
University at Albany, State University of New York University at Albany, State University of New York 

Scholars Archive Scholars Archive 

Geology Theses and Dissertations Atmospheric and Environmental Sciences 

2003 

Late Holocene hydrologic and climatic variability in the Walker Late Holocene hydrologic and climatic variability in the Walker 

Lake basin, Nevada and California Lake basin, Nevada and California 

Fasong Yuan 
University at Albany, State University of New York 

Follow this and additional works at: https://scholarsarchive.library.albany.edu/cas_daes_geology_etd 

Recommended Citation Recommended Citation 
Yuan, Fasong, "Late Holocene hydrologic and climatic variability in the Walker Lake basin, Nevada and 
California" (2003). Geology Theses and Dissertations. 117. 
https://scholarsarchive.library.albany.edu/cas_daes_geology_etd/117 

This Dissertation is brought to you for free and open access by the Atmospheric and Environmental Sciences at 
Scholars Archive. It has been accepted for inclusion in Geology Theses and Dissertations by an authorized 
administrator of Scholars Archive. For more information, please contact scholarsarchive@albany.edu. 

https://scholarsarchive.library.albany.edu/
https://scholarsarchive.library.albany.edu/cas_daes_geology_etd
https://scholarsarchive.library.albany.edu/daes
https://scholarsarchive.library.albany.edu/cas_daes_geology_etd?utm_source=scholarsarchive.library.albany.edu%2Fcas_daes_geology_etd%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsarchive.library.albany.edu/cas_daes_geology_etd/117?utm_source=scholarsarchive.library.albany.edu%2Fcas_daes_geology_etd%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsarchive@albany.edu


LATE HOLOCENE HYDROLOGIC AND 

CLIMATIC VARIABILITY IN THE WALKER 

LAKE BASIN, NEVADA AND CALIFORNIA 

By 

 

Fasong Yuan 

 

 

A Dissertation 

                       Submitted to the University at Albany, State University of New York 

in Partial Fulfillment of  

the Requirements for the Degree of 

Doctor of Philosophy 

 

College of Arts & Sciences 

Department of Earth & Atmospheric Sciences 

2003 



 ii

ABSTRACT 
 

Oxygen and carbon isotopic measurements of the total inorganic carbon (TIC) fraction of sediments 

from Walker Lake (Nevada, USA) were completed at a decadal-scale resolution spanning the last ~3000 

years. On the basis of radiocarbon dating of the total organic fraction of cored sediments, the late 

Holocene isotope record recorded a relatively dry climate in Period LH-1 (1000 BC to AD 800), a 

relatively wet climate punctuated by a few severe droughts in Period LH-2 (AD 800 to 1900), and an 

anthropogenical perturbation era (LH-h: 1900-2000). Relatively high accumulation rates in Period LH-2 

(AD 800 to 1900) provided detailed information on climatic and hydrologic variability in this region. 

Coupled with the tree-ring-based Sacramento River flow record, the radiocarbon-based age model was 

refined for the interval of AD 800 through 1900.  A high-resolution (3.5 year per sample) TIC δ18O 

record spanning the last 1200 years was generated to reflect fluctuations in winter snowfall of the Sierra 

Nevada. This TIC δ18O record shows at least two prolonged droughts that occurred during the 

Medieval Warm Epoch, which are chronologically well consistent with previous findings (STINE, 1994). 

Time series analyses on the TIC δ18O and the Sacramento River flow records reveal that interdecadal 

and centennial modes of climate variability persisted over the last millennium. PDO-like interdecadal 

oscillations that centered in the periods of 50-90 yr were almost in phase with thermal fluctuations in 

ocean climate of the California Current, suggesting that indedacadal climate oscillations in the Sierra 

Nevada were intimately linked with the Pacific dynamics. The underlying centennial to multicentennial 

variability corresponding to the Medieval Warm Epoch and the Little Ice Age comprise the major share 

of total variance. In addition, the TIC δ18O record of Walker Lake is visually well correlated with the 

polar ice-core-based cosmogenic nuclide production and the Rice Lake Mg/Ca records. This suggests 

that some centennial oscillations in winter precipitation of the Sierra Nevada were associated with solar 

activity over the last millennium.  
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PREFACE 

 

People of the Anasazi culture appeared in Nevada as early as 300BC and began raising crops and 

developed irrigation between ~AD 700 and 1100 (ENCYCLOPEDIA, 1999).  The Anasazi culture 

expanded widely after AD 900, reached maximum extent about AD 1100, and shrank drastically around 

AD 1300 (SMITH, 2002). The history of the Anasazi is a mystery as we do not know why the Anasazi 

population shrank suddenly in ~AD 1300. One of the possible causes is attributed to the severe 

drought that occurred from AD 1276 to 1299 (SMITH, 2002). Paleoclimatic records (like tree-rings and 

dated tree stumps) suggest that the climate was relatively dry in the period from AD 900 to 1400, 

compared to the subsequent five centuries in this area. These results seem to implicate that the Anasazi 

people developed and boomed during the relatively dry intervals of the last millennium. This is 

contradictory to the conventional wisdom. However, the oxygen isotopic signal extracted from Walker 

Lake carbonate sediments forces me to tell a different story about the climate during the last 

millennium. 

         This research has been focused on reconstructing hydrologic and climatic variability using Walker 

Lake sedimentary deposits. On June 19, 2000, I participated in the core acquisition team that was 

supervised by Dr. L. Benson of the U.S. Geological Survey. Two piston cores and one box core were 

collected as part of a USGS project and were kindly provided to me by Dr. L. Benson. I splitted and 

sliced the cores and prepared samples to extract geochemical and isotopic signals preserved in down-

core carbonate sediments. The carbon and oxygen isotopic analyses were performed in the Stable 

Isotope Laboratory at the University at Albany with the assistance of S. Howe and the coulometric 

analyses were conducted in Dr. D. Rodbell’s laboratory at the Union College. Dr. J. McGeehin (USGS) 

kindly performed the radiocarbon dating analyses. 
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         This dissertation research takes advantage of previous work by Dr. L. Benson (USGS) and his co-

workers.  They have generated and complied important background data pertinent to the oxygen and 

carbon isotopic composition in the Walker River and Walker Lake surface water systems. These data 

serve as an important information source to decipher the isotopic signals extracted from down-core 

sediments. In chapter 2 and 3, I use this important background data to examine the distribution of 

oxygen and carbon isotopes and their responses to changes in hydrologic conditions and to establish a 

linkage between lake level and down-core carbonate δ18O composition. The isotopic results from the 

piston cores are reported in Chapter 4. In the last chapter, i.e., Chapter 5, I attempt to detect the 

climatic variability or modes through spectral analyses on the oxygen isotopic signal of the Walker River 

during the last ~1000 years. 

         It is hoped that the results and methods presented in this dissertation will refine our 

understanding in the history of the climate and its variability over the last ~3000 years in this 

climatically critical region. 
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CHAPTER 1 GENERAL INTRODUCTION  
 

Climate-driven hydrologic variability has direct social and economic impacts. Of primary concern to 

society are hydrologic extremes, such as droughts and floods. In the western U. S., droughts have 

severe societal impacts partially due to the dependence of the agriculture industry on limited water 

resources. Even short-lived droughts have exacted large economic costs.  For example, the Dust Bowl 

drought of the 1930s impacted an expansive region of the western and mid-continental U. S. 

(WOODHOUSE and OVERPECK, 1998), which displaced millions of people and cost $1 billion in federal 

support (DEMENOCAL, 2001). More recently, the drought of the late 1980s that affected the west coast 

of the U.S. led to an economic loss of $39 billion (RIEBSAME et al., 1991). As observed, a decadal to 

interdecadal re-occurring pattern of droughts that occurred over the last century has created 

considerable interest in the frequency and duration of such events. In addition, water resource planning 

for such vulnerable and populous regions as California usually requires detailed information on the 

hydrological variability imposed by the climate system. There is a clear need to develop a more 

thorough understanding of the climate conditions that result in western U.S. droughts and also of past 

drought recurrence intervals.  

         The El Niño Southern Oscillation (ENSO) is the most important mode of interannual climate 

variability (GLANTZ, 1996), affecting most of the tropics and subtropics and many regions along 

western and eastern margins of the Pacific Ocean. The interannual mode of ENSO is well documented 

in modern instrumental records. More recently it has become appreciated that the low-frequency 

(decadal to interdecadal time scales) behavior of ENSO may be as significant as that associated with the 

coupled atmosphere-ocean mode of interannual ENSO (NRC, 1998). However, the spatial and 

temporal variability of low-frequency ENSO behavior remains uncertain in part because the 

instrumental record is too short to allow assessment of the full range of interdecadal to centennial time 
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scale variability of ENSO and currently the paleoclimatic records that have been generated are 

insufficient in achieving detailed histories for different climate variables at a regional scale (JONES et al., 

2001).  

In an attempt to refine our understanding of climatic and hydrologic variability in the western 

United States, this research has focused on extracting paleoclimatic information for sediments in 

Walker Lake (Nevada, USA). In spite of the fact that Walker Lake is geographically situated on a 

correlation hinge point with respect to the interannual mode of ENSO climate today, it is not clear how 

the low-frequency modes (>10 years) of ENSO behave in this critical region. The paleo-record of past 

changes in Walker Lake basin hydrologic conditions developed as part of this research is high-

resolution (near triennial) for the last millennium. 
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Figure 1-1. Drainage of streams emanating from the Sierra Nevada, California and Nevada (After Benson 
et al., 2002). 
 
 1.1 Lakes in the western Great Basin 
There are primarily five major lakes in the western Great Basin (Pyramid Lake, Lake Tahoe, Walker 

Lake, Mono Lake, and Owens Lake) (Figure 1-1). These lakes, located on the leeside of the Sierra 

Nevada, are fed by rivers and streams that have headwaters in the Sierra Nevada. Lake Tahoe is the 
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deepest while Owens Lake has become a playa due to river diversion to the Los Angeles Aqueduct 

(LEVY et al., 1999). All lakes except Lake Tahoe at present remain in hydrologic closure.  

         Human activities such as agricultural irrigations, dam constructions and artificial river diversions 

have altered the natural hydrologic conditions, and resulted in desiccation and /or lowered lake levels in 

most closed-basin lakes in the western Great Basin (BENSON et al., 2002). Reconstructions of the 

pristine lake levels for the Great Basin lakes suggested that most of the lakes experienced nearly 

synchronous variations in size during historical intervals (MILNE and BENSON, 1987). 

         The lake level of a closed basin lake is an effective indicator of changes in drainage basin 

hydrologic conditions, which are usually controlled by precipitation, runoff, and evaporation. The 

closed basin lakes of the western Great Basin, are primarily fed by stream flow and /or runoff that 

originate from the Sierra snowpack and water loss of these lakes is mainly through evaporation. 

Changes in the Sierra snowpack and /or evaporation rates influence the water budget of these lakes. 

Such changes ultimately result in lake levels rising or dropping.  These changes in hydrologic balance 

can be registered in water and down-core biogeochemistry. Under certain circumstances, some of the 

proxy records extracted from sediments from these lakes are expected to contain a regional-scale 

paleoclimate signal (BENSON et al., 2002; BENSON et al., 1991; BRADBURY, 1987; BRADBURY et al., 

1989; LI, 1995a; LI et al., 2000). 

1.2 Climate of the western Great Basin 
There are primarily four storm trajectories that influence the western U.S. Great Basin: polar Pacific, 

subtropical Pacific, continental, and Gulf storm tracks (HOUGHTON, 1969). The modern climatic 

regime of the western Great Basin is dominated by low-pressure storm systems driven by westerly 

winds moving off the Pacific Ocean. During the warmer months of the year, these westerlies lie far to 

the north. During the winter, the westerlies shift southward and bring Pacific storm systems onto the 

coast of California, where they encounter the Sierra Nevada. Forced upward, their air masses are cooled 

and condensed, and as a result drop massive amounts of precipitation (mostly snowfall) on the ranges 

of the Sierra Nevada (GRAYSON, 1993). 
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         Since the western Great Basin lies in the rain shadow east of the Sierra Nevada, the climate of the 

area is arid to semiarid. Based on instrumental data documented by National Climate Data Center 

(NCDC), the precipitation in Walker Lake and its adjacent areas is low with annual mean precipitation 

ranging from 12.5 to 19.1 cm. The long-term (1930-1995) monthly mean values of precipitation exhibit 

a strong seasonal pattern, where this area receives more precipitation in winter and spring than in the 

summer.  In contrast, the evaporation rate is high. From north to south, the long-term annual mean 

evaporation ranges from 125 cm in Pyramid Lake to 150 cm in Owens Lake (BENSON and PAILLET, 

2002). 

         River flow and /or runoff are the primary water source of the lakes in this region. Most stream 

flow is fed by melting water of the snowpack on the Sierra Nevada. Fluctuations in stream discharge lag 

a few months to variations in precipitation in this area. As a result, stream discharge is usually higher in 

spring-summer than other seasons. Because snow-melt from the Sierra Nevada serves as the primary 

source of headwaters for rivers flowing into the Great Basin lakes, there exists a high correlation of 

annual stream discharge between the rivers in the region. For example, the discharge of the West 

Walker River (WWR) near Coleville is strongly correlated with that of the Truckee River near Reno 

(Figure 1-2A). Moreover, there exists a strong positive correlation of stream discharge between the 

WWR near Coleville and the Yuba River near Marysville even though these drainages are located on 

opposite sides of the Sierra’s (Figure 1-2B) (BENSON et al., 2002).  

         The climate of the western U.S. is influenced in a complex way by ENSO. Precipitation is low in 

the Pacific Northwest and high in the desert Southwest during El Niño events (REDMOND and KOCH, 

1991). Since the western Great Basin is geographically situated on a hinge point between the U.S. 

Northwest and Southwest, the correlation between precipitation and ENSO indices over the last 

century is very weak. However, instrumental stream discharge records of the WWR near Coleville and 

the Yuba River near Marysville back to 1940 (Figure 1-3) reveal two pronounced wet intervals that are 

coincident with the recent two very strong ENSO events of 1982-83 and 1997-98. This is probably 
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associated with the noted Pacific-wide climatic regime shift in 1976 (GRAHAM, 1994; MANTUA et al., 

1997; TRENBERTH and HURRELL, 1994).  
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Figure 1-2. Correlation analyses of historical (1940-2000) river flow data in drainages on both sides of 
the Sierra Nevada. A: Stream flow correlation between the West Walker River (WWR) near Coleville, 
California and the Truckee River (TR) at Reno, Nevada. B: Stream flow correlation between WWR and 
the Yuba River (YR) near Marysville, California. Note that river flow data were taken from USGS water 
resources website, http://water.usgs.gov and calendar yearly average values were calculated. The 
English unit of cfs denotes cubic feet per second. Gage sites selected are considered to be only 
minimally effected by water diversions. 
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Figure 1-3. Comparison of instrumental river flow of the West Walker River (WWR) near Coleville, 
California and the Yuba River (YR) near Marysville, California. Solid arrows indicate the two 
exceptionally strong ENSO events of 1982/83 and 1997/98 (original data from USGS website, 
http://water.usgs.gov). 
 

         Decadal and interdecadal climate modes of coupled atmosphere-ocean variability have recently 

been recognized in instrumental records (GHIL and VAUTARD, 1991; MANTUA et al., 1997; ZHANG et 

al., 1997). Moreover, the 15- and 25-year periodicities detected in a 135-year-long historic instrumental 

temperature record (JONES et al., 1986) have been confirmed in much longer annual resolution proxy 

records of coral cores and varve sediments (BIONDI et al., 1997; QUINN et al., 1996). Mantua et al. 

(1997) defined a Pacific Decadal Oscillation (PDO) index based on North Pacific Sea Surface 

Temperature (SST) back to 1900. During the positive phase of PDO index, the SST of the Central 

North Pacific is cooler than average while SST in the Gulf of Alaska and along the Pacific coast of 

North America is warmer than average. In general, there is not a robust correlation on year-to-year 

scale between variations in WWR flow and the PDO (Figure 1-4A). However, comparison of low-

frequency variations of the WWR flow and PDO index records back to 1940 reveals an intricate pattern 



  - 9 -

of associations. During intervals when the PDO index is positive, the WWR flow tends to be positively 

correlated with the PDO while during times when the PDO index is negative the WWR flow tends to 

be negatively correlated with the PDO (Figure 1-4B). This indicates that the low-frequency mode of 

SST variability on interdecadal time-scales over the Pacific Ocean is associated with fluctuations in 

winter precipitation of the Sierra Nevada and consequently affected the stream flow like the WWR in 

the Walker River Drainage Basin. 
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Figure 1-4. Comparison of the PDO index (open circles; Mantua et al., 1997) and the West Walker 
River (WWR) flow anomaly near Coleville, California (solid dots; USGS).  PDO index used is the 
annual mean value and WWR anomaly is calculated through expression: )2/()( δei QQ − . Upper 
Panel: Year to year comparison. Lower Panel: 9-point running average comparison. Two vertical 
dashed lines denote two climate regime shifts that occurred in 1946 and 1977, respectively. 
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1.3 Late Holocene paleoclimate of the western Great Basin  
Our understanding of the climate system is greatly hampered by the shortness of instrumental records. 

The vast majority of terrestrial instrumental records span less than 50 years, which are most likely 

already influenced by human activities (BARNETT et al., 1999). In the western Great Basin, the longest 

stream gauging records extend back to 1900 while most of the continuous remote gauging readings 

only extend back to 1940. In addition, many stream discharge records are affected by upstream 

irrigation and impoundments. To understand the full range of climate variability on decadal to 

interdecadal time-scales, it is crucial to extend the record of climate variability beyond the era of 

instrumental measurements. In comparing a coral-based ENSO reconstruction from the central Pacific 

(URBAN et al., 2000) with a tree-ring based drought index record from the coterminous U.S. (COOK et 

al., 1999),  Cole et al. (2002) have suggested that the dry conditions to the southwestern U. S. appear to 

be initiated by La Niña events and reinforced by surface feedbacks during the past few centuries. Based 

on tree-ring records from western North America, a reconstructed PDO record back to 1700 

(D'ARRIGO et al., 2001) suggests that decadal climatic shifts appear to occur prior to the era of 

instrumental record. In the western Great Basin, Benson et al. (2003b) identified five major oscillations 

in the hydrologic balance of Mono Lake from 1700 to 1941 and associated these oscillations with a 

tree-ring-based reconstruction of changes  in the Sierra Nevada snowpack. They proposed that major 

oscillations in the moisture conditions of the Sierra Nevada are linked with the sign of the PDO with 

extreme droughts occurring during PDO maxima.  

         It is now recognized that interdecadal to centennial climate variability exists in coral, tree-ring, and 

lake sediment records spanning the last 500 to 1000 years (BENSON et al., 2002; LINSLEY et al., 2000; 

YU and ITO, 1999). In the western U.S., numerous tree-ring records (COOK et al., 1999; HUGHES and 

FUNKHOUSER, 1996; HUGHES and GRAUMLICH, 1996; MEKO et al., 2001) have revealed that there 

were consistent re-occurring  decadal through interdecadal periods of drought that occurred in this 

region over the last 1-2 millennia (Figure 1-5). In contrast, there are some intervals that are out of phase 
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in this region, such as the intervals centered on 1400 and 900 years B.P. The Sacramento River flow 

record suggested a transition from high to low flow near 1350AD (MEKO et al., 2001) while other 

paleoclimatic evidence indicated an abrupt switch from extreme drought to very wet conditions at more 

southerly latitudes in the Sierra Nevada and the neighboring White Mountains (GRAUMLICH, 1993; 

HUGHES and FUNKHOUSER, 1996; HUGHES and GRAUMLICH, 1996; MEKO et al., 2001). Hughes and 

Funkhouser (1996) suggested that the hydrologic variability of recent centuries would differ from that 

of earlier centuries as decadal and multi-decadal droughts occurred more frequently before 1500AD 

than since. However, questions still remain about the spatial and temporal late-Holocene hydrologic 

variability in this region. 
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Figure 1-5. Comparison of 40-year moving averages of tree-ring based paleoclimatic records of the 
western U.S. (1) Sacramento River flow record (MEKO et al., 2001), MAF stands for million acre feet; 
(2) Nevada Division 3 precipitation record (HUGHES and GRAUMLICH, 1996); (3) American Southwest 
drought index (COOK et al., 1999);  (4) Northwestern New Mexico precipitation record. Horizontal 
dashed lines denote mean values of each record while vertical dashed lines represent pervasive droughts 
in the regions (GRISSINO-MAYER, 1996). Two black bars denote two Medieval severe droughts that 
were previously proposed through dated tree stumps (STINE, 1994).  
 
 
         It has long been recognized that fluctuations in lake level are an indicator of climate (HALLEY, 

1715) and closed basin lakes are thought to potentially preserve detailed paleoclimatic records due to 
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their sensitivity to changes in hydrologic balance. In Walker Lake, Benson et al. (1991) produced a 

series of proxy records derived from cored sediments. They suggested that wet intervals (high lake 

levels) occurred between 4.8 and 2.7ka, approximately at 1.25ka, and over last 300 years up until the 

anthropogenic lowering that began in 1922.  They also concluded that droughts occurred around 2ka 

and 1ka BP. Based on a high-resolution δ18O record derived from cored sediments in Pyramid Lake, 

Nevada, Benson et al. (2002) identified 18 multi-decadal to centennial droughts that occurred from 

2740 to 110 years BP in this region. Most of these droughts, such as those that terminated at ~1120, 

~860, ~760, ~640, ~540, and ~280 years BP (BENSON et al., 2002), were associated with droughts 

recorded in tree-ring based river flow data in the northern Sierra Nevada (MEKO et al., 2001) and other 

paleoclimatic records from dated tree stumps (STINE, 1994). 
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Figure 1-6. Comparison of reconstructed Mono Lake levels (solid line: Stine, 1990; dashed line: Li, 
1995) and a δ18O record (solid line: Benson et al., 2002) from Pyramid Lake. 
 

          However, there still exist many discrepancies among proxy records produced in the western 

Great Basin over the past few millennia. Using the δ18O record recovered from analysis of bulk 

carbonate sediments in Mono Lake, Li (1995a) reconstructed the lake level history of Mono Lake over 

past 2000 years and suggested that generally wet and cold climates prevailed during the Little Ice Age 

(LIA) and dry and warm climates during the Medieval Warm Period (MWP). This interpretation is 

consistent with Stine’s (1990) shoreline data from the same lake. However, a flood event or high lake-

level interval that was centered at ~900 years BP in the shoreline data is absent in Li’s (1995a) 

reconstruction for Mono lake level (Figure 1-6). Moreover, these two records are not completely 

consistent with published δ18O records from Walker Lake (BENSON et al., 1991) and Pyramid Lake 

(BENSON et al., 2002). Thus, questions still remain regarding the regional extent and timing of the 

droughts recognized in this region. 

1.4 Walker Lake and its drainage basin 
Walker Lake, a terminal and saline lake, is located in western Nevada within the western U.S. Great 

Basin (38º42’N, 118º43’W). It’s long axis trends north and is about 27 km long and 8 km wide with 

maximum water depths exceeding 30 m. The lake has a large flat bottom with steep alluvial fans 

flanking the western shoreline and gentle but more extensive alluvial fans flanking the eastern shoreline 

(NEWTON and GROSSMAN, 1988). The lake is mostly fed by the Walker River and the drainage basin 

occupies ~10,000 km2. The Walker River system consists of the East Walker River (EWR) and the 

West Walker River (WWR), with the WWR being the longer of the two forks. The WWR originates just 

below the divide that separates the Walker River Basin from Yosemite National Park to the west 

(Figure 1-1).The level of Walker Lake has dropped ~40 m since 1882 due to a substantial reduction 

(~60%) of river inflow resulting from increasing irrigation demands of upstream reaches (BENSON and 

LEACH, 1979). Today the only major water loss from this hydrologic system is evaporation (MILNE and 

BENSON, 1987). The water budget of the lake is negative because the amount of annual influent to the 
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lake is less than that of annual water loss through evaporation (THOMAS, 1995). This has resulted in a 

progressive lake level lowering over the past century. During the last two pronounced ENSO events of 

1982-83 and 1997-98, however, the lake level was concurrently elevated when the Walker River 

drainage basin received abnormally high moisture (mostly snowfall on the Sierra Nevada).  

Table 1-1. Water chemistry of the Walker River and Walker Lake. Chemical unit is in mM/L unless 
indicated 

Walker Lake Walker River Chemical  

Species 1884 1966 1975-76 1999-03 1940-87  1992-98 1 

PH - 9.3 9.4 9.5 8.2 8.5 

Calcium  0.56 0.11 0.27 0.20 0.26 0.94 

Magnesium  1.60 5.10 5.59 6.24 0.10 0.38 

Sodium  - 132 136 185 0.55 3.1 

Potassium - 4.10 4.19 - 0.038 - 

Alk -HCO3 - 27.3 46.7 15.4 0.86 3.38 

Chlorite  16.8 56.9 63.7 84.7 0.113 0.60 

Sulfate  5.54 20.1 21.5 30.4 0.147 0.70 

Silicate  0.13 0.01 0.01 - 0.12 - 

Salinity ‰ 2.5 8.6 10.0 12.4 - 0.33 

Data Sources Clarke 

(1924) 

Rush 

(1970) 

Benson et 

al.  (1991) 

NDEP 

(2003) 

Benson et 

al. (1991) 

NDEP (2003)

 

          

         With the progressive drawdown of Walker Lake level during the last 100 years, the water 

chemistry and aquatic ecosystem have consequently changed. For example, water salinity has risen from 

2.5 g L-1 in 1884 (CLARKE, 1924) to ~10 g L-1 in 1975-1976 (BENSON and SPENCER, 1983) to recent 

12-13 g L-1 (BEUTEL et al., 2001). Candona caudata, an ostracode lived in the lake prior to the drawdown, 

has become locally extinct in the lake (BRADBURY et al., 1989). Walker Lake has become an alkaline 

lake, containing considerable amounts of alkaline ions (Na+ + K+) balanced by hydrocarbonates 

(BENSON and SPENCER, 1983; KEMPE and KAZMIERCZAK, 1990). Water chemistry is characterized by 
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Na+ > Mg2+ > K+ > Ca2+ and Cl- > HCO3- > SO42- (see Table 1-1). Calcium in the lake water has 

become depleted due to a progressive enhancement of water alkalinity. The Mg/Ca molar ratio has 

become elevated from ~3 in 1884 to ~20 in 1975/76 to ~30 in 1999-2003 (NDEP, 2003). Calculation 

of saturation indices yields high supersaturations for calcite and extremely high values for dolomite 

(KEMPE and KAZMIERCZAK, 1990). 

         Today, the water temperature profile of Walker Lake has been extensively investigated (BEUTEL 

et al., 2001; NDEP, 2003) since Cooper and Koch’s (1984) early efforts. Surface water temperature 

(water depth = 1 m) of Walker Lake ranges from 6.0 ºC in winter to 22.5 ºC in summer with an annual 

mean temperature of 14.5 ºC (BENSON and SPENCER, 1983; COOPER and KOCH, 1984). Bottom water 

temperature ranges from 6.0 ºC in winter to 9.5 ºC in summer with annual average of 8.3 ºC (BENSON 

and SPENCER, 1983; COOPER and KOCH, 1984). Typically circulation or overturn takes place after 

December and lasts until April or early May (KOCH et al., 1979). During this time period, the bottom 

waters become oxygenated and nutrients become homogeneously distributed throughout the lake. By 

the early summer, surface water temperatures begin to rise and the lake stratifies. The hypolimnion 

stagnates and becomes anoxic during summertime (BEUTEL et al., 2001), but prevailing winds 

sometimes produce large clockwise current gyres in the epilimnion (KOCH et al., 1979).  Although 

Walker Lake surface level has lowered ~5 m since 1976/77, the thermal structure (i.e., temperature 

profile) of the lake remains unchanged (see figure 1-7) and the lake at present is still considered to be 

monomictic (BEUTEL et al., 2001). 

         The western shoreline of the lake is bounded by steep alluvial fans extending from the Wassuk 

Range, whereas the eastern shoreline is bounded by more gently sloping but extensive alluvial fans 

flanking the Gillis Range. The Walker River enters the lake on the northern margin and has formed a 

delta with extensive sand, silt, and clay flats (NEWTON and GROSSMAN, 1988).  Spencer (1977) 

determined the predominant carbonate minerals present in Walker Lake cored sediments by XRD and 

                                                                                                                                                 
1 Sampling site is at Schurz Bridge of the Lower Walker River. 
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suggested that monohydrocalcite appears to be the dominant carbonate mineral present in sediments 

deposited during the past 2000 years. High Mg/Ca molar ratios (> 2) inhibit the formation of other 

carbonate minerals and allow monohydrocalcite to precipitate (SPENCER, 1977). 
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Figure 1-7. Temperature in ºC (upper panel) and dissolved oxygen (DO) in mg L-1 (lower panel). 
Original data from NDEP (2003).  
 

1.5 Objective of this dissertation research 
The central objective of this dissertation research is focused on the reconstruction of the last ~1000 

years of climatic and hydrologic variability in the Walker Lake drainage basin through elemental and 

isotopic analyses of cored lake sediments. Because the Walker Lake basin is situated in a climatically 

critical region, the hydrographic history in this region during the past thousand years has the potential 
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to provide a wide range of climate and hydrologic variability on interdecadal to century-time scales. 

While undertaking this research, I have attempted to address the following questions: 

         1). What is the climatic and hydrologic history over the past century in this region? 

         2). How does the δ18O of lake water respond to the lake level changes and what is the exact 

connection between the lake level and the δ18O of lake carbonates? 

         3). What is the history of lake level changes in the late Holocene? How many droughts can be 

identified in this lake? Can they be associated with the droughts that have been identified in Pyramid 

Lake and adjacent regions? How has the climate affected the late Holocene hydrologic pattern in this 

region? 

        4). What are the primary processes influencing the δ13C value of down-core carbonates? What are 

the possible causes of the covariance of δ13C and δ18O observed in many aquatic systems? 

         5). What are the primary modes of climatic and hydrologic variability in this region over the last 

1000 years?  

         To address these questions, two piston cores (WLC001 and WLC002) and one box core (WLB-

003C) were collected as part of a USGS project and were kindly provided to me by Dr. L. Benson. I 

carefully cut the cores and prepared samples to extract geochemical and isotopic signals preserved in 

these cores. Isotopic analyses were performed in the Stable Isotope Laboratory at the University at 

Albany and coulometric analyses were conducted in Dr. D. Rodbell’s laboratory in the Union College. I 

examine the distribution and temporal variability of oxygen and carbon isotopes in the aquatic system 

of Walker Lake and their responses to changes in hydrologic conditions in the interval of 1977 through 

1995, in which detailed hydrologic and isotopic data are available through previous efforts made by Dr. 

