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ABSTRACT 


 
 This dissertation consists of four independent yet related projects: 1) the 


petrology, geochemistry, and original tectonic setting of the Galice Formation, Klamath 


Mountains, Oregon-California; 2) the geochemistry, tectonic setting, and possible 


regional correlations of the Iron Mountain and Esmeralda Peaks units of the Ingalls 


ophiolite complex, central Cascades, Washington; 3)  the provance and original tectonic 


setting of sedimentary serpentinites and ophiolite breccias within the sedimentary rocks 


of the Ingalls ophiolite complex; and 4) geology, tectonics, and possible regional 


correlations of pre-Cenozoic rocks, central Cascades, Washington.  


 This research indicates that the Galice Formation represents continuous Late 


Jurassic deposition (Oxfordian-Kimmeridgian), within the Josephine backarc basin.  


Source areas for the Galice Formation included active Jurassic arcs, older Klamath 


terranes, and the North American craton. 


 The Early Jurassic Iron Mountain unit of the Ingalls ophiolite complex originated 


as a seamount within close proximity to an oceanic spreading ridge.  The Late Jurassic 


Esmeralda Peaks unit of the Ingalls ophiolite complex originated in a backarc basin that 


included a fracture zone.  The Iron Mountain unit is the rifted basement of the Esmeralda 


Peaks unit, and both units correlate to similar rocks within the Klamath Mountains. 


 Cr-spinel compositions, geochemistry, and petrography indicate that sedimentary 


serpentinites and ophiolite breccias within the Ingalls sedimentary rocks were locally 


derived.  These rocks were originally deposited in a Late Jurassic fracture zone. 


 The Manastash inlier consists of the Hereford Meadow amphibolite, Lookout 


Mountain Formation, Quartz Mountain stock, and Helena-Haystack mélange.  Hereford 







 v


Meadow amphibolite is, in part, a dismembered pre-Jurassic ophiolite that originated in a 


supra-subduction zone.  The Lookout Mountain Formation is Late Jurassic in age, had 


cratonic sources, and was originally located in the Klamath Mountains, Oregon-


California.  The Quartz Mountain stock is Late Jurassic in age, and the roots of an arc.  


The Helena-Haystack mélange is a major suture between Cascade terranes, and suggests 


that ~98 km of displacement has occurred along the Straight Creek fault. 


 The De Roux unit consists of metaigneous and metasedimentary rocks.  


Metaigneous rocks have calc-alkaline, within-plate, and mid-ocean ridge basalt affinities.  


The De Roux unit correlates with other Cascade mélanges.  
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"Rugged peaks of greenstone occur about the southern border of the Wenatchee 
Mountains, in intimate association with serpentine; some of these masses are 2 miles or 
more in diameter, while others are isolated peaks and crests but a few rods in 
circumference.  The structure is here highly complex, and it is evident that the 
greenstones have been greatly broken and displaced…" 
 


    I. C. Russell, 1900 
 
 
"The Peshastin and Hawkins formations are intricately mingled in some of the areas, 
making separation difficult in some cases and impossible, as far as mapping is 
considered, in others…" 
 


G. O. Smith, 1904 
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CHAPTER ONE 


INTRODUCTION 


  


This dissertation is a combination of several papers that are, at the time of this 


writing, in review or in press (chapter 2, 3, and 4).  Also presented in this dissertation are 


chapters that are not, at the time of this writing, published (chapters 5 and 6).  All of these 


studies relate to the Jurassic tectonic evolution of the North American Cordillera.  The 


four independent yet related projects are: 1) the petrology, geochemistry, and original 


tectonic setting of the Galice Formation, Klamath Mountains, Oregon-California; 2) the 


geochemistry, tectonic setting, and possible regional correlations of the Iron Mountain 


and Esmeralda Peaks units of the Ingalls ophiolite complex, central Cascades, 


Washington; 3)  the provance and original tectonic setting of sedimentary serpentinites 


and ophiolite breccias within the sedimentary rocks of the Ingalls ophiolite complex; and 


4) the geochemistry, geochronology, original tectonic setting, and possible regional 


correlations of the Manastash inlier, central Cascades, Washington.   


This research was addressed using a variety of geologic techniques: 1) detailed 


field mapping at a scale of 1:16,000; 2) whole-rock and trace element geochemistry; 3) 


Cr-spinel mineral chemistry; 4) thin section petrography; and 5) U-Pb age dating.  


Geochemical analyses were preformed by x-ray fluorescence and inductively coupled 


plasma mass spectrometry at the GeoAnalytical Laboratory, Washington State 


University, Pullman, Washington, and Union College, Schenectady, New York.  Cr-


spinels were analyzed using a JEOL 8900 electron microprobe at Binghamton University, 


Binghamton, New York, and a Cameca SX-100 microprobe at the Department of Earth 
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and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York.  U-Pb 


age dating was preformed with the sensitive high resolution ion microprobe reverse 


geometry (SHRIMP-RG), at the Stanford University-U. S. Geological Survey Micro 


Analysis Center, Palo Alto, California. 


The chapter on the Galice Formation, Klamath Mountains, OR-CA, includes a 


compilation and some reinterpretation of data from previous studies (Harper, 1980; 


Norman, 1984; Pinto-Auso and Harper, 1985; Wyld, 1985; Park-Jones, 1988; Seiders, 


1991; Miller et al., 2003), as well as new and unpublished data.  Geochemistry, sandstone 


petrography, Cr-spinel compositions, and detrital zircon U-Pb ages suggest that the 


provenance of the Galice Formation included Middle to Late Jurassic volcanic arcs, older 


terranes within the Klamath Mountains, and the North American craton.  They also 


indicate that Galice Formation deposition began shortly after the formation of the 


Josephine back-arc basin, and did not stop until closure of this basin by the Nevadan 


orogeny (Harper et al., 1994; Harper, 2006). Deposition of the Galice Formation may 


have began in a fore-arc setting (Harper, 2003a). 


The chapter on the Iron Mountain unit of the Ingalls ophiolite complex, central 


Cascades, Washington, involved detailed field mapping, as well as petrographic and 


geochemical interpretation.  Critical samples were studied in thin section, and 


geochemical analyses were plotted on tectonic discrimination diagrams.  This research 


also involved the collecting fossils for age dating by E. Pessagno, and J.S. Miller, (San 


José State University) data a rhyolite from this unit.  It was concluded that the Iron 


Mountain unit represents an Early Jurassic oceanic seamount that formed near an active 
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mid-ocean spreading ridge.  Also, this unit most likely represents the rifted basement to 


the Late Jurassic Esmeralda Peaks unit. 


The chapter on the Esmeralda Peaks unit, central Cascades, Washington, involved 


detailed field mapping, as well as petrographic and geochemical interpretation.  New and 


previous published fossil data (Miller et al., 1993) was combined with a new U-Pb age 


date from this unit (~161 Ma; Miller et al., 2003).  It was interpreted that this unit was a 


rift-edge facies, formed in a Late Jurassic back-arc basin after rifting of the Iron 


Mountain unit.  This back-arc basin also included an oceanic transform fault (Miller and 


Mogk, 1987).  The geology of the Iron Mountain and Esmeralda Peaks units were then 


correlated to other Jurassic ophiolites of the North American Cordillera.  These rock 


correlate very well with the Josephine ophiolite, Klamath Mountains, OR-CA, and its 


rifted basement the Rattlesnake Creek terrane.   


The chapter on the sedimentary serpentinites and ophiolite breccias, Ingalls 


sedimentary rocks, central Cascades, Washington, involves thin section petrography, Cr-


spinel compositions, and geochemistry.  The sedimentary petrography and Cr-Spinel 


compositions from the sedimentary serpentinites suggest that they were locally derived.  


