 
408 3200.48 -0.55 -2.14 
414 3303.05 1.02 -1.42 
416 3337.24 0.13 -1.96 
420 3405.62 0.64 -1.33 
422 3439.81 0.55 -1.30 

 
 
 
Table B.2. Sr/Ca of Creseis acicula from core 102GGC.  The age model includes a 200 
year reservoir correction and Fairbanks0107 calibration (Fairbanks et al., 2005). 
 

Depth, cm Age, yrBP Sr/Ca 
mmol/mol 

0 444.00 0.96 
2 451.50 0.92 
4 459.00 1.06 
6 466.50 0.88 
8 474.00 1.01 
10 481.50 0.93 
12 489.00 0.96 
14 496.50 1.03 
16 504.00 1.00 
18 511.50 1.05 
20 519.00 1.14 
22 526.50 1.11 
23 530.25 1.17 
26 541.50 1.03 
28 549.00 1.08 
30 556.50 1.03 
32 564.00 0.90 
34 571.50 0.97 
35 575.25 1.01 
38 586.50 1.04 
42 609.19 1.13 
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44 624.38 1.11 
46 639.56 1.03 
48 654.75 0.96 
50 669.94 0.91 
52 685.13 1.04 
54 700.31 0.93 
56 715.50 1.24 
58 730.69 0.98 
60 745.88 1.20 
62 761.06 1.15 
64 776.25 1.38 
67 799.03 1.28 
68 806.63 1.17 
71 829.41 1.34 
72 837.00 1.32 
76 858.19 1.08 
78 868.78 1.02 
80 879.37 0.99 
84 900.56 1.05 
86 911.15 1.01 
92 942.93 0.97 
94 953.52 1.02 
96 964.11 1.14 
100 985.30 1.02 
104 1006.48 1.12 
106 1017.07 1.05 
108 1027.67 0.93 
110 1038.26 0.99 
112 1048.85 0.98 
114 1059.44 1.00 
116 1070.04 0.95 
118 1080.63 0.94 
120 1091.22 1.06 
122 1101.81 0.99 
124 1112.41 0.94 
126 1123.00 0.99 
128 1133.59 1.01 
130 1144.19 1.10 
132 1154.78 1.06 
134 1165.37 0.97 
136 1175.96 1.25 
138 1186.56 1.08 
140 1197.15 1.04 
142 1207.74 0.94 
144 1218.33 0.94 
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148 1239.52 1.17 
150 1250.11 0.92 
152 1260.70 0.90 
154 1270.49 0.86 
156 1279.47 0.84 
158 1288.45 0.93 
160 1297.43 1.11 
162 1306.40 0.91 
164 1315.38 0.89 
166 1324.36 0.84 
170 1342.32 0.86 
172 1351.30 1.00 
174 1360.28 1.12 
176 1369.26 0.96 
178 1378.23 0.92 
180 1387.21 0.90 
182 1396.19 1.02 
184 1405.17 0.96 
186 1414.15 1.00 
188 1423.13 0.89 
190 1432.11 0.98 
192 1441.09 0.97 
194 1450.06 1.18 
196 1459.04 0.95 
198 1468.02 1.12 
202 1489.09 1.07 
204 1501.19 1.06 
206 1513.28 1.13 
208 1525.38 1.22 
210 1537.47 1.15 
212 1549.56 1.21 
214 1561.66 1.16 
216 1573.75 1.73 
218 1585.84 1.21 
220 1597.94 1.15 
222 1610.03 1.16 
224 1622.13 1.43 
226 1634.22 1.20 
228 1646.31 1.15 
230 1658.41 1.28 
232 1670.50 1.33 
234 1682.59 1.16 
236 1694.69 1.16 
238 1706.78 1.23 
240 1718.88 1.13 
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242 1730.97 1.03 
244 1743.06 1.16 
246 1755.16 1.07 
248 1767.25 1.28 
250 1779.34 1.04 
252 1791.44 1.16 
254 1803.53 1.19 
256 1815.63 1.42 
258 1827.72 1.01 
260 1839.81 0.97 
262 1851.91 1.04 
266 1878.75 1.02 
268 1893.50 1.00 
270 1908.25 0.94 
272 1923.00 1.32 
274 1937.75 1.12 
276 1952.50 1.00 
278 1967.25 0.94 
280 1982.00 1.32 
282 1996.75 1.03 
284 2011.50 1.09 
286 2026.25 0.95 
288 2041.00 1.02 
292 2070.50 1.00 
296 2100.00 0.92 
299 2122.13 0.98 
300 2129.50 1.06 
302 2144.25 1.01 
304 2159.00 1.09 
306 2173.75 0.99 
308 2188.50 0.90 
310 2203.25 0.87 
314 2225.31 1.00 
316 2232.61 1.07 
318 2239.92 1.06 
320 2247.22 0.93 
322 2254.53 0.95 
324 2261.84 0.88 
334 2298.37 0.91 
336 2305.67 0.97 
338 2312.98 0.94 
340 2320.29 0.87 
342 2327.59 0.95 
344 2334.90 0.97 
346 2342.20 0.95 
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348 2349.51 0.85 
350 2356.82 0.94 
352 2364.12 0.75 
354 2371.43 0.92 
356 2378.73 0.95 
358 2386.04 0.90 
360 2393.35 0.88 
362 2414.10 0.99 
364 2448.29 0.92 
366 2482.48 0.91 
368 2516.67 0.93 
370 2550.86 0.84 
372 2585.05 0.85 
374 2619.24 0.93 
376 2653.43 0.82 
378 2687.62 1.01 
380 2721.81 0.97 
382 2756.00 0.99 
384 2790.19 1.19 
386 2824.38 0.88 
388 2858.57 1.09 
390 2892.76 1.12 
392 2926.95 1.06 
394 2961.14 0.97 
396 2995.33 0.98 
398 3029.52 0.95 
402 3097.90 1.00 
404 3132.10 0.90 
420 3405.62 1.00 
422 3439.81 1.20 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 119 

Table B.3. Kau Bay multi-core 103MC-F δ13C and δ18O.  The age model includes a 200 
year reservoir correction and Fairbanks0107 calibration (Fairbanks et al., 2005). 
 