L. Benson and his co-workers. In Chapter 2, I use a published hydrologic-isotopic model, HIBAL 

(BENSON and PAILLET, 2002) and a modified hydrologic-isotopic model of PaleoLake to simulate 

variations in the δ18O of the surface water system of Walker Lake spanning 1977 to 1995. Changes in 

hydrologic conditions of Walker Lake over the last ~100 years are well documented and its hydrological 
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system is relatively simple. In Chapter 3, I present the isotopic results of the box core from this lake and 

compare the instrumental δ18O data with down-core δ18O results to test the reliability of down-core 

bulk inorganic carbonates as a faithful recorder of changes in lake water isotopic compositions. The 

results of isotopic and coulometric analyses of the piston cores are reported in Chapter 4. In the last 

chapter, i.e., Chapter 5, the climatic and hydrologic variability of Walker Lake spanning the last ~1200 

years is investigated using spectral analyses on the δ18O record of Walker Lake and the tree-ring-based 

Sacramento River flow record. Interdecadal and centennial modes of climate variability in winter 

precipitation of the Sierra Nevada have been detected.  
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CHAPTER 2 OXYGEN ISOTOPES IN THE WALKER RIVER AND WALKER 
LAKE SURFACE WATER SYSTEM 

 

2.1 Abstract 

Over the past several decades, the stable oxygen isotopic composition (δ18O) of ice cores and biogenic 

carbonates preserved in marine sediments has been used to examine climate variability in the late 

Quaternary.  Similar records have been generated from lake sediments. In the terrestrial environment 

the δ18O of carbonate sediments (δ18Oc) from closed-basin lakes has the potential to document basin-

wide hydrologic and climatic variability.  However, since the δ18O value of lake water (δ18OL) is affected 

by a number of hydrologic and climatic conditions, uncertainties remain in evaluating and interpreting 

the δ18Oc signal acquired from down-core lacustrine carbonate sediments. To better understand the 

behavior of oxygen isotopes in the Walker River and Walker Lake surface water system, in this chapter 

I describe the results of applying a published hydrologic-isotopic model, HIBAL (BENSON and 

PAILLET, 2002) and a modified hydrologic-isotopic model (see Appendix 1 for details) to simulate 

variations in δ18OL of the Walker Lake surface water system spanning 1977 to 1995. Modeled results 

suggest that the overall trend of variations in δ18OL is affected by hydrologic conditions, i.e., hydrologic 

budget, while the seasonal variations in δ18OL are mainly controlled by seasonal oscillations in the 

hydrologic balance, evaporation, and limnological thermal structure.  

2.2 Introduction 

The δ18Oc of lake inorganic carbonate sediments has been used in a number of lakes to reconstruct past 

terrestrial climatic variations (BENSON et al., 2002; BENSON et al., 1991; COVICH and STUIVER, 1974; 

LI et al., 2000; MCKENZIE and EBERLI, 1987; STUIVER, 1970). Fluctuations in the δ18Oc record 

preserved in lake carbonates depend on the temperature and the δ18OL where the carbonates formed. 
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The later is usually determined by the hydrologic settings such as stream discharge, evaporation, on-lake 

precipitation, etc. In temperate lakes the δ18Oc preserved in inorganic carbonate sediments usually 

reflects surface air temperature and lake surface temperature changes (VON GRAFENSTEIN et al., 1996; 

YU and EICHER, 1998), while in arid-semiarid closed-basin lakes it usually reflects changes of 

hydrologic conditions (BENSON et al., 1997; BENSON et al., 1996; HODELL et al., 1995; LI et al., 2000). 

         To narrow the uncertainty in interpreting the δ18OC signal preserved in down-core carbonate 

sediments, here I examine the hydrologic and isotopic system of the Walker Lake drainage basin and 

simulate variations in δ18OL of the Walker Lake surface water system spanning 1977 to 1995 through a 

published hydrologic-isotopic mode (HIBAL) and its simplified version called Paleolake.  

2.3 Walker Lake Hydrology 
Walker Lake is situated at the western margin of the U.S. Great Basin in western Nevada (Figure 2-1). 

Because it lies in the leeside of the Sierra Nevada, the annual mean precipitation is low. Based on 

meteorological records between 1930 and 1997 from weather stations in this region (Figure 2-2), the 

annual mean precipitation rate ranges from 12.5 cm at Hawthorne to 13.9 cm at Yerington. Monthly 

mean precipitation exhibits a strong seasonal pattern where this area receives more precipitation in 

winter and spring than in summer (Figure 2-3). In contrast, stream flow of the Walker River is higher in 

late spring and early summer than other seasons because most streams in this drainage basin are fed by 

the snowmelt from the Sierra Nevada (Figure 2-4). The amount of water in the Walker River decreases 

from upstream to downstream reaches due to agricultural water consumption along the Walker River 

(BENSON and LEACH, 1979). For example, the amount of water flow in the West Walker River (WWR) 

near Coleville is 50% larger than that of the Walker River near Wabuska (THOMAS, 1995). 
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Figure 2-1. Walker Lake drainage basin, Nevada and California showing location of the Walker River 
and Walker Lake (BENSON and LEACH, 1979). 

1930 1940 1950 1960 1970 1980 1990 2000

5

10

15

20

25

5

10

15

20

25

5

10

15

20

25

30

 A
N

N
U

AL
 P

R
EC

PI
TA

TI
O

N
 (c

m
)

C A LE N D A R  Y E A R

 H A W T H O R N E  

12 .5

 

AN
N

U
AL

 P
R

EC
PI

TA
TI

O
N

 (c
m

)  S C H U R Z

13 6

 A
N

N
U

AL
 P

R
EC

IP
IT

AT
IO

N
 (c

m
)

 Y E R N G TO N

13.9

 
Figure 2-2. Historic instrumental precipitation records of Walker Lake and its adjacent areas 
(original data from National Climate Data Center). Horizontal dashed lines represent long-
term averages of annual precipitation at each weather station indicated. 
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Figure 2-3. Precipitations climatologies near Walker Lake and its adjacent areas. A)  Schurz Weather 
Station (1931-1945). B) Yellington Weather Station (1931-1993). C) Hawthorne Weather Station (1938-
1990) (original data from NCDC). 
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Figure 2-4 Average monthly river discharge of the Walker River at gauging stations near Coleville (A), 
Wellington (B), and Wabuska (C) (original data from US Geological Survey website http:// 
water.usgs.gov). 
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The confluence of the WWR and the East Walker River (EWR) is located approximately 20 

miles upstream from the Wabuska gauging station (Figure 2-1). The gauging station at Wabuska 

(operated by the USGS) has a continuous stream flow record back to 1944 and records an annual mean 

stream discharge of 0.16 km3. However, only about 88% of water passing Wabuska eventually enters 

Walker Lake according to annual discharge records from Schurz and Wabuska gauging stations 

spanning 1978 to 1995 (Figure 2-5). The amount of the stream flow near Schurz is highly correlated 

with the Wabuska gage record  (Figure 2-6). This linear correlation will be used to correct the amount 

of the Walker River flow (near Wabuska) that eventually enters Walker Lake. 
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Figure 2-5 Histogram showing variations in the percentage of river discharge at the Wabuska gauging 
station passing through the Schurz gauging station (original data from USGS). 
 
 
         Since groundwater inflow and /or outflow are negligible (MILNE, 1987) and on-lake precipitation 

(P) is a minor component (<10 %) of the total water input to the lake, variations in lake level are 

primarily affected by stream flow (Q) and evaporation (E) according to the hydrologic mass balance. In 

fact, changes in lake volume (∆V) vary linearly with the amount of Walker River flow (Figure 2-7). This 

also suggests that variations in the Walker River discharge are the primary contributor to lake volume 

changes over the past five decades or more. 
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Figure 2-6 Linear correlation of river discharge of the Walker River near the Wabuska and Schurz based 
on the annual mean river discharge data spanning 1978 to 1999 (original data from USGS). 
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Figure 2-7 Positive linear stream correlation of river discharge between the Walker River and lake 
volume change of Walker Lake from 1945 to 1995 (original data from USGS). 
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Figure 2-8 Plots of Walker Lake hypsometric data. A) Surface area vs. depth. B) Volume vs. depth 
(original data from Dr. L. Benson, personal communication, 2001). 

 

Based on a straightforward water balance equation, EPQ
t
V −+=

∆
∆

, change in lake volume 

is determined by the Walker Lake hypsometric settings (Figure 2-8A,B), and the amounts of the Walker 

River flow, on-lake precipitation, and evaporation. The long-term annual on-lake precipitation rate is 

0.125 m. On the basis of the historical lake level record and the annual Walker River flow record 

(documented USGS), the long-term annual mean evaporation rate of Walker Lake can be estimated 

through the least root mean square error (BENSON et al., 2002), 
n

LL
n

i

m
i

c
i∑

=

−
= 1

2)(
ξ , where m

iL  is 

the measured lake level and c
iL is the lake level computed through the water mass balance equation. 

The calendar-year stream flow record (1944 to 1999) of the Walker River near Wabuska is used and 

corrected through the stream flow correlation between the Wabuska and Schurz gauging stations 

(Figure 2-6). Computations indicate that long-term mean annual evaporation rate (1944-1995) is about 

1.39 m (see Figure 2-9), which is close to Milne’s (1987) estimate (1.35 m).  
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Figure 2-9 Walker Lake long-term mean annual evaporation rate estimated using corrected calendar-
year inflow, fixed-rate (0.127 m yr-1) of on-lake precipitation, and measured lake levels for the period 
1944-1995. A long-term (1944-1995) average value of 1.39 m yr-1 was obtained through the least root-
mean-square error (difference) between measured and computed lake levels over the period 1944-1995 
(original data from USGS). 
 

 
2.4 Surface Water δδ18O  

In Walker Lake basin, there are three types of surface-water with distinct δ18O ratios, δ18OL of lake 

water > δ18O of on-lake precipitation (δ18OPP) > δ18O of stream water (δ18OR) (Table 2-1). Because of 

the vast majority (>90%) of water in the Walker River is derived from Sierra Nevada snowmelt, the 

δ18OR is usually lower than any other components. The δ18OPP is related with the source of water vapor 

and ambient temperature when the water vapor condensation occurs. The δ18OPP at Sutcliffe, a weather 

station near Pyramid Lake, is –9.8 ± 4.4 (‰, VSMOW) (BENSON, 1994). In Walker Lake, direct 

measurement of the δ18OPP is not available. Since the evaporation/precipitation ratio is greater than 10, 

the contribution of on-lake precipitation to the δ18OL is relatively small. Thus, the δ18OPP value of 

precipitation at the Sutcliffe weather station was adopted for the isotopic simulation of Walker Lake. 
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Table 2-1 Surface waters and their oxygen isotopic signatures 
Surface Water Stream Water Rainfall Lake Water Subtotal 
Quantity 2 (km3) 0.155 0.019 2.50 2.67 
% 5.8 0.71 93 100 
δ18O (‰, SMOW) -13.6±0.6 -9.8±4.4 0±2  
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Figure 2-10 Variations in δ18O of stream water near the Wabuska gauging station. A) Monthly mean 
δ18O. B) A time series of δ18O record of stream water near the Wabuska gauging station (original data 
from Dr. L. Benson, personal communication, 2001). 
 

         The δ18OR of the Walker River flow at the Wabuska gauging station in the interval from 1985 to 

1994 was measured by Dr. L. Benson of the USGS. The δ18OR tends to be higher in late summer than 

other seasons (Figure 2-10A), indicating that irrigation return-flow may alter the isotopic signature of 

the Walker River. The average δ18OR is –13.6 (‰, SMOW) with standard deviation of ± 0.6 (‰, 
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SMOW). Variations in the δ18OR observed are relatively small as the coefficient of variance (CV) is 

4.4% (Figure 2-10B). Direct measurements of the δ18OL of Walker Lake back to 1977 have been 

previous published. Newton and Grossman (1988) reported an average δ18OL of Walker Lake of 2.8 ‰ 

(SMOW) based on the analysis of 13 samples collected from the lake in September 1977. Benson et al. 

(1996; 1991) reported 78 measurements of δ18OL that spanned 1981 to 1994. The results from 1977 to 

1994 are shown in Figure 2-11. There was a negative correlation between the δ18OL and the lake surface 

elevation (r2= 0.94, n=56) in the dry intervals from 1985 to 1994 when only a small amount of the 

Walker River flow entered the lake and the δ18OL was primarily affected by evaporation. 
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Figure 2-11 Comparison of measured lake level elevation and lake water δ18O for the period of 1975-
1995. The lake level elevation record was observed by USGS and the δ18O data were taken from 
(BENSON et al., 1996; NEWTON and GROSSMAN, 1988; PENG and BROECKER, 1980). 
 
          However, change in δ18OL is not a simple linear function of hydrologic conditions (BENSON and 

WHITE, 1994). Other factors, such as limnological thermal structural and hypsometric properties of the 

lake may also play an important role in variations in the δ18OL (BENSON et al., 2002; BENSON and 

                                                                                                                                                 
2 Stream flow is estimated based on long-term annual flow (174 cfs), while rainfall and lake water are estimated based on a lake 

surface area of 159 km2. 
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PAILLET, 2002). Modern observations of the lake indicate that the lake exhibits strong seasonal 

stratification in summer and overturn in winter (BRADBURY et al., 1989; COOPER and KOCH, 1984). 

When Walker Lake becomes stratified, the surface waters become isolated from the deep water. 

Consequently, the δ18OL of surface water is much more variable than that of deep water. In addition, 

when the lake is shallow, the δ18OL becomes much more sensitive to changes in climatic and hydrologic 

conditions. 

2.5 Oxygen Isotopic Modeling 
As stated above, Walker Lake volume is affected by three major components, on-lake precipitation (P), 

stream flow (Q), and evaporation (E). The δ18OL ( Lδ ) is also affected by three major components with 

distinctive δ18O values: on-lake precipitation ( Pδ ), stream flow ( Qδ ), and evaporation ( Eδ ). Change in 

the δ18OL ( Lδ ) is regulated by EPQ
L EPQ

t
V δδδδ

++=
∂

∂ )(
 (GONFIANTINI, 1965; GONFIANTINI, 

1986). The δ18O value of water vapor leaving the lake is dependent on the δ18OL of lake surface water, 

the δ18O and fraction of free water vapor overlying lake surface, and the relative humidity, and the 

water temperature, etc. The δ18O of water vapor leaving lake surface may be estimated through 

following expression (BENSON and WHITE, 1994), 

1
)1()1(
)1()1(

−
−+−
+−+

=
adkineqeq

adkineqadLkin
E fRHRH

RHf
ααα

δααδα
δ ..............................................(2.1) 

 
 where RH is the relative humidity of the boundary layer over the lake surface, δad is the δ18O of 

advected water vapor, αeq and αkin are the equilibrium and kinetic isotopic fractionation factors, and fad 

is the fraction of advected water vapor in the boundary layer over the lake surface. eqα depends on lake 

surface water temperature and can be defined through Majoube’s (1971) expression, 

)100667.24156.01137exp( 312 −−− ×−−= TTeqα .......................................(2 2) 
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The surface water temperature  (water depth = 1 m) ranges from 6.0 °C in winter to 22.5 °C in 

summer with an annual mean temperature of 14.5 °C (BENSON and SPENCER, 1983; COOPER and 

KOCH, 1984). Lunar monthly temperatures of Pyramid Lake (Table 2-2) are scaled to compute the 

concurrent lunar monthly eqα  for Walker Lake. The αkin value of 0.994 is determined in previous 

studies (BENSON and PAILLET, 2002; MERLIVAT and JOUZEL, 1979). δad is the δ18O of advected water 

vapor from outside of the lake and the value of –21 ‰ (BENSON and WHITE, 1994) is applied. Lunar 

monthly relative humidity values, stream flow fraction, precipitation fraction, and evaporation fraction 

measured in Pyramid Lake are adapted (Table 2-2).  

 

Table 2-2 Lunar monthly limnologic and climatic data and normalized lunar monthly values of river 
flow, on-lake precipitation, and evaporation that are taken from Pyramid Lake (BENSON and 
PAILLET, 2002). 

Lunar 
Month 

Mix Depth3 
(m) 

Temp4 
(ºC) 

Humidity 
(%) 

River Flow 
Fraction 

Evap. 
Fraction 

Precipitation 
Fraction 

1 1000 6.66 0.73 0.0543 0.033 0.146
2 1000 7.08 0.68 0.0625 0.028 0.115
3 1000 7.83 0.55 0.0731 0.035 0.089
4 1000 10.05 0.47 0.1127 0.059 0.053
5 2 13.07 0.47 0.1696 0.079 0.070
6 5 16.41 0.46 0.1543 0.098 0.084
7 8 20.77 0.35 0.0882 0.129 0.030
8 12 23.15 0.37 0.0559 0.133 0.029
9 15 22.34 0.32 0.0491 0.124 0.030
10 17 20.00 0.41 0.0443 0.094 0.055
11 19 16.61 0.50 0.0381 0.069 0.051
12 21 12.62 0.64 0.0436 0.062 0.109
13 1000 9.02 0.67 0.0542 0.055 0.129

 

          To determine the fad, I used corrected annual stream flow data at the Wabuska gauging station 

(refer to UGGS website, http://water.usgs.gov) as the primary input variable and the instrumental 

                                                 
3 Mix depth stands for the depth of surface mixing layer when lake becomes stratified, otherwise a number of 1000 is applied. 
4 TEMP denotes surface water temperature. 
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δ18OL record spanning 1985 to 1994 (BENSON et al., 1996) as reference for the HIBAL model and 

determined the value of fad by fitting the modeled curve of δ18OL changes to that observed.  
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Figure 2-12 Hydrologic balance simulation using fixed rates of on-lake precipitation (0.127 m yr-1) and 
evaporation (1.35 m yr-1) (original lake elevation data from USGS). 
 

The algorithm for the HIBAL model was kindly provided by Dr. Larry Benson of the U.S. 

Geological Survey. I modifed the original Fortran source codes of HIBAL and converted them into 

Visual Basic macros for Microsoft Excel 2000. This Visual Basic program was then simplified and 

integrated into a comprehensive hydrologic basin model called Paleolake. Paleolake consists of three 

major components; hydrologic simulation, isotopic simulation, and lake level reconstruction (see 

Appendix 1 for details). The isotopic simulation component is a simplified version of HIBAL in which 

relative humidity, on-lake precipitation, and evaporation are treated as constant and the thermal 

structure of the lake is not taken into account. Paleolake uses corrected daily stream flow readings at the 

Wabuska gauging station5 and runs on an arbitrary user-defined time step6 while HIBAL uses corrected 

                                                 
5 River flow is corrected by multiplication of 90%. 

6 The model can run hourly time step, but it will not increase the accuracy of model results, as the original data is usually in 
daily spacing.  
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monthly stream flow data in the Wabuska gauging station7 and the lunar monthly hydrologic and 

climatic data in Table 2-2 and runs on a constant monthly time step. Both programs require 

hypsometric data of the lake to establish relationships among volume, area and surface elevation. 

Before isotopic simulations, an average evaporation rate first needs to be estimated. In the interval from 

1985 to 1994, an evaporation rate of 1.35 m yr-1 is estimated by best-fit (see Figure 2-12), which is 

slightly lower than that calculated for the interval from 1944 to 1999 through least root mean square 

error technique (Figure 2-9). 

2.6 Results and Discussion 

As stated above, adf is tuned by the model itself. Paleolake can run in both modes, forward and 

backward. Assuming an annual mean RH value of 60%, I use the daily river flow data as the primary 

input variable and the δ18OL record as reference for the model to determine the value of adf by fitting 

the modeled curve of lake water δ18O changes to that observed. A adf value of 30% is determined by 

this method running the model in both backward and forward modes (Figure 2-13A and 2-13B). Using 

fixed values of RH (60%) and adf  determined, a Paleolake-modeled δ18OL record is produced and 

compared with the instrumental δ18OL record spanning 1977 to 1994 (Figure 2-14A). This modeled 

δ18O curve captures the main features of the instrumental δ18OL record. In contrast, HIBAL only is run 

in forward mode. When a adf value of 33% is applied, HIBAL-modeled results fit the observed curve 

of lake water δ18O well (Figure 2-14B), particularly in the interval from 1990 to 1994 in which modeled 

results remarkably capture most of variations in δ18OL. 

         It is not surprising that the values of adf obtained through these two approaches are slightly 

different as an annual average RH of 51% (see Table 2-2) is applied in HIBAL simulation. Both adf  

and RH are important factors in regulating the isotopic distribution of the surface water system. With 

                                                 
7 River flow is corrected through the linear equation indicated in Figure 2-6. 
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an increase in either adf or RH, the model results tend to shift the δ18OL curve to lower average values 

(Figure 2-13B, forward method). An increase in adf can be offset by a decrease in RH during isotopic 

simulations. In fact, either adf or RH may change year to year. The adf  value of ~33% was estimated 

according to hydrologic and climatic data in Table 2-2, in which most of the dataset is scaled from 

those measured in Pyramid Lake. 
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Figure 2-13 Lake water δ18O simulations through Paleolake using various fad. A) Backward simulation 
method. B) Forward simulation method. 
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Figure 2-14 Comparison of model simulation results through Paleolake (A) and HIBAL (B). Note that 
the modeled results from HIBAL captured seasonal variations in lake water δ18O while Paleolake are 
capable of reproducing the overall features of variations in lake water δ18O (assuming RH=60% and fad 
=0.3). Open circles with error bar are measured data points (original data extracted from Benson et al., 
1996). 
 

         In Table 2-2, there are six categories of parameters that may affect the isotopic distribution of the 

system. These parameters are used to reflect limnological, hydrologic, and the climatic annual cycle of 

the lake. For example, the mixing depth represents one of the limnological properties. Walker Lake has 

a thinner mixed layer in summer and early fall and overturns in winter and early spring (COOPER and 

KOCH, 1984). This limnological cycle is certainly related with hydrologic and climatic conditions of the 

lake. Hydrological closure, surface water temperature, and relatively high salinity are the primary factors 

that produce the distinct seasonal limnological pattern. Besides stream flow and on-lake precipitation, 

evaporation also exhibits a strong seasonal cycle that is higher in summer and early fall seasons and 

much lower in other seasons (BENSON and WHITE, 1994). 
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Figure 2-15 Results of HIBAL model experiments (I). Open squires are δ18O or elevation values 
observed and solid curves are results of simulations using HIBAL. A) Assuming adf  =0.25, perennial 
fixed values of precipitation, evaporation, and water temperature, and full mixing conditions. B) 
Assuming perennial constant inflow. C) Assuming perennial constant rates of precipitation and 
fad=0.33. D) Assuming perennial constant inflow and adf  =0.30.  
 
         HIBAL-modeled results capture most variations in δ18OL using the dataset in Table 2-2. To test 

the sensitivity of the response of δ18OL to these parameters, I removed the seasonal variations of the 

parameters in Table 2-2 and replaced them with annual averages. For example, the lunar monthly 

fractions of stream flow, on-lake precipitation, and evaporation are kept constant as 1/13. For water 

temperature and RH, their annual average values are applied, 14ºC and 51%, respectively. The mixing 

depth is assigned to 1000 m 8, which represents a perennial full mixing condition. Under these 

circumstances, HIBAL-modeled results are generated and presented in Figure 2-15A. These results are 

close to the Paleolake-modeled results except for the fact that HIBAL captures the fine or seasonal 

variations in δ18OL.  

         In search for the primary contributors to seasonal variations in δ18OL, I modified the dataset in 

Table 2-2 (using annual averages) and re-ran the HIBAL program. From 1985 to 1994, the climate was 
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relatively dry in this area. The Walker River discharge was very low with an average of 81 cubic feet per 

second (cfs), compared to an average of 184 cfs for the past six decades. Under such dry conditions, 

seasonal variations in river flow and on-lake precipitation have little impact on seasonal variations in 

lake volume or elevation since the results of hydrologic simulations with no seasonal variations in 

stream flow still capture most of seasonal variations in lake volume or elevation (Figure 2-15B).  Also, 

seasonal variations in on-lake precipitation and inflow have little influence on seasonal variations in 

δ18OL (Figure 2-15C and 2-15D).  

         In contrast, seasonal variations in evaporation play an important role in affecting 

seasonal variations in lake volume and δ18OL since the results of the HIBAL simulations show 

no pronounced seasonal variations in either lake elevation or δ18OL (Figure 2-16A) when 

seasonal variations in evaporation are removed. Change in surface water temperature 

ultimately alters the limnological thermal structure of the lake and affects seasonal variations in 

δ18OL because the seasonal variations in δ18OL are substantially reduced when a perennial full 

mixing condition is applied (Figure 2-16B). However, seasonal changes in surface water 

temperature alone have little influence on seasonal variations in δ18OL since seasonal variations 

in δ18OL are still preserved when a perennial constant temperature of 14 ºC is used (Figure 2-

16C). Lastly, I use an average RH of 51% and re-ran the HIBAL model. The HIBAL-modeled 

results indicate that seasonal variations in δ18OL are also evident when RH is kept constant 

(Figure 2-16D). In Summary, among the parameters listed in Table 2-2, the results of HIBAL 

model experiments suggest that the overall trend of δ18OL is controlled by the Walker River 

discharge while the seasonal variations are primarily influenced by monthly evaporation rate 

and thermal structure of the lake. 

                                                                                                                                                 
8 This value is assigned for model calculation purpose. 
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Figure 2-16 Results of HIBAL simulations (II). A) Assuming perennial constant rates of evaporation 
and adf  =0.30. B) Assuming adf  =0.25 and a perennial full mixing condition. C) Assuming perennial 

constant water temperature (14ºC) and adf  =0.35. D) Assuming adf  =0.25 and RH=51%. 
 
         As stated by Benson and Paillet (2002), hydrologic modeling  usually has a much higher chance of 

success when isotopic simulation is confined to “interesting” parts of the record, in which some 

climatic parameters tend to be relatively well-constrained. This is also true in the Walker Lake isotopic 

simulations. For example, the HIBAL simulation does a better job for the interval from 1990 to 1995 

than from 1985 to 1988. This is because there is little discharge to the lake during the period from 1990 

to 1995. Model experiments demonstrate the ability of HIBAL to simulate changes in δ18OL of Walker 

Lake through adapting measured data from Pyramid Lake (except for stream flow and hypsometric 

data). However, such isotopic simulations are based on a well-defined hydrologic and isotopic system 

of the lake. The ultimate goal of hydrologic and isotopic model is to extract hydrological and climatic 
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information in the past on the basis of δ18Oc signal preserved in down-core sediments. In fact, some of 

the parameters listed in Table 2-2, such as precipitation, evaporation, relative humidity etc, are directly 

related with climatic conditions, which are usually unknown for the past. To run the model, the 

modeler must assign appropriate values for these parameters. The simplest way is to adapt the value 

observed today. However, such modeled results are usually risky and speculative since the parameters in 

the past climate might differ from those of today. This is particularly true for the δ18OR. The Walker 

River water is at present 18O-enriched because some water has been used for irrigation (pre-evaporated) 

and returned the river with isotopically heavier signatures due to evaporation in field. 

         There are many uncertainties involved in the estimate of the parameters used in the models 

compared here. However, these parameters are known to have a range of values in this area. For 

example, in Walker Lake, long-term annual mean evaporation may range from 1.20 to 1.50 (m) and the 

δ18OR may range from –14 to -20 (‰, SMOW) over the past few thousand years. These two 

parameters are believed to be the primary factors that affect the δ18OL long-term evolution of the lake. 

Surface air temperature is also a key component of the climate in the past and it indirectly affects 

variations in δ18OL through several pathways. Changes in surface air temperature will alter evaporation 

rate, relative humidity, and thermal structure of the lake.  
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CHAPTER 3 COMPARISON OF HISTORICAL LAKE LEVELS AND DOWN-
CORE ISOTOPIC SIGNATURES FROM WALKER LAKE 

 

3.1 Abstract  

The carbon (δ13C) and oxygen (δ18O) isotopic composition of authigenic or biogenic luacustrine 

carbonates have been used in numerous studies to extract information on terrestrial environmental 

changes in the past (COVICH and STUIVER, 1974; MCKENZIE, 1985; STUIVER, 1970; TALBOT and 

KELTS, 1990; TALBOT, 1990). Fluctuations in the δ18O and δ13C record preserved in down-core 

carbonate sediments usually depend on the ambient water temperature and the δ18O and the dissolved 

inorganic carbon (DIC) δ13C of host water where the carbonates form. In arid-semiarid closed-basin 

lakes, the source of variability in down-core δ18O has usually been ascribed to changes in hydrological 

conditions, typically to the ratio of evaporation to precipitation. It has been assumed that when the 

amount of the 18O-depleted surface water input exceeds that of water loss through evaporation, lake 

level rises and the δ18O of lake water (δ18OL) decreases and vice versa (BENSON, 1999). In contrast, the 

source of variability in down-core δ13C is thought to relate primarily to the primary productivity instead 

of the surface water input (BENSON et al., 1991; BENSON and WHITE, 1994). Here I present a 72-year 

high-resolution (near-yearly temporal resolution) proxy record preserved in down-core sediments from 

Walker Lake, Nevada. Isotopic results indicate that there exists a strong covariance of the total 

inorganic fraction (TIC) δ18O and TIC δ13C of down-core inorganic carbonate in the lake sediments, 

while there is little correlation between ostracode δ18O and ostracode δ13C. Direct comparison between 

the historical record of lake level and down-core δ18O results indicates that the δ18O of down-core 

carbonates in this setting has recorded the primary climatic and hydrologic events that occurred over 

the past seven decades.  
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3.2 Introduction  
One source of information on changes in regional climatic and hydrologic conditions is down-core 

variations in lacustrine sedimentary carbonate (BENSON et al., 2002; BENSON et al., 1991; COVICH and 

STUIVER, 1974; DEAN, 2002; HODELL et al., 1995; STUIVER, 1970). Since most of organic and 

inorganic carbon in the sediments of Walker Lake are predominantly from in-lake source (MEYERS, 

1990; TENZER et al., 1997), they are believed to be excellent recorders of hydrologic and geochemical 

conditions within the lake. The dominant carbon-bearing components are precipitated CaCO3 and 

organic remains from a mixture of C3 phytoplankton, C4 bluegreen algae (MEYERS, 1990) and bivalved 

aquatic crustacean microfossil shells. Lake sediments also record other types of environmental 

information, such as nutrient status and aquatic fauna. Variations in these characteristics may be 

climatically and /or anthropogenically induced.  

         Walker Lake is presently a simple hydrological closed-basin lake situated at the western margin of 

the Great Basin in west-central Nevada. Walker Lake level varies in response to changes in discharge 

from the Walker River, the primary water source of the lake. Over the past century, the lake has 

experienced a massive drawdown beginning in 1922/23 due to increasing water consumptive demands 

and construction of water storage facilities in upstream reaches. As a result, the water chemistry and 

aquatic fauna of the lake have changed substantially. For example, both the concentrations of total 

dissolved solids (TDS) and alkalinity have at least doubled (Figure 3-1) since 1922. The ostracod 

Candona caudata lived in Walker Lake prior to its drawdown in 1920’s (BRADBURY et al., 1989), and is 

presently absent from the lake. Limnocythere ceriotuberosa is the only abundant ostracode living near the 

lake water-sediment interface today (BRADBURY et al., 1989). 
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Figure 3-1. Instrumental records of the total dissolved solid (TDS) and total alkalinity (TA) of Walker 
Lake. Original data were taken from Benson and Spencer (1983) and NDEP (2003). 
 
 
         The purposes of this study are to report carbonate coulometric and isotopic results extracted 

from a box core collected from Walker Lake in June 2000, compare these results with the historical 

record of lake level, and examine how the history of variations in hydrological conditions of the lake is 

transferred to the sedimentary record. 