The sedimentary petrography and geochemical affinity of clasts within ophiolite breccias 


suggest that they were also locally derived.  The association of sedimentary serpentinites 


and ophiolite breccias, petrography, Cr-spinel compositions, and breccia clast chemistry 


indicates a fracture zone setting for these deposits.  This interpretation supports Miller 


(1985), Miller and Mogk (1987) and Miller et al. (1993) interpretation that the Ingalls 


ophiolite complex originated in a fracture zone setting. 
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The chapter on the pre-Cenozoic rocks, central Cascades, Washington, involved 


detailed field mapping, petrography, geochemistry, and U-Pb age dating.  These 


numerous findings will only be summarized here, and chapter 6 should be consulted for 


details.  The Manastash inlier consists of the Hereford Meadow amphibolite, Lookout 


Mountain Formation, Quartz Mountain stock, and Helena-Haystack mélange.  The 


Hereford Meadow amphibolite, herein informally defined, in part represents a highly 


dismembered pre-Late Jurassic ophiolite that originated in a suprasubduction zone 


environment.  The Lookout Mountain Formation is Late Jurassic in age (~160 Ma), and 


may have originated in the Klamath Mountains, OR-CA.  The Quartz Mountain stock is 


Late Jurassic in age (~157 Ma), and along with other Late Jurassic arc rocks within 


Washington State, represents the out-board arc of the Late Jurassic Ingalls back-arc basin.  


This arc correlates with the Rogue-Chetco volcanic arc complex of the Klamath 


Mountains, OR-CA.  The tectonic complex of Stout (1964) correlates with the Helena-


Haystack mélange, is a major crustal suture, and has been dextrally faulted ~98 km south 


along the Eocene Straight Creek fault.  The De Roux unit consists of metaigneous and 


metasedimentary rocks.  Greenstones within this unit have a wide range of geochemical 


affinities.  The geochemical affinities and lithologies of this unit are most similar to the 


western mélange belt; but, this unit may correlate with other mélanges within the 


Washington Cascades. 
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CHAPTER TWO 


PETROLOGY, GEOCHEMISTRY, AND PROVENANCE OF THE GALICE 


FORMATION, KLAMATH MOUNTAINS, OREGON-CALIFORNIA 


 


ABSTRACT 


 


The Upper Jurassic Galice Formation of the Klamath Mountain, Oregon-


California, overlies the ~162 Ma Josephine ophiolite and the slightly younger Rogue-


Chetco volcanoplutonic arc complex.  The Galice Formation that overlies the Josephine 


ophiolite consists of a siliceous hemipelagic sequence that grades upward into a thick 


turbidite sequence.  Bedded hemipelagics and scarce sandstone, however, also occur 


within the Josephine ophiolite pillow basalts at several localities.  Corrected paleoflow 


current data suggest that the Galice Formation was derived predominantly from the east 


and north.   Detrital modes of sandstones from the Galice Formation indicate an arc 


source as well as a dominantly chert-argillite source with minor metamorphic rocks.  A 


sandstone located ~20 m below the top of the Josephine ophiolite has detrital modes and 


heavy mineral suites similar to the turbidite sandstones.  Detrital Cr-spinel compositions 


from the turbidite and intra-pillow sandstones are also similar, indicating supra-


subduction zone mantle peridotite and volcanic sources.  Published detrital zircon data 


from a turbidite sandstone gives a bimodal age distribution of 153 Ma, and ~227 Ma, and 


a minor Proterozoic component.  Whole-rock geochemistry from the intra-pillow 


sediments, hemipelagic sequence, and the turbidites suggest a mixture between mafic and 


cratonic sources.  It is suggested that the source area for the intra-pillow sediments, 
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hemipelagic sequence, and turbidites resulted from the mixing of arc and accreted 


terranes.  These data suggest that the source areas for the Galice Formation were already 


established by ~162 Ma, probably during a Middle Jurassic orogeny that predated 


formation of the Josephine basin. 


 


INTRODUCTION 


 


The Upper Jurassic Galice Formation occurs within the western Klamath terrane 


(western Jurassic belt) of the Klamath Mountains, Oregon-California (Fig. 1).  It consists 


predominantly of slate and lesser metasandstone, but volcanic (predominantly 


volcaniclastic) members are locally present.  The type section of the Galice Formation 


conformably overlies both the ~160 to 157 Ma Rough-Chetco volcanoplutonic arc 


complex and the ~164 to 162 Ma Josephine ophiolite (Fig. 1; Harper et al., 1994).  A 


lower hemipelagic sequence is present where the Galice overlies the Josephine ophiolite 


(Fig. 2).  The Galice Formation also occurs within the Elk River outlier (Fig. 1), where it 


is in fault contact with sheeted dikes that are correlated with the Josephine ophiolite 


(Giaramita and Harper, 2006).    


The western Klamath terrane is the youngest of a series of east-dipping imbricated thrust 


sheets within the Klamath Mountains (Irwin, 1964, 1966, 1994; Burchfiel and Davis, 


1981).  The roof thrust of the western Klamath terrane, the Orleans thrust (Fig. 1), is a 


major crustal boundary, with geological and geophysical data suggesting 40 to >100 km 


of displacement, respectively (Jachens et al., 1986).  The basal thrust, the Madstone 


Cabin thrust (Fig. 1), juxtaposes the Josephine ophiolite over the Chetco intrusive  
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Figure 1.  Generalized geologic map of western Klamath terrane, including Galice 


Formation.  Modified from Wyld and Wright (1988), Miller and Saleeby (1995), Harper 


(2003), and Giaramita and Harper (2006). 
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Figure 2.  Sedimentary sequence overlying ~162 Ma Josephine ophiolite.  


Biostratigraphic ages are from Pessagno and Blome (1990) and Pessagno et al. (2000), 


and radiometric ages are from Harper et al. (1994).  Location of metalliferous sediments 


is from Pinto-Auso and Harper (1985).  Detrital-zircon sample (~153 Ma and ~227 Ma 


peaks; Miller et al., 2003) is from a locality of Buchia concentrica of middle Oxfordian 


to late Kimmeridgian age (Imlay et al., 1959).  Modified from Harper (1994). 
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complex of similar age (Dick, 1976; Harper et al., 1994; Yule, 1996).  The Galice 


Formation is regionally metamorphosed from prehnite-pumpellyite to lower greenschist 


facies (Harper et al., 1988) and is unconformably overlain by Lower Cretaceous non-


marine and marine conglomerate and sandstone (Harper et al., 1994).      


 The Galice Formation and its basement formed in a supra-subduction setting as 


indicated by the presence of the underlying Rogue-Chetco arc complex and members of 


similar lithology in the Galice Formation (Garcia, 1982) and a high proportion of arc 


detritus in metasandstones (Snoke, 1977; Harper, 1984; Wyld and Wright, 1988; Harper 


et al., 1994).  The Galice basin apparently formed as a result of extension within a west-


facing arc, ultimately resulting in seafloor spreading that produced the Josephine 


ophiolite (Snoke, 1977; Saleeby et al., 1982; Harper and Wright, 1984; Wyld and Wright, 


1988; Harper et al., 1994; Yule et al., 2006).  Seafloor spreading was postulated to have 


occurred in a back arc basin behind the Rogue-Chetco arc, but the presence of boninites 


in the Josephine ophiolite and the apparently slightly younger age of the Rogue-Chetco 


arc led Harper (2003a) to suggest that arc rifting and initial seafloor spreading took place 


in the forearc.  Similarly, the modern Lau back arc basin apparently first formed in the 


forearc, but became situated in the back arc after a trenchward jump in the arc axis 


(Parson and Wright, 1996).  Collapse of the basin occurred during the Late Jurassic 


Nevadan orogeny by underthrusting of the Galice Formation and its basement beneath 


older terranes of the Klamath Mountains, resulting in low-grade regional metamorphism.  


Geochronologic and biostratigraphic data suggest that the Galice Formation was 


deposited during the Nevadan orogeny, perhaps in a trench-like basin along the western 


edge of the Klamath Mountains (Harper et al., 1994).  The large displacement along the 
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Orleans thrust suggests that the Josephine ophiolite was partially subducted during the 


Nevadan orogeny.   


This paper focuses on the provenance of the Galice Formation based on new and 


existing data for detrital modes, chemistry of detrital Cr-spinel, whole-rock sedimentary 


geochemistry, and ages of detrital zircon.  In addition, a comparison is made between the 


upper Galice and clastic sediments in the basal hemipelagic sequence overlying and 


interbedded with the Josephine ophiolite, including a newly discovered sandstone bed 


within the pillow lava unit.  