Depth, cm Age, yrBP δ13C ‰ δ18O ‰ 
2 21.59 -0.19 -1.61 
8 86.37 -0.23 -1.70 
12 129.55 0.40 -1.84 
15 161.94 -0.04 -1.95 
18 194.33 0.26 -1.77 
21 226.71 0.59 -1.52 
24 259.10 1.11 -0.93 
27 291.49 0.77 -1.72 
30 323.88 0.90 -1.34 
33 356.27 0.66 -1.43 
37 399.45 0.60 -0.96 
40 431.84 0.59 -1.48 
43 464.22 0.65 -1.41 
49 529.00 0.60 -1.71 
52 561.39 0.70 -1.65 
56 604.57 0.87 -1.35 
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Table B.4. Kau Bay multi-core 103MC-F Sr/Ca.  The age model includes a 200 year 
reservoir correction and Fairbanks0107 calibration (Fairbanks et al., 2005). 
 

Depth, cm Age, yrBP Sr/Ca 
mmol/mol 

2 21.59 0.92 
8 86.37 0.96 
12 129.55 0.98 
15 161.94 0.99 
18 194.33 1.03 
21 226.71 0.99 
24 259.10 1.18 
27 291.49 1.04 
30 323.88 1.12 
33 356.27 1.15 
37 399.45 1.16 
40 431.84 1.11 
43 464.22 0.98 
46 496.61 1.31 
49 529.00 1.03 
52 561.39  
53 572.18 1.06 
56 604.57 1.19 
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APPENDIX C 
Chapter 4 Data 

 
Table C.1. δ13C and δ18O of the foraminifera Neogloboquadrina dutertrei from Sulu Sea 
core ODP769A. 
 

Depth, 
cm 

Age, 
kyr 

δ13C ‰, 
N. 

dutertrei 

δ13C ‰, 
N. 

dutertrei 
replicate 

δ18O ‰, 
N. 

dutertrei 

δ18O ‰, 
N. 

dutertrei 
replicate 

25 2.31 1.319 1.656 -1.513 -1.517 
55 5.09 1.295  -1.336  
85 7.87 1.301  -1.215  
114 10.22 0.535  -0.480  
145 12.04     
175 13.93 1.301  -0.483  
205 15.81 1.707  -0.433  
235 17.69 1.161  -0.752  
265 21.54 1.517  -0.462  
295 26.37  1.200  -0.802 
325 31.20 0.923  -0.806  
360 36.84 1.137  -0.539  
390 41.67 0.984  -0.963  
420 46.5 1.266  -0.826  
459 52.78 1.021  -1.303  
499 59 0.634  -0.970  
539 65 1.015  -0.524  
559 68 1.595 1.234 -0.641 -0.597 
602 74.45 1.316  -1.192  
639 80 1.400  -1.272  
679 88 0.998  -1.230  
719 96 1.316  -0.845  
760 103.5 1.081  -1.051  
822 113.7 0.740 0.863 -1.149 -1.401 
860 120 0.602  -1.496  
900 124.8 0.804  -1.370  
940 129.6 0.773  -1.019  
980 133.7 0.759  -0.661  
1010 136.3 1.044  -0.933  
1050 139.8 0.833  -0.857  
1090 143.2 0.823  -0.547  
1130 146.7 0.842 0.648 -0.648 -0.480 
1160 149.3 0.592  -0.622  
1200 153.5 0.514  -0.545  
1240 158.6 0.360  -0.511  
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1280 163.7 0.900  -0.815  
1310 167.5 0.701  -0.983  
1350 173.5 0.814  -0.933  
1390 180.5 0.985  -1.014  
1430 186.7 0.696 0.831 -1.188 -1.217 
1460 190.7 0.243  -1.138  
1500 196 1.140  -1.097  
1540 199.6 0.861  -0.986  
1580 203.3 0.848  -1.174  
1610 206 1.237  -0.826  
1650 210.4 1.097  -1.195  
1690 214.8 1.138  -1.552  
1730 218.4 0.402  -1.201  
1760 220.6 0.683 0.543 -0.514 -0.865 
1800 223.4 0.482  -0.921  
1837 226.0 0.627  -0.927  
1870 229.2 0.703  -1.089  
1910 233.7 0.736  -1.456  
1950 238.7 0.506  -0.884  
1989 243.9 0.707  -0.811  
2030 249.3 0.612  -0.810  
2070 254.7 0.288 0.917 -0.627 -0.662 
2110 260 0.352  -1.248  
2150 265.3 0.496  -1.031  
2190 270.5 0.843  -0.850  
2250 278.5 0.769  -1.064  
2289 283.6 1.108  -1.054  
2330 289 0.952  -1.314  
2370 292.8 0.543  -1.163  
2410 296.6 0.696 0.733 -0.855 -1.089 
2450 300.5 0.632  -1.256  
2490 304.3 0.629  -1.379  
2530 308.1 0.754  -1.151  
2570 312.5 0.548  -1.396  
2610 317.5 1.171  -0.900  
2650 322.5 0.775  -1.165  
2688 327.2 0.634  -1.586  
2730 332.2 0.423  -1.303  
2773 336.2 0.584  -0.480  
2800 341.3 0.712 0.551 -0.766 -0.512 
2840 350.4 0.368  -0.623  
2880 355.5 0.608  -0.614  
2920 357.5 0.898  -0.479  
2958 359.4 0.890  -0.799  
3006 361.8 0.860  -0.939  
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3039 363.4 1.027  -0.862  
3080 365.5 0.835  -1.031  
3120 367.5 1.170 1.161 -0.860 -0.694 
3160 369.5 0.901  -1.276  
3200 371.5 1.085  -0.668  
3240 373.5 0.804  -1.427  
3280 376 1.018  -0.616  
3320 380 1.115  -1.523  
3360 384 1.045  -1.072  
3400 388 0.392  -0.833  
3440 392 0.132 0.279 -0.520 -0.807 
3480 396 0.965  -1.097  
3520 400 0.237  -0.777  
3559 403.9 0.665  -0.363  
3600 419.5 0.578  -0.534  
3639 435.2 0.291  -0.491  
3680 441.2 0.569  -0.386  
3710 445.6 0.682  -0.316  
3750 451.4 0.811  -0.647  
3790 457.1 1.231  -0.825  
3830 462.9 0.946 1.036 -0.839 -0.911 
3870 468.7 1.357  -0.829  
3910 474.5 0.608  -0.784  
3950 480.2 0.937  -1.212  
3989 485.9 0.623  -0.799  
4030 491.8 1.145  -1.096  
4070 497.6 0.758  -0.663  
4110 502.5 1.098 0.931 -0.710 -0.616 
4150 504.6     
4230 508.8 0.879 1.168 -0.861 -0.885 
4270 510.9 1.071  -0.731  
4310 513 1.085  -1.270  
4330 514 0.860  -1.068  
4390 517.1 1.146  -0.312  
4430 519.2 0.914  -1.030  
4470 521.3 0.804  -0.893  
4510 523.4 0.967 0.923 -0.998 -0.841 
4550 526.4 1.100  -0.669  
4589 531.7 1.008  -1.299  
4630 537.5 1.006  -1.010  
4670 543.0 0.627  -0.862  
4710 548.6 0.528  -0.667  
4750 552.7 0.739  -0.761  