 

3.3 Method and Materials  
A 39.6 cm long boxcore (WLB-003C) was collected from one of the deepest portions of Walker Lake 

(Figure 3-2) in June 2000. The water depth was approximately 30 m. A distinct water-sediment interface 

was evident during boxcore recovery. The boxcore was carefully sealed and transferred to the 

University at Albany. Once it arrived at the University at Albany it was kept refrigerated storage at  ~4 

ºC. WLB-003C was extruded vertically and sectioned at 0.5-cm intervals. Samples collected were 

separated into two portions, one was for microfossil analyses and the other was for coulometric 

analyses. Each sample from the microfossil portion was wet sieved (250 µm) and the coarse fraction 

transferred into an aluminum weighing dish and oven-dried at 60ºC. The dried ostracode L. ceriotuberosa 

was hand-picked under a microscope with a pen brush, washed with deionized water to remove tiny 
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particulates stuck on valves, and oven-dried again at 60 ºC. Because at the time when the samples were 

prepared the University at Albany stable isotope mass spectrometer needed more than 100 µg  (ca. 10 

to 15 shells) carbonate to get optimal results, every pair of two consecutive samples were merged prior 

to isotopic analyses. Samples from the other portion were washed several times in deionized water to 

remove soluble salts until their electrical conductivities were less than 3X those of Albany (New York) 

tap water. Washed samples were dried, homogenized, and soaked with 2.6% sodium hypochlorite for 6-

8 hours to remove organic matter. The soaked sediments were vacuum-filtered with Whatman® glass 

microfibre filters (1.6 µm), rinsed with deionized water at least five times, and oven-dried at 60 ºC prior 

to isotopic analysis (BENSON et al., 2002). 
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Figure 3-2 Bathymetry and sediment core sites in Walker Lake (After Benson, 1988). WLB-003C (not 
shown here) is very close to WLC002.  
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         TIC analysis was conducted at Union College by accurately weighting 15 mg samples into a small 

Teflon boat. The boat was placed in the bottom of a sample flask and attached to the sample column 

assembly of an acidification unit. Total carbon (TC) analysis was conducted by accurately weighing 10 

mg samples into an aluminum foil boat, which was then sealed. The boat was placed into a quartz ladle 

and introduced into the quartz combustion tube. Generated CO2 through acidification (TIC) or 

combustion (TC, 950ºC) was carried by CO2 free inert gas into the analyzer of UIC coulometer. The 

detect limit was 0.08% C and the standard deviation for standards is 0.1%. The relative error of 

replicates is <2.0%. Total organic carbon (TOC) was determined by the difference of TC and TIC.  

         Carbon and oxygen isotopic analyses were performed on a Micromass Optima mass spectrometer 

with a MultiPrep automated sample preparation device. CO2 was generated through orthophosphatic 

acidification. The isotopic results are reported relative to PDB, based on working standards calibrated 

against NBS-19. The overall precision (1-σ) of δ18O and δ13C are 0.04 ‰ and 0.02 ‰, respectively.  

3.4 Results  
Down-core carbonate chemistry is the primary recorder of changing geochemical and hydrological 

conditions of the lake. Over the past century, the molar Mg/Ca ratio has become progressively higher 

(from ~3 in 1884 to ~20 in 1975/76). As a result, calcite formation is severely inhibited and 

monohydrocalcite becomes the dominant carbonate precipitate (BENSON et al., 1991; SPENCER, 1977). 

The results of TIC and TOC are plotted vs. depth in figure 3-3. The weight % TIC fluctuates in a range 

of 1-4 (%C) with an average of 2.63 (%C). From a depth of 35 cm to 2 cm below sediment-water 

interface, the weight % TIC exhibits a progressive decreasing trend while the weight % TOC shows an 

opposite trend that is interrupted by three distinct TOC minimua centered at depths of 15 cm, 8 cm, 

and 1.5 cm. The TIC and TOC are negatively correlated (r = - 0.63, n = 78). Variations in weight % 

TIC in sediments are a function of inorganic carbonate precipitation, primary productivity, and 

accumulation of terrigenous clastic materials. Increases in primary productivity and clastic accumulation 
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will result in the dilution of sedimentary %TIC. It is plausible that the observed decreasing trend in 

%TIC is caused by increases in primary productivity (BENSON et al., 1991). 
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Figure 3-3. Results of measurements of the total inorganic carbon (TIC) and total organic carbon 
(TOC) of cored sediments from WLB-003C. A) TIC was measured by coulometric analysis. B). TOC 
was calculated by the difference of total carbon (TC) and TIC. 
 
 
         Carbon and oxygen isotopic analyses were performed on both ostracode shells and the bulk TIC 

fraction. The results of measurements of the TIC δ18O and TIC δ13C are shown in figure 3-4. The TIC 

δ18O ranges from –4 to 4 ‰ (PDB) with an average of 0.7 ‰ (PDB) and the TIC δ13C ranges from 1 

to 4 ‰ (PDB) with an average of 3.2‰ (PDB). Both TIC δ18O and TIC δ13C progressively increase 

from a depth of 39.6 cm to 15 cm. TIC δ18O and δ13C variability becomes larger from a depth of 15 cm 

to the water-sediment interface. This is probably related to increases in isotopic sensitivity due to a 
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small lake volume and/or likely enhanced primary productivity (BENSON et al., 1991). The TIC δ18O is 

positively correlated with the TIC δ13C with a correlation coefficient of r = 0.79 (see Figure 3-5). 

However, the results of measurements of water samples from the lake indicate that there is no robust 

correlation between the water δ18O and the DIC δ13C (Figure 3-6). The results of measurements of the 

ostracode δ18O and ostracode δ13C are shown in figure 3-7. The values of ostracode δ18O range from –

0.5 to 10.5‰ (PDB) with an average of 4.8 ‰ (PDB) and the values of ostracode δ13C range from –1.8 

to 1.0 ‰ (PDB) with an average of –0.4 ‰ (PDB). The ostracode mean δ18O is 4 ‰ heavier than the 

TIC mean δ18O while the ostracode δ13C is 3.6 lighter than the TIC δ13C. Since ostracode L. ceriotuberosa 

inhabits near water-sediment interface at a temperature of ~8 ºC (BENSON and SPENCER, 1983) and 

most of inorganic CaCO3 precipitates as whitings at a temperature of ~22 ºC (BENSON et al., 1991), the 

difference of the δ18O values between ostracode shells and TIC fraction can be ascribed to the 

temperature difference of epilimnion and bottom water, and the vital effect of ostracodes. As to δ13C, 

measurements of the DIC δ13C in the lake spanning 1991 to 1994 reveal that DIC δ13C fluctuates 

within 1.6 to 2.4 ‰ (PDB), with an average of 2.1 ‰ (PDB), suggesting that the DIC of the lake is in 

near isotopic equilibrium with atmospheric CO2 (BENSON et al., 1996). The average value of ostracode 

δ13C is lower than that of the DIC δ13C while the average value of TIC δ13C is higher than that of the 

DIC δ13C. The difference of the ostracode δ13C and the TIC δ13C can be ascribed to possible DIC δ13C 

difference of host waters between epilimnion and hypolimnion. Also, it can be ascribed to the habitat 

of ostracodes, in which the DIC δ13C is strongly influenced by releases of DIC with negative δ13C 

through respiration and biodegradation of organic materials accumulated. In addition, the correlation 

between the ostracode δ18O and the ostracode δ13C is very weak (r2 = 0.09, n = 39). 
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Figure 3-4. Results of measurements of TIC δ13C and TIC δ18O of cored sediments from WLB-003C. 
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Figure 3-5. Positive correlation between TIC δ13C and TIC δ18O of cored sediments (WLB-003C) 
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Figure 3-6. Plot of Walker Lake isotopic data: δ13C vs. δ18O, based on the results of 37 measurements 
of lake water samples for the period of 1991-1994 (original data from Benson et al., 1996). 
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Figure 3-7. Results of measurements of δ13C and δ18O preserved in down-core ostracode shells (L. 
ceriotuberosa) of cored sediments from WLB-003C. 



  - 48 -

3.5 Discussion 
Since Walker Lake has experienced a rapid and massive drawdown over the last century, the results of 

direct measurements of the δ18OL are crucial to understanding how the δ18OL varies in response to 

rapid changes in hydrologic conditions that are known. As stated above, the δ18O signature preserved in 

TIC and ostracode shells usually reflects the δ18OL and ambient temperatures. On the basis of 

laboratory experiments, Xia et al. (1997b) developed an empirical equation for the oxygen isotopic 

fractionation of ostracode C. rawsoni valves in aquatic systems: 943.3179.01818 −+= TOO cL δδ , 

where T is the equilibrium temperature near the sediment-water interface in ºC, LO18δ is the δ18O 

value of host lake water in ‰ (SMOW), and oO18δ  is the δ18O value of ostracode shells in ‰ (PDB). 

The hypolimnion temperature varies gradually throughout the year in Walker Lake from ~6 ºC in 

winter to ~10 ºC in summer (BENSON and SPENCER, 1983). The δ18O of hypolimnion water of the 

lake can be computed from the ostracode δ18O record through this empirical equation (Figure 3-8). The 

error bar (± 0.35 ‰) is induced by the uncertainty in the bottom water temperature (6-10 ºC). The 

computed values of δ18OL are subject to calibration through direct δ18OL measurements conducted 

during the past few decades, as the empirical equation used is derived from C. rawsoni instead of L. 

ceriotuberosa.  

         A direct comparison of the computed 3-point average δ18OL and the instrumental δ18OL results 

indicates that down-core ostracodes are an ideal recorder of the primary variations in the δ18OL 

spanning 1977 to 1995 (Figure 3-9). This comparison also suggests that the computed δ18OL values are 

overall ~0.5 ‰ higher than those of instrumental δ18OL.  
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Figure 3-8. Computed δ18OL record from down-core ostracode δ18O (see text for details). Errors of the 
computed δ18OL record (open squares with error bar) are induced by the uncertainty of water 
temperature (6 ± 2ºC). The solid line represents 3-point running average of the computed δ18OL record. 
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Figure 3-9. Comparison between the 3-point running average computed δ18OL and instrumental δ18OL 
records spanning 1985 to 1994. Original instrumental data were taken from Benson et al. (1996). 
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         The bottom-most sediments in box core WLC-003C are equivalent to a depth of 29 cm in piston 

core WLC002 with a calendar age of ~1928 AD (refer to Chapter 4 in this dissertation). As the water-

sediment interface was evident during box core recovery, the calendar age of the topmost sediments is 

assumed to be AD 2000. The comparison of proxy and instrumental δ18O records supplies extra age 

constraints for WLC-003C. A second-order polynomial fit is made to establish an age model for box 

core WLC-003C (Figure 3-10). The sediment accumulation rate was apparently higher in uppermost 

sections than in the lower part of the core. 
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Figure 3-10. Plot of age model for WLB-003C: age vs. depth. The age of topmost sediments was 
assumed to be 2000AD as a sediment-water interface was preserved during core recovery. The age of 
bottommost sediments was assumed to be 1928AD (see Chapter 4 for details). Other age constraints 
were picked from figure 3-9 according to curve match. A 2nd order polynomial fit was performed to 
calculate the ages at various depths in the core. 

 

The calendar age of sediments at various depths is calculated, through the second-order 

polynomial equation indicated in figure 3-10, to produce a 72-year proxy record of WLC-003C. This 
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box core spanning 1928-2000 recorded major changes in hydrological and isotopic conditions of the 

lake resulting from a combination of natural climatic variations and human-induced perturbations 

(Figure 3-11). At the beginning of the record, the %TIC, δ13C, and δ18O records show abrupt increases 

in their values accompanying with the rapid lake level lowering beginning in 1922/23. This event is 

associated with human-induced perturbation due to increasing water demands in upstream reaches of 

the Walker River. The lake level is still dropping as a result of a negative hydrologic balance today 

(THOMAS, 1995). The record indicates relatively larger variations in TIC, TOC, δ13C, and δ18O after 

1976. This can be explained by increasing sensitivities as the lake has become smaller. During the two 

most recent large El Niño events of 1982/83 and 1997/98, Walker Lake level was raised by 3.6 and 1.2 

m, respectively (USGS news release dated 09/03/1998).  The values of TOC, δ13C, and δ18O in general 

decrease with lake level rise and vice versa. Peak to peak correlations among records of TIC, δ13C, and 

δ18O are apparently good in the interval from 1976 to 2000.  The TOC record exhibits three relatively 

large cycles from 1965 to 2000. Sedimentary TOC is affected by a number of factors, such as biological 

primary productivity, organic decomposition, inorganic carbonate production, and input of terrigenous 

clastic materials. The TOC record is apparently associated with lake level changes. When the lake 

becomes smaller, nutrients like N and P tend to enrich and consequently lead to an increase in primary 

productivity (BENSON et al., 1996). Comparison of the Walker River flow and TOC record (see figure 

3-12), however, suggests that higher % down-core TOC tend to be closely associated with increased 

stream discharge over the last several decades, indicating possible nutrient supply from the Walker 

River due to irrigation return-flow with high contents of nitrogen-bearing and phosphate fertilizer. 
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Figure 3-11. 72-year records of TIC, TOC, TIC δ13C, TIC δ18O from WLB-003C and their comparison 
with historical lake level record (USGS). Vertical dotted line indicates a regime shift in 1976AD and two 
vertical dashed lines refer to the El Niño events of 1982/83 and 1997/98. 
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Figure 3-12. Comparison of down-core % TOC and the Walker River discharge. Dotted lines denote 
possible correlation between these two records. Note that the Walker River discharge data were taken 
from USGS and a five-point moving average was employed. 

 

          Changes in lake level or hydrological conditions usually lead to variations in TIC, TOC, δ13C and 

δ18O of the lake. TIC, TOC, and δ13C are also associated with biological primary productivity and post-

depositional diagenesis, which are indirectly linked with hydrological conditions, i.e., changes in 

hydrological conditions in general have indirect influence on these proxy indicators. In contrast, 

biological activities may have little effect on the δ18O signal of the lake. Most variations in down-core 

δ18O from a closed-basin lake are induced by changes in hydrologic and /or climatic conditions, such as 

river flow, evaporation, surface temperature, relative humidity, and wind speed etc. Although change in 

the δ18O value of a closed-basin lake is not a simple function of the amount of change in lake volume 

(BENSON et al., 1991), model experiments indicate that the oxygen isotopic system is relatively simple 

because hydrologic models like Paleolake and HIBAL (BENSON and PAILLET, 2002) are capable of 
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simulating  variations in δ18OL of Walker Lake over the last several decades, using just the historical 

stream flow record (refer to Chapter 2 and 5 in this dissertation).  

Because Walker Lake is today an alkaline lake, 90% of the dissolved inorganic carbon (DIC) in 

the lake is in the form of HCO3
- (BENSON et al., 1996). Results of measurements of the DIC δ13C in 

Walker Lake back to 1966 have also been previously published. Peng and Broecker (1980) reported that 

the DIC δ13C values of Walker Lake were 4.0‰, 3.0‰, and 3.0‰ in July 1966, September 1976, and 

May 1978, respectively. Based on measurements of 13 water samples collected from the lake in 

September 1977, Newton and Grossman (1988) reported an average δ13C value of 2.8‰. In addition, 

Benson et al. (1996) presented 37 measurements for the δ13C in Walker Lake during the interval from 

January 1991 to January 1995. These results are collected and shown in figure 3-13. In comparison with 

variations in the δ18OL observed (Figure 2-11), variations in the DIC δ13C of Walker Lake are relatively 

small. As stated above, instrumental records in figure 3-13 show that lake DIC δ13C appears to be 

associated with lake level change. For example, the DIC δ13C was higher during relatively high stands in 

1966 than during relatively low stands in 1990s.  
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Figure 3-13. Comparison of lake water δ13C and lake level elevation (carbon isotopic data originally 
from Benson et al., 1996 and lake elevation data taken from USGS). 
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         However, the connection between δ13C and lake level change is much more complicated. The 

processes that govern the variability of the DIC δ13C of the lake are photosynthesis, respiration, CO2 

gas exchange, and preferential input of isotopically light 12C DIC in stream flow (BENSON et al., 1996). 

The DIC δ13C of the lake is -16‰ at the mouth of the Walker River in January 1979 (PENG and 

BROECKER, 1980), while it is –10.1 ± 0.8 ‰ at Wabuska gauge station based on 49 measurements of 

water samples collected during the period from February 1990 to January 1994 (BENSON et al., 1996).  

The DIC δ13C value of the Walker River is presently controlled by the decay of C3 plant material 

(BENSON et al., 1991) that covers the δ13C range between –23 and –34 ‰, with an average close to -

27‰ (BENEDICT, 1978; SMITH and EPSTEIN, 1971). However, the lower δ13C of DIC in stream flow 

of the Walker River has little influence on the DIC δ13C value of Walker Lake over seasonal, annual, 

and decadal time scales because the amount of DIC input (0.33 x 109 M yr-1) is relatively small with 

respect to the DIC pool (170 x 109 M yr-1) of Walker Lake (BENSON et al., 1996; BENSON et al., 1991). 

CO2 gas invasion across the air-water interface may play important role in influencing the DIC 

δ13C value of Walker Lake. Mean CO2 invasion rate for the lake is 17 M m-2 yr-1 (PENG and 

BROECKER, 1980), which is equivalent to 2.55 x 109 M yr-1, using a surface area of 150 km2. Isotopic 

and chemical reactions involve the transfer of CO2 across the air-water interface and the hydration of 

dissolved CO2 to HCO3
- (HERCZEG and FAIRBANKS, 1987). Most of the isotopic fractionation takes 

place during hydration instead of during the transfer of CO2 across the air-water interface (MOOK et al., 

1974). The carbon isotopic fractionation between CO2(g) and HCO3
-  is ~8‰ at 25ºC to 11‰ at 0ºC 

(MOOK et al., 1974). Based on measured δ13C values near 2‰ from1990 to 1995, Benson et al. (1996) 

claimed that the DIC of Walker Lake is in approximate isotopic equilibrium with atmospheric CO2. 

Photosynthesis and respiration are also important factors affecting the DIC δ13C value of 

Walker Lake. (MCKENZIE, 1985; MCKENZIE and EBERLI, 1987) suggested that the DIC of the 

epilimnion would become progressively enriched in 13C as a result of an increase in the removal rate of 



  - 56 -

13C-depleted organic matter. In fact, the carbon isotopic fractionation induced by plant photosynthesis 

depends on PCO2. Photosynthetic plants preferentially incorporate 12C into their cells by 13‰ relative to 

CO2(aq) when surface water PCO2 ≥ atmospheric PCO2 (CRAIG, 1953; HERCZEG and FAIRBANKS, 1987). 

When surface water PCO2 is at low level, i.e., surface water PCO2 << atmospheric PCO2, however, the 

carbon isotopic fractionation that is induced by photosynthesis may be as low as 0‰ (CALDER and 

PARKER, 1973; DEUSER et al., 1968). In Walker Lake, PCO2 has been reported to be relatively low (570 

ppmV) in the early afternoon and high (1400 ppmV) in the morning (KEMPE and KAZMIERCZAK, 

1990). Although no direct measurement on primary production in the lake has been made, Benson et al. 

(1996) argued that the lake may become more productive as it gets smaller. This notion is inconsistent 

with the data in figure 3-13 showing that the δ13C value becomes progressively lower instead of higher 

with a decrease in lake level. Also, total respiration rate in the lake remains unknown.  In addition, there 

may be other processes affecting δ13C signal, such as wintertime CO2 gas evasion (QUAY et al., 1986), 

carbonate burial rate, and water chemistry.  

Covariance of δ13C and δ18O preserved in down-core carbonates has been used as an indicator 

of hydrologic closure of a lake (LI and KU, 1997a; TALBOT and KELTS, 1990). However, records 

generated from semi-closed to open hydrological lakes also show covariance of δ13C and δ18O (DEAN, 

2002). In Walker Lake, the correlation between δ13C, and δ18O records derived from the down-core 

TIC fraction of bulk carbonate sediments is relatively high while a correlation between δ13C and δ18O 

from ostracode shells is not evident. Direct measurements of lake surface water DIC δ13C and δ18O 

also show little correlation in the interval from January 1991 to January 1994 (Figure 3-6) (BENSON et 

al., 1996). Whether this instrumental record is too short or simply the covariance is just an artifact is an 

open question. McKenzie (1985) and McKenzie and Eberli (1987) suggested that the removal of 13C-

depleted organic matter would contribute to the enrichment of DIC 13C pool of the epilimnion. This 

hypothesis, however, remains an open question as the covariance of δ13C and δ18O documented cannot 
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be explained satisfactorily by McKenzie’s (1985) model. Results from laboratory experiments (SPERO et 

al., 1997) demonstrate that water chemistry (typically the alkalinity) play an important role in δ13C and 

δ18O values of planktonic foraminifera shells and suggest that there could be a common mechanism 

affecting the isotope ratio of both elements. I offer the hypothesis that the covariance of δ13C and δ18O 

in alkaline lake systems is simply because both elements come from the some source of HCO3- and /or 

CO32-. The potential isotopic disequilibrium between water and DIC may be the key to this puzzle. The 

carbonate precipitation in highly alkaline aquatic systems is controlled by pCO2 and pCO2 can be 

changed by photosynthesis. Photosynthesis occurring in the limited layer of the epilimnion in a short 

period of time draws down pCO2 and consequently triggers carbonate formation in the surrounding 

microenvironment where carbonate and /or hydro-carbonate have no time to reach isotopic 

equilibrium with the rest of DIC and water before carbonate precipitation. This potential isotopic 

disequilibrium mechanism may at least partially explain the covariance of δ13C and δ18O observed in 

down-core carbonates where overlying surface water may show no covariance. The lack of correlation 

between δ13C and δ18O from ostracode shells is most likely due to the relatively stable environmental 

conditions where carbonate and /or hydro-carbonate have enough time to reach isotopic equilibrium.  

The δ18O of ostracode shells is believed to be superior to that of authigenic carbonates to 

indicate variations in δ18OL due to a variety of reasons (HOLMES, 1996). In Walker Lake, the 

instrumental δ18O record matches well with that of down-core L. ceriotuberosa. The δ18O value of 

ostracodes from Walker Lake is heavier than that of authigenic carbonates, which can be ascribed to 

vital effect and relatively low temperature of bottom water relative to surface water. This is consistent 

with previous studies (BENSON et al., 1991), however, a comparison between the 5-point running 

average TIC δ18O and 3-point running average ostracode δ18O illustrates a complex picture (see figure 

3-14), indicating the ostracode δ18O is not always isotopically heavier than the TIC δ18O. For example, 

the values of the ostracode δ18O and TIC δ18O are very close in the intervals from 1928 to 1945 and 
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1975 to 1985. In addition, variability in the ostracode δ18O is apparently larger than that in TIC δ18O. 

This apparently contradicts the stable environments near water-sediment interface where L. ceriotuberosa 

inhabits. This probably relates with the mobility and immaturity of L. ceriotuberosa, which have the 

potential to lead relatively large fluctuations in the δ18O of ostracode shells. 
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Figure 3-14. Comparison of TIC δ18O (TIC) and ostracode δ18O (OST) from cored sediments (WLB-
003C). 
 

         Today, monohydrocalcite is the dominant carbonate precipitate in Walker Lake (SPENCER, 1977). 

Although the oxygen isotope fractionation factor for monohydrocalcite-H2O is very close to that for 

calcite-H2O9 (JIMENEZ-LOPEZ et al., 2001), monohydrocalcite is metastable and subject to 

recrystallization. Isotopic fractionation between monohydrocalcite and calcite remains unknown, but 

systematic calculations for isotopic fractionation between calcite and aragonite (ZHENG, 1999; ZHOU 

                                                 
9 The oxygen isotope fractionation factors for monohydrocalcite-H2O and calcite-H2O (25ºC, 1atm) are 27.8±0.1‰ and 

28.0±0.2‰, respectively. Jimenez-Lopez C., Caballero E., Huertas F. J., and Romanek C. S. (2001) Chemical, mineralogical 
and isotope behavior, and phase transformation during the precipitation of calcium carbonate minerals from intermediate 
ionic solution at 25ºC. Geochimica et Cosmochimica Acta 65(19), 3219-3231. 
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and ZHENG, 2003) suggested that calcite was enriched in 18O by 4.5‰ relative to aragonite at 25ºC, 

whereas others suggested aragonite in some biogenic carbonates was enriched in 18O relative to calcite 

(GROSSMAN and KU, 1986). Thus, the possible post-depositional alteration of carbonate precipitates 

complicates the interpretation of the carbonate δ18O signal extracted from downcore sediments. 
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CHAPTER 4 LATE HOLOCENE LACUSTRINE GEOCHEMICAL AND 
ISOTOPIC RECORD OF WALKER LAKE 

 

4.1 Abstract  
To examine past hydrologic variability in one region of the US Western Great Basin, down-core 

measurements of total inorganic carbon (TIC), and inorganic carbon δ13C and δ18O have been 

completed on the last 3000 years of sediment accumulation in Walker Lake, Nevada. The age model is 

based on radiocarbon dating of the total organic fraction (TOC). This late Holocene proxy record is 

divided into three periods according to variations in TIC, δ13C, and δ18O values. Period LH-1 (from 

1000 BC to 800 AD) is characterized by low accumulation rate, relatively high values of δ18O, and low 

values of δ13C. The climate of Walker Lake in Period LH-1 appears to be relatively dry. Period LH-2 

(from 800 AD to 1900 AD) is featured by high accumulation rates, relatively low values of δ18O, and 

high-frequency variations in TIC. The high accumulation rates in Period LH-2 make it possible to 

record detailed information on climatic and hydrologic variability during the past millennium in this 

region. In general, the climate in Period LH-2 was relatively wet and punctuated by a few severe 

droughts ending in 1150 AD, 1275 AD, 1340 AD, and 1500 AD. The climate of the first half 

millennium (1000-1500AD) was more variable than that of the second half since most of these severe 

droughts identified occurred within the interval from 1100 to 1500 AD. Lastly, Period LH-h (1900 to 

2000 AD) is strongly marked by anthropogenic perturbations and featured with unprecedented 

increases in δ18O values preserved in down-core carbonate sediments. 

4.2 Introduction  
The climate of the last millennium is conventionally termed by a simple sequence, a Medieval Warm 

Epoch (MWE), a Little Ice Age (LIA) and then globally extensive warming (BRADLEY, 2000). The 

MWE, also called as Medieval Warm Period (MWP) (CAMPBELL et al., 1998; CHU et al., 2002; 
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CIOCCALE, 1999; COOK et al., 2002; CROWLEY and LOWERY, 2000; DEMENOCAL, 2001; ESPER et al., 

2002; GONG et al., 2000; HOFFMANN et al., 2001; JONES et al., 2001; KEIGWIN, 1996; PFISTER et al., 

1998; VERSCHUREN et al., 2000; YU and ITO, 1999) or Medieval Climatic Anomaly (MCA) (BENSON et 

al., 2002; STINE, 1994), was termed by Lamb (1965) to designate the interval of 1080 through 1200 AD 

characterized by dry summers throughout Europe. However, it is debatable whether the global or 

hemispheric mean temperatures were higher during the MWE than in the 20th century (BRADLEY, 

2000; CROWLEY and LOWERY, 2000; HUGHES and DIAZ, 1994). A number of proxy records show 

evidence for warmer conditions prevailing during the MWE. For example, results from a radiocarbon 

dated box core from the Bermuda Rise (KEIGWIN, 1996) suggested that sea surface temperature (SST) 

was ~ 1 ºC warmer during the MWE (~1000 year BP) than today. A stacked water isotope record for 

Summit, central Greenland (HOFFMANN et al., 2001) indicated a warming of 0.6 ºC during the MWE. 

On the basis of a tree-ring record of annual temperature in the Sierra Nevada Mountains, Scuderi 

(1993) suggested that warmer climatic conditions prevailed in the MWE (800 to 1200 AD). Tree-ring-

based temperature reconstruction (ESPER et al., 2002) revealed a large-scale occurrence of the MWP 

(~1000 to 1300 AD) over the Northern Hemisphere extratropics. More recently, a tree-ring record 

from the South Island of New Zealand showed evidence for persistent above-average temperatures in 

the MWE and indicated a global occurrence of the MWE (COOK et al., 2002).  

In fact, many areas in the world exhibited persistent drought episodes in the MWE. For 

example, a paleoliminological record of Lake Naivasha, Kenya (VERSCHUREN et al., 2000) suggested 

that equatorial east Africa was significant drier in the MWE (~1000 to 1270 AD) than today. In tropical 

south China, a geochemical record from Lake Huguangyan also indicated dry climatic conditions in the 

MWE (880-1260 AD) (CHU et al., 2002). A reconstructed salinity record from Moon Lake, North 

Dakota (LAIRD et al., 1996) suggested an abrupt change in drought variability around 1200AD. 

However, in the central region of Argentina, geomorphologic and archeological data (CIOCCALE, 1999) 

suggested wet climatic conditions in plains accompanying with a recession of the Andean glaciers in 

MWE (1000 to 1400 AD).  
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In the western Great Basin, the climate of the MWE is not completely clear. Stine (1994) 

suggested two prolonged (century-scale) droughts from 910 to 1110 AD and from 1210 to 1350 AD 

according to dated tree stumps. Although Stine’s (1994) results appear to be consistent with the tree-

ring-based precipitation record of Nevada Division 3 (HUGHES and GRAUMLICH, 1996), the proposed 

century-scale drought from 910 to 1110 AD is at least partially opposite to a tree-ring based streamflow 

record of the Sacramento River (MEKO et al., 2001). For example, the streamflow of the Sacramento 

River prior to 1000 AD was in its highest point over the last 1130 years (see figure 1-5). Moreover, a 

lake-based oxygen isotopic record of Pyramid Lake (see figure 1-6; fig. 27 in BENSON et al., 2002) 

implicated that the climate of the MWE might not be necessarily dry in this region. 

The Little Ice Age (LIA) appears in most paleoclimate records from the Northern 

Hemisphere, which occurred between 1500 and 1900 AD (BRADLEY and JONES, 1993; GROVE, 1988; 

JONES et al., 2001)  and featured with glacier advances in both hemispheres (GROVE, 1988) and 

enhanced polar atmospheric circulation (HENDY et al., 2002; THOMPSON et al., 1986). In addition, 

paleoclimate records from tropical ice cores (THOMPSON et al., 1986), tropic Pacific corals (HENDY et 

al., 2002), and  Antarctica ice cores (MOSLEY-THOMPSON et al., 1990) suggest that the LIA was a 

global-scale event. In most areas of the Northern hemisphere, the climate exhibited multicentury-scale 

periods of anomalously cold, dry conditions during the LIA (BRADLEY and JONES, 1993; GROVE, 

1988; HENDY et al., 2002; LAMB, 1995). However, paleoclimate records from the Northern Great 

Plains suggest that the climate was relatively wetter during the LIA (1300-1850 AD) than during the 

MWE (1000-1200 AD) (LAIRD et al., 1998; LAIRD et al., 1996). In the western Great Basin, tree-ring 

based river flow (MEKO et al., 2001) and precipitation (HUGHES and GRAUMLICH, 1996) records also 

suggest the climate in the LIA was  relatively wet relative to the MWE.  

         Lake sediments from closed basin lakes can be valuable recorders of climatic and hydrological 

changes in the past because of their sensitivity to concurrent hydrologic and geochemical conditions. 

Since the seminal work of Stuiver (1970) and Covich and Stuiver (1974), oxygen isotope (δ18O) 

geochemistry of authigenic carbonates has become a well-established technique in paleolimnology 
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(TALBOT and KELTS, 1990). Assuming that authigenic and biogenic carbonates precipitate in isotopic 

equilibrium with the environment, the δ18O of lake sedimentary carbonates is a function of temperature 

and isotopic composition of the host water from which they were precipitated (BENSON and WHITE, 

1994; CURTIS et al., 1996; HOLMES, 1996; MCKENZIE and HOLLANDER, 1993; XIA et al., 1997b). In 

contrast, the carbon isotopic composition (δ13C) of lake sedimentary carbonates, termed as an indirect 

indicator of climatic conditions (STUIVER, 1970), is primarily affected by the δ13C of dissolved inorganic 

carbon (DIC) of host water, but with little influence of water temperature variations (HOLMES, 1996). 

Fluctuations in DIC δ13C is controlled by a number of processes, such as aquatic CO2 exchange with 

the atmosphere CO2, photosynthesis and respiration, and post-depositional diagenesis. In Walker Lake, 

historical instrumental records (lake level, stream gauging, and δ18O) demonstrate that fluctuations in 

water δ18O are closely linked with changes in hydrological conditions. Fluctuations in water δ18O are 

believed to be recorded in down-core carbonate sediments (see chapters 2 and 3).  