 


GALICE FORMATION 


  


Diller (1907) originally named the section of slate, sandstone, and minor 


conglomerate exposed on Galice Creek in southwest Oregon, west of Grants Pass the 


Galice Formation (Fig. 1).  Wells and Walker (1953) mapped the Galice 7.5' quadrangle 


and recognized volcanic members lithologically similar to the underlying Rogue 


Formation.  Carter and Wells (1953) correlated sedimentary and volcanic rocks in 


northern California (Gasquet 7.5' quadrangle) with the Galice Formation, and Irwin 


(1960, 1966) showed the Galice Formation extending the entire length of the Klamath 


Mountains province.  Although volcanic members are present in the type Galice 


Formation, Vail (1977) and Harper (1980, 1984) showed that a volcanic member mapped 


by Wells et al. (1949) and Cater and Wells (1953) is actually the upper part of a complete 


ophiolite complex (Josephine ophiolite).  Volcanic members are generally absent in the 


Galice Formation that overlies the Josephine ophiolite (Harper, 1984), but one is present 
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within the Galice Formation overlying the Devils Elbow remnant of the Josephine 


ophiolite in the southern Klamath Mountains (Wyld and Wright, 1988).  


Harper (1980, 1994) suggested that the Galice Formation can be subdivided into 


three units (Fig. 2).  The lower unit represents a hemipelagic sequence while the upper 


unit is comprised of a turbidite sequence consisting of interbedded sandstone, siltstone, 


and radiolarian argillite.  Lying between these two units is an ~55 m-thick transitional 


unit that represents the transition from hemipelagic to turbidite deposition (Fig. 2).  


The ages of the Josephine ophiolite and the Rogue-Chetco arc, which 


conformably underlie the Galice Formation, were initially thought to be the same (~157 


Ma; Saleeby et al., 1982; Saleeby, 1984).  Based on this, Harper (1984) and Pinto-Auso 


and Harper (1985) included the hemipelagic sequence directly overlying the Josephine 


ophiolite within the Galice Formation.  Subsequent biostratigraphic (Pessagno and 


Blome, 1990) and radiometric data (Harper et al. 1994) indicate, however, that the 


hemipelagic sequence is older than the type Galice Formation.  This led Pessagno et al. 


(1993, 2000) to exclude the hemipelagic sequence (their “volcanopelagic succession”) 


from the Galice Formation.  Pessagno et al. (1993, 2000) suggested a hiatus occurs 


approximately 50 m stratigraphically above the Josephine ophiolite that separates the 


turbidite part of the Galice Formation from the underlying hemipelagic sequence (Fig. 2).  


They cited the much poorer preservation of radiolarians below this contact in support of 


their interpretation.  They further suggested that the hemipelagic sequence is 


lithologically and genetically unrelated to the overlying turbidite; this suggestion, 


however, is inconsistent with petrographic and geochemical data presented below.  Our 


observations show that bedding in rocks beneath the apparent hiatus is disrupted over a 







 14


thickness of about 10 m below the hemipelagic-turbidite transition (Fig. 2).  Beds are 


discontinuous, but not folded, and are cut by numerous small low-angle faults.  This 


disruption appears to have occurred before complete lithification (Harper, 2006) because 


deformed beds and some small faults are cut by  ~150 Ma syn-Nevadan dikes, some of 


which have amoeboid margins suggestive of intrusion into wet sediment (Harper, 2006).   


For the purposes of this paper, we include the hemipelagic sequence along with 


the turbidite in the Galice Formation (sensu lato) since the transitional unit (Fig. 2) is 


clearly lithologically gradational in character between the hemipelagic sequence and the 


Galice turbidite.    Furthermore, as discussed below, sandstones in the transitional unit 


and in the lower part of the basal turbidite are very similar to rare sandstones that occur 


within both the hemipelagic sequence and pillow lavas of the Josephine ophiolite. 


Structures in the Galice Formation that formed during the Late Jurassic Nevadan 


orogeny include slaty cleavage and associated overturned folds, stretching lineations, 


fibrous extension veins, and small thrust faults (Kays, 1968; Harper, 1980, 1984, 2006; 


Norman, 1984; Gray, 1985, 2006; Wyld, 1985).  The slaty cleavage and associated 


flattening of sand and pebble grains varies from very weak, as in the area of Cave 


Junction, Oregon (Fig. 1; Jones, 1988), to very strong.  Strain data (i.e., Harper, 1980; 


Cashman, 1988; Jones, 1988) show a southward increase in strain from the Cave Junction 


area into northern California, coincident with an increase in metamorphic grade from 


prehnite-pumpellyite to lower greenschist facies (Harper, 1980; Harper et al., 1988).  


Paleomagnetic data suggest that the Galice Formation in southwestern Oregon may have 


undergone clockwise rotation of as much as 100° (Schultz and Levi, 1983; Bogen, 1986; 


Harper and Park, 1986). 
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Figure 3.  Drill core sample from the Turner-Albright mine showing siliceous argillite 


that is interbedded with lavas of the Josephine ophiolite.  The black and green 


laminations are interpreted as terrigenous and tuffaceous in origin, respectively. The 


alternating black and green colors are also typical of the hemipelagic sequence overlying 


the Josephine ophiolite.  Note coin for scale. 
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Sedimentary rocks within the Josephine ophiolite 


 


 Pure, light-green chert is common between pillows in pillow lavas throughout the 


Josephine ophiolite.  Although uncommon, bedded sedimentary rocks up to 5 m in 


thickness locally occur within the pillow lava unit of the Josephine ophiolite (Fig. 2 and 


3) (Pinto-Auso and Harper, 1985; Kuhns and Baitis, 1987; Harper et al., 1988; 


Zierenberg et al., 1988).  Radiolaria from these rocks indicate a late Callovian age,  


consistent with the ~162 Ma age of the Josephine ophiolite (Fig. 1; Pessagno et al., 


2000).  These intra-pillow sedimentary rocks are both interbedded with Josephine lavas 


and separate mineralized lavas and massive-sulfide deposits from overlying lava flows 


(Pinto-Auso and Harper, 1985; Kuhns and Baitis, 1987; Zierenberg et al., 1988).  


Although most of the intra-pillow sedimentary rocks are bedded, some in the Turner-


Albright mine area on the Oregon-California border southwest of Cave Junction, Oregon, 


are diamictites that probably formed as debris flows (Fig. 3).  These deposits and the 


presence of abundant talus breccias suggest the presence of fault scarps during formation 


of the Josephine ophiolite (Kuhns and Baitis, 1987; Zierenberg et al., 1988).  The 


diamictites are very similar in hand sample, and in terms of geochemistry and color 


(black and green; Fig. 3) to samples analyzed from the hemipelagic sequence.  They are 


dominantly argillites, with green and black varieties interbedded on millimeter to 


centimeter scales.  Where the regional metamorphic grade is lower-greenschist facies 


they are slaty.  Petrographic observations and geochemistry indicate that they are a 


mixture of mud, radiolarians, and hydrothermal sediment (Fig. 2 and 3) (Pinto-Auso and 


Harper, 1985; Kuhns and Baitis, 1987; Zierenberg et al., 1988).  Less common rock types 
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in the bedded sequences in the ophiolite include red radiolarian argillite (or slate) and 


chert.  Detrital muscovite observed in black argillite lamella indicates a terrigenous 


component.  The green argillite lamellae are probably tuffaceous, as shown for similar 


better-studied green argillites in the hemipelagic sequence (Pinto-Auso and Harper, 


1985). 


 An uncommon 2- to 10-cm-thick sandstone bed was found beneath the uppermost 


lava flow of the Josephine ophiolite, approximately 20 m below the depositional contact 


with the hemipelagic sequence in the type section of the pillow lava unit (Fig. 2) (Harper 


et al., 2002; MacDonald et al., 2004).  Harper (1994) originally identified this sandstone 


as a tuff based on its characteristics in hand sample, including green color, but subsequent 


petrographic observations indicate the presence of terrigenous detritus, as discussed 


below.  The green color is apparently due to ocean-ridge hydrothermal alteration, which 


has affected the entire pillow lava unit up to the depositional contact at this locality 


(Harper, 1995).  Several meters along strike of where it was originally discovered, this 


bed has a medium-gray color similar to sandstones in the overlying Galice Formation 


(Harper et al., 1988). 


 


Hemipelagic sequence 


  


The hemipelagic sequence is ~45 m thick and consists predominantly of green to 


black slaty radiolarian argillite with lesser green to black radiolarian chert (Pinto-Auso 


and Harper, 1985; Pessagno et al., 2000).  Argillite in the hemipelagic sequence is a 


mixture of radiolarians, terrigenous and tuffaceous detritus, and hydrothermal sediment  
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Figure 4.  A. Photomicrograph of a tuffaceous chert showing bipyramidal (volcanic) 


quartz, and plagioclase.  0.25 mm scale is located on figure.  Crossed polarizers.  B. 