4789 556.1
65 0.611  -0.915  
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4830 559.8 0.740  -0.940  
4870 563.3 1.095  -0.997  
4910 567 0.935 0.765 -1.619 -1.452 
4950 570.5 0.760  -0.965  
4990 574.1 1.054  -0.951  
5030 577.8 0.711  -1.215  
5070 581.7 0.716  -1.388  
5110 585.5 0.710  -1.064  
5150 589.4 0.586  -1.098  
5190 593.2 0.862  -1.352  
5230 597.1 0.684 0.672 -1.664 -1.557 
5270 600.8 0.991  -1.218  
5310 604.2 0.675  -0.998  
5410 612.7 0.206  -1.227  
5450 616.1 0.299  -0.580  
5490 619.7 0.346  -0.303  
5530 623.4 0.420  -0.403  
5570 627.1 0.797  -0.840  
5610 637.4 0.181 0.156 -0.258 -0.253 
5641 647.2 0.469  -1.354  
5680 659.5 0.421  -0.652  
5723 670.1 0.635  -0.770  
5769 674.4 0.991  -0.917  
5800 677.2 1.057  -0.708  
5840 680.8 1.215  -1.134  
5870 683.5 0.919  -1.098  
5900 686.3 0.465  -1.022  
5941 690.0 0.407  -1.106  
5980 693.6 0.715 0.518 -0.569 -0.696 
6023 697.5 0.824  -0.931  
6060 703.0 0.926  -0.968  
6100 714.4 1.162  -0.935  
6140 725.7 0.948  -1.089  
6180 737.0 0.956  -0.796  
6220 748.3 0.831  -1.430  
6280 765.3 0.467  -1.026  
6320 776.6 0.436 0.385 -0.431 -0.399 
6360 787.9 0.855  -0.652  
6400 799.2 0.900  -0.409  
6440 810.5 0.886  -1.046  
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Table C.2. δ13C and δ18O of the foraminifera Pulleniatina obliquiloculata from Sulu Sea 
core ODP769A. 
 

Depth, 
cm Age, kyr δ13C ‰, P. 