         Walker Lake and its adjacent lakes, Pyramid Lake, Mono Lake, Owens Lake in the southwestern 

U.S. Great Basin, have been extensively studied since Russell’s (1885) pioneering work. The late 

Quaternary history of Walker Lake is confounded by possible diversions of the lower Walker River 

through Adrain Pass. Hutchinson (1937) suggested that Walker Lake apparently desiccated during post-

Lahontan time because Walker Lake lacks any unique fish species. Based on physical and geochemical 

analyses of cored sediments from Walker Lake, Benson et al. (1991) suggested that Walker Lake was 

dry from 5,300 to 4,800 and 2,700 to 2,100 years BP. Paleolimnological analysis of ostracode and 

diatom fauna from the Walker Lake cores reveals that the lake desiccated prior to 4,700 and from 2,400 

to 2,000 years BP (BRADBURY, 1987; BRADBURY et al., 1989). However, whether these times of 

desiccation were induced by climatic change is debatable. For example, Bradbury (1987)and Bradbury et 

al. (1989) believed that the latest desiccation (2,700 to 2,100 years BP) was induced by climatic change 

while Benson et al. (1991) argued they were related to the diversion of Walker River flowing north into 

the Carson Sink. 



  - 64 -

 Relative to the entire Holocene, the late Holocene (2740 to 110 years BP) climate of Pyramid 

Lake was generally relatively wet, with droughts occurring on average, once every 150 years with 

persistent wet intervals between droughts ranging from 80 to 230 years (BENSON et al., 2002). Mono 

Lake, a closed-basin lake, is located ~150 km south of Walker Lake. Radiocarbon dating of fossil 

vegetation debris and identification of deltaic sequences shows that Mono Lake fluctuated over a 

vertical range of 40 m in response to oscillations in stream inflow and evaporation during the past 3,800 

years (STINE, 1990). This indicates that long-term (sub-century to centuries time scale) effective inflow 

to Mono Basin over the past 3,800 years varied from >134% to < 68% of the modern mean value 

(STINE, 1990). On the basis of tree-ring data from the Sacramento River drainages (MEKO et al., 2001) 

variations in long-term (40 year running average) river flow of the Sacramento River over the past 1100 

years were calculated to be only ~80% to 125% of the modern mean value (17.8 million acre feet yr-1). 

If the past variations in the Sacramento River were applied into the Walker River basin, the calculated 

vertical range of the Walker Lake fluctuations from 1000 to 1900 AD would be less than 10 m (refer to 

Chapter 5 in this dissertation). 

As part of my Ph.D. research on paleoclimate and paleohydrography of Walker Lake, I have 

analyzed the weight % total inorganic carbon (TIC) as well as δ18O and δ13C of the TIC fraction of 

cored sediments deposited over the last three thousand years. Based on radiocarbon dating of the total 

organic fraction of the cored sediments, a core chronology has been developed. This proxy record 

serves as the primary resource to reconstruct late Holocene climatic and hydrologic variability in Walker 

Lake. 

4.3 Methods and Results 
Dr. Larry Benson of the U. S. Geological Survey previously collected core WLC84-8 from the western 

basin of Walker Lake in 1984 (see Figure 3-2). The coring method and the results of extensive physical 

and geochemical analyses of core WLC84-8 were previously published in Benson et al. (1991). Core 

WLC84-8 is 12 m in length and was sectioned and sampled approximately every 10-cm by Dr. Larry 

Benson. Ostracode (L. ceriotuberosa) valves were hand picked from core WLC84-8 by Richard Forester 
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of the U.S. Geological Survey (BENSON et al., 1991).  Two new piston cores (WLC001 and WLC002) 

were collected from the western basin of Walker Lake in ~30 m of water on June 19, 2000 by Dr. Larry 

Benson (USGS in Boulder), Dr. Steve Lund (University of Southern California), Dr. Joe Smoot (USGS 

in Reston), Dr. Bob Richards and Dr. Alan Heyvaert (University of California at Davis), and myself (see 

Figure 3-2). Core WLC001 is 5.62 m in length and core WLC002 is  ~4.80 m. However, there was a 

loss of about 8-10 cm at the bottom of the uppermost section of WLC002 during core recovery. Both 

WLC001 and WLC002 were sectioned at every 1-cm and prepared in the Stable Isotope Laboratory at 

the University at Albany. Each bulk sediment sample taken from WLC001 and WLC002 was mixed 

with deionized water, shaken and then centrifuged for 15 min at 20,000 rpm using an International 

Centrifuge (Model CS). After centrifugation, the electrical conductivity of the supernatant was 

measured and the supernatant was decanted. This procedure was repeated until the electronic 

conductivity was less than 3X that of tap water of Albany, New York. Washed samples from WLC001 

and WLC002 were oven-dried at 60ºC and homogenized with a mortar and pestle (BENSON et al., 

2002).  Both the bulk sediment sample from WLC84-8 and the dried and homogenized sample from 

WLC001 and WLC002 were soaked with 2.6% sodium hypochlorite for 6-8 hours to remove organic 

matter. The soaked sediments were vacuum-filtered with Whitman glass microfibre filters (1.6 µm), 

then rinsed with deionized water at least five times, and oven-dried at 60 ºC prior to isotopic analyses 

(BENSON et al., 1996). With the assistance of Steve Howe (University at Albany), carbon and oxygen 

isotopic analyses were performed on a Micromass Optima gas-source mass spectrometer with a 

MultiPrep automated sample preparation device. The isotopic results are reported relative to Vienna 

Peedee Belemnite (VPDB) standard, based on working standards calibrated against NBS-19. The 

overall precisions (1-σ) of δ13C and δ18O (except for core WLC84-8 analyses) were less than 0.02% and 

0.04%, respectively and mean relative errors of δ13C and δ18O are less than 1.7% except for core 

WLC84-8 10 (Table 4-1).  

                                                 
10 WLC84-8 was not washed and homogenized due to the small amount of sediment material available prior to the organic 
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Table 4-1 Standard deviations and mean relative errors of carbon and oxygen analyses  

Standard Deviation Mean Relative Error  

CORE δ18O 
(‰) 

δ13C 
(‰) 

No of 
STDs 

δ18O 
(%) 

δ13C 
(%) 

No of 
Replicates 

Inorganic 
Carbonates 

0.03 0.02 5 5.6 16.3 8  
WLC848 

Ostracodes 0.03 0.01 17 - - - 
WLC001 Inorganic 

Carbonates 
0.03 0.01 11 0.9 1.1 7 

WLC002 Inorganic 
Carbonates 

0.04 0.02 89 1.7 1.5 59 

 

         TIC analysis was carried out in Union College with the assistance of Dr. Donald Rodbell (see 

Chapter 3 in this dissertation for details). The detection limit for TIC analysis was 0.08 %C and the 

standard deviation for standards is 0.1%. The relative error of replicates is <2.0%. 

 
4.3.1 Core WLC84-8 
The results of carbon and oxygen isotopic analyses for WLC84-8 are plotted against depth cm in Figure 

4-1. The resolution is low as the samples were previously sectioned approximately every 10 cm and the 

relatively low precision of the carbon and oxygen isotopic analyses is apparently in part due to the 

heterogeneity of TIC-bearing material and the uncertainty of weight % TIC estimation of the 

sediments11.  Plots A and B are oxygen and carbon isotopic analysis results derived from the TIC 

fraction of bulk sediments while plots C and D are from ostracode (L. ceriotuberosa) shells.  

 

                                                                                                                                                 
matter removal procedure. 

11 Weight % TIC of WLC84-8 was previously estimated by Larry Benson through X-ray diffraction scans and the results were 
published in fig 11 in Benson et al., 1991. 



  - 67 -

470

420

370

320

270

220

170

120

70

20

-10 -8 -6 -4 -2 0 2 -2 -1 0 1 2 3 4 -2 -1 0 1 2 3 4 -2 -1 0

D
E

P
T

H
 (

c
m

)

18
O (‰)

13
C (‰)

18
O (‰)

13
C (‰)δ δδ δ δ

A B C D

 
Figure 4-1. Results of measurements of oxygen and carbon isotopes from WLC84-8. A) TIC 
δ18O record, B) TIC δ13C record, C) δ18O record of ostracod L. ceriotuberosa shells, D) δ13C 
record of ostracod (L. ceriotuberosa) shells. 
 
         These isotopic results from bulk carbonate sediments and ostracode shells show maximum δ13C 

and δ18O values at a depth of ~20 cm. The transition in this interval is associated with the 

anthropogenically-induced lake level lowering that occurred starting in 1922/23. The ostracode δ13C 

value is on average 3 ‰ lower than that of bulk carbonate sediments while the ostracode δ18O values is 

on average 4 ‰ higher than that of bulk carbonate sediments. This is consistent with previous results 

from piston core WLC84-8 (BENSON et al., 1991) and box core WLC-003C (Chapter 3 in this 

dissertation). The difference of δ18O values between ostracode and bulk carbonate sediments can be 

ascribed to vital effect (i.e., different organisms fractionate to varying degrees) (XIA et al., 1997a; 

XIA et al., 1997b) and the temperature difference between surface and bottom water (BENSON et al., 

1991) since this ostracod (L. ceriotuberosa) tends to inhabit the water-sediment interface (BRADBURY et 

al., 1989; CHIVAS et al., 1985; HOLMES, 1996). The relatively 13C-depleted ostracode shells may be in 

part related to the presence of organic material inside and /or outside of their valves since no sample 
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pre-treatment to remove organic matter was taken prior to isotopic analysis. δ18O and δ13C are 

positively correlated (for bulk carbonate, r2=0.55, n=45; for ostracod shells, r2=0.57, n=27). However, 

no correlation between ostracode δ18O and ostracode δ13C was found for the core WLC84-8 samples. 
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Figure 4-2. TIC, δ13C, and δ18O results were performed on the total inorganic carbon fraction of 
sediments from core WLC002. Carbon and oxygen isotopic analyses were conducted after organic 
carbonate matter was removed by 2.6% NaClO solution. 
 
4.3.2 Core WLC002 

The TIC and isotopic results from the bulk carbonate content of WLC002 are plotted vs. 

depth cm in Figure 4-2. The gap indicated in the dataset is due to a loss of ~10-15 cm of core 

(previously estimated by Dr. S. Lund and Dr. J. Smoot) at the bottom of the uppermost core 

section during core recovery. Although δ18O and δ13C are not significantly correlated (r2 = 0.11, 
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n = 461), the δ13C minima are usually concurrent with the δ18O minima as well as the TIC 

minima. In general, weight % TIC (Figure 4-2) shows larger variability than δ18O and δ13C. 
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Figure 4-3. Comparison of TIC δ18O records derived from WLC84-8 and WLC002. Note that the two 
records are generally consistent. 
 
 
         In the oldest part of the record δ18O is higher except for the historical interval (0-45 cm) 

and then becomes progressively lower until it reaches a minimum of < -8 ‰ at depths of 330 
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to 360 cm. Due to anthropogenic lake lowering, δ18O reaches a maximum of 3.5 ‰ at a depth 

10 cm. The general features of this TIC δ18O record are not only consistent in shape with the 

TIC δ18O record of WLC84-8 also their absolute δ18O values are very close (Figure 4-3). 

4.3.3 Core WLC001 
The stratigraphy of Core WLC001 is highly correlated with core WLC002 according to sedimentary 

structures, lithology, magnetic susceptibility (measured by Dr. Steve Lund), and radiocarbon dates 

(performed in the laboratory of Dr. J. McGeehin of the USGS). Ages depicted in Figure 4-4 are 

uncorrected radiocarbon dates of the TOC fraction from both cores WLC001 and WLC002. As the 

gap in core WLC002 is right above the most recent pronounced peak of magnetic susceptibility (Figure 

4-4), 50 samples in the intervals 35 to 85 cm of core WLC001 were taken to splice across the gap in 

core WLC002. The carbon and oxygen isotopic results in this interval from WLC001 are plotted against 

depth cm in Figure 4-5. It is evident that δ18O and δ13C are positively correlated (r2 =0.82, n = 50). In 

addition, the δ18O and δ13C minima are concurrent with the maxima of silicic-clastic material. In 

conjunction with the δ18O and δ13C records of WLC002, both δ18O and δ13C from WLC001 clearly 

overlap with those from WLC002 (Figure 4-6 and 4-7). Core WLC001 apparently has lower average 

accumulation rates and /or is to a small degree more compacted than core WLC002. This is consistent 

with core correlations based on sedimentary features outlined in Figure 4-4. Based on analysis of these 

samples from WLC001, there is about 8-9 cm of sediment missing in the gap of WLC002. 
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Figure 4-4. Stratigraphic correlations between WLC001 and WLC002. Magnetic susceptibility data were 
obtained by Dr. Steve Lund of the University of Southern California. Dates are uncorrected 
radiocarbon ages measured on the TOC fraction of carbonate materials of WLC001 and WLC002 by 
USGS. 
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Figure 4-5. TIC δ13C and TIC δ18O records derived from piston core WLC001 to in the interval that 
spans the gap in WLC002. 
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Figure 4-6. δ13C records from WLC001 (open circles) and WLC002 (solid squares). 
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Figure 4-7. δ18O records from WLC001 (solid square) and WLC002 (open square). In conjunction the 
δ13C record presented in Figure 4-6, there is 8 cm loss at the bottom of the top segment of WLC002. 
 
4.4 Core Chronology  
4.4.1 Reservoir Effect  
Because the radiocarbon-dated material is from the TOC fraction, that is mostly lake-derived organic 

matter (MEYERS, 1990), the reservoir effect of Walker Lake needs to be taken into account prior to 14C 

date calibration. The reservoir effect on radiocarbon in Great Basin lakes is somewhat basin-specific.  

For example, Pyramid Lake has a 600-year reservoir effect (BENSON et al., 2003a; BENSON et al., 2002) 

while Mono Lake has a reservoir effect ranging from 1100 to 5300 years (BENSON et al., 2003a; 

BENSON et al., 1990). The reservoir effect is related with the residence time of the dissolved inorganic 

carbon (DIC) in the lake. Also, non-atmosphere borne carbon inputs, such as dissolution (weathering 

or reworking) of old carbonate sediments and DIC-bearing groundwater baseflow, will lead to lower 

14C/12C ratio and apparently older 14C dates. 

One way to determine the reservoir effect of a lake is to compare radiocarbon dates and 

calendar ages of topmost sediments. If the calendar ages of topmost sediments can be determined 

through identification of regional and /or global historical events such as mining activities, river 
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diversions, and nuclear bomb tests, then these ages can be compared to radiocarbon ages of TOC in 

the same sediment horizons. In Walker Lake, two historical events are documented in down-core 

sediments; mining activities in 1860 (SMITH, 1998) and construction of Lake Topaz and Bridgeport 

reservoir completed in 1922/23.  

A hydrological and isotopic balance modeling study on Pyramid Lake and Walker Lake 

(BENSON and PAILLET, 2002) suggested that the overall shapes of the lake volume and δ18O records 

are similar and that minima and maxima in simulated TIC  δ18O records correspond to minima and 

maxima in the reconstructed lake volume records. The δ18O signals preserved in carbonate sediments 

from the uppermost section of piston core WLC002 agree with this conclusion and have recorded the 

abrupt lake level lowering that began in 1922/23 due to an anthropogenically induced reduction of 

stream flow (Figure 4-8).   
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Figure 4-8. Direct comparison of historic lake level record (USGS) and the raw δ18O record from the 
uppermost section of WLC002. Solid arrows refer to uncorrected radiocarbon dates and the thin arrow 
stands indicates a rise in Hg concentration due to Hg amalgamation processes around 1860 AD (Michael 
Lico, personal communication, 2002). Dotted lines denote possible correlation of these two records. 
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         The sediments sampled at 40 cm with an uncorrected 14C age of 345±35 (CAMS87139) are right 

below the depth (~30 cm) with a marked δ18O transition. In addition, an historical Hg record (Michael 

Lico, personal communication, 2002), derived from a piston core taken from the deep area of the same lake 

with the same coring platform that was used for WLC001 and WLC002, indicated that Hg started to 

move above background levels at 54 cm in the 1860s AD (SMITH, 1998) and back to background at 38 

cm around  ~1900 AD 12. Hg analyses of digested sediment samples from one sibling box core of 

WLB-003C reveal that Hg concentration shifts back to normal levels at ~50 cm (Alan Heyvaert, personal 

communication, 2002). The Hg results from the box core and piston core are chronologically in excellent 

agreement as the age at 50 cm in the box core is equivalent to the age at 38 cm in piston core (Figure 4-

9). The calendar age of sample CAMS87139 (with a depth of 40 cm) is in agreement with the upper 

limit of Hg excursion from the 1860s to the early 1900s. The calendar age for sample CAMS87140 

(with a depth of 67 cm) is below the lower limit of the Hg excursion, i.e., older than 1860s AD. The 

slight core-top loss of WLC002 is trivial because there is a perfect match between the δ18O records of 

WLC002 and WLB-003C (Figure 4-9). In conjunction with the historical lake volume changes 13, the 

upper bound calendar ages of CAMS87139 and CAMS87140 are 1900AD and 1830AD, respectively, 

since sedimentation rate may be higher in the upper section than in lower one. The lower bound 

calendar age of CAMS87139 is 1860AD while that of CAMS87140 remains unknown.  

         To define the reservoir effect (τr) of the lake, I assigned four τr’s and applied Calib 4.3 (STUIVER 

and REIMER, 1993; STUIVER et al., 1998) to calculate the calendar ages of CAMS87139 and 

CAMS87140. The calendar age is determined by the 50% median probability within 2-σ range (SMITH 

et al., 2002). Calculation results (Table 4-2) reveal that the reservoir effect of Walker Lake is 

approximately = 310 years in which the calibrated ages of both CAMS87139 and CAMS87140 are close 

to the age constraints derived above.  

                                                 
12 Assuming constant sedimentation rate and no significant loss at the top of the core. 

13 Lake volume is calculated using the polynomial function in Figure 2-8B in chapter 2 of this dissertation. 
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Table 4-2 Estimates of the reservoir effect of Walker Lake. Calendar year dates were calculated 
through applying the computer program Calib 4.3 (STUIVER and REIMER, 1993; STUIVER et al., 
1998). Calibrated age is the 50% median probability (SMITH et al., 2002). 

CAMS87139 CAMS87140  
τr  (years) Calibrated Year 

(AD) 
2-σ range 
Year (AD) 

Calibrated Year 
(AD) 

2-σ range 
Year (AD) 

290 1865 1692-1955 1775 1660-1950 
300 1875 1693-1955 1780 1665-1950 
310 1895 1813-1955 1805 1668-1950 
320 1895 1813-1955 1815 1671-1951 
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Figure 4-9. δ18O records of WLB-003C (solid dots) and the uppermost section of WLC002 (open 
circles). Compared results indicate that topmost loss of WLC-002 is minor. Solid arrows refer to 
uncorrected radiocarbon dates.  
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4.4.2 Age Model 
The radiocarbon ages from cores WLC001 and WLC002 were corrected into calendar year using the 

computer program Calib 4.3 (STUIVER and REIMER, 1993; STUIVER et al., 1998) and are presented in 

Table 4-3.  All nine calendar ages of WLC002 are plotted vs. depth cm in Figure 4-10. A fourth-order 

polynomial fit was also performed to calculate the calendar age for carbonate materials at various 

depths.   

   

Table 4-3 Calibrated radiocarbon dates of the TOC fraction of WLC001 and WLC002. Calendar year 
dates were calculated through using the computer program CALIB 4.3 (STUIVER and REIMER, 1993; 
STUIVER et al., 1998). Calibrated age is the 50 % median probability (SMITH et al., 2002). Note that 
dates of WLC001 (italic faced) were not used in age model construction because of apparent 
discrepancy in sedimentary accumulation (see figure 4-4 for details). 
CAMS 

No. 

Section No. Depth 

(cm) 

14C Age14 

(yr BP) 

Error 

(± yr) 

Cal Year 

(AD/BC) 
2-σ range 

(AD/BC) 

87139 WLC002-5 40 35 35 1895 1813-1955 

87140 WLC002-5 67 145 35 1805 1668-1950 

87141 WLC002-4 84 335 35 1560 1476-1642 

87136 WLC001-5 105 330 35 1560 1479-1643 

87142 WLC002-4 135 365 35 1535 1447-1635 

87143 WLC002-3 196 695 35 1295 1263-1390 

87137 WLC001-4 201 655 35 1350 1283-1396 

87144 WLC002-3 242 710 40 1290 1224-1390 

87145 WLC002-3 267 740 45 1270 1209-1305 

87138 WLC001-2 326 1740 45 300 212-415 

87146 WLC002-2 333 995 35 1030 982-1158 

87147 WLC002-1 452 2370 35 445BC 520-387BC 

 

                                                 
14 A 310-year reservoir effect was applied. 
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Figure 4-10. Plot of calibrated 14C ages vs. depth for WLC002. Individual error bar is marked according 
to 2-σ range in Table 4-3. Solid line is a fourth-order polynomial fit of nine calibrated dates. Depth 
means the distance between the dated sample position and the water-sediment interface. 
 
4.5 Discussion 

The δ18O results from WLC001 and WLC002 were merged to produce a high-resolution multi-proxy 

record spanning the last 3000 years (see Figure 4-11). The proxy record is characterized by lower 

accumulation rates and lower variability in % TIC, δ13C, and δ18O prior to 800 AD. The values of 

magnetic susceptibility after 800 AD are relatively lower except for two pronounced excursions 

centered on ~1250 and ~1550 AD. On the basis of variations in magnetic susceptibility, TIC, δ13C, and 

δ18O, this late Holocene proxy record are divided into three periods; Period LH-1 (from 1000 BC to 

800 AD), Period LH-2 (from 800 AD to 1900AD), Period LH-h (from 1900 AD to 2000AD). These 

intervals are discussed in more detail below. 

4.5.1 Period LH-1, 1000BC to 800AD 

The δ18O values of down-core bulk carbonate sediments in Walker Lake are relatively high during 

Period LH-1 (Figure 4-11). The interval with highest δ18O values (~0.8 ‰, PDB) is centered on 
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~400BC. This interval has the highest δ18O of the entire late Holecene section from Walker Lake. In 

addition, the values of magnetic susceptibility are generally high during this period. This is interpreted 

to indicate that Walker Lake had a low stand at this time allowing terrestrial magnetic-bearing materials 

to reach in core sites. The average values of δ13C are relatively low in this period, which probably 

indicates low primary productivity. This is consistent with low accumulation rates during Period LH-1.  
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Figure 4-11. 3000-year records of TIC, magnetic susceptibility (Steve Lund), TIC δ13C, and TIC δ18O of 
Walker Lake. Eight points were taken from WLC001 to fill the gap of WLC002. Vertical dotted lines 
denote correlation between δ13C and δ18O. 
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On the basis of the core chronology (Figure 4-11), Walker Lake level elevation is interpreted to 

have been relatively low during Period LH-1. This result is comparable with previous findings except 

for the beginning of the period, in which previously results (BENSON and THOMPSON, 1987; 

BRADBURY, 1987; DAVIS, 1982) suggest that Walker Lake elevation was high (see Figure 4-12). A 

shallow brine Walker Lake (2400 to 2000 years BP) was documented in down-core limnological records 

of diatoms, ostracodes, and pollen (BRADBURY, 1987; BRADBURY et al., 1989). Benson et al. (1991) 

previously suggested relatively low lake levels during 2700-1250 years BP. However, whether the low 

lake stands during Period LH-1 were induced by climate changes or river diversions still remains 

uncertain. The fact that Mono Lake was also low during 1800-1000 years BP (STINE, 1990) favors 

climate-driving fluctuations in hydrologic conditions instead of river diversions. 
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Figure 4-12 Late Holocene variations in lake level of Pyramid and Walker Lakes according to 
radiocarbon dated tufas and archaeological materials (after BRADBURY, 1987). Original data from 
Benson (1978) and Davis (1982) 
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Figure 4-13. High-resolution (3.3 years per sample on average) 1200- year records of TIC, magnetic 
susceptibility (Steve Lund), δ13C, and δ18O of Walker Lake. Dotted lines denote correlation between 
these records. 
 
4.5.2 Period LH-2, 800AD to 1900AD 

Down-core sediments in Period LH-2 are characterized by high accumulation rates with an 

average of ~0.3 cm yr-1. High-resolution records of magnetic susceptibility, TIC, δ13C, and δ18O are 

shown in Figure 4-13. The TIC, δ13C, and δ18O records exhibit several multi-decadal to centennial time 
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scale cycles. Minima δ13C values are concurrent with the minima of TIC and magnetic susceptibility 

maxima are overall associated with the minima of TIC. On the basis of variations in δ18O preserved in 

down-core bulk carbonate sediments, this period can be further subdivided into three stages; a rapid 

water-filling stage (S0) from 800 to 1000AD, an unstable high lake stand stage (S1) from 1000 

to1500AD, and a relatively stable lake level stage (S2) from1500 to1900 AD.  

Although the δ18O signal may not be used as a direct index of lake level or volume, the sign of 

its gradient may be an effective indicator of hydrologic balance. For example, from 810 to 1000 AD, 

the lake might have gained excessive stream inputs (i.e., positive hydrologic balance) as it experienced a 

large negative shift (-7.6‰) in lake carbonate δ18O in stage S0 (Figure 4-13). The rapid negative shift in 

δ18O values during S0 is unique in the late Holocene history of Walker Lake. This probably indicates a 

rapid water-filling event (such as abnormal floods and river diversions) beginning approximately 

810AD with Walker Lake reaching its highest elevations of the late Holocene at the end of S0. In the 

following 130 years (960-1090 AD), the δ18O signal shows small variations and suggests that the lake 

maintained a relatively high level. The lake appears to have experienced at least five major droughts 

ending in 1160, 1230, 1270, 1340, and 1500AD. The δ18O values became progressively higher during 

S1, which is interpreted as the result of a long term lowering of the lake. The lake ultimately reached to 

a relatively stable stage (S2) of 1500-1900AD in that the δ18O values show no significant temporal 

trends. The climate of Walker Lake appears to be more variable in stage S1 than in stage S2. 

The δ18O records from Pyramid Lake (BENSON et al., 2002) and Walker Lake are compared in 

Figure 4-14. Over most of the overlapping sections they show a high degree of similarity. I interpret 

this to indicate that much of the variance in each isotope record represents a regional climate signal. In 

general, the multi-decadal and centennial-scale δ18O variations are much larger in Walker Lake than in 

Pyramid Lake. This is due to the smaller volume and hydrological closure of Walker Lake. It is evident 

that both records demonstrate a pronounced 18O-depleted stage between 950 and 1100 AD. This 

observation suggests that lake levels in both Pyramid Lake and Walker Lake were relatively high from 
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950 to 1100 AD. If this interpretation is correct it contradicts Stine’s (1994) tree-stump results that 

show drier conditions and lower lake levels during this time of the MWE, but agrees with the tree-ring-

based streamflow record of the Sacramento River (see figure 4-15). In addition, both TIC δ18O records 

of Pyramid Lake and Walker Lake show low lake stands in ~1265, ~1335, and ~1470 AD. Except for 

the proposed low stand of Walker Lake in 1265AD, the other two are also evident in tree-ring based 

river flow record (40-yr moving average) of the Sacramento River (MEKO et al., 2001). 
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Figure 4-14. Comparison of δ18O records from Walker Lake and Pyramid Lake (PLC97-1) (BENSON et 
al., 2002). Dashed lines denote possible correlation between these two δ18O records. 
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The tree-ring based annual (July-June) precipitation record of Nevada Division 3 (HUGHES 

and GRAUMLICH, 1996) and tree-ring based stream flow record of the Sacramento River (MEKO et al., 

2001) are compared with the δ18O record of Walker Lake (Figure 4-15). Since historical river flow 

records on both sides of the Sierra Nevada are highly correlated (BENSON et al., 2002), the intervals 

that show apparent correlation between the Walker Lake δ18O and both tree-ring based records are not 

unexpected. However, there are also significant discrepancies between these records. As pointed out 

above, the wet interval from 950 to 1100 AD is consistent with the interpreted high discharge in the 

river flow record of the Sacramento River. However, the Nevada Division 3 precipitation record shows 

a relatively dry interval. This dry interval ending in ~1340 AD is almost concurrent in all three records. 

The dry interval that ending in 1500 AD is consistent with low discharge of the Sacramento River but 

inconsistent with the Nevada Division 3 precipitation record. The Walker Lake δ18O record is in 

general more consistent with the Sacramento River flow record than the Nevada Division 3 

precipitation record. This is most likely due to the fact that both the Walker River and the Sacramento 

River share the same headwaters, the Sierra Nevada snowpack.  

         On the basis of the Sacramento River discharge record (MEKO et al., 2001), there were 11 

droughts denoted as D1 to D11 (Figure 4-15) in this region over the last 1000 years.  Eight of these 

droughts can be recognized in the δ18O records of Walker Lake while three (D2, D5, and D7) are not 

evident in the δ18O records (Figure 4-15). On the contrary, the δ18O records of Pyramid Lake and 

Walker Lake show three brief wet intervals from 1065 to 1110 AD (D2), from 1370 to 1420 AD (D5), 

and from 1520 to 1570 AD (D7). Moreover, the tree-ring based streamflow record of the Sacramento 

River suggests that D3 (1140-1200 AD) and D5 are the most severe droughts while the δ18O record of 

Walker River indicates that D4 (1290-1340 AD) and D6 (1480-1510 AD) are probably the most severe 

droughts over the last 1000 years. 
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Figure 4-15. Comparison of sediment-based record of Walker Lake and tree-ring based records in 
adjacent areas. Proxy precipitation record of Nevada Division 3 and river flow record of the 
Sacramento River are 40-year moving averages of the data obtained by Hughes and Graumlich (1996) 
and Meko et al. (2001), respectively. D1 to D11 are 11 dry intervals evident in the Sacramento River 
flow record. The coarser solid line is also a 40-year moving average of δ18O record from Walker Lake. 
Solid arrows represent the peaks of magnetic susceptibility. 
 
 
         The Walker Lake TIC δ13C record is not as easily interpreted. The δ13C record of Walker Lake 

and the streamflow record of the Sacramento River are only weakly correlatable (Figure 4-16). Wet 

intervals (high discharge) of the Sacramento River tend to correlate with minima of δ13C and TIC 

values after 1550 AD, while the dry intervals are correlated with minima of δ13C and TIC values before 

1550 AD. The fact that the minima of δ13C are concurrent with the minima of TIC values suggests the 

δ13C is affected by biological productivity and /or TOC. In Chapter 3, I illustrated that downcore TOC 

content is associated with the stream discharge. When the stream discharge is larger, the Walker River 

tends to carry more nutrients to the lake and results in higher productivity or % TOC, which has the 

potential to produce a more negative signal of δ13C. 
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Figure 4-16. Comparison of magnetic susceptibility (Steve Lund), TIC, and δ13C records from Walker 
Lake with the tree-ring based river flow record of the Sacramento River (MEKO et al., 2001). Vertical 
dashed lines are possible connections between these proxy records and horizontal dotted line denotes 
the average river discharge of the Sacramento River over the last 1130 years. 
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4.5.3 Period LH-h, 1900 to 2000AD 

The boundary between Periods LH-2 and LH-h shows a ~7 ‰ increase in TIC δ18O. This period is 

characterized by positive δ18O values of bulk carbonates induced by both anthropogenic perturbations 

and natural climate variations (see Chapter 3 for details). 

4.6 Conclusion 
On the basis of detailed radiocarbon chronology and down-core TIC d18O, %TIC and magnetic 

susceptibility, the late Holocene climate in the Walker Lake basin has been divided into three periods 

(Period LH-1 from 1000BC to 800AD, Period LH-2 from 800 to 1900AD, and Period LH-h from 

1900 to 2000AD). Period LH-1 is marked by relatively dry climate, with low lake level and relatively low 

sediment accumulation rates. Period LH-2 is relatively wet in the perspective of the entire late Holocene 

and further subdivided into 3 stages; S0 from 800 to 1000 AD, S1 from 1000 to 1500 AD, and S2 from 

1500 to 1900. The lake was rapidly filled during S0 and reached to its highest elevations at the end of 

S0. Walker Lake experienced at least five major droughts during period S1 and became progressively 

lower until ~1500AD when the lake began to maintain a relatively stable surface elevation (during S2). 