Photomicrograph of tuffaceous radiolarian argillite from the hemipelagic sequence 


showing well preserved cone-shaped Radiolaria (arrow), altered vesicular glass (left 


center), and angular quartz grains (clear).  Plane light.  Horizontal scale is 2 mm.  C. 


Photomicrograph of metasandstone from the Galice Formation showing felsic volcanic 


clast with resorbed quartz phenocryst.  Colorless high-relief grain below this clast is 


augite.  Note foliation in the matrix.  Horizontal scale is approximately 1.5 mm.  D. 


Photomicrograph of metasandstone from the Galice Formation showing a clast of quartz-


mica schist.  At the lower left of this grain is a mafic volcanic clast.  Dark seams are 


parallel to foliation. Horizontal scale is approximately 0.8 mm. 


 


 


 


 


 


 


 


 


 


 


 


 







0.25 mm


A. B.


C. D.


20







 21


(Pinto-Auso and Harper, 1985; Kuhns and Baitis, 1987; Harper et al., 1988).  The 


tuffaceous component is commonly evident from the presence of angular plagioclase, 


quartz (some bipyramidal; Fig. 4A) and, uncommonly, altered glass, silt and sand (Fig. 


4B).  A terrigenous component is evident in thin section from the presence of detrital 


muscovite.  Fe/(Fe+Mn+Al) ratios indicate a relatively small metalliferous component 


derived from hydrothermal springs (Fig. 5), even for those overlying massive-sulfide 


deposits of hydrothermal origin (Kuhns and Baitis, 1987; Zierenberg et al., 1988).   


Elevated metal contents are common in samples from the hemipelagic sequence, 


especially 8 to 23 m above the depositional contact with the underlying Josephine 


ophiolite, and some samples have sufficiently high Fe/(Fe+Mn+Al) to be classified as 


metalliferous (Fig. 5) (Pinto-Auso and Harper, 1985).  In the field, metalliferous 


sedimentary rocks are indicated by a shiny manganiferous coating or, less commonly, by 


a red color.  The geochemistry and petrography of the metalliferous samples indicate that 


they all have substantial clastic detritus and variable amounts of radiolarians (Pinto-Auso 


and Harper, 1985).  In addition, most of the rocks in the hemipelagic sequence, as well as 


those interbedded with pillow lavas of the Josephine ophiolite, have Fe/(Fe+Mn+Al) that 


is elevated relative to terrigenous sediments (Fig. 5), implying a small metalliferous 


component.  Metalliferous sediments typically directly overlie ophiolites and modern 


ocean crust (e.g., Barrett et al., 1987).  Pinto-Auso and Harper (1985) suggested that the 


stratigraphic position of the metalliferous sediments, 8 to 23 m above the Josephine 


ophiolite, was the result of low-temperature off-axis springs analogous to those along the 


flanks of the Galapagos Rise.  Harper (2003b) proposed that the metalliferous horizon 


was the result of the passage of a propagating spreading center, with the metalliferous  
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Figure 5.  Plot illustrating apparent mixing relationships for sediments within Josephine 


ophiolite, hemipelagic sequence, and Galice Formation.  Mixing curves are for East 


Pacific Rise (EPR), hydrothermal sediment, and Pacific pelagic clay (PC), and EPR 


hydrothermal sediment and mid-ocean ridge basalt (MORB; values from Barrett, 1981).  


Also shown is field for Margi umbers, Cyprus, which are pure metalliferous sediment 


(Ravizza et al., 1999).  Figure modified from Pinto-Auso and Harper (1985), and Harper 


et al. (1988).  
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component representing distal fallout from high-temperature on-axis hot springs.   The 


massive-sulfide deposits show that hydrothermal springs that could produce Fe- and Mn-


rich metalliferous sediments were present during eruption of the Josephine pillow lavas.  


Thus, the low metal content of intra-pillow sediments, including those directly overlying 


the massive sulfide deposits, and of sediments comprising the lower 8 m of the 


hemipelagic sequence is apparently the result of dilution by abundant terrigenous mud. 


Sandstone and rare volcanic pebbly mudstone are uncommon rock types in the 


hemipelagic sequence (Pinto-Auso and Harper, 1985; Harper, 1994; Pessagno et al., 


2000).  The pebbly mudstone occurs ~40 m above the depositional contact with the 


Josephine ophiolite.  It contains volcanic clasts up to 20 cm in diameter and has a 


radiolarian-tuffaceous matrix containing biotite (Harper, 1994).  Sandstone was observed 


at two localities within the hemipelagic sequence; one within an isolated outcrop but the 


other ~7 to 8 m above the contact with the Josephine ophiolite (Fig. 6) (Pinto-Auso and 


Harper, 1985).  The sandstone beds are graded (Fig. 6) and compositionally very similar 


to those in the basal part of the turbidite sequence, with ~95% of the grains consisting of 


lithic volcanic rock fragments, plagioclase, and clinopyroxene.  Other clasts, especially in 


the very coarse fraction, are dominantly chert and siliceous argillite.  Scouring of 


underlying chert is evident along the base of one of these sandstone beds; this bed also 


contains a 3-cm angular rip-up clast of underlying chert (Fig. 6).  Pessagno and Blome 


(1990) also reported the presence of “pelagic limestone”, but these occur as nodules and 


probably formed by replacement of radiolarian argillite.  Formation of the nodules 


occurred before formation of slaty cleavage (i.e., diagenetic) because radiolarians and 


other spherical features (pellets?) in the nodules are undeformed. 







 25


Figure 6.  Graded bed from hemipelagic sequence of the Galice Formation.  Bed beneath 


pebbly sandstone is a radiolarian chert.  On the back side of this sample there is a 3-cm 


subangular rip-up clast of underlying sediment located within pebbly sandstone.  
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The age range of the hemipelagic sequence is late Callovian to middle Oxfordian, 


according to the radiolarian biostratigraphy of Pessagno et al. (1993, 2000) (Fig. 2).  The 


absolute age range is from ~162 (age of underlying ophiolite) to ~157 Ma.  The younger 


age limit is based on correlation of the top of the hemipelagic sequence to radiolarian 


tuffs at the top of the Rogue Formation; Saleeby (1984) reports a Pb/U zircon age of 157 


 2 Ma for volcanic rocks beneath the radiolarian tuffs, so the age of the top of the 


hemipelagic sequence may be somewhat less than 157 Ma.  The apparently missing 


section at the top of the hemipelagic sequence (Fig. 2), suggested by radiolarian 


biostratigraphy, may be a disconformity (Pessagno and Blome, 1990).  While this may 


indeed be a disconformity, rocks immediately beneath the contact show considerable 


disruption of bedding, probably before complete lithification (Fig. 2) (Harper, 2006).  


Thus, the apparent hiatus may be due to normal faulting or to submarine landsliding prior 


to deposition of the hemipelagic-turbidite transition unit.   


 


Transition zone 


  


An ~55-m-thick transition zone exists between the lower hemipelagic sequence 


and the upper turbidite of that part of the Galice Formation that overlies the Josephine 


ophiolite (Fig. 2) (Harper, 1994).  This zone consists dominantly of radiolarian argillite 


with minor sandstone.   The proportion of radiolarians, and the proportion and size of 


clasts (mostly silt), are generally higher than those of radiolarian argillites in the 


hemipelagic sequence, and there is a negligible hydrothermal component (Pinto-Auso 


and Harper, 1985).  Radiolarian-bearing limestone nodules occur throughout the 







 28


transition zone, being abundant at the top of the zone (Harper, 1994).  The lower contact 


for the transition zone is defined only for one section located along the Middle Fork of 


the Smith River, a sequence that includes the type section of the pillow lava unit of the 


Josephine ophiolite (Harper, 1994, 2003b).  In this section, which was studied by 


Pessagno and Blome (1990), as well as Pinto-Auso and Harper (1985), the base of the 


transition zone is marked by the lowest occurrence of sandstone beds above the Josephine 


ophiolite.   