obliquiloculata 

δ13C ‰, P. 
obliquiloculata 

replicate 

δ18O ‰, P. 
obliquiloculata 

δ18O ‰, P. 
obliquiloculata 

replicate 
25 2.31 1.082 1.027 -1.795 -1.909 
55 5.09 1.121  -1.789  
85 7.87 0.809  -1.504  
114 10.22 0.573  -1.283  
145 12.04 0.504  -0.626  
175 13.93     
205 15.81 0.799  -0.391  
235 17.69 0.814  -0.362  
265 21.54 0.805  -0.861  
295 26.37 0.802 0.756 -0.568 -0.733 
325 31.20 0.854  -0.802  
360 36.84 0.888  -0.798  
390 41.67 0.768  -0.901  
420 46.5 0.900  -0.843  
459 52.78 0.783  -0.865  
499 59 0.576  -1.014  
539 65 0.644  -0.733  
559 68 0.935 0.861 -0.482 -1.002 
602 74.45 0.761  -0.965  
639 80 0.954  -1.432  
679 88 0.785  -1.376  
719 96 0.910  -1.125  
760 103.5 0.785  -1.400  
822 113.7 0.791 0.648 -1.339 -1.295 
860 120 0.793  -1.786  
900 124.8 0.385  -1.569  
940 129.6 0.167  -1.008  
980 133.7 0.285  -0.777  
1010 136.3 0.382  -0.799  
1050 139.8 0.507  -0.490  
1090 143.2 0.567  -0.426  
1130 146.7 0.650 0.536 -0.200 -0.617 
1160 149.3 0.580  -0.654  
1200 153.5 0.329  -0.655  
1240 158.6 0.478  -0.441  
1280 163.7 0.296  -0.878  
1310 167.5 0.559  -1.137  
1350 173.5 0.478  -0.731  
1390 180.5 0.557  -1.031  
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1430 186.7 0.623 0.542 -0.848 -1.072 
1460 190.7 0.799  -0.968  
1500 196 0.507  -1.114  
1540 199.6 1.018  -1.087  
1580 203.3 0.586  -1.144  
1610 206 0.796  -1.025  
1650 210.4 0.711  -1.217  
1690 214.8 0.850  -1.133  
1730 218.4 0.808  -1.148  
1760 220.6 0.247 0.398 -0.987 -1.107 
1800 223.4 0.530  -1.491  
1837 226.0 0.281  -0.945  
1870 229.2 0.475  -1.435  
1910 233.7 0.804  -1.279  
1950 238.7 0.446  -1.478  
1989 243.9 0.429  -0.929  
2030 249.3 0.379  -0.882  
2070 254.7 0.508 0.588 -0.836 -0.480 
2110 260 0.446  -0.823  
2150 265.3 0.392  -1.158  
2190 270.5 0.293  -0.912  
2250 278.5 0.736  -1.188  
2289 283.6 0.725  -1.061  
2330 289 0.675  -1.413  
2370 292.8 0.737  -1.228  
2410 296.6 0.917 0.826 -0.921 -1.260 
2450 300.5 0.728  -1.141  
2490 304.3 0.640  -1.129  
2530 308.1 0.757  -0.770  
2570 312.5 0.766  -1.020  
2610 317.5 0.592  -1.202  
2650 322.5 0.776  -1.575  
2688 327.2 0.684  -1.665  
2730 332.2 0.435  -1.440  
2773 336.2 0.241  -0.408  
2800 341.3 0.538 0.786 -1.239 -1.307 
2840 350.4 0.599  -0.897  
2880 355.5 0.396  -0.883  
2920 357.5 0.744  -1.178  
2958 359.4 0.711  -0.884  
3006 361.8 0.699  -0.942  
3039 363.4 0.718  -1.153  
3080 365.5 0.740  -1.399  
3120 367.5 0.817 0.656 -0.926 -0.960 
3160 369.5 0.634  -0.990  
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3200 371.5 0.853  -1.014  
3240 373.5 0.418  -1.502  
3280 376 1.049  -1.010  
3320 380 0.961  -1.530  
3360 384 0.815  -1.555  
3400 388 0.522  -1.277  
3440 392 0.742 0.520 -1.377 -1.256 
3480 396 0.845  -1.149  
3520 400 0.127  -0.770  
3559 403.9 0.343  -0.379  
3600 419.5 0.629  -0.236  
3639 435.2 0.657  -0.582  
3680 441.2 0.630  -0.581  
3710 445.6 0.435  -0.590  
3750 451.4 0.645  -0.492  
3790 457.1 1.153  -0.671  
3830 462.9 0.882 1.015 -0.668 -0.985 
3870 468.7 1.549  -0.883  
3910 474.5 1.355  -0.849  
3950 480.2 0.939  -0.839  
3989 485.9 1.236  -0.463  
4030 491.8 1.215  -0.979  
4070 497.6 0.922  -0.713  
4110 502.5 0.804  -0.706  
4150 504.6 1.042 1.119 -0.726 -0.709 
4230 508.8 1.560  -0.861  
4270 510.9 1.287  -1.101  
4310 513 1.094  -0.945  
4330 514 1.029  -0.839  
4390 517.1 1.104  -0.809  
4430 519.2 1.015  -1.391  
4470 521.3 0.852  -1.156  
4510 523.4 1.077 0.971 -0.961 -0.746 
4550 526.4 1.139  -0.858  
4589 531.7 0.964  -0.597  
4630 537.5 0.816  -0.771  
4670 543.0 0.625  -0.890  
4710 548.6 0.833  -0.621  
4750 552.7 0.937  -0.675  
4789 556.165 0.706  -0.934  
4830 559.8 0.825  -0.808  
4870 563.3 0.969  -0.964  
4910 567 0.630 0.771 -1.360 -1.085 
4950 570.5 0.828  -1.064  
4990 574.1 1.042  -0.955  
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5030 577.8 1.217  -1.043  
5070 581.7 0.825  -1.249  
5110 585.5 0.671  -1.048  
5150 589.4 0.619  -0.932  
5190 593.2 0.671  -1.222  
5230 597.1 0.510 0.761 -1.781 -1.310 
5270 600.8 1.178  -1.208  
5310 604.2 0.658  -1.164  
5410 612.7 0.234  -1.144  
5450 616.1 0.122 0.013 -0.382 -0.214 
5490 619.7     
5530 623.4 0.232  -0.724  
5570 627.1 0.469  -0.636  
5610 637.4 0.096 0.261 -0.459 -0.639 
5641 647.2 0.669  -1.227  
5680 659.5 0.299  -0.797  
5723 670.1 0.511  -1.044  
5769 674.4 0.828  -0.817  
5800 677.2 0.855  -0.697  
5840 680.8 0.780  -0.894  
5870 683.5 0.635  -0.854  
5900 686.3 0.444  -1.081  
5941 690.0 0.203  -0.540  
5980 693.6 0.778 0.868 -0.605 -0.608 
6023 697.5 0.893  -1.116  
6060 703.0 0.898  -0.958  
6100 714.4 0.815  -0.836  
6140 725.7 0.776  -1.042  
6180 737.0 0.797  -1.187  
6220 748.3 0.847  -1.344  
6280 765.3 0.124  -1.483  
6320 776.6 0.454 0.415 -0.395 -0.766 
6360 787.9     
6400 799.2 0.409  -0.530  
6440 810.5 0.779  -0.974  
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Table C.3. Δδ18O (difference between δ18O values) for N. dutertrei and P. 
obliquiloculata (Δδ18ON-P), G. ruber and P. obliquiloculata (Δδ18ON-P), and G. ruber and 
N. dutertrei (Δδ18ON-P) from Sulu Sea core ODP769A. 
 