Without doubt, the historical record of Walker Lake (Period LH-h) documented the changing history 

of hydrologic conditions induced by anthropogenic perturbations and natural climatic variability. 

         The Period LH-1 δ18O record from Walker Lake is not comparable with that from Pyramid Lake. 

The relative dry climate recorded in Walker Lake during this period has also been identified in a record 

of Mono Lake shoreline changes(STINE, 1990). This tends to support a climate-controlled story of lake 

level during Period LH-1. However, the rapid water-filling beginning in 810AD appears to be 

associated with potential river diversions. Antevs (1952) pointed out that Walker Lake desiccation 

before 800 AD was not induced by a sufficient dry climate. The rapid water-filling beginning in 810 AD 

is remarkably consistent with Antevs’ (1952) story that the Walker River, used to be a tributary of 

Carson River, flowed south back to Walker Lake in ~810AD. The Indians even have legends about the 

stream change (ANTEVS, 1952) and people of the Anazasi started raising crops and irrigation at almost 

the same time (ENCYCLOPEDIA, 1999). The relatively high resolution of the δ18O record during Period 
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LH-2 from Walker Lake provides detailed information on fluctuations in lake level and volume. The 

Period LH-2 δ18O record is in general correlated with that from Pyramid Lake. Besides, most of dry-

wet episodes documented in the δ18O records of both lakes are identifiable in the tree-ring based river 

flow record of the Sacramento River. This implies that the climatic signals documented in these proxy 

records are related to winter precipitation in the Sierra Nevada.          

         As discussed above, the Walker River diversion possibly occurred in ~800 AD. If this is the case, 

the δ18O signal during Stage S0 (800-1000AD) may not reflect the climatic conditions then, because 

hydrologic and isotopic modeling experiments (see Chapter 5) suggest that the hydrologic system of 

Walker Lake may not reach to a near steady state until the beginning of Stage S1 (1000-1500AD).  Stage 

S1 is equivalent to the MWE that are characterized by warm and dry conditions in most parts of the 

world. The progressive increases in the δ18O record of Stage S1 tend to agree with dry climatic 

conditions revealed in other paleoclimatic records (HUGHES and GRAUMLICH, 1996; STINE, 1994). 

However, reconstruction of the lake level suggests that the overall climate during Stage S1 (1000-

1500AD) or the MWE was relatively wet relative to Stage S2 (1500-1900AD) or the LIA (see Chapter 

5).  
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CHAPTER 5 CENTENNIAL AND INTERDECADAL CLIMATE VARIABILITY 
IN THE WALKER LAKE BASIN SINCE AD 800 

 

5.1 Abstract  
Sediment cores from Walker Lake contain a high-resolution proxy climate record over the past 

millennium with at least basin-wide significance. Although the ENSO-like mode of interannual climate 

variability is strongly muted in this region over the last century, a decadal oscillation is evident in 

instrumental river flow records from the Sierra Nevada (LI and KU, 1997b), indicating that variations in 

hydrologic conditions of the Sierra Nevada are associated with the Pacific Decadal Oscillation (PDO) 

(BENSON et al., 2003b). In order to extract climatic and hydrologic variability of the past, I examined 

the responses of lake water δ18O (δ18OL) to changes in the discharge and the river flow δ18O (δ18OR). 

The results of model experiments suggest that fluctuations in δ18OR and the total discharge of river flow 

would result in nearly synchronous oscillations in δ18OL. Because of chronological advantage in tree-

ring based paleo-record, the age model for the δ18O record of Walker Lake was revised according to the 

chronology of the tree-ring-based Sacramento River flow record. On the basis of this revised age 

model, a high-resolution record of downcore variations in TIC δ18O (δ18OC), spanning the last 1200 

years with an average sample interval of 3.5 years, was generated. This revised δ18O record of Walker 

Lake show two prolonged droughts that occurred during the Medieval Warm Epoch, which were 

previously identified through dated tree stumps (STINE, 1994). Time series analysis of this record using 

multitaper method (MTM) and singular spectral analysis (SSA) have been performed to detect the 

dominant modes of hydrologic and climatic oscillations over the last millennium. The results suggest 

that the δ18O record of Walker Lake contains interdecadal and centennial climate variability. PDO-like 

interdecadal oscillations that centered in the periods of 50-90 yr were almost in phase with thermal 

fluctuations in ocean climate of the California Current, supporting that interdecadal climate variability in 
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the Sierra Nevada had a Pacific origin at least in the period of AD 800 to 1900. Compared to PDO-like 

interdecadal climate variations, the underlying centennial to multicentennial variability corresponding to 

the Medieval Warm Epoch and the Little Ice Age comprise the major share of total variance. In 

addition, the δ18O record of Walker Lake is visually correlated with molar Mg/Ca ratio record of Rice 

Lake, North Dakota (FRITZ et al., 2000; YU and ITO, 1999; YU et al., 2002) and the ice-core-based 

cosmogenic nuclide production record (BARD et al., 2000; BARD et al., 2003). This suggests that at least 

some of centennial variability in the winter snowfall of the Sierra Nevada were associated with solar 

activity over the last millennium. 

5.2 Introduction  
The periodic nature of the climate change has been recognized at various timescales such as the 

Milankovitch orbital cycles, millennial-to-centennial-to-decadal periodicities, and interannual El Niño-

Southern Oscillation (ENSO). Short timescale mode of climate like interannual ENSO variability are 

documented in historical instrumental records around the world (DEMENOCAL, 2001). Longer 

timescale (>102 yr) modes of climate variability are registered in paleoclimatic proxy records stored in 

tree rings, corals, ice cores, marine and lacustrine sediments. The unusual recent behavior of ENSO, 

such as the exceptionally strong warm (El Niño) events of 1982/83 and 1997/98, has highlighted the 

incomplete understanding of the ENSO phenomenon (RODBELL et al., 1999) and created considerable 

interest in the long-term evolution of ENSO and its relation to low-frequency climate forcing (MUÑOZ 

et al., 2002; RITTENOUR et al., 2000). 

         The background climate of the last 1200 years in the northern Hemisphere is contrasted with the 

Medieval Warm Epoch (MWE; 800-1450AD) and the Little Ice Age (LIA; 1450-1850AD). The 

behavior of ENSO phenomenon is likely modulated by long-term solar activity and /or greenhouse 

radiative forcing (KNUTSON et al., 1997; MANN et al., 2000). Increases in solar and /or greenhouse 

radiative forcing tend to decrease the amplitude of interannual ENSO variability (KNUTSON et al., 

1997) or lengthen the period between El Niño events (ANDERSON, 1992). During the second half of 

LIA, a decadal mode of ENSO variability persisted and interannual ENSO variability was relatively 
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muted (DUNBAR et al., 1994; STAHLE et al., 1998). On the basis of a reconstruction of historical 

records and Nile flood history, Anderson (1992) suggested that lower frequency ENSO-like variability 

had a periodicity of ~90 yr during the MWE, indicating interannual ENSO modes were less dominant  

at that time.  

Although the Walker River Drainage sits at a nodal point where there is in general a weaker 

statistical correlation between precipitation and ENSO over the last century, the drainage basin receives 

abnormal moisture during the recent two strong ENSO events of 1982/83 and 1997/98. Historical 

instrumental river flow records of the drainages on both sides of the Sierra Nevada exhibit a uniform 

decadal signal in this region, which is likely associated with the Pacific Decadal Oscillation (PDO) 

(MANTUA et al., 1997). Benson et al. (2003b) proposed that variations in the wetness of the Sierra 

Nevada are associated with changes in the sign of the PDO. Proxy records of prehistoric PDO 

variability have been obtained from tree rings, corals, and historical documentary records. However, 

most high-resolution records of PDO reconstruction have usually been limited to the past 2-3 

centuries. For example, an irregular 14-year cycle has been detected in a proxy sea surface temperature 

(SST) record (AD 1726-1997) based on Sr/Ca analyses of a coral from Rarotonga in the South Pacific 

(LINSLEY et al., 2000). Northeast Pacific tree-ring records and reconstructions of the PDO back to AD 

1700 suggest that a decadal mode is more dominant prior to the middle 1800s than afterwards, 

indicating a possible climate regime shift that occurred around that time (D'ARRIGO et al., 2001).  

         The oxygen isotopic composition (δ18O) of lacustine authigenic or biogenic carbonate has been 

commonly used to examine paleoclimate variability (BENSON et al., 2002; COVICH and STUIVER, 1974; 

CURTIS et al., 1996; HODELL et al., 1995). For example, on the basis of high-resolution δ18OC records 

from cored sediments of Pyramid Lake, Nevada, Benson et al. (2002) suggested that the hydrologic 

balance of Pyramid Lake oscillated about every 150 years over the past 7630 years. Spectral analysis of 

the δ18OC signal measured on ostracode shells in a sediment core from Lake Punta Laguna (CURTIS et 
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al., 1996; HODELL et al., 2001) also suggest the existence of century-scale climate modes (near 208 and 

125 years) in the Yucatan Peninsula, Mexico. 

         The objectives of this part of dissertation are to examine possible responses of δ18OL to changes 

in hydrologic and isotopic conditions (typically the δ18OR and the amount of river flow) and retrieve 

climatic and hydrologic variability documented in the δ18OC record of Walker Lake over last ~1200 

years. 

5.3 Isotopic responses to climatic changes  
The Walker River-Walker Lake surface water system has been the object of intensive hydrologic, 

chemical, isotopic, and biological studies over the last several decades (BENSON et al., 1991; BEUTEL et 

al., 2001; BRADBURY, 1987; BRADBURY et al., 1989; COOPER and KOCH, 1984; MILNE, 1987; 

NEWTON and GROSSMAN, 1988; SPENCER, 1977). The Walker River is the only major water source for 

Walker Lake. Hydrologic model experiments demonstrate that the hydrologic balance of Walker Lake 

can be simulated using fixed mean-annual rates of evaporation and on-lake precipitation, indicating that 

groundwater inflow or outflow is negligible (MILNE and BENSON, 1987). The long-term average values 

of the Walker River discharge during the intervals from 1871 to 1920 and from 1920 to 2000 are 445 ± 

161 and 174 ± 169 cubic feet per second (cfs), respectively. 60% of stream flow of the Walker River 

has been taken in upstream reaches for agriculture purposes beginning in 1920 (BENSON and LEACH, 

1979). Under natural environments, Walker Lake is able to achieve a hydrologic steady-state within a 

few decades. Walker Lake elevations are closely associated with the discharge of the Walker River 

(Figure 5-1). On the basis of the hypsometric settings of Walker Lake, the long-term (decadal scale) 

average value of the Walker River would vary within 1000 cfs, provided that Walker Lake remains 

under hydrologic closure. The historical average lake elevation (1242 m during 1860-1920) is slightly 

below the hydrologic steady-state elevation of 1253 m corresponding to the average river flow of 445 

cfs (Figure 5-1).  
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Figure 5-1. Steady-state lake elevation of Walker Lake corresponding to long-term average 
value of the Walker River discharge. The elevation of spilling sill is 1308.0 m and the lake 
bottom elevation is 1171.5 m (MILNE, 1987). 
 
         Walker Lake presently has not reached a hydrologic steady-state following the lowering that began 

in the early 1920s, as the actual lake elevation is slightly above to the steady-state level of 1198 m for the 

average river flow of 174 cfs. The average values of the reconstructed river flow of the Walker River are 

330 cfs in the late Holocene, 550 cfs in the last millennium, and 640 cfs in MWE (1000 to 1430 AD) 

(see Chapter 5). The 20-year running average values of the reconstructed river flow of the late 

Holocene Walker River also varies within 1000 cfs, indicating that Walker Lake remained in hydrologic 

closure in the late Holocene.  

         Variations in the δ18OL have been successfully simulated using HIBAL (see chapter 2 in this 

dissertation). The natural river flow (Q) of the Walker River, as well as other climatic signals tends to 

fluctuate periodically, MtAQ
i

n

i
i +=∑

=

)2sin(
1 λ

π
, where A is the amplitude of river discharge in cfs, λ 

the wavelength in year, t the time in year, M the mean value of river flow in cfs, i=1, 2, … , n denoting n 
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principal components of river flow signal. To examine the response of δ18OL to variations in the 

amount of river flow of the Walker River, I assume n =1, A=322 cfs (2-σ of historical river flow record 

from 1871-1920 AD), M=445 cfs (the mean annual value of historical river flow record). Wavelength λ 

is assigned to be 5, 25, and 100 years to study the corresponding responses of δ18OL to interannual, 

interdecadal, and century-scale variations in river discharge. The HIBAL program is coded and 

integrated into Microsoft Excel 2000 via Macros functionality. HIBAL model parameters are 

determined by those observed in Pyramid Lake (Table 2-1). This program has been successfully used in 

δ18OL simulations of the Walker Lake surface water in a period of 1985-1994. Here I replace the actual 

discharge data with hypothetical discharge values that are generated through 

445)2sin(322 +=
λ
πtQ . HIBAL runs in a lunar monthly step fashion and records the 10th lunar 

month δ18OL values of the epilimnion and hypolimnion to represent carbonate precipitate δ18OC for the 

year15. Model experiments indicate that the initial response of δ18OL to change in river discharge is 

dependent on the initial hydrologic and isotopic conditions of the lake, such as the δ18OL, the δ18OR, 

and the lake elevation. However, the steady-state response of δ18OL to change in river discharge is 

independent of these initial hydrologic and isotopic conditions. In reality, the hydrologic balance may 

change before the steady-state δ18OL value is achieved because the climate tends to vary on all time 

scales (BENSON and PAILLET, 2002). In isotopic simulations, when hydrologic balance varies in a fixed 

time scale, an approximately steady-state δ18OL value is observed. 

For the closed-basin Walker Lake δ18OL simulations, river flow (Q) is set to vary between 123 

to 767 cfs. For interannual timescale mode of climate (discharge) variability, for example, wavelength 

λ=5 yr, the initial response of epilimnion δ18OL appears to be synchronous with change in river 

discharge while the initial response of hypolimnion δ18OL tends to lag by ~0.5 years changes in river 

                                                 
15 Model assumes that most inorganic carbonate precipitation occurs in this time interval. 
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discharge (Figure 5-2A and 5-2B). Under approximate steady-state conditions, the δ18OL values of 

epilimnion and hypolimnion vary in phase with changes in river discharge (Figure 5-2C and 5-2D). For 

interdecadal variations in river discharge (e.g., λ=25 yr), both the initial and steady-state responses of 

epilimnion and hypolimnion δ18OL tend to be synchronous with change in river discharge (Figure 5-3A, 

B, C, and D). However, for century-timescale like λ=100 yr, both the initial and steady-state responses 

of the epilimnion and hypolimnion δ18OL appear to lead by ~10 years changes in river discharge (Figure 

5-4A, B, C, and D). If this result can be confirmed, the low-frequency δ18OL signal stored in down-core 

sediments can be used to predict the long-term future climate (discharge) changes. As this result is 

opposite to previous studies (BENSON and PAILLET, 2002), more modeling work is needed. 
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Figure 5-2. Oxygen isotopic responses to oscillatory changes in the Walker River discharge with a 
wavelength of 5-yr. A) Initial response of the top water. B) Initial response of the bottom water. C) 
Steady-state response of the top water. B) Steady-state response of the bottom water. 
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Figure 5-3. Oxygen isotopic responses to oscillatory changes in the Walker River discharge with a 
wavelength of 25-yr. A) Initial response of the top water. B) Initial response of the bottom water. C) 
Steady-state response of the top water. D) Steady-state response of the bottom water.  
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Figure 5-4. Oxygen isotopic responses to oscillatory changes in the Walker River discharge with a 
wavelength of 100-yr. A) Initial response of the top water. B) Initial response of the bottom water. C) 
Steady-state response of the top water. D) Steady-state response of the bottom water. 
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In Appendix 2 of this dissertation, I will discuss the isotopic relationship between lake water 

and river water, and suggested that the long-term average δ18OR can be inferred from the steady-state 

δ18OL. In this section, the amplitude of variations in δ18OL that are induced by change in river discharge 

is addressed. 
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Figure 5-5. Relationship between the amplitude of oscillations in the δ18Ow and the amplitude of 
fluctuations in the Walker River discharge. 

 

The river discharge signal (function) can be decomposed into three components, the amplitude 

(A), the wavelength (λ) or frequency (1/λ), and the mean discharge value (M). The amplitude (∆δ18O 

=δ18Omax - δ18Omin) of variations in δ18OL increases in proportion to the amplitude of river discharge 

(Figure 5-5). However, it increases with the decrease in the mean value of river discharge (Figure 5-6), 

indicating that δ18OL is more sensitive when the lake is volumetrically smaller. The amplitude of 

variations in δ18OL is also in inverse proportion to the frequency of river flow signal (Figure 5-7). This 

means that the lower frequency component has larger spectral power. In addition, the amplitude of 

changes in river flow is positively correlated with the δ18OR (Figure 5-8). 
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Figure 5-6. Relationship between the amplitude of oscillations in the δ18OL and the mean value of the 
Walker River discharge showing that the sensitivity of the δ18OL is exponentially proportional to the 
amount of stream flow when a lake becomes volumetrically small. 
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Figure 5-7. Relationship between the amplitude of oscillations in the δ18OLand the frequency 
component of oscillations in the Walker River discharge showing that the sensitivity of the δ18OL 
becomes exponentially large for lower frequency climatic forcing. 
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Figure 5-8. Relationship between the amplitude of oscillations in the δ18OL and the δ18OR value of the 
Walker River discharge showing that the sensitivity of the δ18OL is positively correlated with the value 
of δ18OR. 
 

In summary, changes in river discharge will lead to fluctuations in the δ18OL at different 

timescales, such as interannual, interdecadal, and centennial timescales. Most frequencies of variations 

in river discharge are reflected in the δ18OL and thereby δ18OC record and only slight changes are 

noticeable. The lower frequency component of the river flow signal tends to have higher spectral power 

in affecting the δ18OL. This is consistent with observation from spectral analysis that lower frequency 

geophysical signal usually has larger spectral power. 

5.4 Age model revision 
The chronology of core WLC002 derived and presented in Chapter 4 is mainly based on nine AMS 

radiocarbon dates. Because of large uncertainty in conversion from radiocarbon dates to calendar ages 

(especially for those relatively young dates), here I use Table 1 and 2 in Stuiver et al. (1998) to 

reinterpret the radiocarbon dates and try to get their best probable calendar ages (Table 5-1). LH-2 in 

Figure 5-9 denotes the interval of interest from AD 800 to 1900, based on the age model presented in 

this figure. In chapter 4, it has been noted that the δ18O record of Walker Lake has a great deal of 

similarity with the tree-ring-based Sacrament flow data over the last 1200 years. This similarity is not 

unexpected because both the Walker River and the Sacramento River receive water originating from the 
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snowmelt of the Sierra Nevada. In Appendix 2, I apply HIBAL (BENSON and PAILLET, 2002) on 

scaled Walker River flow data according to the Sacramento River flow records (MEKO et al., 2001) to 

simulate variations in the δ18OL of Walker Lake. Because the tree-ring-based Sacramento River flow 

record is believed to have superior advantage in age constraints, the simulated δ18OL record is therefore 

used as an extra age control to refine the δ18O chronology of Walker Lake during the last 1200 years 

(Figure 5-10). Direct comparison of the simulated δ18OL and downcore δ18OC results from Walker Lake 

suggests that the base age (350 cm) of section LH-2 is close to AD 800 and validates the age constraints 

of the revised age model. The top age (40 cm) of section LH-2 is believed to be AD1900 according to 

the youngest radiocarbon date (CAMS 87139) and marked transition of δ18O record, which was 

induced by a rapid lake level lowering beginning in ~1920s due to upstream impoundments and 

increasing water demands for irrigation. The new age model utilizes all AMS radiocarbon dates except 

the third and fifth points, where perturbations or turbidations might have occurred according the 

magnetic susceptibility and radiocarbon dates. In addition, this age model suggests that the topmost age 

of core WLC002 is close to AD 2000, the year when the core was extracted. This is consistent with the 

fact that the topmost sedimentary loss of the core is minor (ref. Figure 4-9). 

 

Table 5-1 Revised calendar ages according to Table 1 and 2 in Stuiver et al. (1998) 
CAMS 

Number 
Section 
Number 

Depth 
(cm) 

14C Age  
(yr BP) 

Error 
(± yr) 

Cal Year 
(AD/BC) 

1-σ Error 
(yr) 

87139 WLC002-5 40 35 35 1901 +5/-8 
87140 WLC002-5 67 145 35 1807 +147/-135
87141 WLC002-4 84 335 35 1625 +14/-140
87142 WLC002-4 135 365 35 1495 +130/-40
87143 WLC002-3 196 695 35 1290 +90/-20 
87144 WLC002-3 242 710 40 1285 +10/-20 
87145 WLC002-3 267 740 45 1265 +20/-40 
87146 WLC002-2 333 995 35 1025 +10/-10 
87147 WLC002-1 452 2370 35 -406 +10/-10 
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Figure 5-9 Plots of revised age model and original δ18O results from Walker Lake. LH-2 denotes the 
interval of interest (AD 800 to 1900) according to this new age model. 
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Figure 5-10 Plots of revised age model, original and simulated δ18O results from Walker Lake. 
Embedded graph is a chronology of simulated δ18OL results of Walker Lake using the scaled Walker 
River flow data according to the tree-ring-based Sacramento River flow record (MEKO et al., 2001) and 
a hydrologic-isotopic model-HIBAL (BENSON and PAILLET, 2002). 
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5.5 Spectral analysis  
The periodicities of a time series can be quantified through spectral analysis. The spectral analytical 

methods used here to identify and evaluate centennial to interdecadal variability in the Walker Lake 

proxy record include maximum entropy method (MEM) (BUTTKUS, 2000; HAYKIN, 1983),  multitaper 

method (MTM) (PARK et al., 1987; PERCIVAL and WALDEN, 1993; THOMSON, 1982) and singular 

spectral analysis (SSA) (VAUTARD and GHIL, 1989; VAUTARD et al., 1992). MEM is based on 

approximating the time series by a linear autoregressive process (GHIL et al., 2002), which is very 

efficient at detecting frequency lines in stationary time series. However, the resolution and confidence 

of MEM results is dependent on the number of autoregressive (AR) terms, and for a high number of 

AR terms MEM often include spurious peaks. MTM reduces the variance of spectral estimates using a 

small set of data tapers or orthogonal window functions. The tapered time series are then Fourier 

transformed and a set of independent spectral estimates is computed (GHIL et al., 2002). MTM 

provides a corresponding statistical significance level for each independent spectral estimate, which is 

determined based on a red noise null hypothesis (MANN and LEES, 1996). SSA is a robust tool to 

decompose and reconstruct a climatic time series. The SSA technique is a variation of the classical 

empirical orthogonal function (EOF) analysis or principal component (PC) analysis applied to lag-

correlation structures of time series. SSA decomposes time series into oscillatory patterns, trends, and 

noise. Spectral peaks are associated with oscillatory pairs of eigenvectors and the oscillatory 

components of a time series can be reconstructed using corresponding pairs of eigenvectors. The 

spectral analyses of MEM, MTM, and SSA used here were implemented using the SSA-MTM Toolkit 

(DETTINGER et al., 1995; GHIL et al., 2002). 

5.6 Results and discussion 
5.6.1 Interdecadal climatic oscillations 

The δ18OC values of bulk inorganic carbonate sediments from Walker Lake range from –1.2 to –9.2 ‰ 

(PDB) during the period of 800 through 1900AD (Figure 5-9, A). The average resolution of the raw 

δ18OC record spanning 800 to 1900AD is 3.5 years per sample. A cubic spline is used to fit the raw 
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δ18OC record and the δ18OC record was extracted with a 3-year time step prior to spectral analysis. SSA 

is applied to decompose the δ18OC time series (Figure 5-11, B-D). The first four reconstructed 

components (RCs 1-4) account for 89% of the total variance. MTM spectra on RCs 1-4 indicate four 

dominant periodicities of 240, 90, 60, and 50 years at a confidence level of 99% (Figure 5-11, B). In 

addition, MTM spectral analyses on RCs 2-4 and RC 3 reveal that five cyclicities of 170, 140, 80, 60, and 

50 years persist (Figure 5-11, C-D). In summary, the δ18OC record of Walker Lake spanning AD 800 to 

1900 contains interdecadal fluctuations in hydrological balance that are centered around periods of 

roughly 90, 80, 60, and 50 years. It is noteworthy that two interdecadal periodicities that centered 

around 50 and 60 yr are present in all three reconstructions (RCs 1-4, RCs 2-4, and RC3). 

         Because there exists a great deal of similarity between the δ18OC record of Walker Lake and the 

tree-ring-based Sacramento River flow reconstructions (MEKO et al., 2001), spectral analysis on the 

tree-ring-based Sacramento River flow record has been performed to confirm or deny the interdecadal 

fluctuations in hydrologic balance. Unlike SSA on the δ18OC record of Walker Lake, the first eight 

reconstructed components (RCs 1-8) only account for 13.2 % of total variance. However, interdecadal  

(50-90 yr) oscillations are also present in the reconstructed Sacramento River flow record spanning AD 

869 to 1900 (Figure 5-12).  

         Decadal to interdecadal modes of climatic variability are also detected in the carbonate record 

from Lake Turkana, Kenya during the last 4,000 years (HALFMAN et al., 1994), the δ13C profile of 

Globigerinoides ruber from Gallipoli Terrace, Ionian sea over the last millennium (CINI CASTAGNOLI et al., 

2002), and Nile River historical discharge record during AD 622-1470 (DE PUTTER et al., 1998). 

However, it is debatable whether decadal and interdecadal modes of climatic variability are induced by 

external forcing (solar radiative forcing) or internal forcing (ocean-atmospheric interactions). For 

example, the low-frequency interdecadal oscillations that are close to the 90-yr period are usually 

associated with the 88-yr Gleissberg cycle (EDDY, 1976) seen in sunspot and 14C data (DAMON and 

SONETT, 1991). Global high-resolution paleoclimatic records reveal periodicities near 11, 18.6 and 22 
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yr that are in general attributed to an 11-yr sunspot, 18.6-yr lunar nodal, and 22-yr double sunspot 

cycles (CURRIE and FAIRBRIDGE, 1985; HALFMAN et al., 1994; MORNER and KARLEN, 1984).  

However, a coral-based SSTs record from the South Pacific (LINSLEY et al., 2000) suggested that some 

of the decadal oscillations observed in the Pacific Ocean might be ascribed to tropical forcing. Model 

experiments (LATIF and BARNETT, 1994) also suggested that about one-third of the low-frequency 

climate variability over the North Pacific and North America could be attributed to a cycle induced by 

ocean-atmospheric interactions. Minobe (1997) proposed  that the interdecadal variability (50-70 yr) 

were likely to be an internal oscillation in the coupled atmosphere-ocean system.  

         More recently, Benson et al (2003b), based on Mono Lake δ18O and its association with other 

PDO-related signals, suggested that the wetness of the Sierra Nevada was linked with the sign of PDO 

over the past three centuries. The Sacramento River discharge and the Walker Lake δ18O records are 

compared with the Santa Barbara δ18O record from Neogloboquadrina dutertrei (Figure 5-13). The Santa 

Barbara δ18O signal was interpreted to reflect thermal fluctuations in the coastal California. The 18O-

enriched signatures of N. dutertrei usually indicate cold SSTs along the coastal California. Interestingly, 

most of cold SSTs events that occurred in the Santa Barbara Basin coincided with the Sierra droughts 

recorded in the Walker Lake δ18O and tree-ring records (Figure 5-13). For example, the pervasive Sierra 

drought that occurred around AD 1100 (STINE, 1994) almost coincided with the cold SSTs in the Santa 

Barbara Basin. Conversely, the Sierra Nevada tended to receive more moisture during the periods with 

warm SSTs of the Santa Barbara Basin over the last millennium. Moreover, spectral analysis on the 

Santa Barbara δ18O record suggested interdecadal thermal fluctuations (55, 70, and 90 yr) persisted in 

the interval spanning AD 1030 to 1905 (FIELD and BAUMGARTNER, 2000).  
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Figure 5-11. Singular spectrum analysis (SSA) (DETTINGER et al., 1995; VAUTARD and GHIL, 1989) on 
time series from Walker Lake for the intervals from 800 to 1900AD. A: Raw centered δ18OC record of 
bulk inorganic carbonate sediments. B: First four reconstructed components (RCs 1-4) derived from 
SSA. A cubic spline is used to extract the δ18OC data every 3-yr prior to SSA and SSA is implemented 
using the SSA-MTM Toolkit 4.1 (DETTINGER et al., 1995; GHIL et al., 2002). Window length N is 36. 
The first four RCs together account for 89% of total variance and have significant frequency lines of 
240, 90, 60, and 50 yr.  These frequency lines are detected using MultiTaper method (MTM) (PARK et 
al., 1987; PERCIVAL and WALDEN, 1993; THOMSON, 1982). C: The second to fourth reconstructed 
components (RCs 2-4) of SSA representing 27% of total variance and having dominant periodicities of 
170, 80, 60, and 50 yr. D. The third reconstructed component (RC 3) accounting for 6.8 % of total 
variance and having dominant cyclicities of 140, 80, 60, and 50 yr. 
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Figure 5-12. Singular spectrum analysis (SSA) (DETTINGER et al., 1995; VAUTARD and GHIL, 1989) on 
time series of the tree-ring based Sacramento River  for the intervals from AD 869 to 1900. A: 
Centered river flow record (MEKO et al., 2001). MAF denotes million acre feet. B: First four 
reconstructed components (RCs 1-4) derived from SSA. SSA is implemented using the SSA-MTM 
Toolkit 4.1 (DETTINGER et al., 1995; GHIL et al., 2002). Window length N is 103. The first four RCs 
together account for 7.0 % of total variance and have significant frequency lines of 120, 79, 40, and 27 
yr.  These frequency lines are detected using MultiTaper method (MTM) (PARK et al., 1987; PERCIVAL 
and WALDEN, 1993; THOMSON, 1982). C: The first two reconstructed components (RCs 1-2) of SSA 
representing 3.6% of total variance and having dominant periodicities of 159, 89, 66, and 44 yr. D. The 
first reconstructed component (RC 1) accounting for 1.85 % of total variance and having dominant 
cyclicities of 294, 97, 70, and 44 yr. E. The second reconstructed component (RC 2) accounting for 
1.77% of total variance and having dominant periodicities of 256, 97, 70, and 50 yr. 
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Figure 5-13 Comparison of the tree-ring reconstructed Sacramento River flow (MEKO et al., 2001), 
Walker Lake δ18O, and Santa Barbara δ18O records (FIELD and BAUMGARTNER, 2000). The 
Sacramento discharge anomaly (upper panel: A) is calculated using the reconstructed river flow data and 
the Santa Barbara δ18O record (lower panel C) is Lowess smoothing (f=0.04) of average N. dutertrei 
δ18O values (see Figure 7b in Field and Baumgartner, 2000). 
 
         Although the variance concentrations detected from the Walker Lake δ18O, the Sacramento River 

discharge, and the Santa Barbara δ18O records are not exactly the same, most of them are within 50-70 

yr, the most energetic periodicities of PDO-related climate variability (MINOBE, 1997). The fact that 

these two proxy records in the Sierra regions are almost in phase with fluctuations in the California 

Current suggests that the climate of the Sierra is linked the dynamics of the Pacific Ocean. During the  
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Figure 5-14 Regression analysis of the winter mean (January, February, and March) 5°x5°surface 
temperature (HadCRUTv dataset) against the West Walker River discharge during the positive PDO 
phase of 1978 to 2000 (A) and the negative PDO phase of 1948-1977 (B). Stars denote the geographical 
location of the Walker Lake Basin. 
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positive phase of PDO, wind stress field (WSF) appears to favor in delivering more moisture inland, 

weaken the California Current and coastal upwelling, and therefore create warm SSTs along coastal 

California. On the contrary, during the negative phase of PDO, WSF favors in strengthening the 

California Current and coastal upwelling, and leading cold SSTs along coastal California. As a result, 

WSF favorable in the Sierra moisture delivery is likely weakened and/or diverted.  