 Pessagno and Blome (1990) included rocks of the transition zone in the Galice 


turbidite, but we reserve use of  the term “turbidite” for rocks above what we call the 


transition zone (Fig. 2).  The above authors used the lowest occurrence of sandstones, as 


well as the presence of the hiatus discussed in the preceding paragraph, to define the 


contact between the hemipelagic sequence (their “volcanopelagic unit”) and the transition 


zone (their “Galice Formation sensu lato”).  As noted above, a sandstone bed occurs 


within the pillow lava unit of the ophiolite (at this locality); at other localities, sandstone 


beds occur within the hemipelagic sequence (Fig. 6).  Thus, the use of the first sandstone 


beds to define the base of the transition zone in the section (Fig. 2) is only valid for this 


one particular location.  We interpret the contact to be gradational, with an upward 


increase in proportion of sandstone beds and decreasing proportion of radiolarians in 


argillites.   


 According to the biostratigraphy of Pessagno et al. (1993, 2000), the transition 


zone ranges in age from middle Oxfordian to middle Kimmeridgian.  Recently, Miller et 


al. (2003) estimated the age of deposition of a massive sandstone from the base of the 


overlying turbidite sequence to be ~153 Ma, based on the age of the youngest detrital 
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zircon age spectrum (Miller et al., 2003).  Thus, deposition of the transition zone appears 


to have ranged from ~157 to ~153 Ma.   


 


Turbidite of the Galice Formation 


 


 The base of the turbidite sequence, as defined in this paper, occurs ~100 m above 


the top of the Josephine ophiolite at the locality represented in Figure 2.  The Galice 


Formation in its type area, where it overlies the Rogue Formation, consists entirely of 


turbidite (i.e., no hemipelagic sequence) that interfingers with various volcanic members. 


The Galice turbidite consists predominantly of slate and thin-bedded to massive 


metasandstone, along with rare pebble conglomerate.  Sandstones are predominantly 


feldspathic litharenites, commonly graded, show scouring along their bases, and display 


partial to complete Bouma sequences.  Load and flame structures, sole marks, and mud 


rip-up clasts are locally common. Trace fossils from slates include Chondrites, 


Cosmophorae, and Spirophycus, which indicate abyssal, or perhaps bathyal, water depths 


(A.A. Ekdale, written communication, 1980).  In the section represented in Figure 2, and 


extending at least 10 km farther north and 1 km farther south, a 200- to 300-m-thick 


massive sandstone unit overlies the transition zone between the hemipelagic and turbidite 


sequences (Cater and Wells, 1953; Harper, 1980).  The thickness of the turbidite cannot 


be accurately determined due to repetition by folding and faulting, but the original 


stratigraphic thickness was probably at least several kilometers, based on its large outcrop 


area (Fig. 1).  
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 The Galice turbidite, in both its type area and where it overlies the Josephine 


ophiolite, contains the bivalve Buchia concentrica, which has a known age range of 


middle Oxfordian to late Kimmeridgian (Imlay et al., 1959; Imlay, 1980).  The age of the 


base of the turbidite based on the biostratigraphy of Pessagno et al. (1993, 2000) is 


middle Kimmeridgian.  The absolute age of the turbidite is constrained by the ~153 Ma 


age of the youngest detrital zircons (Miller et al., 2003) and the age of crosscutting dikes, 


sills, and small plutons, which are as old as ~150 Ma (Harper et al., 1994). 


 


PALEOFLOW DATA 


 


Paleoflow data were obtained by Park-Jones (1988) for the type Galice Formation 


overlying the Rogue Formation west of Grants Pass, Oregon, and by us for the Galice 


Formation overlying the Josephine Ophiolite where it is exposed in Rough and Ready 


Creek, southwest of Cave Junction, Oregon.  Folds in the Galice Formation usually are 


plunging, so paleoflow data were restored by first rotating the fold axis (usually bedding-


cleavage intersection) to horizontal, followed by rotation of bedding to horizontal.  The 


resulting bidirectional and unidirectional flow directions are plotted in Figure 7.  


Predominantly west paleocurrent directions (in present-day coordinates) were found for 


the type Galice Formation (Fig. 7) (Park-Jones, 1988), compared to dominantly north 


directions for the Galice Formation overlying the Josephine Ophiolite (Fig. 7).  The 


paleocurrent data probably need to be corrected for clockwise rotation of the Klamath 


Mountains, which has been suggested to explain paleomagnetic declination anomalies 


(Mankinen and Irwin, 1982; Schultz and Levi, 1983; Bogen, 1986; Renne and Scott,  
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Figure 7.  Rose diagrams displaying paleoflow current directions.  A. Type area of the 


Galice Formation, corrected for folding (from Park-Jones, 1988).  B. Type area of Galice, 


also corrected for inferred ~65° oroclinal bending of the Klamath Mountains (Renne and 


Scott, 1988; Saleeby and Harper, 1993).  C. Galice Formation that overlies Josephine 


ophiolite, corrected for folding.  D. Galice Formation that overlies Josephine ophiolite, 


also corrected for inferred ~65° oroclinal bending of Klamath Mountains.  Unidirectional 


data displayed in black, bimodal data are gray.  Intervals of 15 degrees are used.  Note the 


different scale in A and B, and C and D.        
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1988; Smith and Harper, 1993).  Some workers (e.g., Mankinen and Irwin, 1982; Bogen, 


1986) argued that the entire Klamath Mountains rotated as a single block, whereas others 


have argued that the arcuate shape of the Klamath Mountains is the result of oroclinal 


bending, possibly related to formation of the Columbia embayment (Renne and Scott, 


1988; Saleeby and Harper, 1993).  The strike of slaty cleavage at both localities for which 


there are paleocurrent data is ~020 to 030 (Park-Jones, 1988; this study).  Figures 7B 


and D show the paleocurrent data after correcting for an assumed clockwise rotation of 


65, which assumes the western Klamath terrane had an original trend of ~340, parallel 


to the overall structure of correlative rocks in the Sierra Nevada foothills which have not 


been rotated (Bogen et al., 1985; Frei, 1986).  The inferred ~65 rotation for the Galice 


Formation in southwest Oregon is less than ~100 and ~78 clockwise rotations inferred 


for a volcanic member in the type Galice section and for the Grants Pass pluton which 


intrudes the Galice Formation (Schultz and Levi, 1983; Bogen, 1986), respectively, and 


~100 for the Josephine Ophiolite (Smith and Harper, 1993).  The actual amount of 


clockwise rotation may be less than suggested by the paleomagnetic data because of 


unknown amounts of post-Nevadan tilting, observed in Cretaceous sedimentary rocks 


elsewhere in the west-central and northwest Klamath Mountains, and possibly because of 


insufficient magnetic cleaning (Harper and Park, 1986; Renne and Scott, 1986).   


 


DETRITAL MODES 


 


Sandstones within the Galice Formation are generally lithic wackes and 


feldspatholithic wackes (Snoke, 1977; Harper, 1980; Wyld, 1985).  Sandstones are 
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generally foliated (e.g., Fig. 4C, D), but range from strongly foliated to unfoliated (Fig. 6) 


as in the Cave Junction to Obrien, Oregon, area.  Clastic textures, however, are still 


evident in all samples.  The most abundant detrital components are siliceous argillite and 


chert (both commonly with vestiges of radiolaria), plagioclase, and volcanic rock 


fragments.  Less common clast types include monocrystalline and polycrystalline quartz; 


while phyllite, quartz-mica schist (Fig. 4C, D), foliated polycrystalline quartz, and 


siltstone/sandstone were observed with even less frequency (Snoke, 1972; Harper, 1980; 


Wyld, 1985).  Harper (1980) and Norman (1984) determined that no K-feldspar is present 


in Galice sandstones that they studied, using both standard thin-section observations as 


well as staining.  We found no K-feldspar by staining an additional 30 samples from both 


the type Galice Formation and the Galice Formation overlying the Josephine ophiolite 


near the Oregon-California border. Wyld (1985), however, reported very minor amounts 


(<1%) of K-feldspar in sandstones from the southernmost Klamath Mountains (Fig. 1).      


Detrital modes for Galice sandstones were determined by Harper (1980), Norman 


(1984), and Wyld (1985).  Medium- to coarse-grained sandstones were point-counted 


following the procedures of Dickinson (1970) and the terminology of Ingersoll and 


Suczek (1979) as well as Ingersoll et al. (1984).  The detrital modes should be considered 


semiquantitative due to partial recrystallization and, in many samples, deformation during 


low-grade metamorphism.  Matrix generally constitutes >20%, and in some samples 


>30%, of the counted points.  Such matrix contents are much higher than those for 


modern turbidites and are probably the result of alteration of lithic fragments (e.g., 


Dickinson, 1970, 1985).  Quantitative modal analysis is also compromised by the textural 
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similarity of many felsic volcanic rock fragments to chert; only Harper (1980) used 


feldspar staining to remove this uncertainty. 