Depth, 
cm 

Age, 
kyr Δδ18ON-P Δδ18OG-P Δδ18OG-N 

25 2.31 -0.337 -0.76 -1.10 
55 5.09 -0.453 -0.79 -1.24 
85 7.87 -0.289 -0.93 -1.22 
114 10.22 -0.803 -0.71 -1.51 
145 12.04  -1.29  
175 13.93   -1.02 
205 15.81 0.042 -1.23 -1.19 
235 17.69 0.39 -1.01 -0.62 
265 21.54 -0.399 -0.87 -1.27 
295 26.37 0.1515 -1.28 -1.13 
325 31.20 0.004 -1.06 -1.06 
360 36.84 -0.259 -1.00 -1.26 
390 41.67 0.062 -1.11 -1.05 
420 46.5 -0.017 -1.19 -1.20 
459 52.78 0.438 -1.25 -0.81 
499 59 -0.044 -0.99 -1.03 
539 65 -0.209 -0.90 -1.11 
559 68 -0.123 -1.05 -1.17 
602 74.45 0.227 -1.04 -0.81 
639 80 -0.16 -0.77 -0.93 
679 88 -0.146 -0.59 -0.74 
719 96 -0.28 -0.68 -0.96 
760 103.5 -0.349 -0.68 -1.03 
822 113.7 -0.042 -0.78 -0.83 
860 120 -0.29 -0.82 -1.11 
900 124.8 -0.199 -0.63 -0.83 
940 129.6 0.011 -0.69 -0.68 
980 133.7 -0.116 -0.65 -0.77 
1010 136.3 0.134 -0.66 -0.53 
1050 139.8 0.367 -0.91 -0.54 
1090 143.2 0.121 -0.85 -0.73 
1130 146.7 0.1555 -1.09 -0.94 
1160 149.3 -0.032   
1200 153.5 -0.11 -0.90 -1.01 
1240 158.6 0.07 -1.11 -1.04 
1280 163.7 -0.063 -1.17 -1.24 
1310 167.5 -0.154 -0.96 -1.12 
1350 173.5 0.202 -1.13 -0.93 
1390 180.5 -0.017 -0.61 -0.63 
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1430 186.7 0.2425 -1.17 -0.93 
1460 190.7 0.17 -1.05 -0.88 
1500 196 -0.017 -1.22 -1.23 
1540 199.6 -0.101 -1.10 -1.20 
1580 203.3 0.03 -1.03 -1.00 
1610 206 -0.199 -0.86 -1.05 
1650 210.4 -0.022 -0.89 -0.92 
1690 214.8 0.419 -1.07 -0.65 
1730 218.4 0.053 -0.98 -0.93 
1760 220.6 -0.3575 -0.85 -1.21 
1800 223.4 -0.57 -0.65 -1.22 
1837 226.0 -0.018 -0.44 -0.45 
1870 229.2 -0.346 -0.25 -0.59 
1910 233.7 0.177 -0.83 -0.65 
1950 238.7 -0.594 -0.60 -1.20 
1989 243.9 -0.118 -0.64 -0.76 
2030 249.3 -0.072 -0.64 -0.71 
2070 254.7 -0.0135 -0.76 -0.78 
2110 260 0.425 -1.06 -0.63 
2150 265.3 -0.127 -0.67 -0.80 
2190 270.5 -0.062 -0.83 -0.89 
2250 278.5 -0.124 -0.19 -0.32 
2289 283.6 -0.007 -0.86 -0.87 
2330 289 -0.099 -0.88 -0.98 
2370 292.8 -0.065 -0.76 -0.83 
2410 296.6 -0.1185 -0.55 -0.67 
2450 300.5 0.115 -0.73 -0.61 
2490 304.3 0.25 -0.83 -0.58 
2530 308.1 0.381 -1.06 -0.68 
2570 312.5 0.376 -1.04 -0.66 
2610 317.5 -0.302 -0.50 -0.80 
2650 322.5 -0.41 -0.69 -1.10 
2688 327.2 -0.079 -0.63 -0.70 
2730 332.2 -0.137 -0.77 -0.91 
2773 336.2 0.072 -0.96 -0.88 
2800 341.3 -0.634 -0.04 -0.68 
2840 350.4 -0.274 -0.56 -0.83 
2880 355.5 -0.269 -0.87 -1.14 
2920 357.5 -0.699 -0.63 -1.33 
2958 359.4 -0.085 -1.10 -1.18 
3006 361.8 -0.003 -0.72 -0.72 
3039 363.4 -0.291 -0.39 -0.68 
3080 365.5 -0.368 -0.37 -0.73 
3120 367.5 -0.166 -1.01 -1.18 
3160 369.5 0.286 -0.88 -0.59 
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3200 371.5 -0.346 -0.95 -1.29 
3240 373.5 -0.075 -0.07 -0.15 
3280 376 -0.394 -0.61 -1.00 
3320 380 -0.007 -0.65 -0.65 
3360 384 -0.483 -0.17 -0.65 
3400 388 -0.444   
3440 392 -0.653   
3480 396 -0.052 -0.83 -0.88 
3520 400 0.007 -1.17 -1.16 
3559 403.9 -0.016 -1.69 -1.71 
3600 419.5 0.298 -1.72 -1.42 
3639 435.2 -0.091   
3680 441.2 -0.195 -0.69 -0.89 
3710 445.6 -0.274 -0.75 -1.02 
3750 451.4 0.155 -0.87 -0.71 
3790 457.1 0.154 -0.79 -0.64 
3830 462.9 0.0485 -0.75 -0.70 
3870 468.7 -0.054 -0.99 -1.05 
3910 474.5 -0.065 -0.79 -0.86 
3950 480.2 0.373 -0.94 -0.57 
3989 485.9 0.336 -1.69 -1.35 
4030 491.8 0.117 -0.86 -0.74 
4070 497.6 -0.05 -0.90 -0.95 
4110 502.5 -0.043 -1.30 -1.34 
4150 504.6  -0.91  
4230 508.8 0.012   
4270 510.9 -0.37   
4310 513 0.325   
4330 514 0.229 -1.09 -0.86 
4390 517.1 -0.497 -1.05 -1.55 
4430 519.2 -0.361 -0.34 -0.70 
4470 521.3 -0.263 -0.81 -1.08 
4510 523.4 0.066 -1.51 -1.45 
4550 526.4 -0.189 -1.40 -1.59 
4589 531.7 0.702 -1.49 -0.79 
4630 537.5 0.239 -0.97 -0.73 
4670 543.0 -0.028 -0.96 -0.98 
4710 548.6 0.046 -1.57 -1.52 
4750 552.7 0.086 -1.45 -1.36 