         As mentioned in Chapter 1, instrumental climatological data suggest that the wetness of the Sierra 

Nevada is linked with PDO on decadal time-scales even there is no robust correlation between the 

Sierra runoff and the PDO index on yearly base over the past 50-60 years. Detailed regression analyses 

of winter mean (January, February, March) surface temperature (5°×5°) against the West Walker River 

(WWR) flow reveal that the calendar-yearly WWR discharge was influenced by the SSTs of the North 

Pacific and surface air temperatures of Northwestern America (Figure 5-14). There were apparently 

three high correlation coefficient centers during the PDO positive phase, when the winter precipitation 

(snowfall) in the Sierra Nevada was positively correlated with the SSTs of the California Coast and 

negatively correlated with the SSTs of the central gyre. These correlations are statistically significant at 

the 95% confidence level. However, the mid-latitude storm track plays an important role in affecting on 

the winter precipitation in the Sierra Nevada either in the positive PDO phase or the negative PDO 

phase. This is related to the polarwards displacement of the mid-latitude storm track during the 

relatively warmer years and therefore less moisture reaching in the Sierra regions (STINE, 1994). 

Particularly, during the negative PDO phase, the surface air temperature of the Northwestern America 

became the primary factor in affecting on the snowfall of the Sierra Nevada.  

 
5.6.2 Centennial timescale variability 

Spectral analyses on the Walker Lake δ18O and the reconstructed Sacramento River flow also revealed 

that centennial timescale climate and hydrologic oscillations that were centered around 120, 150, and 

240 years persisted over the interval of AD 800 to 1900 (Figure 5-10 and 5-11). Century-scale modes of 

climatic variability have also been extracted in a variety of paleoclimatic records such as tree rings, ice 
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cores, marine and lacustrine sediments. For examples, the 14C record from tree rings shows a 

pronounced 126-yr peak in the past 4000 years (STUIVER and BRAZIUNAS, 1993). A 2100-yr lake 

sediment-based salinity record from Rice Lake, a closed-basin lake in the northern Great Plains exhibits 

significant periodicities of 400, 200, 130 and 100 yr (YU and ITO, 1999).  
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Figure 5-15. Correlation of paleoclimate and paleo-solar proxies. A) The record of the cosmogenic 
nuclide production changes (BARD et al., 2000; BARD et al., 2003). B) Mg/Ca molar ratio record from 
Rice Lake (YU and ITO, 1999). C) The δ18OC record of Walker Lake. Minima of solar activity: D-Dalton 
(1810 AD), M-Maunder (1645-1715), S-Spörer (1420-1530), W-Wolf (1280-1340), and O-Oort (1010-
1050) (BARD et al., 2000; EDDY, 1976). MWE-Medieval Warm Epoch, LIA-Little Ice Age. Vertical 
dotted lines denote probable correlations among these records and three major arrows symbolize 
terminations of three major droughts that occurred during the MWE. MCA-Medieval Climate 
Anomaly. Note that MCA-1 (AD910-1110) and MCA-2 (AD 1210-1350) were previously proposed by 
Stine (1994).  
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         It is recognized that the climate of the last millennium contained centennial to multicentennial 

variability that was characterized by the Medieval Warm Epoch (MWE) and the Little Ice Age (LIA) 

(LAMB, 1965). In the western United States, Stine (1994) described compelling evidence that two 

prolonged droughts persisted during the MWE. These two drought events are also recorded in the 

δ18O record of Walker Lake (see Figure 5-15), and the timings of drought terminations are very close to 

those described by Stine (STINE, 1994).  Moreover, these two pronounced droughts likely affected the 

Great Plains because the Mg/Ca molar ratio suggested low stands of Rice Lake, North Dakota during 

the MWE (FRITZ et al., 2000; YU et al., 2002). In addition, the δ18O record of Walker Lake suggested 

that there were two short-life (60-80 yr) wet events during the first drought described by Stine (1994). 

This feature is also identifiable in the Mg/Ca ratio record of Rice Lake (see figure 5-15). The relatively 

wet events that occurred in the drought intervals of AD 910 to 1110 coincided with the sunspot 

minimum of Oort. The relatively good visual correlations among the ice-core based cosmogenic nuclide 

production, the Rice Lake Mg/Ca ratio, and the Walker Lake δ18O records suggested that solar radiative 

activity played an important role in regulating lake levels on centennial timescales. The cosmogenic 

nuclide production is controlled by solar activity. When solar activity is high, the extended solar 

magnetic sweeps through interplanetary space and therefore more effectively shields the Earth from 

cosmic rays and reduces cosmogenic production (VAN GEEL et al., 1999). Low solar activity lets more 

cosmic rays enter the Earth’s atmosphere and induces more cosmogenic production. The best-known 

low solar activity event is the Maunder Minimum (1645-1715) that coincided with the coldest times of 

the LIA (EDDY, 1976). The sun during the Maunder Minimum was 0.25% less bright than it was during 

the solar minimum of 1985-1986 (LEAN et al., 1992). Model experiment suggested that a lowering of 

0.25% solar irradiance would lead to a global cooling of ~0.5 °C (RIND and OVERPECK, 1993). 

Changes in global temperature have an effect on the ocean-atmospheric circulations. Stine (1994) 

proposed that the mid-latitude storm track of  the northern hemisphere likely remained to the north of 

California during the MWE, resulting in a less snowfall scenario in the Sierra Nevada. During the LIA, 
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because of an expansion of the circumpolar vortex, the mid-latitude storm track displaced southwards, 

leading to a more snowfall scenario in the Sierra Nevada. In addition, Lake Naivasha, an equatorial 

African lake, also recorded a drier climate than today during the MWE on the basis of a lithologic and 

diatom inferred salinity record (VERSCHUREN et al., 2000), indicating changes in solar irradiance played 

an important role in long-term moisture variability in this region. 

         In summary, the δ18O record of Walker Lake documented centennial to interdecadal timescale 

variability over the interval of AD 800 to 1900. Oscillations in hydrologic balance of the lake basically 

reflect snowfall variability in the Sierra Nevada. At least, some century timescale oscillations may be 

attributed to changes in solar irradiance due to a great deal of similarity between ice-core-based 

cosmogenic production and the Walker Lake δ18O records. Meanwhile, PDO-like interdecadal climate 

variability that centered on 60-80 yr persisted over the period of AD 800 to 1900. This PDO-like mode 

of climate variability was intimately linked with alterations in the California Current, indicating some of 

interdecadal oscillations were induced by ocean-atmosphere interactions.  

 

 

 

 

 

 

 

 

 

 

 

 



  - 113 -

 

APPENDIX 1 A WINDOWS PROGRAM FOR PALEOLAKE LEVEL 
RECONSTRUCTION FROM THE OXYGEN ISOTOPIC RECORD OF CLOSED-

BASIN LAKE CARBONATES 
 

A1.1 Abstract 
A windows-based program has been developed to reconstruct past lake surface level changes from the 

oxygen isotopic composition (δ18O) record of carbonates in sediments from closed-basin lakes in arid-

semiarid regions. The software program consists of three major integrated modules: a data acquisition 

and validation module, a model parameter settings module, and a modeling module. The modeling 

module includes three components: a hydrologic mass balance model, an isotopic mass balance model, 

and a paleolake level recovery model. These three modeling components work sequentially. The first 

two modeling components are designed to define modern hydrologic and isotopic systems in the study 

area by using historic daily stream gauge readings and modern observations of lake water δ18O changes. 

The last modeling component is a tool to recover paleolake level changes based on the δ18O record 

derived from the carbonate component of lake sediments. The software program provides a user-

friendly visual interface that facilitates the input of modern hydrologic and isotopic data and the 

modeling of past lake surface level changes. 

A1.2 Introduction 
Closed-basin lakes have long been recognized as the potential informative source of terrestrial 

paleoclimate given their sensitivity to changes in hydrologic budget (METCALFE, 1997). The variability 

of closed-basin lake surface level changes in arid-semiarid regions is an effective climatic index in 

prehistoric times. Lake surface level changes are strongly connected with the lake water δ18O (BENSON 

and PAILLET, 2002; HOSTETLER and BENSON, 1994) that is preserved in the carbonate fraction of 

closed-basin lake sediments (BENSON and PAILLET, 2002; LI and KU, 1997a; RICKETTS and 
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ANDERSON, 1998). In closed-basin systems most lake levels fluctuate on a seasonal to interannual 

timescale. Some lakes even have experienced large surface level drawdown over the past century (LI 

and KU, 1997a; RICKETTS and ANDERSON, 1998). In some cases, historic stream gauge readings and 

lake level changes have been documented back to the beginning of the last century. Coupled with 

modern stream and lake water δ18O observations, this provides a unique opportunity to establish a 

linkage between lake surface level changes and lake water δ18O variations. For those closed lakes whose 

hydrologic settings are relatively simple to define, this linkage can be used to reconstruct the past lake 

level changes by applying the δ18O record of lake carbonate sediments. 

      One-dimension hydrologic mass balance models, either steady state or dynamic, have been well 

developed and successfully applied to lakes to define key components (typically evaporation) of 

hydrologic settings (MILNE, 1987).  Also, several models based on isotopic mass balance have been 

proposed and applied in arid-semiarid closed-basin lakes(BENSON and PAILLET, 2002; HOSTETLER 

and BENSON, 1994; LI, 1995a; RICKETTS and ANDERSON, 1998). Current hydrologic and isotopic 

models can essentially be separated into homogeneous and heterogeneous models. In heterogeneous 

models (BENSON and PAILLET, 2002) the seasonal limnological stratification has been taken into 

account. Generally speaking, limnological stratification depends on lake physical settings, such as water 

depth, lake size, current vector, surface wind speed, thermal structure of water column, etc. Some of 

these physical properties are hard to constrain before the instrumental record. Since many medium to 

small-sized closed-basin lakes are relatively shallow and well mixed, especially in the winter season when 

the temperature gradient of water column is relatively small, lake water δ18O is close to homogeneous. 

In comparison with open lake systems, however, most closed-basin lakes have much longer resident 

time accommodating water mixing. A homogeneous model is more effective in some closed-basin lakes 

where seasonal stratification is weak or absent.  A few studies based on the homogeneous model have 

been reported (BENSON and PAILLET, 2002; LI, 1995a; RICKETTS and ANDERSON, 1998). This 

program adopts the homogeneous model.  
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         However, most models developed to date have usually been designed for a specific lake. To 

attempt to broaden and facilitate the use of hydrologic and isotopic models, I have designed and 

implemented a windows-based program that is applicable to all closed-basin lakes where seasonal 

stratification is weak. The program provides a user-friendly visual interface in which the user defines 

two model parameters, an evaporation rate (E) and the fraction of advected air (fad). The model uses 

daily stream gauge readings as the primary input, and historic lake level and water δ18O records as 

references for the hydrologic and isotopic mass balance modules. Since there are seven tables of 

program inputs and some of them can have a great number of records, such as daily stream gauge 

readings, the program adopts the Microsoft Access Database management strategy to handle the input 

data. The program offers its own data inputting, importing from an ASCII file, and editing interface. 

Also, it provides a module to export the modeling results to an ASCII file. This file can be easily loaded 

into Microsoft Excel or other professional plotting software for construction of different graph format. 

A1.3 Program description 
The application runs on modern IBM compatible PCs, with a single Pentium processor and a Windows 

98, ME, 2000, NT, or XP operating system. The minimum system requirements are Pentium II 200 

MHz processor, 32 MB RAM, and 20 MB of available disk space. These specifications may vary 

depending on the amount of input data and chosen model running step. The graphic user interface 

consists of three major components, data acquisition and validation, model parameter values and 

physical settings, and the modeling modules (fig. 1).  
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Fig. A1-1. A block diagram lists the major modules or components of the program. The left column 
functions as data acquisitions and validations. The middle column consists of two components; the 
physical settings (such as lake geometry) and tuning parameters (such as model parameters and model 
interval of interest). The right column includes three key modules plus a data export module. 
 
A1.3.1 Data acquisition and validation 
The model assumes that the following aspects of information are available; the lake geometry, the 

historic lake surface levels, daily stream gauge readings, the δ18O of stream and lake water, the δ18O 

record of lake carbonate sediments, and its corresponding age control. Usually, hydrologic models use 

polynomial equations to define the relationships between surface area, volume and lake water depth 

(BENSON and PAILLET, 2002). Instead, this program applies the spline interpolation technique to get 

the corresponding value. In the Data submenu, the program gives a graphic interface to compare the 

spline curve with that measured. 

         The record of historic stream gauge readings is the primary input variable for the hydrologic and 

isotopic mass balance modeling modules. This program uses the daily stream flow readings. The unit is 

in cubic feet per second (cfs). In the case of multiple stream inputs into the same lake, the sum of these 

stream gauge readings is applied.  

      The historic lake surface level (elevation) record is used as key references for hydrologic mass 

balance and paleolake level recovery modeling modules. In the hydrologic mass balance module the 

model uses this record as a baseline to determine the mean annual evaporation rate, while in the 
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paleolake level recovery module the model uses it as criteria to validate the model results. Lake surface 

level is input in meters above sea level. The δ18O record of lake water is one of the most important 

parts of the input dataset and limits the applicability of this model to lakes where this data exist. The 

quality and length of the lake water δ18O record directly affects the confidence interval of the model 

results. In the isotopic mass balance module the model uses this data as reference to define the fraction 

of advected air (fad). Its unit is in per mil (SMOW). 

         The carbonate δ18O record is generally derived from the total inorganic carbon fraction (TIC) of 

sediments. Since most closed-basin lakes are saline, I recommend using deionized water to wash the 

sediments to remove salts, and then remove the organic matter by 2.5% HClO or 15% H2O2 before 

isotopic analysis (BENSON et al., 2002; LI et al., 2000). TIC δ18O units are per mil (PDB). 

         Usually calibrated 210Pb or 14C dates are used as age control. In the model, age unit is in years AD. 

The model automatically generates a time series of carbonate δ18O record by using this age control and 

the raw carbonate δ18O record. This time series serves as a basic input for the paleolake level recovery 

module.  

         The program gives an interface to display the input or imported data in graph or table format that 

facilitates the user to check, modify and validate the original dataset. 

A1.3.2 Model parameters and physical settings 
There are two model parameters (E and fad) that are defined by the model itself. The hydrologic and 

isotopic mass balance models determine E and fad, respectively. The program offers an interface to 

input physical settings (fig. 2). There are four types of information that need to be input; geometric, 

hydrologic, isotopic and dynamic parameters. For the hydrologic mass balance modeling, only 

geometric and hydrologic settings are needed. Obviously, the lake becomes dry when lake surface level 

reaches to the lake bottom elevation. On the other hand, the lake becomes an open lake system when 

its surface level exceeds the spill sill level. These two parameters are used as physical constraints to 

assure that the modeling processes are strictly under a closed-lake system. The fraction of stream water 
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(f) stands for the fraction of water that actually flows into the lake of interest since there maybe some 

water loss between the gauge station and the lake inlet. The isotopic and dynamic parameter settings are 

designed for the isotopic mass balance and paleolake level recovery models, which are not visible at the 

first stage of modeling, i.e. the HydroModel.  The δ18O of free air vapor, on-lake precipitation, and 

stream water need to be clear. For those lakes with multiple stream inlets, the stream δ18O value should 

be the weighted average. αkin is the kinetic fractionation factor, and the mean annual surface 

temperature, precipitation and relative humidity (RH) can be obtained from the local weather station. 

These values are stored in the same database file of the input dataset. 

      

 

Figure A1-2. A model parameter settings panel consists of four categories: geometric, 
hydrologic, isotopic, and dynamic settings. 
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A1.3.3 Modeling modules 
This program integrates three modeling modules: hydrologic mass balance model (HydroModel), 

isotopic mass balance model (IsotopicModel), and paleolake level recovery model (PaleoLakeModel). 

The details of mathematical derivation are discussed in Appendix 2. These models work in a sequential 

fashion from the HydroModel to the IsotopicModel to the PaleoLakeModel.  In the HydroModel, the 

program gives a graphic interface to define the key component of hydrologic setting, E. This is 

determined by fitting the lake surface level modeled with that observed. The model works in both 

directions, forward and backward. Once a good evaporation rate is selected, the modeled lake level 

curve usually fits the observed one well in both modes. If this is not the case, the hydrologic system of 

interest is not well defined. In other words, there may be other water sources or sinks in the system, 

such as groundwater discharge and recharge. This program does not take the groundwater input or 

output into account.  

         Provided that the hydrologic system appears to be adequately modeled, the IsotopicModel 

module is ready to define the isotopic behavior of the system. The δ18O of lake water is affected by the 

δ18O and fluxes of stream water, on-lake precipitation, and evaporation. The δ18O of water vapor 

leaving lake surface is a function of the δ18O of lake water, fad, relative humidity, and surface water 

temperature (BENSON and PAILLET, 2002; BENSON and WHITE, 1994). Most of them are measurable 

and kept constant in the model. fad is hard to measure and is defined through the IsotopicModel. The 

IsotopicModel uses the same technique as the HydroModel by fitting the predicted lake water δ18O 

change curve with that observed. Also, it works in both directions to determine fad. The confidence or 

the quality of this determination depends on the length of the lake water δ18O record.  

         Finally, using the δ18O record of lake carbonates with the above parameters determined, the 

PaleoLakeModel can reproduce the lake level changes in the past. The historic lake level change record 

here is used as criteria to validate the model. Theoretically, it can only work backward as the lake level is 

unknown for the past. However, we can also assume the lake level in the past based on the predicted 
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curve produced by the backward method and run the model in forward mode again. Both methods 

should produce similar results of lake surface level changes in the past. Otherwise, there may be 

unknown perturbation, such as sediment bioturbation, lake sediment reworking, the accuracy of age 

controls, etc. 

A1.4 Discussion  
This software application was written specifically to facilitate data acquisition, model parameter settings, 

and hydrologic and isotopic modeling. The software program stores all data including model parameter 

settings in a Microsoft Access *.mdb file and uses the same jet database engine as Microsoft Access 

2000. This enables the program to handle a large amount of input data and its data file format is 

completely compatible with Microsoft Access. In addition, the import module facilitates the input of 

lake system parameters and the export module enables the user to use additional plotting software to 

reproduce the graph of the model results. 

      Usually, most hydrologic models will accumulate the error when model goes away from the initial 

point.  As this program adapts from two methods, forward and backward, this greatly reduces the 

accumulative error if the system is well defined. Successful application of this program relies on the 

quality of input dataset and the extent of knowledge ofthe system of interest.  

         All of the source codes are written in Visual Basic 6.0 and most of the program routines and 

modules are hardware-independent. A trial version of this software package is available online 

(http://www.albany.edu/~fy7247). The program runs in Windows 98/NT/ME/2000/XP operating 

system.  
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APPENDIX 2 RECONSTRUCTION OF LATE HOLOCENE EFFECTIVE 
MOISTURE AVAILABILITY IN THE WALKER LAKE BASIN 

 

A2.1 Abstract 

The oxygen isotopic signal (δ18O) preserved in down-core carbonate sediments has been analyzed in 

numerous studies to extract information on hydrologic and climatic conditions of the past. Since 

change in the δ18O value of lake water (δ18OL) in a closed-basin lake is not a simple function of the 

amount of change in lake level (or volume), the interpretation of the δ18O preserved in down-core 

lacustrine proxy carbonates usually is not straightforward. Here I have developed a new approach to 

reconstructing variations in lake elevation using the down-core TIC δ18O (δ18OC) record. This new 

approach has been used in Walker Lake, and a high-resolution lake elevation record spanning the late 

Holocene has been produced. The reconstructed lake level record has been used to generate a modeled 

δ18O (δ18OM) record of carbonate precipitates with a hydrologic-isotopic balance model (HIBAL) 

(BENSON and PAILLET, 2002). The HIBAL-derived δ18OM results match well with the original δ18OC 

record. This demonstrated the ability of this approach to reconstructing past lake level changes using 

the δ18OC record extracted from down-core carbonate sediments. The reconstructed lake elevation 

record of Walker Lake is consistent in shape with Benson and Thompson’s (1987) tufa elevation record 

of the lake except for the magnitude of lake level variations. The reconstructed results suggest that 

Walker Lake levels were probably very low during the interval from 800 to 900 AD, which is in 

agreement with Antevs (1952) calculations16. In addition, the reconstructed stream flow record of the 

Walker River indicates that the rapid refilling beginning in ~850AD was probably due to river 

                                                 
16 The small salt contents of Walker Lake suggest that it would accumulate in 1100 years.    
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diversions. This river flow record clearly indicates that the overall the climate of the Walker Lake basin 

during the Medieval Warm Epoch (MWE) was relatively wet relative to the Little Ice Age (LIA).  

A2.2 Introduction 
The lake level of a closed-basin lake is an effective indicator of hydrological conditions. Variations in 

the lake level of a closed-basin lake usually possess basin-wide signals of climatic and hydrologic 

variability. In the western Great Basin, many lakes (like Pyramid Lake, Walker Lake, Mono Lake, and 

Owens Lake) have headwaters originating from the Sierra Nevada snowpack. Variations in the lake 

level of these lakes have the potential to reflect changes in winter precipitation of the Sierra Nevada. A 

comparison of the reconstructed lake level records of some Great Basin lakes suggested that most of 

the lakes would experience approximately synchronous changes in their lake level (or size) since the 

mid-1800s if they were not anthropogenically perturbed (MILNE, 1987).  

In the late Holocene, reconstruction of variations in lake level of the Great Basin lakes 

primarily relies on proxy data derived from shoreline, delta, and deepwater deposits of these lakes. In 

Walker Lake and Pyramid Lake, Benson and Thompson (1987) reconstructed the late Holocene 

elevation and chronology in both basins through dating shoreline tufa deposits. Their results suggested 

that both Pyramid Lake and Walker Lake fluctuated within a vertical range of  ~23 and 30 m 

respectively, and experienced nearly synchronous variations in lake elevation during the late Holocene. 

In the Mono Lake basin, Stine (1990) suggested that Mono Lake fluctuated within a vertical range of 40 

m in response to changes in effective inflow to the lake during the last 3,800 years. The reconstructed 

low lake stands of Walker Lake, Pyramid Lake, and Mono Lake during the interval between 2000 and 

3000 years BP reflected a pervasive drier climate in this region (BRADBURY, 1987; BRADBURY et al., 

1989).  

Previous reconstructions of variations in lake level of Walker Lake, Pyramid Lake, and Mono 

Lake, however, have not yet yielded continuous high-resolution consistent records and have resulted in 

discrepant interpretations of regional climatic and hydrologic variability at some times during the late 

Holocene. This appears mostly due to the discontinuous nature of shoreline and/or shallow water 
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deposits studied. Recent studies of deepwater sediments in Pyramid Lake (BENSON et al., 2002) and 

Walker Lake (see chapters 1-4) have created nearly continuous high-resolution proxy records from both 

lakes. In particular, over the last 1200 years the δ18OC record from Walker Lake sediments shares many 

similarities with the Pyramid Lake record. Many wet-dry episodes recorded in the δ18OC record are also 

identifiable in a tree-ring based river flow record of the Sacramento River (MEKO et al., 2001). This 

implies that the Walker Lake δ18OC record probably possesses a high-resolution signal of regional 

climatic variability.  

Since change in δ18OL in a closed-basin lake is not a simple linear function of change in lake 

level, the δ18OC record stored in down-core carbonate sediments usually requires a modeling approach 

to reconstruct variations in lake level. For example, Li (1995b) designed an isotopic modeling approach 

and applied it to Mono Lake  to reconstruct a lake level curve in the historical interval, which is 

comparable with the actual lake level curve observed. In Lake Turkana, Kenya, Ricketts and Anderson 

(1998) applied a hydrologic and isotopic mass balance model on the δ18OC record to generate 

quantitative lake level variations in the historical intervals. Their results suggested that, in spite of using 

the δ18OC dataset with significant spatial variability, the δ18OC records could still be capable of 

reconstructing lake level change through model calculations. 

In Pyramid Lake, detailed climatic and hydrologic data were obtained through direct 

observations and/or model simulations (HOSTETLER and BENSON, 1994). The model HIBAL was 

made to simulate variations in Pyramid Lake surface water δ18OL spanning 1985 to 1994 (BENSON and 

PAILLET, 2002). With this approach, both reconstruction and simulation are limited in the historical 

intervals, in which the climate and hydrological conditions are already known. This is because there are 

a number of parameters affecting the δ18OL value, such as the amount and δ18O value of river water 

(δ18OR), precipitation, and evaporation. These components are usually unknown or poorly constrained 

for the past prior to 1900AD. Besides, modeling simulations (BENSON and WHITE, 1994) indicated 
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that the δ18O value of water vapor  leaving off lake surface water is dependent on the δ18OL value and 

ambient climatic conditions (water temperature, relative humidity, wind speeds, etc).  

In this part of this dissertation, a new approach to reconstructing variations in lake elevation in 

the past has been developed and used to produce a late Holocene lake level record of Walker Lake. 

Reconstruction results are validated using HIBAL and derived stream flow records to reproduce down-

core δ18OC records.  

A2.3 Reconstruction Model 

The δ18OL value is thought to fluctuate with change in hydrological balance, and variations in δ18OL are 

assumed to be preserved in down-core carbonate sediments (BENSON and PAILLET, 2002; BENSON 

and WHITE, 1994). In fact, there is not a linear relationship between δ18OL and lake level (BENSON et 

al., 1991). In Walker Lake, lake level is a function of the amount of primary hydrologic components 

(stream flow discharge (Q), on-lake precipitation (P), and evaporation (E)), EPQ
t
V −+=
∂
∂

, while 

δ18OL (δ ) is not only affected by these primary hydrologic components, but also the δ18O values of 

these hydrologic components, EPQ EPQ
t

V δδδδ −+=
∂

∂ )(
. Moreover, the δ18O value of water 

vapor leaving the lake surface depends on δ18OL and ambient atmosphere conditions, such as lake 

surface temperature, relative humidity, and atmospheric stability (BENSON and WHITE, 1994),  
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where RH is the relative humidity of the boundary layer over the lake surface, adδ  is the δ18O of 

advected water vapor, eqα and kinα are equilibrium and kinetic isotopic fractionation factors, and 

adf is the fraction of advected water vapor in the boundary layer over the lake surface.  
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The equation for Eδ above can be translated into a linear function, baE += δδ , where 
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         The hydrologic and isotopic mass balance equations above can be transformed into the following 

step-functions,  

)()( 1212 ttEPQVV −×−+=−                                                (A2.1) 

)()(2 12112112 ttEPQVVV EPQ −×−+=−+ δδδδδδ           (A2.2) 

         Multiplying Qδ  on both sides of Equation A2.1 and then substituting QQδ from Equation A2.1 

into Equation A2.2, a step-function for 2V is obtained as follows,  

Q

EPQQ ttEPttEPV
V

δδ
δδδδδδ

−
−−+−−−−−

=
1

1212211
2

))(()()()2(
           (A2.3) 

         In a conventional hydrologic mass balance model, stream flow (Q) data usually needs to be 

known prior to modeling experiments while in this hydrologic and isotopic model, lake volume can be 

calculated using variations in δ18OL and other parameters, such as the δ18OL of stream flow, 

precipitation and evaporation including their δ18OL values. 

A2.4 Model Data Acquisition 

A2.4.1 Lake Water δ18OL  

The δ18OC record stored in down-core carbonate sediments from Walker Lake is the primary variable 

input available for reconstruction of lake level variations in the late Holocene. Modeling reconstruction 

needs data of variations in the δ18OL that is presumably in isotopic equilibrium with the δ18OC of 

inorganic carbonate precipitates.  
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         Under conditions where there is slow inorganic carbonate precipitation, the oxygen isotopic 

fractionation between carbonates and host water is dependent on ambient water temperature (EPSTEIN 

et al., 1953; MCCREA, 1950), 2)(14.0)(3.45.16 δδ ∆+∆−=t , where t is water temperature in ºC 

and δ∆ is isotopic difference between inorganic carbonate precipitates (relative to PDB) and host 

water (relative to SMOW). Assuming that the host water temperature of Walker Lake is 22ºC (BENSON 

et al., 1991), δ∆  is 1.23 ‰. In fact, the isotopic fractionation is also related to carbonate phases. For 

calcite ( T232.095.3 −=∆δ , Epstein et al. (1953) and O’Neil et al. (1969)) and aragonite 

( T221.068.4 −=∆δ , Grossman and Ku (1986)), their δ∆  values are 1.15‰ and 0.182 ‰, 

respectively. The X-ray scan performed on core WLC84-8 (see Figure 11 in Benson et al.(1991)) 

indicated that monohydrolcalcite is predominant throughout the upper 2-m section of the core and 

calcite is present in the lower part (2 to12 m) of the core. A direct comparison of δ18OC and δ18OL 

indicates that the δ∆  of the Walker Lake carbonate precipitates is relatively small (<1.0‰) in the 

interval of 1978 through 1990 and relatively large after 1990 (Figure A2-1). The large δ∆ is likely to be 

induced by the uncertainties of ages. Also, more negative δ18O of carbonates can be resulted from 

recrystallization of monohydrocalcite (JIMENEZ-LOPEZ et al., 2001). The original δ18OC record is 

smoothed via the three-point running average and then interpolated into an annual δ18OL dataset prior 

to the model reconstruction.  
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Figure A2-1. Comparison of measured and computed δ18OL records for Walker Lake. The measured 
δ18OL data were taken from Benson et al. (2002). Grossman and Ku’s (1986) equation was used to 
compute corresponding δ18OL value for WLC002 and WLB-003C, assuming T= 22 ºC. The computed 
δ18OL values were smoothed by the 6-point running average. Discrepancies among these records 
appear to be induced by the uncertainties of ages and possible minor loss at the top of WLC002. 
 
A2.4.2 River Flow δ18OR 

The δ18OR value probably is the key to reconstruction of variations in lake level. Results of direct 

measurements for water samples collected at Wabuska gauging station indicate that the δ18OR varies 

from –14.85 to –12.25 (‰, SMOW) with an average of 13.6 ‰, SMOW (see Figure 2-10). The δ18OR 

value observed may not be representative of that in prehistoric times since agricultural irrigation has the 

potential to increase the δ18OR value of stream water. Besides, the Walker River is fed by headwaters 

originating from the Sierra Nevada snowpack. Variations in the δ18O value of the Sierra Nevada 

snowpack during the past few thousand years remain unknown. However, the ice δ18O record from 

Kilimanjaro in tropical Africa (THOMPSON et al., 2002) reveals that the ice δ18O at this location 

fluctuated within –10 ± 2 (‰) over the last two thousand years. The modern (1991-1992) ice δ18O 

record from Guliya, China (THOMPSON, 1996) also indicates large variations (-20 to –8 ‰) in ice 

isotopic composition. 
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Figure A2-2. A) Response of lake level elevation to change in river discharge of the Walker River. B) 
Response of δ18OL to change in river discharge of the Walker River using a published hydrologic-
isotopic model - HIBAL (BENSON and PAILLET, 2002). HIBAL simulations, using parameter values 
taken from the results of measurements in Pyramid Lake (BENSON et al., 2002), suggest that the steady-
state δ18OL value is independent of the amount of river discharge of the Walker River.  
  

         To estimate the average δ18OR values of the past, the condition of steady-state is assumed. When 

stream discharge is held constant, a closed-basin lake level will ultimately reach a hydrologic steady 

state, a state without significant variations in lake level (Figure A2-2A). Moreover, when a lake 

maintains closed-basin conditions and stream flow is kept constant, it will achieve an isotopic steady 

state and its steady-state δ18OL value is independent of the amount of stream discharge (Figure A2-2B). 