Structural complexity of the Galice Formation does not allow for accurate 


determination of stratigraphic height above basement.  Harper (1980) and Wyld (1985), 


however, had sufficient stratigraphic control to broadly group their samples into basal, 


lower, and middle-upper.   


  Harper (1980) found that 62% to 92% of the volcanic rock fragments in samples 


of Galice sandstone have microlitic textures that are typical of andesites.  Altered glass 


(replaced by chlorite) ranges from ~1 to 23% of volcanic clasts, although most samples 


have <10%.  The proportion of felsitic clasts is highly variable, ranging from 3 to 33% of 


volcanic clasts.  Clasts with lathwork texture (mafic) are much less common, never 


comprising more than 4% of the volcanic clasts.   


The lithic- and feldspathic-rich nature of the sandstones is evident on various 


triangular diagrams (Fig. 8).  Some sandstones plot as moderately quartz-rich on the 


quartz-feldspar-lithic (QFL) diagram (Fig. 8A), but chert dominates the “Q” fraction and 


monocrystalline quartz contents are low as evident on the monocrystalline quartz-


feldspar-lithic diagram (Qm-F-Lt; Fig. 8B).  Polycrystalline quartz (Qp), consisting of 


quartz sandstone, and quartz siltstone, is generally a minor component (Fig. 8C), but 


abundant chert and argillite results in high values of lithic sedimentary clasts (Lsm; Fig. 


8D; Lsm = sedimentary lithic + metasedimentary lithics, Lv = volcanic lithic).  Detrital 


modes of sandstones for the Galice Formation from its type area (Harper, 1980), near the 


Oregon-California Border (Harper, 1980; Norman, 1984), and from where it overlies the 


Devils Elbow remnant of the Josephine ophiolite in the southern Klamath Mountains, are  
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Figure 8. Triangular plots of point-count data for sandstones from Galice Formation in 


its type area (Harper, 1980), where it overlies the Josephine ophiolite near the Oregon-


California border (Harper, 1980; Norman, 1984), and overlying Devils Elbow remnant of 


the Josephine ophiolite in the southern Klamath Mountains (Wyld, 1985).    Q = 


monocrystalline quartz + polycrystalline quartz + chert; F = feldspar (all plagioclase in 


these samples); L = unstable lithics; Qm = monocrystalline quartz; Lt = total 


polycrystalline lithic fragments, including stable quartzose; Qp = chert + polycrystalline 


quartz; Lv = lithic volcanics; Lsm = sedimentary + metasedimentary lithics.  A. Q-F-L 


diagram after Dickinson et al. (1983).  Shaded field is for correlative rocks in the Sierra 


Nevada foothills, including the Mariposa Formation (Behrman and Parkison; 1978).  B. 


Qm-F-Lt diagram after Dickinson et al. (1983).  C. Qp-Lv-Lsm diagram after Dickinson 


(1985).  Inferred end-member sources for Galice sandstones are indicated.   D. Lsm+Qp-F-


Lv diagram.   
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similar (Fig. 8).  Those samples overlying the Devils Elbow remnant, however, tend to be 


less rich in lithic fragments (Fig. 8A, B) and have more monocrystalline quartz (Fig. 8B).   


A trend of increasing proportion of total quartz (Q; mostly chert), monocrystalline 


quartz (Qm), polycrystalline quartz (Qp), and lithic sedimentary (Lsm; mostly siliceous 


argillite and chert) with increasing stratigraphic height is evident on Figure 8 for samples 


overlying the Devils Elbow remnant of the Josephine ophiolite in the southern Klamath 


Mountains (Fig. 8) (Wyld, 1985).  A similar trend is evident for the Galice Formation 


overlying the Josephine ophiolite in its type area in northwestern California (Harper, 


1980; Norman, 1984), except that some lower Galice sandstones have modes similar to 


those typical of the upper Galice (Fig. 8).  This is not the result of uncertainties in 


stratigraphic position of samples because sandstones having high Lsm+Qp ratios in the 


lower Galice Formation were found interbedded with those having low Lsm+Qp (Harper, 


1980).  Future work might determine whether these two detrital modes are correlated 


with different paleocurrent directions.  The linear trends on the Qp-Lv-Lsm and Lsm+Qp-F-


Lv diagrams (Fig. 8C, D) suggest mixing of two sources, one of which has a relatively 


constant F/Lv ratio (Fig. 8).  The relatively constant F/Lv, the very common occurrence of 


plagioclase as phenocrysts in volcanic rock clasts, and the near absence of plutonic rocks 


in pebble conglomerates (Wyld, 1985; Seiders, 1991, written communication, 1992) 


indicate that the plagioclase in the Galice sandstones is virtually all volcanic.   


A sandstone that occurs within the upper pillow lavas of the Josephine ophiolite is too 


altered, including abundant patchy prehnite formed during ocean-ridge hydrothermal 


metamorphism (Harper, 1995), for determination of an accurate mode.  Nevertheless, it is 


clearly similar to those within the lower turbidite of the Galice Formation, consisting of  
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Figure 9.  Conglomerate point count data for the Galice Formation and the Mariposa 


Formation in the central Sierran foothills illustrating provenance differences.  I = igneous 


rocks, Q = quartz sandstone and quartzite, C = chert.  Data from Wyld (1985) and Seiders 


(1991, and written comm., 1992).   
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abundant volcanic (mostly microlitic) rock fragments, less common chert and siliceous 


argillite clasts.  The only major difference between this sandstone and that of the basal 


turbidite is a substantially lower plagioclase content than Galice sandstones, but this may 


be due to the replacement of plagioclase by prehnite. 


 Wyld (1985) and Seiders (1991, written communication, 1992) obtained detrital 


modes for conglomerates from the Galice Formation by point counting (Fig. 9).  In their 


modal analysis, Wyld (1985) counted clasts larger than 1 mm whereas Seiders (1991) 


counted clasts in the 0.5-6 cm diameter range. Galice conglomerates are rich in chert (C) 


and generally have very few quartzose sandstone clasts (Q; Fig. 9).  The igneous 


component, which consists almost essentially of volcanic clasts, varies from near 0% up 


to ~20%.  This result implies a much lower proportion of volcanic clasts than in 


associated sandstones.  Such a grain-size bias is evident in individual sandstone beds that 


have pebbly bases.  Two of Wyld’s (1985) conglomerate samples from the lower Galice 


Formation in the southern Klamath Mountains have much higher Q, and are transitional 


between typical Galice Formation chert-rich conglomerates and correlative 


conglomerates of the Sierra Nevadan foothills (Fig. 9). 


 


HEAVY MINERALS 


 


Occurrence 


 


 Snoke (1972, 1977), Harper (1980, 1984), and Wyld (1985) reported heavy 


mineral assemblages in the Galice Formation.  The most common heavy minerals are 
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zircon (euhedral to very well rounded), tourmaline, apatite, biotite, muscovite, Cr-spinel 


and, in volcanic-rich basal turbidite sandstones, clinopyroxene, and hornblende.  Less 


common to rare are garnet, epidote, staurolite, and glaucophane.  The 2- to 5 cm-thick 


sandstone bed within the Josephine pillow lava unit has abundant clinopyroxene (~5 


modal %) with lesser hornblende, Cr-spinel, and rare glaucophane (violet to clear 


pleochroism); zircon has not yet been found in this sample; these heavy minerals, as well 


as the detrital modes, are similar to those of volcanic-rich sandstones within the 


hemipelagic-turbidite transition zone and basal turbidite.    


 


Cr-spinel   


 


 McLennan et al. (1993) suggested that Cr-spinel most likely indicates an 


ophiolitic source area.  Spinels can occur in any primitive mafic volcanic rocks, however, 


as well as in any type of ultramafic rock.  Cookenboo et al. (1997) and Lee (1999) 


stressed the importance of using the chemical composition of detrital Cr-spinels to infer 


rock types in the source area.  Lee (1999) suggested that Cr-spinels are significant in 


paleogeographic reconstructions because their deposition occurs within proximity of their 


source area.   