4789 556.1
65 -0.019 -0.98 -1.00 

4830 559.8 0.132 -1.03 -0.90 
4870 563.3 0.033 -1.04 -1.00 
4910 567 0.313 -0.69 -0.37 
4950 570.5 -0.099 -1.07 -1.17 
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4990 574.1 -0.004 -1.32 -1.32 
5030 577.8 0.172 -1.21 -1.04 
5070 581.7 0.139 -0.69 -0.55 
5110 585.5 0.016 -1.24 -1.23 
5150 589.4 0.166 -1.30 -1.14 
5190 593.2 0.13 -0.86 -0.73 
5230 597.1 0.065 -0.70 -0.64 
5270 600.8 0.01 -0.80 -0.79 
5310 604.2 -0.166 -0.94 -1.10 
5410 612.7 0.083 -1.03 -0.95 
5450 616.1 0.282 -2.05 -1.77 
5490 619.7   -2.00 
5530 623.4 -0.321 -1.04 -1.36 
5570 627.1 0.204 -0.53 -0.33 
5610 637.4 -0.2935 -0.92 -1.21 
5641 647.2 0.127 -0.53 -0.41 
5680 659.5 -0.145 -1.16 -1.31 
5723 670.1 -0.274 -1.37 -1.65 
5769 674.4 0.1 -1.17 -1.07 
5800 677.2 0.011 -1.16 -1.15 
5840 680.8 0.24 -0.87 -0.63 
5870 683.5 0.244 -0.77 -0.52 
5900 686.3 -0.059 -0.38 -0.44 
5941 690.0 0.566 -1.59 -1.02 
5980 693.6 0.026 -1.35 -1.33 
6023 697.5 -0.185 -0.71 -0.90 
6060 703.0 0.01 -0.61 -0.60 
6100 714.4 0.099 -0.88 -0.78 
6140 725.7 0.047 -0.73 -0.68 
6180 737.0 -0.391 -0.75 -1.14 
6220 748.3 0.086 -0.50 -0.41 
6280 765.3 -0.457 -0.43 -0.88 
6320 776.6 -0.1655 -1.50 -1.67 
6360 787.9   -1.54 
6400 799.2 -0.121 -1.12 -1.24 
6440 810.5 0.072 -0.38 -0.31 
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APPENDIX D 
Additional Data 

 
Table D.1. Kau Bay core 102GGC U/Ca and B/Ca. 
 