In fact, the steady-state δ18OL value is positively correlated with the δ18OR value (Figure A2-3A) and 

negatively correlated with adf  (Figure A2-3B). Further modeling experiments indicate that the steady-

state δ18OL value is also independent of initial conditions (lake level and δ18OL). However, the time to 

achieve a hydrologic-isotopic steady state is determined by the difference between initial and steady-

state values of lake level and δ18OL as well as lake basin shape. Variations in both δ18OR and the amount 

of stream water affect the δ18OL value. Although detailed variations in δ18OR of the past remains largely 
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unknown, the δ18OC record preserved in down-core carbonate sediments may be used to determine a 

long-term average δ18OR value of the past.  
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Figure A2-3. A) Linear correlation between steady-state δ18OL and δ18OR. adf  is the fraction of 
advected air in the thin boundary layer overlying the water surface of the lake. B) Correlation between 
steady-state δ18OL and adf  based on HIBAL simulations. 
 
A2.4.3 Model Parameters 
A number of meteorological parameters (surface water temperature, on-lake precipitation, evaporation, 

relative humidity, adf , wind speed, etc) affect the oxygen and hydrogen isotopic distribution in an 

aquatic system. Most of these parameter values are taken from the measured data from Pyramid Lake 

obtained by Benson and Paillet (2002). The surface water temperature affects isotopic fractionation 

both between water vapor and surface water (T=14.2ºC) and between carbonate precipitates and host 

water (T=22ºC)17. Evaporation and on-lake precipitation rates are 135 and 12.5 cm yr-1, respectively. 

                                                 
17 Carbonate precipitation usually occurs in late summer and early fall while water evaporation occurs perennially. Annual mean 

temperature value is taken from measured data from Pyramid Lake [Benson and Paillet, 2002]. 
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Relative humidity and wind speed are 53% and 3.57 m s-1, respectively. adf  is the fraction of advected 

water vapor in the boundary layer overlying lake surface, ranging from 0.1 to 0.3. 

A2.5 Model Results 

The δ18OC record can be approximately divided into three intervals according to variations in the δ18OC 

value (see Figure A2-4). The average δ18OC values in the interval from 1000BC to 400AD, from 400AD 

to 1000AD, and from 800AD to 1900 AD are –1.22, –4.48, and –5.29 (‰, PDB). Assuming that 

steady-state δ18OL values in these three intervals are close to the average δ18OC values, the long-term 

average δ18OR value can be approximated with the linear function LR δδ 05.114.13 +−=  (for fad=0.1, 

see Figure A2-3A). For example, the average δ18OC value of the Walker Lake record (1990-2000AD) 18 

is -0.26 ‰, (PDB) and the calculated δ18OR value is –13.4 ‰ (SMOW), which is very close to the δ18OR 

value of -13.6 ‰, (SMOW) observed at the Wabuska during the period from 1985 to 1994. Noting that 

the calculated δ18OR values for stream water listed in Table A2-1 are long-term mean (LTM) values only 

for reconstruction purpose since the isotopic fractionation varies with a potential shift of down-core 

carbonate phase. 

                                                 
18 In comparison with the boxcore record WLB-003C in Figure 5-1, there is a 5-10 year loss of WLC-002 at the topmost 

section of the core.  
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Figure A2-4. The TIC δ18OC record from Walker Lake divided into three stages with distinctive average 
δ18OC values. These isotopic values are used to infer δ18OR in corresponding stages. 
 
 
Table A2-1 Input data and parameter values for reconstruction of the Walker Lake levels during the 
past 3,000 years 

 
Input Data 

Interval A 
(1000BC-400AD) 

Interval B 
(400AD-1000AD)

Interval C 
(1000-1900AD) 

Carbonates19 
(‰, PDB) 

-1.22 -4.48 -5.29  
δ18O 

Steam Water20 
(‰, SMOW) 

-14.4 -17.8 -18.7 

adf  0.1 0.1 0.1 

RH (%) 53 53 53 
T (ºC) 14.2 14.2 14.2 
E (cm yr-1) 135 135 135 Pa

ra
m

et
er

s 

P (cm yr-1) 12.5 12.5 12.5 
 

                                                 
19 Average δ18O values indicated in Figure 5-4. 
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The reconstruction-modeling program was run separately in the three intervals. The smoothed 

(the 3-point running average) δ18OC record is the primary input variable for the reconstruction model. 

Reconstruction of lake level starts on the latest interval, Interval C (1000 AD-1900AD), as the Walker 

Lake level in ~1900 AD is known. The reconstruction model applies the parameter values listed in 

Table A2-1 and was run three times using a δ18OR value equal or close to the average δ18OR calculated (-

18.7 ‰, SMOW). The model outputs three slightly different curves of lake elevation over the last 1,000 

years (Figure A2-5A). All three curves match well with the historical (1900-2000AD) lake level record 

of Walker Lake. However, their initial lake elevations are a little different (1216 ± 8 m). The δ18OR value 

is sensitive to the reconstruction modeling.  Here the midpoint elevation of 1216 m is picked for 

reconstruction of Interval B (400AD-1000AD). The model also was run three times and generated 

three reconstructed elevation curves of Walker Lake during 400-1000AD. The lake elevation in 400AD 

is reconstructed to be 1214 ± 8 m (Figure A2-5B). Since the lake level in 1000AD is reconstructed with 

± 8 m uncertainty, the reconstructed lake level at 400AD has ± 16 m uncertainties. In the third interval 

the model was run three times and produced the lake level curves shown in Figure A2-5C. The lake 

elevation in 1000BC is reconstructed to be 1252 ± 14 m. As the lake level in 400AD has ± 16 m 

uncertainty, the maximum uncertainty of lake elevation in 1000BC is ± 30 m. Therefore, a continuous 

lake elevation record of the late Holocene Walker Lake is produced merging the reconstruction results 

presented in Figure A2-5A, A2-5B, and A2-5C.  

                                                                                                                                                 
20 Calculated through equation: lakestream δδ 05.114.13 +−=  for fad =0.1.  
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Figure A2-5. A) Reconstructed lake level elevation of Walker Lake for the period of 1000 to 2000AD 
using the reconstruction model and the inferred LTM value of δ18OR. B) Reconstructed lake level 
elevation of Walker Lake for the period of 400 to 1000AD using the reconstruction model and the 
inferred LTM value of δ18OR. C) Reconstructed lake level elevation of Walker Lake for the period of 
1000BC to 400AD using the reconstruction model and the inferred LTM value of δ18OR. 
 
A2.6 Validation 
A2.6.1 Walker River Discharge  
Change in lake level of a closed-basin lake is a function of the amount of river discharge, evaporation, 

and on-lake precipitation. Change in lake level of Walker Lake can be simulated by assuming fixed 

mean annual values of evaporation (1.35 m) and on-lake precipitation (0.125 m). The Walker River 

discharge can also be estimated based on changes in lake elevation. On the basis of the reconstructed 

lake level record, continuous river discharge record for the Walker River is reconstructed (Figure A2-

6A), assuming constant rates of on-lake precipitation and evaporation over the late Holocene. In 

Walker Lake, a continuous annual river flow record of the Walker River back to 1944 and a lake level 

record of Walker Lake back to 1861 have been documented (USGS). A 9-point-average historical river 
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flow21 of the Walker River is consistent in general with that calculated from the reconstructed lake 

elevation record (Figure A2-6B).  

         The tree-ring based river flow record of the Sacramento River is compared with the δ18OC-based 

river flow record of the Walker River (Figure A2-7). The intervals that show apparent correlation 

between these two reconstructed river flow records are not unexpected as historical stream flow 

records on both sides of the Sierra Nevada exhibit strong positive correlation (BENSON et al., 2002). 

However, the δ18OC-based river flow record of the Walker River clearly indicates that the climate in this 

region was relatively wet during the MWE relative to the LIA. This feature is opposite to the tree-ring 

based river flow record of the Sacramento River.    
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Figure A2-6. A) Reconstructed lake level elevation of Walker Lake and stream discharge of the Walker 
River during the late Holocene (3,000). B) Comparison of reconstructed and observed river discharge 
(USGS) records of the Walker River during the historic interval (1860-2000). 

                                                 
21 River flow record was taken from Milne’s (1987) for the interval of 1871 though 1920 and from USGS statistic data for the 

interval of 1921 through 2000. 
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Figure A2-7. Comparing the reconstructed river flow record of the Walker River with the tree-ring 
based river flow record of the Sacramento River. 
 
A2.6.2 Oxygen Isotopes  
The reconstructed lake level record of Walker Lake is produced through the approach described in 

section A2.3, in which the model assumes that the lake is isotopically homogeneous. In fact, most 

closed-basin lakes, including Walker Lake, are limnologically stratified in summer and early fall and 

overturned in winter and early spring. However, isotopic modeling experiments indicate that the 

thermal-structure of the lake affects the δ18OL value only on yearly timescales (see Chapter 2). To 

validate the results produced by the reconstruction model, HIBAL is used to generate a δ18OM record 

of the lake carbonate using the reconstructed stream flow record of the Walker River. 
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Figure A2-8. A) Comparing the HIBAL δ18OM record with the measured down-core TIC δ18OC record 
based on the reconstructed river flow of the Walker River. B) Comparing the HIBAL model-derived 
δ18O record with the measured down-core TIC δ18OC record based on the measured river flow of the 
Walker River. 
  

        Because HIBAL requires lunar monthly meteorological and limnological parameter data, the 

results of measurements of these parameters from Pyramid Lake listed in Table 2-1 were used. The 

δ18OM record is generated separately due to substantial variations in LTM δ18OR values of the Walker 

River water, using fixed mean annual values of evaporation (1.35 m), on-lake precipitation (0.125 m), 

and adf (0.1). In the historical (1870-2000) interval, the Walker River probably experienced large 

changes in the δ18OR value. The mean value of δ18OR measured in a period of 1985 through 1994 is –

13.6 ‰ (SMOW) and may be not representative of the historical δ18OR values of the Walker River since 

the results from running HIBAL suggest that the δ18OM values of the historical interval would reach 

~10 ‰, (PDB) if a  –13.6 (‰) value of δ18OR was assigned. Using the same δ18OR value (-18.7 ‰) of 

river flow that is assigned for lake level reconstruction for the last 1000 years, two δ18O curves were 

generated using the reconstructed and actual river flow records (Figure A2-8A and Figure A2-8B). Both 
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δ18OM curves are in good agreement with the δ18OC record extracted from down-core (WLC-002) 

carbonate sediments. In addition, the HIBAL δ18OM results derived from the actual river flow data 

(USGS) captures two negative δ18O excursions that occurred in the El Niño wet years of 1982/83 and 

1997/98.  
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Figure A2-9. A) Comparing the HIBAL δ18OM record with the measured down-core TIC δ18OC record 
based on the reconstructed river flow of the Walker River spanning 1000 to 1900 AD. B) Comparing 
the HIBAL δ18OM record with the measured down-core TIC δ18OC record based on the reconstructed 
river flow of the Walker River spanning 400 to 1000 AD. C) Comparing the HIBAL δ18OM record with 
the measured down-core TIC δ18OC record based on the reconstructed river flow of the Walker River 
spanning 1000BC to 400 AD.  
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         For the intervals from 1000 to 1900AD, from 400 to 1000AD, and from 1000BC to 400AD, the 

LTM δ18OR values of the Walker River are the same as those that are assigned for lake level 

reconstruction (-18.7, -17.8, and -14.4, respectively). HIBAL runs separately in these intervals, using the 

reconstructed river discharge data. The HIBAL δ18OM records are compared with the original δ18OC 

record (see Figure A2-9A, Figure A2-9B, and Figure A2-9C). The HIBAL δ18OC record closely matches 

the late Holocene δ18OC record of Walker Lake (Figure A2-10A). This demonstrates that fluctuations in 

the river flow record of the Walker River are the primary contributor to the variations in the δ18OC 

signal preserved in down-core carbonate sediments. 
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Figure A2-10. A) Comparing the HIBAL δ18OC record with the measured down-core TIC δ18OC record 
based on the reconstructed river flow of the Walker River spanning 1000BC to 2000 AD. B) 
Reconstructed Walker River discharge record spanning 800 to 1900.  
 
 
A2.7 Discussion 
I have presented an isotopic modeling approach to reconstruction of lake levels of Walker Lake and 

demonstrated the ability of the model to recover the history of lake level changes both in the historical 
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interval and in the late Holocene. The reconstructed hydrological conditions have been used to simulate 

variations in the δ18O of down-core carbonate sediments through the model HIBAL. Results indicate 

that most variations in δ18OC extracted from down-core carbonate sediments can be ascribed to 

fluctuations in stream discharge. In addition, the δ18OR value is also an important factor that affects the 

δ18OL value. The LTM δ18OR value can be inferred from the δ18OC record of Walker Lake. Since the 

mineralogical phase of carbonate precipitates may vary from the early stage (1000BC-400AD) to the 

late one (400-2000AD) and the isotopic fractionation is related to carbonate phases, the average δ18OC 

value of bulk carbonate sediments is a composite result of δ18OR, hydrological conditions, and isotopic 

fractionations. Therefore, the calculated LTM δ18OR value (-14.4 ‰) in the interval of 1000BC-400AD 

does not necessarily represent the actual δ18OR value of the Walker River. However, this LTM δ18OR 

value proves to be useful in δ18OC-based lake level reconstruction.  

         The reconstructed lake level record is consistent in shape with the tufa chronology (BENSON and 

THOMPSON, 1987) in which Walker Lake was in a relatively high stand 3000 years ago, in a relatively 

low stand between 2000-1000 years ago, and desiccated 22 at ~850 AD, and then refilled and reached 

the highest lake stands during the late Holocene. This δ18OC-infered desiccation of Walker Lake in 

~850 is remarkably in agreement with the results from salt accumulation calculations (ANTEVS, 1952). 

However, this rapid refilling beginning in ~900AD signaled a wet climate during the MWE in the 

Walker Lake Basin (Figure A2-10B). This finding is opposite to tree stump data (STINE, 1994) and the 

tree-ring based river flow record of the Sacramento River (MEKO et al., 2001). In fact, if the hydrologic 

variations in the tree-ring-based data of the Sacramento River are applied or scaled into the Walker 

River, the HIBAL model results suggest that the magnitudes of fluctuations in lake level and δ18OL are 

within 10 meters and 2 ‰, respectively (Figure A2-11). This is apparently not the case for Walker Lake 

over the last ~1000 years because variations in δ18OC are larger than 2 ‰.  

                                                 
22 It simply denotes the water depth of Walker Lake was less than 5 m then. 
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Figure A2-11. Modeled fluctuations in the Walker River discharge (panel A), Walker Lake level (panel 
B), and lake water δ18OL (panel C). Scaled annual Walker River discharge data (panel A) is based on the 
tree-ring-based Sacramento River flow (MEKO et al., 2001) and correlation of historic streamflow 
records (BENSON et al., 2002). Modeled Walker Lake elevations are inferred through a simple mass 
balance model (MILNE, 1987), assuming fixed rates of evaporation (135 cm per year) and on-lake 
precipitation (12.5 cm per year). The δ18OL data are modeled through HIBAL. Note that the magnitude 
of variations in δ18OL is within 2 ‰, which is far less than that of actual variations recorded and 
extracted. 

 

         Certainly, the isotopic reconstruction model is based on the assumption that the extracted 

downcore δ18OC signatures are representative to the δ18OL of host water when carbonates formed. 

Previous studies (SPENCER, 1977) suggested that monohydrocalcite is the dominant phase of carbonate 

precipitates today and subject to recrystallization (BENSON et al., 1991). More recent studies (JIMENEZ-

LOPEZ et al., 2001) suggested that recrystallization of monhydrocalcite would create anomalously low 

δ18OL signatures on carbonates that have not had the opportunity for further exchange with the 

surrounding medium. The pseudo-isotopic signatures may be preserved or entirely erased depending on 
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post-depositional processes and ambient media conditions (JIMENEZ-LOPEZ et al., 2001). Thus, 

question about whether the large variability of downcore δ18O in Walker Lake was induced by the 

climate or geochemical processes or simply a combination of the two remains. 

         If the δ18OC is representative to the δ18OL of host water when carbonates formed, then the 

reconstructed results are valid. Under this circumstances, the Walker Lake climate over the last 

millennium is characterized by wet MWE) and dry LIA. A climate regime shift probably occurred in 

~1440 AD. Recent observations indicate that the Walker Lake Basin received abnormal moisture 

during the recent two major El Niño events that occurred in the 1982/83 and 1997/98. In spite of the 

fact that the Walker Lake Basin sits at a hinge point with respect to the effects of the El Niño Southern 

Oscillation (ENSO), the inferred wet MWE climate of the Walker Lake Basin pinpoints strong ENSO-

like activity during the MWE in this region and highlights possible changes in the linkage between the 

low-frequency ENSO behavior and the Walker Lake Basin precipitation. In the following chapter, I will 

discuss the primary climatic frequency found from the δ18O record preserved in down-core carbonate 

sediments, and climatic and hydrologic variability in this region over the past millennium.  

         Lastly, the reconstructed results presented here are subject to modify or correct due to the 

complications of post-depositional geochemical processes and ambient conditions. Examination of 

downcore carbonate crystals is a useful excise, but it will not help much in interpretation of the isotopic 

results extracted. One possible solution is to examine the δD and δ18O of downcore organic matter like 

lipid.  
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APPENDIX 3 RESULTS OF MEASUREMENTS OF TOTAL INORGANIC 
CARBON, TOTAL CARBON, OXYGEN AND CARBON ISOTOPIC 

COMPOSITIONS 
 

A3.1 Box-core WLB-003C  
    Table A3-1 Geochemical and isotopic results of bulk sediments from box core WLB-003C  
 

Number 
Depth 
(mm) 

Age 
(Cal Yr)

TOC 
(wt %C) 

TIC 
(wt %C) 

δδ13C  
(‰) 

δδ18O  
(‰) 

3C0-5 2.5 2000.6 5.15 2.69 3.813 0.292 
3C5-10 7.5 1999.8 3.12 2.48 3.508 0.496 
3C10-15 12.5 1999.0 3.46 1.80 3.029 -1.183 
3C15-20 17.5 1998.1 2.94 1.67 3.273 -0.603 
3C20-25 22.5 1997.3 4.03 1.09 1.873 -3.194 
3C25-30 27.5 1996.5 4.46 1.12 2.381 -2.310 
3C30-35 32.5 1995.6 5.06 1.48 3.112 -1.108 
3C35-40 37.5 1994.8 5.01 1.50 3.210 -1.127 
3C40-45 42.5 1994.0 5.20 1.37 2.758 -1.481 
3C45-50 47.5 1993.1 5.25 1.63 3.032 -0.984 
3C50-55 52.5 1992.3 5.04 1.62 2.942 -1.440 
3C55-60 57.5 1991.5 4.75 1.38 2.532 -2.785 
3C60-65 62.5 1990.6 4.27 1.05 1.335 -3.765 
3C65-70 67.5 1989.8 3.11 1.95 3.093 -1.442 
3C70-75 72.5 1988.9 3.25 1.98 3.670 -1.122 
3C75-80 77.5 1988.1 3.45 0.97 1.619 -3.885 
3C80-85 82.5 1987.2 2.08 2.43 3.609 0.153 
3C85-90 87.5 1986.3 2.45 2.01 3.406 -0.569 
3C90-96 93.0 1985.4 2.91 1.80 3.427 -0.569 
3C96-101 98.5 1984.4 3.58 1.19 2.057 -1.860 
3C101-106 103.5 1983.6 4.50 1.11 2.071 -1.261 
3C106-111 108.5 1982.7 4.24 1.69 3.168 0.386 
3C111-116 113.5 1981.8 4.37 2.10 3.835 1.983 
3C116-121 118.5 1980.9 4.03 2.36 3.726 1.274 
3C121-126 123.5 1980.1 3.93 1.81 2.929 1.074 
3C126-131 128.5 1979.2 3.38 2.06 3.333 1.294 
3C131-136 133.5 1978.3 2.91 2.70 3.775 1.913 
3C136-141 138.5 1977.4 3.05 1.91 2.972 1.375 
3C141-147 144.0 1976.4 2.83 1.58 2.804 0.516 
3C147-153 150.0 1975.4 2.38 3.15 3.985 3.564 
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Number 
Depth 
(mm) 

Age 
(Cal Yr)

TOC 
(wt %C) 

TIC 
(wt %C) 

δδ13C  
(‰) 

δδ18O  
(‰) 

3C153-158 155.5 1974.4 3.12 3.12 3.909 3.137 
3C158-163 160.5 1973.5 3.51 2.17 3.408 2.149 
3C163-168 165.5 1972.6 -2.55 2.55 3.659 2.161 
3C168-173 170.5 1971.7 3.76 2.66 3.797 2.586 
3C173-178 175.5 1970.8 4.29 2.63 3.687 2.510 
3C178-183 180.5 1969.9 4.04 2.61 3.571 2.019 
3C183-188 185.5 1969.0 4.35 2.67 3.687 1.812 
3C188-193 190.5 1968.0 4.21 2.79 3.594 1.657 
3C193-198 195.5 1967.1 3.92 3.11 3.801 2.028 
3C198-203 200.5 1966.2 4.47 2.74 3.727 1.821 
3C203-208 205.5 1965.3 4.61 2.30 3.535 1.375 
3C208-213 210.5 1964.4 5.06 1.96 2.993 1.195 
3C213-218 215.5 1963.4 4.73 2.15 3.112 1.744 
3C218-223 220.5 1962.5 3.89 3.00 3.533 2.249 
3C223-228 225.5 1961.6 3.82 3.13 3.590 2.568 
3C228-233 230.5 1960.6 4.24 3.12 3.652 2.806 
3C233-238 235.5 1959.7 3.98 3.18 3.634 2.746 
3C238-243 240.5 1958.8 4.57 2.03 3.038 1.158 
3C243-248 245.5 1957.8 4.19 2.34 3.271 1.958 
3C248-253 250.5 1956.9 3.30 3.03 3.398 2.550 
3C253-258 255.5 1955.9 3.25 3.38 3.605 2.988 
3C258-263 260.5 1955.0 3.26 2.99 3.268 2.634 
3C263-268 265.5 1954.0 3.15 2.89 3.072 2.546 
3C268-273 270.5 1953.1 3.01 3.24 3.415 2.639 
3C273-278 275.5 1952.1 3.07 3.46 3.456 2.626 
3C278-283 280.5 1951.2 3.25 3.18 3.304 2.267 
3C283-288 285.5 1950.2 2.88 3.43 3.390 2.194 
3C288-293 290.5 1949.2 2.64 3.89 3.481 2.485 
3C293-298 295.5 1948.3 2.64 3.40 3.364 2.320 
3C298-303 300.5 1947.3 2.22 3.85 3.415 2.317 
3C303-308 305.5 1946.3 2.12 4.26 3.440 2.404 
3C308-313 310.5 1945.3 2.36 3.59 3.361 2.037 
3C313-318 315.5 1944.4 2.38 3.55 3.278 1.695 
3C318-323 320.5 1943.4 2.43 3.42 3.169 1.492 
3C323-328 325.5 1942.4 2.39 3.51 3.224 1.362 
3C328-333 330.5 1941.4 2.50 3.46 3.041 0.983 
3C333-338 335.5 1940.4 2.55 3.58 3.157 0.907 
3C338-343 340.5 1939.4 2.43 3.74 3.224 1.012 
3C343-348 345.5 1938.4 2.42 3.84 3.256 1.058 
3C348-353 350.5 1937.4 2.36 4.07 3.234 1.218 
3C353-358 355.5 1936.4 2.35 4.09 3.249 1.402 
3C358-363 360.5 1935.4 2.20 4.01 3.224 0.765 
3C363-368 365.5 1934.4 2.32 3.67 3.132 0.020 
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Number 
Depth 
(mm) 

Age 
(Cal Yr)

TOC 
(wt %C) 

TIC 
(wt %C) 

δδ13C  
(‰) 

δδ18O  
(‰) 

3C368-373 370.5 1933.4 2.13 3.64 3.004 -0.988 
3C373-378 375.5 1932.4 1.95 3.61 2.870 -1.518 
3C378-383 380.5 1931.4 1.98 2.93 2.720 -1.901 
3C383-388 385.5 1930.4 1.86 2.91 2.642 -2.412 
3C388-393 390.5 1929.4 1.79 2.73 2.706 -2.260 
3C393-396 394.5 1928.5 2.03 2.67 2.391 -2.452 

 
 

Table A4-2 Stable isotopic results of ostracode shells (L. ceriotuberosa) from box core WLB-
003C 

Number 
Depth  
(mm) 

Age 
(Cal. Yr) 

δδ13C  
(‰) 

δδ18O  
(‰) 

1 10 1999.4 1.036 1.091 
2 25 1996.9 -0.359 3.529 
3 35 1995.2 -0.368 4.706 
4 45 1993.6 -0.031 4.915 
5 55 1991.9 0.440 5.804 
6 65 1990.2 -0.100 3.936 
7 75 1988.5 0.490 5.370 
8 85 1986.8 -0.305 0.783 
9 96 1984.9 -0.320 2.631 
10 106 1983.1 0.366 -0.493 
11 116 1981.4 0.057 7.259 
12 126 1979.6 0.169 5.679 
13 136 1977.9 -0.735 3.350 
14 147 1975.9 -0.308 6.028 
15 158 1973.9 -0.125 6.273 
16 168 1972.1 -0.010 9.433 
17 178 1970.3 0.016 8.100 
18 188 1968.5 0.126 6.842 
19 198 1966.7 0.120 6.356 
20 208 1964.8 -0.358 8.411 
21 218 1963.0 0.454 8.580 
22 228 1961.1 -0.442 5.448 
23 238 1959.2 -0.371 5.543 
24 248 1957.4 -0.457 6.101 
25 258 1955.5 -0.472 6.420 
26 268 1953.6 -0.917 7.244 
27 278 1951.6 -0.843 7.642 
28 288 1949.7 -1.051 9.046 
29 298 1947.8 -0.569 10.552 
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Number 
Depth  
(mm) 

Age 
(Cal. Yr) 

δδδδ13C  
(‰) 

δδδδ18O  
(‰) 

30 308 1945.8 -0.705 3.425 
31 318 1943.9 -1.032 3.401 
32 328 1941.9 -0.663 3.455 
33 338 1939.9 -0.558 1.527 
34 348 1937.9 -0.829 2.843 
35 358 1935.9 -0.987 2.157 
36 368 1933.9 -1.407 1.508 
37 378 1931.9 -1.785 0.331 
38 388 1929.9 -1.855 0.453 
39 395 1928.4 -1.822 1.016 

 

A3.2 Piston Core WLC002 
Table A3-3 Geochemical and isotopic results of bulk sediments from piston core WLC002 

Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δ13C  
(‰) 

δδ18O  
(‰) 

2-5-0-1 0.5 2.12 17.67 3.619 -0.904 
2-5-1-2 1.5 1.84 15.33 3.533 -0.534 
2-5-2-3 2.5 2.04 17.00 3.621 -0.268 
2-5-3-4 3.5 2.12 17.67 3.917 0.665 
2-5-4-5 4.5 2.20 18.33 3.991 1.680 
2-5-5-6 5.5 2.42 20.17 3.855 2.097 
2-5-6-7 6.5 1.60 13.33 3.153 0.530 
2-5-7-8 7.5 1.69 14.08 3.225 0.866 
2-5-8-9 8.5 2.43 20.25 3.691 1.962 
2-5-9-10 9.5 2.82 23.50 4.008 3.497 
2-5-10-11 10.5 2.94 24.50 3.895 3.286 
2-5-11-12 11.5 1.95 16.25 3.376 1.831 
2-5-12-13 12.5 2.40 20.00 3.516 1.978 
2-5-13-14 13.5 2.32 19.33 3.466 1.842 
2-5-14-15 14.5 2.25 18.75 3.397 1.274 
2-5-15-16 15.5 2.99 24.92 3.609 2.603 
2-5-16-17 16.5 2.78 23.17 3.459 2.523 
2-5-17-18 17.5 3.04 25.33 3.426 2.844 
2-5-18-19 18.5 2.78 23.17 3.234 2.344 
2-5-19-20 19.5 2.88 24.00 3.271 2.049 
2-5-20-21 20.5 2.90 24.17 3.206 1.988 
2-5-21-22 21.5 3.56 29.67 3.241 2.180 
2-5-22-23 22.5 3.83 31.92 3.350 2.272 
2-5-23-24 23.5 3.57 29.75 3.269 1.671 
2-5-24-25 24.5 3.63 30.25 3.362 1.429 
Number Depth TIC CaCO3 δ13C  δδ18O  
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(cm)  (wt % C) (%) (‰) (‰) 
2-5-25-26 25.5 3.46 28.83 3.132 0.346 
2-5-26-27 26.5 3.68 30.67 3.058 -0.507 
2-5-27-28 27.5 3.53 29.42 2.896 -1.542 
2-5-28-29 28.5 2.74 22.83 2.760 -2.284 
2-5-29-30 29.5 2.21 18.42 2.738 -2.611 
2-5-30-31 30.5 2.01 16.75 2.412 -3.337 
2-5-31-32 31.5 1.65 13.75 1.653 -3.835 
2-5-32-33 32.5 2.07 17.25 2.223 -3.199 
2-5-33-34 33.5 1.78 14.83 1.584 -3.724 
2-5-34-35 34.5 1.30 10.83 1.222 -4.026 
2-5-35-36 35.5 2.13 17.75 2.670 -2.636 
2-5-36-37 36.5 2.75 22.92 2.678 -2.431 
2-5-37-38 37.5 1.93 16.08 2.783 -2.626 
2-5-38-39 38.5 2.51 20.92 2.667 -2.822 
2-5-39-40 39.5 1.82 15.17 1.850 -3.942 
2-5-40-41 40.5 1.21 10.08 1.517 -5.124 
2-5-41-42 41.5 1.32 11.00 1.375 -5.235 
2-5-42-43 42.5 1.42 11.83 1.789 -4.844 
2-5-43-44 43.5 1.56 13.00 1.925 -4.542 
2-5-44-45 44.5 2.54 21.17 2.587 -3.853 
2-5-45-46 45.5 2.63 21.92 2.484 -4.042 
2-5-46-47 46.5 2.26 18.83 2.324 -4.310 
2-5-47-48 47.5 2.36 19.67 2.459 -4.552 
2-5-48-49 48.5 2.03 16.92 2.385 -4.630 
2-5-49-50 49.5 1.66 13.83 2.201 -5.207 
2-5-50-51 50.5 2.03 16.92 2.282 -4.718 
2-5-51-52 51.5 0.93 7.75 1.942 -5.378 
2-5-52-53 52.5 0.77 6.42 1.926 -5.664 
2-5-53-54 53.5 0.88 7.33 1.649 -5.615 
2-5-54-55 54.5 0.28 2.33 -2.263 -6.810 
2-5-55-56 55.5 0.51 4.25 -1.530 -6.642 
2-5-56-57 56.5 1.51 12.58 1.671 -5.195 
2-5-57-58 57.5 1.38 11.50 1.758 -4.927 
2-5-58-59 58.5 1.88 15.67 2.462 -4.533 
2-5-59-60 59.5 1.53 12.75 1.465 -5.657 
2-5-60-61 60.5 1.74 14.50 2.562 -4.923 
2-5-61-62 61.5 1.03 8.58 1.186 -5.609 
2-5-62-63 62.5 1.37 11.42 1.713 -5.319 
2-5-63-64 63.5 2.34 19.50 2.589 -4.299 
2-5-64-65 64.5 2.36 19.67 2.592 -4.188 
2-5-65-66 65.5 1.89 15.75 2.512 -4.510 
2-5-66-67 66.5 1.04 8.67 0.688 -5.873 
2-5-67-68 67.5 1.12 9.33 1.258 -5.608 
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Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-5-68-69 68.5 1.45 12.08 1.903 -5.568 
2-5-69-70 69.5 0.27 2.25 -3.903 -6.905 
2-5-70-71 70.5 0.30 2.50 -2.684 -6.676 