Spinels from four sandstones were analyzed for this study.  One sample from the 


bed within the Josephine ophiolite pillow lava unit (sample PC-2b; Table 1), another 


sample from the basal Galice turbidite overlying the ophiolite (sample LJC-23; Table 1; 


Fig. 2) and the other two samples from the turbidite sequence (samples DB-1 and CJ-7; 


Table 1; Fig. 2).  The Cr-spinels were analyzed with a JEOL 733 Superprobe at the  
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Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, 


New York, and with a JEOL 8900 electron microprobe at Binghamton University, 


Binghamton, New York.  Ti, Al, Cr, Mn, Mg, Ni, and Fe were analyzed using a 15 kV 


accelerating voltage, 15 nÅ beam current, and a 1µm beam diameter.  Al, Cr, Mg, and Fe 


were counted for 40 seconds while Ti, Mn, and Ni were counted for 100 seconds each.  


Sample USNM 117075 from Tiebaghi Mine, New Caledonia, was used as an Al, Cr, Mg, 


and Fe standard at Rensselaer Polytechnic Institute.  Other elemental standards used at 


Rensselaer Polytechnic Institute were rutile for Ti, tephroite for Mn, and diopside glass 


for Ni.  Analysis of the standard USNM 117075 was done throughout the session at 


Rensselaer Polytechnic Institute to assess proper calibration.  Standards used at 


Binghamton University were TiO2 for Ti, Al2O3 for Al, chromite for Cr, spessartine 


garnet for Mn, MgO for Mg, Ni-metal for Ni, and hematite for Fe.     


The composition of detrital spinels from the sandstone within the Josephine 


ophiolite pillow lava unit and the sandstone from the basal turbidite are given in Table 1 


and are plotted in Figure 10 and 11.  The detrital spinels show a wide range of 


compositions.  Some plot entirely within the field for mantle peridotites, whereas others 


plot entirely in the field for volcanic spinels, including the MORB field and between the 


MORB and OIB (ocean-island, or within-plate, basalt) fields (Fig. 10).  Other detrital 


spinels plot in the area of overlap for volcanic and mantle peridotite spinels (Fig. 10).   


Those detrital spinels identified as originating from mantle peridotites in Figure 


10 have Cr/(Cr+Al) ratios (Cr#) that overlap those of abyssal (mid-ocean ridge origin) 


and supra-subduction zone (SSZ) peridotites (Fig. 11A).  All, however, have 


Mg/(Mg+Fe2+) ratios that are lower than those for abyssal peridotite spinels; the  
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Figure 10.  Al2O3 verses TiO2 diagram showing detrital Cr-spinels from an intra-pillow 


sandstone in the Josephine ophiolite and a turbidite sandstone of the Galice Formation.  


Fields are from Kamenetsky et al. (2001).  This diagram is a good discriminator for 


tectonic setting as well as for distinguishing volcanic from peridotite spinels.  OIB = 


ocean-island (within-plate) basalt; MORB = mid-ocean ridge basalt; SSZ = supra-


subduction zone.  Also shown is the field for spinels from the Trinity peridotite (Quick, 


1981). 
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Figure 11.  Cr/(Cr+Al) versus Mg/(Mg+Fe2+ ) diagram for detrital Cr-spinels from a 


sandstone within the pillow lavas of the Josephine ophiolite and a sandstone from the 


basal turbidite sequence overlying the ophiolite.  Symbols are the same as in Figure 9.  


Field for Trinity peridotite from Quick (1981).   Fields for MORB, SE Alaska intrusions, 


and abyssal peridotites (MORB residue) from Dick and Bullen (1984); field for back arc 


basin basalts from Dick and Bullen (1984), Hawkins and Mechoir (1985), Saunders and 


Tarney (1979; one sample); field for Hole 839 in the Lau Basin is from Allan (1994); 


field for low-Ca boninites is from Umino (1986); field for OIB from Kamenetsky et al. 


(2001); and field for supra-subduction zone peridotite is modified from Parkinson and 


Pearce (1998).  Olivine isopleths are from Kamenetsky et al. (2001).   A.  Spinels    


derived from peridotite (as determined from Fig. 9).  B. Spinels of volcanic origin (as 


determined from Fig. 9).  C.  Spinels that could be either volcanic or peridotitic origin (as 


determined from Fig. 9).   
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Mg/(Mg+Fe2+) ratios for all the detrital mantle spinels fall within the field for SSZ 


peridotites, a result that implies that they are all derived from SSZ ophiolites (Fig. 11A).   


Those detrital spinels identified as volcanic (MORB to MORB-OIB) in Figure 10 


have Cr/(Cr+Al) ratios similar to the upper range of most modern MORB, but are shifted 


to lower Mg/(Mg+Fe2+) ratios (Fig. 11 B).  This shift to lower Mg/(Mg+Fe2+) ratios is 


probably due, in part, to the OIB component that is indicated in Figure 10, since OIB 


basalts have Mg/(Mg+Fe2+) ratios that extend to much lower values.  However, it may 


also be due to crystal fractionation of olivine, which causes the Mg/(Mg+Fe2+) of spinel 


to increase (Fig. 111B; Dick and Bullen, 1984; Kamenetsky et al., 2001). 


Figure 11C shows those detrital Cr-spinels that could have been derived from 


either mantle peridotite or volcanic rocks based on the classification shown in Figure 10.  


Most of these spinels, as well as some of the peridotite spinels (Fig. 11A), have high 


Cr/(Cr+Al) ratios indicative of high degrees of partial melting, which is typical of arcs 


(Dick and Bullen, 1984).  Four of the detrital spinels from the turbidite sample and one 


from the intra-pillow sample have Cr/(Cr+Al) ratios of ~0.8, which is characteristic of 


boninites (Fig. 11C) and mantle that has undergone very high degrees of melting or 


mantle that has interacted with a boninitic magma (e.g., Dick and Bullen, 1984; Harper, 


2003a).   


 


AGE OF SOURCE AREAS 


 


The age of detrital zircons within Galice sandstones was studied by Miller and 


Saleeby (1995) and Miller et al. (2003) through U-Pb age dating. Miller and Saleeby 
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(1995), using multiple grain fractions from various localities throughout the Galice 


Formation, obtained U-Pb data that plot as a chord on a concordia diagram, with an 


average upper intercept of ~1600 Ma and a lower intercept of ~215 Ma, although the 


youngest zircons approach ~170 Ma.  Surprisingly, Miller and Saleeby (1995) found no 


difference in the age distributions of euhedral and well-rounded (recycled) zircon 


populations.  All four of their Galice samples show the same spread on a concordia 


diagram, which implies no major variations in the age of detrital zircons in these samples.  


A fifth sample gives an older upper-intercept age, but this sample is not from the Galice 


Formation, but is from the Lems Ridge olistostrome that underlies the Galice, and which 


probably represents a fragment of older Klamath basement in the western Klamath 


terrane that is correlative with the lower Mesozoic Rattlesnake Creek terrane (Ohr, 1987).   


Recently, Miller et al. (2003) reported ion-microprobe single-crystal U-Pb ages 


for detrital zircons from a Galice Formation sandstone near the base of the turbidite 


sequence at a Buchia concentrica locality.  Most zircons from this sample are Late 


Jurassic, averaging ~153 Ma.  Zircons of ~227 Ma are common, and a few Paleozoic and 


Proterozoic zircons were found.  The high proportion of volcanic clasts in the sandstone, 


including altered glass, indicates erosion of an active arc; thus, the ~153 Ma age most 


likely approximates the time of turbidite deposition, consistent with the Late Jurassic age 


of the Galice turbidite.   


Nd and Sr isotopic values for slates from the Galice Formation turbidite sequence 


are rather uniform and indicate derivation from both Precambrian continental rocks and 


young mantle-derived rocks (Frost et al., 2006).   These workers also found that the 


continental isotopic signal is greater in slates than in sandstones of the turbidite sequence, 
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a relationship that may be consistent with differences in the whole-rock geochemistry 


discussed below. 


Two chert pebbles from the Galice Formation were dated as Late Triassic using 


radiolaria (D. L Jones, personal communication, 1979; Harper, 1980).  One of the pebbles 


is from a volcanic-rich sandstone near the base of the turbidite sequence overlying the 


Josephine ophiolite, and the other pebble is from a conglomerate near the base of the type 


Galice Formation overlying the Rogue Formation  


 


GEOCHEMISTRY 


  


Major- and trace-element geochemistry of sedimentary rocks can provide 


invaluable information about the original tectonic setting and the provenance of a 


sedimentary unit (Roser and Korsch, 1986; McLennan et al., 1993).  Unlike petrographic 


methods for tectonic discrimination that are limited to using coarser grain sizes, chemical 


analyses of sedimentary rocks have no grain-size restrictions (Roser and Korsch, 1986).  