Depth, 
cm 

U/Ca 
mmol/mol 

U/Ca 
Replicates 
mmol/mol 

B/Ca 
mmol/mol 

B/Ca 
replicates 
mmol/mol 

0 110.4  41.804  
2 61.2  30.988  
4 83.6    
6 35.4  31.467  
8 43.6  28.829  
10 23.8  24.688  
12 25.3  25.195  
14 63.8  27.246  
16 93.7  22.095  
18 55.0 59.4 15.871 28.000 
20 66.6  28.702  
22 71.9  24.683  
23 114.8  26.177  
26 69.4  24.926  
28 65.9 60.7 25.641 26.582 
30 56.3  28.007  
32 27.0  25.113  
34 71.0  34.081  
35 56.2  24.000  
38 137.8  28.306  
42 58.0  24.823  
44 74.8  25.923  
46 120.0  22.897  
48 97.1 103.5 18.769 22.083 
50 77.8  28.616  
52 56.7  18.819  
54 114.6  21.495  
56 107.9 118.8 26.989 36.601 
58 71.4  21.773  
60 105.8  23.801  
62 82.9 99.4 24.510 20.815 
64     
67 88.0  21.261  
68 99.3  18.478  
71 56.7  22.513  
72 60.0 61.8 19.286 27.986 
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76 48.7  15.524  
78 52.6  19.369  
80 29.6 27.0 19.080 19.999 
84   20.534  
86   27.057  
92 110.5  15.994  
94 59.7  24.000  
96 67.4  21.375  
100 49.8  22.707  
104 13.1 35.1 21.463 20.803 
106 90.2  14.726  
108 68.6  19.168  
110 52.8  19.047  
112 35.3 17.8 25.578 22.303 
114 87.9  15.468  
116 72.0  18.074  
118 54.8  17.464  
120 36.2 42.1 21.989 23.950 
122 90.8  18.195  
124 75.7  18.289  
126 29.7  18.384  
128 29.6 33.1 19.602 20.351 
130 43.9  18.566  
132 82.3  17.795  
134 44.1  17.088  
136 26.2 55.1 21.862 21.853 
138 34.2  21.406  
140   24.559  
142 71.3  17.669  
144 28.0 21.6 22.379 22.070 
148 77.1  20.850  
150 122.1  21.908  
152 22.3 22.7 21.439 23.001 
154 33.6  21.146  
156   14.266  
158 42.1  18.622  
160     
162 22.2  19.682  
164 65.4  16.670  
166 19.8  21.518  
170 43.4  20.563  
172 53.8  17.214  
174 64.4  22.200  
176     
178   25.103  
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180 57.3 43.0 21.557 22.645 
182 98.4  22.652  
184     
186 162.6  18.899  
188 33.4  18.029  
190 110.8 85.2 14.702 17.774 
192     
194 125.4 110.2 19.940 21.921 
196 47.8 54.6 17.053 16.498 
198 95.2  17.985  
202 127.8  29.344  
204 64.9  21.216  
206 130.1 144.3 19.958 17.295 
208     
210 94.5  20.892  
212 129.2  22.482  
214 81.4  22.885  
216     
218 69.4  21.330  
220 83.0  15.754  
222 122.3 49.7 17.269 17.040 
224     
226 53.9 56.5 20.249 20.559 
228 152.6  18.731  
230 86.1  19.724  
232     
234 63.1  22.844  
236 115.5  20.574  
238 104.5 62.4 18.658 18.645 
240     
242 62.3  20.654  
244 110.1  19.694  
246 70.1  16.415  
248     
250 52.1  13.338  
252 42.5  9.551  
254 87.2  12.938  
256     
258 39.8 37.5 13.107 13.716 
260 18.7  18.287  
262 63.6  15.092  
266 51.4  16.941  
268 58.9  16.125  
270 67.8 50.1 15.814 9.097 
272     
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274 35.6    
276 53.5  11.302  
278 28.9  17.825  
280     
282 40.3  13.478  
284 25.6  14.734  
286 71.0  14.253  
288     
292 30.6  7.143  
296     
299 82.3    
300 52.0  5.878  
302 20.3  19.906  
304     
306 22.5 23.5 6.733 9.975 
308 41.4  11.745  
310 25.1 30.4 11.836 13.536 
314 16.9  6.687  
316 31.1    
318 76.6  8.238  
320 88.1 94.6 5.064 10.580 
322 80.7  9.610  
324 74.2  11.085  
334 15.0  13.164  
336 55.8 110.1 16.346 9.014 
338 106.4  11.998  
340 75.7  8.324  
342 31.9  4.829  
344 24.8  13.977  
346   10.249  
348 87.8 91.5 4.227 6.001 
350 60.8  16.240  
352 15.5  7.668  
354 55.8  14.801  
356 126.8    
358 40.8  11.937  
360 12.4  12.751  
362 6.8  17.991  
364 16.7 48.1 12.966 10.681 
366 15.1  10.021  
368   22.008  
370 8.3  15.600  
372 8.4  11.391  
374 70.6 53.4 11.314 6.170 
376 30.6    
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Table D.2. Kau Bay core 102GGC Ba/Ca. 
 

Depth, cm Ba/Ca 
mmol/mol 

Ba/Ca 
replicates 
mmol/mol 

0   
2 0.499  
4   
6 0.607  
8 0.655  
10 0.314  
12 0.391  
14 0.510  
16 0.513  
18 0.314 0.661 
20 0.606  
22 0.733  
23 0.535  
26 0.595  
28 0.550 0.521 
30 0.561  
32 0.537  
34   
35 0.620  
38 0.938  
42 0.953  
44 0.666  
46 0.493  
48 0.878  
50 0.429  
52   
54 0.901  
56 0.689  
58 0.665  
60 0.807  
62 0.565 0.627 
   

67 0.708  
68 0.818  
71 0.607  
72 0.587 0.571 
76   
78 0.354  
80 0.591 0.497 
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84   
86   
92 0.509  
94 0.768  
96 0.648  
100 0.414  
104 0.569  
106 0.499  
108   
110 0.548  
112 0.527 0.568 
114 0.617  
116 0.467  
118 0.745  
120 0.513 0.577 
122 0.448  
124 0.543  
126 0.449  
128 0.518 0.481 
130 0.724  
132 0.437  
134 0.362  
136 0.640 0.618 
138   
140 0.686  
142 0.435  
144 0.466 0.396 
148 0.732  
150 0.859  
152 0.374 0.400 
154 0.280  
156 0.260  
158 0.312  

   
162 0.387  
164 0.366  
166 0.434  
170 0.451  
172   
174 0.384  

   
178 0.481  
180 0.291 0.370 
182   
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186   
188 0.374  
190 0.924 0.791 

   
194 0.615 0.580 
196 0.391 0.480 
198 0.363  
202 0.594  
204 0.715  
206 0.610 0.532 

   
210 0.465  
212 0.679  
214 0.666  

   
218 0.507  
220   
222 0.573 0.460 

   
226 0.384 0.539 
228 0.701  
230 0.783  

   
234 0.375  
236 0.493  
238 0.553 0.633 

   
242 0.490  
244 0.769  
246 0.507  

   
250 0.507  
252 0.461  
254 0.511  

   
258 0.428 0.542 
260 0.336  
262 0.468  
266 0.707  
268 0.748  
270 0.847 0.838 

   
274 0.694  
276 0.621  
278 0.435  
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282   
284 0.531  
286 0.330  

   
292 0.471  

   
299 0.801  
300 0.399  
302 0.469  

   
306 0.519 0.683 
308 0.330  
310 0.328 0.341 
314 0.454  
316 0.460  
318 0.679  
320   
322 0.757  
324 0.616  
334 0.533  
336 0.534 0.557 
338   
340 0.803  
342   
344   
346   
348   
350   
352   
354   
356   
358 0.637  
360 0.657  
362   
364 0.965  
366 0.792  
368   
370 0.738  
372   
374 0.663  
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Table D.3. Glycerol dialkyl glycerol tetraether (GDGT, as m/z) concentrations from Kau 
Bay core 102GGC.  Quantities of each GDGT were derived through high performance 
liquid chromatograph peak integration. 
 