Gap       
2-4-0-1 79.5 2.63 21.92 3.428 -3.418 
2-4-1-2 80.5 2.23 18.58 3.363 -3.524 
2-4-2-3 81.5 2.42 20.17 3.432 -3.707 
2-4-3-4 82.5 2.47 20.58 3.424 -4.125 
2-4-4-5 83.5 3.06 25.50 3.790 -4.183 
2-4-5-6 84.5 2.58 21.50 3.317 -4.364 
2-4-6-7 85.5 2.22 18.50 3.037 -4.206 
2-4-7-8 86.5 2.92 24.33 3.561 -4.190 
2-4-8-9 87.5 2.53 21.08 3.107 -4.335 
2-4-9-10 88.5 2.23 18.58 3.361 -4.447 
2-4-10-11 89.5 2.37 19.75 3.134 -4.808 
2-4-11-12 90.5 3.42 28.50 3.163 -4.658 
2-4-12-13 91.5 2.86 23.83 2.788 -4.886 
2-4-13-14 92.5 0.13 1.08 -2.754 -6.269 
2-4-14-15 93.5 0.17 1.42 -4.155 -7.162 
2-4-15-16 94.5 0.50 4.17 0.205 -6.155 
2-4-16-17 95.5 0.87 7.25 1.814 -5.825 
2-4-17-18 96.5 1.01 8.42 1.186 -6.059 
2-4-18-19 97.5 1.38 11.50 2.920 -5.269 
2-4-19-20 98.5 0.66 5.50 0.780 -5.582 
2-4-20-21 99.5 1.28 10.67 2.603 -4.341 
2-4-21-22 100.5 2.07 17.25 3.317 -4.094 
2-4-22-23 101.5 1.81 15.08 2.875 -4.287 
2-4-23-24 102.5 2.02 16.83 3.424 -4.330 
2-4-24-25 103.5 2.37 19.75 3.572 -4.319 
2-4-25-26 104.5 2.07 17.25 3.190 -4.546 
2-4-26-27 105.5 1.26 10.50 2.692 -5.248 
2-4-27-28 106.5 1.36 11.33 2.168 -5.381 
2-4-28-29 107.5 2.18 18.17 3.168 -4.622 
2-4-29-30 108.5 2.38 19.83 3.697 -4.778 
2-4-30-31 109.5 2.08 17.33 3.342 -4.904 
2-4-31-32 110.5 2.05 17.08 3.589 -4.925 
2-4-32-33 111.5 2.58 21.50 3.476 -4.693 
2-4-33-34 112.5 2.30 19.17 3.486 -4.834 
2-4-34-35 113.5 2.23 18.58 3.421 -4.872 
2-4-35-36 114.5 1.80 15.00 3.024 -5.072 
2-4-36-37 115.5 1.96 16.33 3.435 -4.846 
2-4-37-38 116.5 1.93 16.08 3.587 -4.177 
2-4-38-39 117.5 1.61 13.42 2.943 -3.493 
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Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-4-39-40 118.5 2.75 22.92 3.842 -2.760 
2-4-40-41 119.5 1.88 15.67 2.895 -3.162 
2-4-41-42 120.5 1.10 9.17 2.032 -4.236 
2-4-42-43 121.5 1.34 11.17 3.073 -4.193 
2-4-43-44 122.5 0.70 5.83 1.472 -4.448 
2-4-44-45 123.5 1.81 15.08 2.928 -2.490 
2-4-45-46 124.5 1.56 13.00 3.455 -3.109 
2-4-46-47 125.5 2.24 18.67 3.836 -2.637 
2-4-47-48 126.5 2.64 22.00 3.417 -3.366 
2-4-48-49 127.5 2.67 22.25 3.818 -2.595 
2-4-49-50 128.5 1.96 16.33 3.355 -3.710 
2-4-50-51 129.5 2.14 17.83 3.207 -3.341 
2-4-51-52 130.5 1.30 10.83 2.802 -3.975 
2-4-52-53 131.5 1.76 14.67 3.395 -3.421 
2-4-53-54 132.5 1.96 16.33 3.710 -3.193 
2-4-54-55 133.5 1.79 14.92 3.227 -3.474 
2-4-55-56 134.5 2.34 19.50 3.305 -3.228 
2-4-56-57 135.5 2.28 19.00 3.202 -3.256 
2-4-57-58 136.5 2.12 17.67 3.135 -3.503 
2-4-58-59 137.5 2.79 23.25 3.334 -3.093 
2-4-59-60 138.5 2.09 17.42 2.279 -4.717 
2-4-60-61 139.5 2.32 19.33 2.823 -4.904 
2-4-61-62 140.5 3.31 27.58 2.945 -4.915 
2-4-62-63 141.5 1.78 14.83 2.555 -5.561 
2-4-63-64 142.5 1.91 15.92 2.519 -5.781 
2-4-64-65 143.5 1.76 14.67 2.525 -5.612 
2-4-65-66 144.5 1.26 10.50 2.377 -5.855 
2-4-66-67 145.5 0.94 7.83 1.745 -6.792 
2-4-67-68 146.5 1.17 9.75 2.134 -6.129 
2-4-68-69 147.5 1.80 15.00 2.598 -5.877 
2-4-69-70 148.5 1.61 13.42 2.372 -5.983 
2-4-70-71 149.5 1.70 14.17 2.567 -5.975 
2-4-71-72 150.5 1.56 13.00 2.411 -5.737 
2-4-72-73 151.5 1.04 8.67 1.308 -5.474 
2-4-73-74 152.5 1.33 11.08 2.750 -4.764 
2-4-74-75 153.5 2.48 20.67 3.201 -4.320 
2-4-75-76 154.5 1.31 10.92 1.593 -5.295 
2-4-76-77 155.5 0.84 7.00 0.339 -6.130 
2-4-77-78 156.5 1.04 8.67 1.598 -5.775 
2-4-78-79 157.5 1.54 12.83 1.375 -5.477 
2-4-79-80 158.5 1.68 14.00 2.826 -5.189 
2-4-80-81 159.5 1.99 16.58 2.795 -5.091 
2-4-81-82 160.5 2.01 16.75 2.624 -5.243 



  - 149 -

Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-4-82-83 161.5 2.03 16.92 2.657 -5.400 
2-4-83-84 162.5 2.13 17.75 2.738 -5.317 
2-4-84-85 163.5 2.12 17.67 2.800 -5.603 
2-4-85-86 164.5 2.56 21.33 2.821 -5.583 
2-4-86-87 165.5 1.64 13.67 2.519 -6.065 
2-4-87-88 166.5 1.46 12.17 2.624 -6.449 
2-4-88-89 167.5 1.40 11.67 2.520 -6.656 
2-4-89-90 168.5 2.04 17.00 2.696 -6.459 
2-4-90-91 169.5 1.13 9.42 1.445 -6.731 
2-4-91-92 170.5 0.77 6.42 0.567 -7.100 
2-4-92-93 171.5 1.01 8.42 2.222 -6.232 
2-4-93-94 172.5 1.23 10.25 2.348 -5.902 
2-4-94-95 173.5 1.79 14.92 3.597 -5.105 
2-4-95-96 174.5 2.10 17.50 3.787 -5.181 
2-4-96-97 175.5 1.47 12.25 2.379 -5.699 
2-4-97-98 176.5 1.59 13.25 2.783 -5.426 
2-4-98-99 177.5 1.31 10.92 2.995 -5.598 
2-3-0-1 178.5 0.21 1.75 1.052 -6.144 
2-3-1-2 179.5 1.14 9.50 3.416 -4.847 
2-3-2-3 180.5 2.11 17.58 4.078 -4.458 
2-3-3-4 181.5 1.30 10.83 3.033 -4.778 
2-3-4-5 182.5 1.19 9.92 3.591 -4.999 
2-3-5-6 183.5 1.20 10.00 3.594 -5.299 
2-3-6-7 184.5 1.56 13.00 3.552 -5.218 
2-3-7-8 185.5 1.86 15.50 3.742 -4.960 
2-3-8-9 186.5 0.83 6.92 1.911 -5.359 
2-3-9-10 187.5 0.77 6.42 1.486 -6.322 
2-3-10-11 188.5 0.89 7.42 1.906 -6.024 
2-3-11-12 189.5 1.57 13.08 3.349 -4.675 
2-3-12-13 190.5 0.99 8.25 1.537 -5.532 
2-3-13-14 191.5 1.02 8.50 2.331 -5.082 
2-3-14-15 192.5 1.48 12.33 3.329 -4.292 
2-3-15-16 193.5 1.72 14.33 3.449 -4.278 
2-3-16-17 194.5 0.97 8.08 2.819 -4.545 
2-3-17-18 195.5 1.05 8.75 3.054 -4.280 
2-3-18-19 196.5 0.54 4.50 0.310 -5.403 
2-3-19-20 197.5 0.67 5.58 2.533 -3.760 
2-3-20-21 198.5 1.30 10.83 3.025 -2.631 
2-3-21-22 199.5 1.15 9.58 2.545 -3.108 
2-3-22-23 200.5 1.31 10.92 3.375 -2.822 
2-3-23-24 201.5 1.52 12.67 3.569 -2.811 
2-3-24-25 202.5 1.66 13.83 3.548 -2.899 
2-3-25-26 203.5 1.88 15.67 3.570 -2.813 
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Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-3-26-27 204.5 2.01 16.75 3.579 -2.733 
2-3-27-28 205.5 1.65 13.75 3.458 -3.132 
2-3-28-29 206.5 1.65 13.75 3.459 -3.294 
2-3-29-30 207.5 1.44 12.00 3.342 -3.246 
2-3-30-31 208.5 1.29 10.75 3.392 -3.496 
2-3-31-32 209.5 0.80 6.67 2.875 -4.261 
2-3-32-33 210.5 0.69 5.75 2.902 -4.421 
2-3-33-34 211.5 0.78 6.50 2.879 -4.194 
2-3-34-35 212.5 1.13 9.42 3.411 -3.943 
2-3-35-36 213.5 1.33 11.08 3.303 -3.889 
2-3-36-37 214.5 1.42 11.83 3.241 -3.946 
2-3-37-38 215.5 1.15 9.58 3.125 -4.277 
2-3-38-39 216.5 0.87 7.25 2.869 -4.605 
2-3-39-40 217.5 0.33 2.75 2.346 -5.320 
2-3-40-41 218.5 0.08 0.67 -9999 -9999 
2-3-41-42 219.5 0.90 7.50 3.218 -4.771 
2-3-42-43 220.5 1.41 11.75 3.068 -4.988 
2-3-43-44 221.5 1.03 8.58 2.814 -4.983 
2-3-44-45 222.5 0.85 7.08 2.758 -4.999 
2-3-45-46 223.5 1.30 10.83 2.872 -4.841 
2-3-46-47 224.5 1.21 10.08 2.807 -4.835 
2-3-47-48 225.5 1.21 10.08 2.910 -4.594 
2-3-48-49 226.5 1.44 12.00 2.761 -5.023 
2-3-49-50 227.5 1.59 13.25 3.030 -4.793 
2-3-50-51 228.5 0.96 8.00 2.602 -5.274 
2-3-51-52 229.5 1.65 13.75 2.913 -5.127 
2-3-52-53 230.5 2.19 18.25 3.081 -4.798 
2-3-53-54 231.5 1.77 14.75 2.888 -4.841 
2-3-54-55 232.5 1.39 11.58 2.736 -5.245 
2-3-55-56 233.5 1.34 11.17 2.750 -5.445 
2-3-56-57 234.5 1.46 12.17 2.811 -5.537 
2-3-57-58 235.5 1.69 14.08 2.951 -5.315 
2-3-58-59 236.5 1.42 11.83 2.741 -5.500 
2-3-59-60 237.5 1.18 9.83 2.573 -5.886 
2-3-60-61 238.5 0.94 7.83 2.493 -6.071 
2-3-61-62 239.5 0.61 5.08 2.471 -5.969 
2-3-62-63 240.5 1.04 8.67 2.684 -6.004 
2-3-63-64 241.5 0.26 2.17 2.399 -6.336 
2-3-64-65 242.5 0.32 2.67 2.442 -6.324 
2-3-65-66 243.5 1.34 11.17 2.509 -6.171 
2-3-66-67 244.5 0.92 7.67 2.500 -6.082 
2-3-67-68 245.5 0.71 5.92 2.264 -6.213 
2-3-68-69 246.5 0.67 5.58 2.539 -5.981 
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Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-3-69-70 247.5 0.32 2.67 2.455 -5.866 
2-3-70-71 248.5 0.00 0.00 -9999 -9999 
2-3-71-72 249.5 0.00 0.00 -9999 -9999 
2-3-72-73 250.5 0.00 0.00 -9999 -9999 
2-3-73-74 251.5 0.00 0.00 -9999 -9999 
2-3-74-75 252.5 0.00 0.00 -9999 -9999 
2-3-75-76 253.5 0.40 3.33 2.588 -5.125 
2-3-76-77 254.5 1.80 15.00 2.777 -4.993 
2-3-77-78 255.5 2.51 20.92 2.970 -4.256 
2-3-78-79 256.5 3.63 30.25 3.139 -3.439 
2-3-79-80 257.5 2.10 17.50 2.910 -4.057 
2-3-80-81 258.5 1.87 15.58 2.734 -5.048 
2-3-81-82 259.5 2.37 19.75 2.850 -4.567 
2-3-82-83 260.5 2.88 24.00 2.793 -4.478 
2-3-83-84 261.5 2.08 17.33 2.624 -4.689 
2-3-84-85 262.5 1.64 13.67 2.610 -4.870 
2-3-85-86 263.5 2.09 17.42 2.538 -5.207 
2-3-86-87 264.5 1.54 12.83 2.487 -5.935 
2-3-87-88 265.5 1.49 12.42 2.579 -5.501 
2-3-88-89 266.5 1.35 11.25 2.457 -6.032 
2-3-89-90 267.5 1.39 11.58 2.748 -5.420 
2-3-90-91 268.5 0.58 4.83 2.600 -5.695 
2-3-91-92 269.5 0.99 8.25 2.628 -5.712 
2-3-92-93 270.5 2.01 16.75 2.749 -6.016 
2-3-93-94 271.5 1.59 13.25 2.850 -5.438 
2-3-94-95 272.5 2.26 18.83 2.730 -5.172 
2-3-95-96 273.5 2.40 20.00 2.964 -5.204 
2-3-96-97 274.5 2.57 21.42 2.928 -5.248 
2-3-97-98 275.5 2.92 24.33 3.024 -5.082 
2-3-98-99 276.5 3.22 26.83 2.953 -4.859 
2-2-0-1 277.5 2.63 21.92 2.690 -5.213 
2-2-1-2 278.5 1.62 13.50 2.312 -5.854 
2-2-2-3 279.5 1.76 14.67 2.215 -6.824 
2-2-3-4 280.5 2.26 18.83 2.402 -6.265 
2-2-4-5 281.5 2.10 17.50 2.432 -6.311 
2-2-5-6 282.5 1.27 10.58 2.152 -7.299 
2-2-6-7 283.5 1.65 13.75 2.400 -6.898 
2-2-7-8 284.5 1.91 15.92 2.350 -6.819 
2-2-8-9 285.5 1.87 15.58 2.186 -6.428 
2-2-9-10 286.5 0.57 4.75 1.422 -7.439 
2-2-10-11 287.5 2.01 16.75 2.191 -6.899 
2-2-11-12 288.5 1.68 14.00 2.023 -6.916 
2-2-12-13 289.5 1.96 16.33 2.219 -6.856 
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Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-2-13-14 290.5 1.48 12.33 2.248 -6.948 
2-2-14-15 291.5 1.37 11.42 1.959 -7.410 
2-2-15-16 292.5 1.38 11.50 2.147 -6.950 
2-2-16-17 293.5 2.06 17.17 2.166 -6.898 
2-2-17-18 294.5 2.12 17.67 2.171 -7.119 
2-2-18-19 295.5 0.86 7.17 1.243 -7.639 
2-2-19-20 296.5 1.17 9.75 2.007 -7.412 
2-2-20-21 297.5 0.88 7.33 1.951 -7.277 
2-2-21-22 298.5 1.52 12.67 2.308 -6.333 
2-2-22-23 299.5 1.66 13.83 2.337 -6.339 
2-2-23-24 300.5 1.54 12.83 2.151 -6.066 
2-2-24-25 301.5 1.63 13.58 2.221 -5.600 
2-2-25-26 302.5 1.59 13.25 2.100 -6.018 
2-2-26-27 303.5 1.45 12.08 2.107 -5.342 
2-2-27-28 304.5 2.76 23.00 2.612 -5.112 
2-2-28-29 305.5 1.75 14.58 1.987 -5.674 
2-2-29-30 306.5 2.39 19.92 2.644 -5.264 
2-2-30-31 307.5 1.98 16.50 2.309 -5.557 
2-2-31-32 308.5 1.96 16.33 2.426 -5.405 
2-2-32-33 309.5 1.83 15.25 2.336 -5.795 
2-2-33-34 310.5 1.76 14.67 2.318 -5.751 
2-2-34-35 311.5 1.82 15.17 2.234 -6.295 
2-2-35-36 312.5 1.72 14.33 2.531 -5.887 
2-2-36-37 313.5 2.78 23.17 2.693 -5.949 
2-2-37-38 314.5 2.58 21.50 2.263 -6.374 
2-2-38-39 315.5 2.41 20.08 2.207 -6.329 
2-2-39-40 316.5 1.96 16.33 1.837 -6.954 
2-2-40-41 317.5 2.03 16.92 1.513 -7.031 
2-2-41-42 318.5 1.63 13.58 1.375 -7.315 
2-2-42-43 319.5 1.48 12.33 1.176 -7.913 
2-2-43-44 320.5 1.36 11.33 1.232 -8.095 
2-2-44-45 321.5 1.42 11.83 1.030 -8.556 
2-2-45-46 322.5 1.14 9.50 1.088 -8.231 
2-2-46-47 323.5 0.72 6.00 0.782 -8.311 
2-2-47-48 324.5 0.82 6.83 0.486 -8.157 
2-2-48-49 325.5 0.76 6.33 0.496 -8.434 
2-2-49-50 326.5 0.66 5.50 0.408 -8.417 
2-2-50-51 327.5 0.79 6.58 0.272 -8.450 
2-2-51-52 328.5 0.70 5.83 0.450 -8.448 
2-2-52-53 329.5 0.78 6.50 0.616 -8.334 
2-2-53-54 330.5 0.44 3.67 0.162 -8.123 
2-2-54-55 331.5 0.46 3.83 0.226 -8.306 
2-2-55-56 332.5 0.57 4.75 0.474 -8.212 
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Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-2-56-57 333.5 0.45 3.75 -0.041 -8.367 
2-2-57-58 334.5 0.29 2.42 -0.331 -8.173 
2-2-58-59 335.5 1.15 9.58 0.424 -8.256 
2-2-59-60 336.5 0.82 6.83 0.266 -7.799 
2-2-60-61 337.5 0.80 6.67 0.112 -8.101 
2-2-61-62 338.5 1.56 13.00 0.360 -8.532 
2-2-62-63 339.5 1.79 14.92 0.293 -9.180 
2-2-63-64 340.5 0.56 4.67 -0.346 -8.967 
2-2-64-65 341.5 0.75 6.25 0.348 -7.806 
2-2-65-66 342.5 1.64 13.67 0.749 -8.060 
2-2-66-67 343.5 1.56 13.00 0.649 -8.232 
2-2-67-68 344.5 1.40 11.67 0.675 -8.572 
2-2-68-69 345.5 1.88 15.67 0.797 -8.668 
2-2-69-70 346.5 1.88 15.67 0.920 -8.149 
2-2-70-71 347.5 1.72 14.33 0.921 -7.393 
2-2-71-72 348.5 2.29 19.08 0.850 -6.876 
2-2-72-73 349.5 1.77 14.75 0.560 -6.133 
2-2-73-74 350.5 1.74 14.50 0.322 -5.538 
2-2-74-75 351.5 1.75 14.58 -0.090 -5.588 
2-2-75-76 352.5 1.93 16.08 -0.412 -5.491 
2-2-76-77 353.5 2.03 16.92 -0.810 -5.608 
2-2-77-78 354.5 2.01 16.75 -0.530 -5.060 
2-2-78-79 355.5 1.63 13.58 -0.110 -5.195 
2-2-79-80 356.5 1.66 13.83 0.461 -4.703 
2-2-80-81 357.5 1.61 13.42 -0.097 -4.527 
2-2-81-82 358.5 1.98 16.50 -0.651 -4.800 
2-2-82-83 359.5 2.08 17.33 -0.862 -5.795 
2-2-83-84 360.5 2.00 16.67 -0.276 -6.270 
2-2-84-85 361.5 2.40 20.00 0.625 -5.549 
2-2-85-86 362.5 1.81 15.08 0.638 -2.901 
2-2-86-87 363.5 1.86 15.50 0.791 -2.927 
2-2-87-88 364.5 1.81 15.08 0.590 -3.173 
2-2-88-89 365.5 1.79 14.92 0.545 -3.155 
2-2-89-90 366.5 1.92 16.00 1.260 -1.631 
2-2-90-91 367.5 1.93 16.08 0.397 -3.583 
2-2-91-92 368.5 2.02 16.83 0.288 -3.900 
2-2-92-93 369.5 2.06 17.17 -0.074 -4.842 
2-2-93-94 370.5 2.11 17.58 -0.069 -5.283 
2-2-94-95 371.5 2.20 18.33 0.418 -5.053 
2-2-95-96 372.5 2.17 18.08 0.913 -3.919 
2-2-96-97 373.5 2.22 18.50 1.101 -4.110 
2-2-97-98 374.5 2.28 19.00 1.563 -3.188 
2-2-98-99 375.5 2.20 18.33 1.090 -3.423 
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Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-2-99-100 376.5 2.30 19.17 0.920 -4.376 
2-1-0-1 377.5 2.31 19.25 1.455 -3.386 
2-1-1-2 378.5 2.11 17.58 1.619 -3.507 
2-1-2-3 379.5 2.26 18.83 1.468 -3.607 
2-1-3-4 380.5 2.20 18.33 1.648 -3.000 
2-1-4-5 381.5 2.46 20.50 1.833 -2.658 
2-1-5-6 382.5 2.14 17.83 1.614 -3.657 
2-1-6-7 383.5 2.43 20.25 1.717 -3.166 
2-1-7-8 384.5 2.24 18.67 1.720 -2.720 
2-1-8-9 385.5 2.24 18.67 1.724 -2.388 
2-1-9-10 386.5 2.36 19.67 1.712 -2.380 
2-1-10-11 387.5 2.20 18.33 1.599 -2.642 
2-1-11-12 388.5 2.11 17.58 1.411 -2.945 
2-1-12-13 389.5 2.12 17.67 1.350 -3.056 
2-1-13-14 390.5 2.03 16.92 1.335 -2.912 
2-1-14-15 391.5 2.06 17.17 1.035 -3.208 
2-1-15-16 392.5 2.06 17.17 1.108 -3.151 
2-1-16-17 393.5 2.16 18.00 1.188 -2.980 
2-1-17-18 394.5 2.04 17.00 1.126 -3.185 
2-1-18-19 395.5 2.06 17.17 1.048 -3.221 
2-1-19-20 396.5 2.05 17.08 0.795 -3.484 
2-1-20-21 397.5 2.05 17.08 0.381 -3.995 
2-1-21-22 398.5 1.98 16.50 0.597 -3.847 
2-1-22-23 399.5 1.90 15.83 0.588 -3.995 
2-1-23-24 400.5 1.90 15.83 0.560 -4.016 
2-1-24-25 401.5 1.81 15.08 0.841 -4.103 
2-1-25-26 402.5 2.10 17.50 1.265 -3.510 
2-1-26-27 403.5 1.82 15.17 1.447 -3.676 
2-1-27-28 404.5 1.81 15.08 2.036 -3.033 
2-1-28-29 405.5 1.81 15.08 2.226 -2.547 
2-1-29-30 406.5 1.90 15.83 2.287 -2.637 
2-1-30-31 407.5 1.99 16.58 2.344 -2.409 
2-1-31-32 408.5 1.96 16.33 2.421 -0.987 
2-1-32-33 409.5 1.58 13.17 1.907 -0.716 
2-1-33-34 410.5 1.88 15.67 1.912 -2.266 
2-1-34-35 411.5 1.87 15.58 2.298 -1.778 
2-1-35-36 412.5 1.80 15.00 2.165 -1.598 
2-1-36-37 413.5 1.72 14.33 1.821 -1.548 
2-1-37-38 414.5 1.68 14.00 1.779 -1.406 
2-1-38-39 415.5 1.37 11.42 1.868 -1.318 
2-1-39-40 416.5 1.53 12.75 1.920 -1.257 
2-1-40-41 417.5 1.68 14.00 2.220 -1.631 
2-1-41-42 418.5 1.84 15.33 2.007 -1.778 
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Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-1-42-43 419.5 1.59 13.25 2.155 -1.703 
2-1-43-44 420.5 1.51 12.58 2.449 -1.829 
2-1-44-45 421.5 1.71 14.25 2.689 -1.084 
2-1-45-46 422.5 1.65 13.75 2.233 -1.088 
2-1-46-47 423.5 1.50 12.50 1.665 -1.303 
2-1-47-48 424.5 1.37 11.42 1.520 -1.926 
2-1-48-49 425.5 1.56 13.00 0.932 -2.840 
2-1-49-50 426.5 1.49 12.42 1.773 -1.647 
2-1-50-51 427.5 1.69 14.08 1.791 -1.600 
2-1-51-52 428.5 1.72 14.33 1.685 -2.260 
2-1-52-53 429.5 1.54 12.83 2.107 -2.028 
2-1-53-54 430.5 2.32 19.33 3.062 -1.266 
2-1-54-55 431.5 1.78 14.83 3.120 -2.189 
2-1-55-56 432.5 1.92 16.00 3.190 -1.432 
2-1-56-57 433.5 2.07 17.25 2.860 -1.080 
2-1-57-58 434.5 1.97 16.42 2.546 -0.943 
2-1-58-59 435.5 1.83 15.25 2.579 -1.097 
2-1-59-60 436.5 1.59 13.25 2.597 -1.484 
2-1-60-61 437.5 1.50 12.50 2.619 -1.376 
2-1-61-62 438.5 1.41 11.75 2.254 -1.778 
2-1-62-63 439.5 2.59 21.58 1.979 -0.446 
2-1-63-64 440.5 2.17 18.08 2.520 -0.689 
2-1-64-65 441.5 2.29 19.08 1.805 -0.691 
2-1-65-66 442.5 2.48 20.67 2.564 -1.220 
2-1-66-67 443.5 2.02 16.83 2.651 -1.587 
2-1-67-68 444.5 2.01 16.75 2.730 -1.492 
2-1-68-69 445.5 2.21 18.42 2.694 -0.208 
2-1-69-70 446.5 2.09 17.42 2.431 0.319 
2-1-70-71 447.5 1.82 15.17 2.177 -0.408 
2-1-71-72 448.5 1.79 14.92 1.682 0.396 
2-1-72-73 449.5 3.15 26.25 1.306 0.802 
2-1-73-74 450.5 2.60 21.67 1.094 0.163 
2-1-74-75 451.5 2.62 21.83 1.279 0.729 
2-1-75-76 452.5 2.38 19.83 1.072 0.405 
2-1-76-77 453.5 3.34 27.83 1.266 0.653 
2-1-77-78 454.5 2.56 21.33 0.954 0.663 
2-1-78-79 455.5 1.84 15.33 0.719 -0.297 
2-1-79-80 456.5 2.38 19.83 0.744 -0.510 
2-1-80-81 457.5 2.39 19.92 1.218 -1.069 
2-1-81-82 458.5 1.85 15.42 1.400 -0.875 
2-1-82-83 459.5 3.12 26.00 1.536 -1.063 
2-1-83-84 460.5 1.38 11.50 1.365 -0.947 
2-1-84-85 461.5 2.40 20.00 1.498 -1.123 
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Number 
Depth 
(cm) 

TIC 
 (wt % C) 

CaCO3 
(%) 

δδ13C  
(‰) 

δδδδ18O  
(‰) 

2-1-85-86 462.5 3.69 30.75 1.508 -0.940 
2-1-86-87 463.5 2.71 22.58 1.389 -1.063 
2-1-87-88 464.5 2.89 24.08 1.273 -0.670 
2-1-88-89 465.5 1.76 14.67 1.173 -1.567 
2-1-89-90 466.5 2.98 24.83 1.349 -1.329 
2-1-90-91 467.5 2.91 24.25 1.415 -1.369 
2-1-91-92 468.5 3.43 28.58 1.342 -0.775 
2-1-92-93 469.5 0.28 2.33 0.157 -3.547 
2-1-93-94 470.5 0.83 6.92 0.836 -1.713 
2-1-94-95 471.5 1.37 11.42 0.975 -1.108 
2-1-95-96 472.5 1.41 11.75 1.198 -0.823 
2-1-96-97 473.5 2.00 16.67 1.558 -0.449 
2-1-97-98 474.5 1.07 8.92 1.699 -1.200 

 
A3.3 Piston Core WLC-001 
Table A3-4 Geochemical and isotopic results of bulk sediments from piston core WLC001 

Section Depth (cm) δ13C (‰) δ18O (‰) Section Depth (cm) δ13C (‰) δ18O (‰) 
1-6 35.5 2.503 -4.457 1-6 60.5 3.321 -4.484 
1-6 36.5 2.369 -4.894 1-5 61.5 3.578 -4.147 
1-6 37.5 2.256 -5.117 1-5 62.5 3.564 -3.687 
1-6 38.5 2.051 -5.432 1-5 63.5 3.530 -3.955 
1-6 39.5 1.798 -6.196 1-5 64.5 3.679 -4.078 
1-6 40.5 1.865 -6.171 1-5 65.5 3.680 -4.210 
1-6 41.5 0.929 -6.630 1-5 66.5 3.724 -4.322 
1-6 42.5 -0.489 -7.473 1-5 67.5 3.350 -4.254 
1-6 43.5 1.576 -6.348 1-5 68.5 3.006 -4.606 
1-6 44.5 1.828 -5.648 1-5 69.5 3.078 -4.985 
1-6 45.5 2.344 -5.188 1-5 70.5 3.244 -4.768 
1-6 46.5 2.422 -5.034 1-5 71.5 2.742 -5.292 
1-6 47.5 2.086 -4.683 1-5 72.5 3.053 -5.030 
1-6 48.5 2.804 -4.018 1-5 73.5 -6.176 -9.596 
1-6 49.5 2.476 -4.614 1-5 74.5 3.026 -3.945 
1-6 50.5 2.159 -5.627 1-5 75.5 2.893 -4.693 
1-6 51.5 1.116 -5.964 1-5 76.5 3.260 -4.767 
1-6 52.5 -4.493 -7.481 1-5 77.5 3.490 -4.599 
1-6 53.5 -1.287 -7.117 1-5 78.5 3.504 -4.727 
1-6 54.5 2.075 -5.217 1-5 79.5 3.709 -4.762 
1-6 55.5 2.113 -4.979 1-5 80.5 3.463 -5.056 
1-6 56.5 3.033 -4.561 1-5 81.5 3.447 -4.852 
1-6 57.5 3.198 -4.183 1-5 82.5 3.582 -4.802 
1-6 58.5 0.681 -5.599 1-5 83.5 3.936 -4.100 
1-6 59.5 1.111 -5.369 1-5 84.5 3.868 -3.797 

Note: Missing values are represented by –9999. 
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