Depth, 
cm 1298 1296 1292' 1300 1050 1036 1022 

1 234,675 76,641 210,913 123,401  21,426  
3 273,106 87,945 244,792 145,508 14,037 21,738 36,120 
5 169,587 55,198 148,748 89,515 8,135 12,169 20,254 
7 237,936 80,090 217,108 125,959 15,475 23,842 37,570 
9 155,976 53,464 145,471 80,667 11032 16,919 26967 
31 338,788 121,336 346,161 171,737 30630 47,480 74212 
47 131,000 47,900 135,000 69,500 11388 17,600 27500 
63 302,302 109,424 309,838 161,924 23878 38,490 60354 
73 216,941 74,920 211,522 112,973 14527 24,408 37550 
87 181,523 65,373 159,939 106,086 12,583 21,255 30,584 
99 513,824 187,244 461,223 294,933 33,216 54,962 81,177 
103 325,795 113,117 277,241 185,639 16,213 25,359 40,036 
121 625,776 211,362 577,371 339,865 52,393 40,030 61,912 
143 876,160 306,348 863,185 458,072 62,767 92,130 138,524 
155 309,256 106,358 275,641 169,946 14,254 22,752 35,719 
167 660,385 231,538 582,097 353,273 38,062 57,934 89,252 
179 426,118 151,505 397,091 226,592 26,039 39,469 61,021 
191 278,209 96,147 259,851 150,380 17,659 26,445 39,828 
209 129,867 44,471 115,037 71,947 8,911 13,464 21,016 
231 483,491 169,463 490,679 256,741 32895 50,733 78,045 
239 616,824 215,046 594,754 338,831 36,928 56,493 84,445 
259 447,176 150,857 404,308 258,777 24,432 37,842 56,977 
279 325,745 113,503 298,921 187,327 21,599 33,598 47,056 
298 811,300 283,621 756,822 476,296 45,896 70,664 103,245 
321 518,209 177,235 431,823 291,475 26,566 41,004 62,801 
353 1,386,150 499,681 912,755 875,470 81,734 123,552 186,806 
393 774,088 272,548 487,539 474,818 60,834 91,368 137,651 
417 628,257 220,684 454,603 377,201 37,288 58,450 90,365 
419 498,410 172,388 362,001 283,766 28,985 46,554 70,509 
421 727,069 258,184 521,269 413,436 44,007 69,643 107,953 
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Table D.4. GDGT (as m/z in top row) concentrations from Kau Bay multi-core 103MC-
F.  Quantities of each GDGT were derived through high performance liquid 
chromatograph peak integration. 
 
Depth, 

cm 1298 1296 1292' 1300 1050 1036 1022 

2 350,124 125,816 316,387 169,817.00 22487 36,233 63,617 
4 532,506 263,410 706,690 363,958 53,888 87,526 141,483 
6 1,120,260 373,519 1,032,780 555,091 72,482 118,323 211,027 
8 812,415 260,132 768,479 373,731 53,888 47,515 137,914 
10 783,699 266,460 758,783 388,956 52,831 84,898 150,172 
12 620,357 228,669 614,317 316,211 39,917 65,533 118,186 
14 801,171 294,662 757,186 411,211 54,777 87,468 157,902 
16 768,013 257,549 790,700 399,734 56,959 90,288 163,207 
18 806,200 279,430 733,624 423,688 56,224 90,806 160,871 
20 1,011,380 354,308 906,556 523,609 65,029 104,990 191,794 
22 1,422,680 533,489 1,294,280 758,800 110,840 178,006 298,845 
24 899,861 304,952 876,320 474,865 68,633 109,076 186,960 
26 1,580,000 527,000 1,490,000 821,000 91,200 141,000  
28 956,859 345,074 1,011,100 498,232 87289 140,512  
32 910324 363314 867881 461857 73660.7 117216  
34 141,000 479,000 1,300,000 773,000 88200 140,000 217000 
36 782,763 273,062 762,615 402,268 71711 122,837 183617 
38 850,000 27,000 782,000 463,000 50822 82,200 124000 
40 1,238,420 409,890 1,126,150 664,160 73,811 120,075 184,578 

 
 
 
Table D.5. Kau Bay multi-core 103MC-F FAME concentrations, in ppb. 
 

Depth, cm C14 C16 C18 C20 C22 C24 C26 C28 C30 C32 C34 C36 

2 0.02 0.14 0.03 0.03 5.16 0.21 0.21 0.29 0.19 0.20 0.09 0.21 
6 0.07 0.66 0.14 0.20 0.48 1.50 1.48 1.85 1.68 1.99 1.29 1.25 

10 0.08 0.74 0.16 0.20 0.52 1.76 1.71 2.23 2.58 3.85 2.39 0.00 
14 0.00 0.12 0.12 0.07 0.18 0.64 0.63 0.80 0.77 1.02 0.59 0.00 
18 0.05 0.35 0.08 0.09 0.24 1.01 0.93 0.99 0.88 0.99 0.59 0.45 
22 0.09 0.61 0.11 0.13 0.43 2.02 1.95 2.20 2.09 2.70 1.60 0.83 
36 0.07 0.51 0.08 0.08 0.29 1.33 1.03 0.97 0.91 0.86 0.55 0.50 
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