McLennan (1989) notes, however, that concentrations of heavy minerals in sandstones 


can affect rare-earth-element abundances and ratios, and that abundances of elements 


such as rare earths are diluted by the greater concentration of quartz in sandstones. 


Biogenic CaCO3 or SiO2 can also dilute concentrations of other elements within a sample 


(Roser and Korsch, 1986, 1988).   Diagenetic reactions related to burial can affect silicate 


and calcite abundances of sandstones (Galloway, 1974).  Thus, caution should be used 


when making interpretations based on geochemical analyses of sedimentary rocks, and 


ratios should be used when possible.  Because we do not have CO2 values for our  
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Figure 12.  Provenance discriminant-function diagram of Roser and Korsch (1988).  


Only samples from the Galice turbidite are plotted.  Siliceous argillite and chert from the 


hemipelagic sequence and the Josephine ophiolite are not plotted because of their Fe-rich 


hemipelagic component.  Also plotted are the average values for North American shale 


composite (NASC), post-Archean Australian shale composite (PAAS), upper continental 


crust (UC; Gromet et al., 1984; McLennan, 1989; McLennan, 2001), and fields for 


modern back arc basin turbidites (McLennan et al., 1990) and volcaniclastic sediments 


from the Lau back arc (Bednarz and Schmincke, 1994).  Symbols are the same as in 


Figure 5.   
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analyses, we cannot correct for dilution resulting from CaCO3.  We have, thus, followed 


the advice of Roser and Korsch (1986, 1988) and recalculated major-element values on a 


CaO-free basis before plotting on some diagrams (e.g., Fig. 12). 


Published and unpublished geochemical data for the Galice Formation are 


available from other studies (Table 2; Coleman, 1972; Pinto-Auso and Harper, 1985; 


Kuhns and Baitis, 1987; Park-Jones, 1988; Zierenberg et al., 1988; Barnes et al., 1995; 


Frost et al., 2006).  In addition, we report a chemical analysis for a sandstone sample 


(D25C) that was analyzed along with samples of Park-Jones (1988) by X-ray florescence 


at McGill University.  Only major-element data of Coleman (1972) are used since his 


trace-element data are semiquantitative; sample B6C from Pinto-Auso and Harper (1985) 


was not used because of its extremely high CaO concentration. 


A metalliferous component in sediments is best detected using the ratio 


Al/Al+Fe+Mn, which is <0.35 for modern metalliferous sediments and >0.5 for non-


metalliferous pelagic clay (Bostrom and Peterson, 1969; Bostrom, 1973).  This 


component can be derived either from hydrothermal springs or precipitation from 


seawater (as with manganese nodules).  Negative, rather than positive, Ce anomalies on 


REE patterns for samples overlying and within the Josephine ophiolite indicate a 


hydrothermal origin.  Figure 5, from Pinto-Auso and Harper (1985) shows that siliceous 


argillite and chert samples from the hemipelagic sequence and pillow lava unit of the 


Josephine ophiolite fall along a mixing line between modern terrigenous and low-


temperature hydrothermal sediments.  As discussed above, samples from within the 


pillow lava unit of the Josephine ophiolite and from the lower 8 m of the hemipelagic 


sequence are not metalliferous, although most have a metalliferous component (i.e.,  
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Al/Al+Fe+Mn <0.5); in fact, the least metalliferous hemipelagic sediments actually occur 


within the pillow lavas.  This is somewhat surprising since stratiform massive-sulfide 


deposits of hydrothermal origin are present in the Josephine ophiolite (Kuhns and Baitis, 


1987; Zierenberg et al., 1988), but are apparently the result of dilution by abundant 


terrigenous detritus, as indicated by Figure 5.  “Off-axis” metalliferous sediments are 


present 8 to 23 m above the base of the hemipelagic sequence (Fig. 2), either due to 


precipitation from low-temperature off-axis springs (Pinto-Auso and Harper, 1985) or 


from distal fallout of high-temperature springs at a younger, propagating spreading center 


(Harper, 2003b).  All slate and sandstone samples from the Galice turbidite, including 


those from the Elk River outlier, have Al/Al+Fe+Mn ratios >0.5 (Fig. 5), indicating a 


negligible metalliferous component. 


Interpretations about source area and tectonic setting based on sediment 


geochemistry can be made from several plots (Figs. 12, 13, 14).  The majority of the 


turbidite samples, including those from the Elk River outlier, plot in the intermediate-


igneous and mafic-igneous provenance fields on Figure 12 (Roser and Korsch, 1988), 


which uses linear equations of major-element ratios except for CaO and SiO2 (since they 


can be elevated by biogenic contributions).  The remaining turbidite samples plot in and 


near the quartzose sedimentary provenance field (Fig. 12).  Samples from the 


hemipelagic sequence and pillow lava unit are not plotted on Figure 12 because their 


high-Fe hydrothermal components cause these samples to plot far to the left.  Figure 12 


also shows that Galice turbidite samples fall within the field for back arc basin turbidites 


of McLennan et al. (1990), and are displaced away from average continental crust (UC) 


and sediments largely derived from continental crust (NASC and PAAS).   
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Figure 13.  Th/Sc versus Zr/Sc plot modified from McLennan et al. (1993) by the 


addition of average upper continental crust (representing cratonic sources; McLennan, 


2001), a modern island-arc tholeiite (representing mafic sources; Pearce et al., 1995), and 


the field for modern back arc basin turbidities (McLennan et al., 1990).  Symbols are the 


same as in Figure 5.   
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Figure 14.  Post-Archean Australian shale composite (PAAS) normalized diagrams.  A.  


North American shale composite (NASC) from Gromet et al. (1984), Cyprus Umber from 


Ravizza et al. (1999), and Upper Continental crust value from McLennan (2001).  B. 


Back arc basin sediments (Japan and Celebes Seas) from McLennan et al. (1990) and 


modern island arc tholeiite (IAT) from Pearce et al. (1995).  C. Chert from the 


hemipelagic sequence and typical metalliferous and intra-pillow argillites.  D. Typical 


slate and sandstone from the turbidite overlying the Josephine ophiolite, and a typical 


slate from the type area of the Galice Formation.  Normalization values are from 


McLennan (1989). 
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Figure 13 uses the trace elements Th, Zr, and Sc, which are generally immobile 


during metamorphism.  This diagram is useful in that sediments typical of passive 


continental margins have elevated Zr/Sc ratios due to zircon enrichment through 


sediment recycling (Fig. 13) (McLennan et al., 1993).  Active-margin samples, on the 


other hand, plot along a trend between mafic and continental sources.  Figure 13 shows 


that the Galice Formation samples plot along this trend, indicating insignificant sediment 


recycling, although the presence of well-rounded detrital zircons in sandstones indicates 


some recycling has occurred (Harper, 1980; Miller and Saleeby, 1995).   Figure 12 


suggests that the Galice samples were derived, on average, from sources that are more  


mafic than typical continental crust; perhaps from the mixing of continental and 


intermediate arc material.  The chert sample from the hemipelagic sequence above the 


Josephine pillow lavas plots at significantly higher Zr/Sc values compared to other 


samples (Fig. 13); although the non-biogenic component in the chert should consist of 


terrigenous or tuffaceous material similar to that in the hemipelagic rocks, and thus plot 


along the same trend as other Galice samples.  Hence, it may not be valid to plot cherts 


on this diagram (McLennan et al., 1993).  Moreover, the analytical uncertainties for Zr 


and Sc are relatively high for this particular sample since they are so diluted by SiO2.   


A more complete comparison of Galice samples with post-Archean Australian 


shale (PAAS), derived largely from continental sources, can be made by normalizing 


immobile trace and rare-earth elements to PAAS (Fig. 14).  McLennan (1989) suggested 


that samples should be normalized to PAAS rather than to NASC (North American shale 


composite) due to the possible inclusion of abnormal samples in NASC.  Reference 


samples are shown in Figure 14A and B for comparison with those from the Galice 
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Formation.  The NASC and average upper continental crust generally have flat PAAS-


normalized patterns (Fig. 14A), reflecting the dominantly continental sources for the 


shale composites.  A Cyprus umber, which is essentially pure metalliferous sediment, 


shows enrichment with respect to PAAS, especially in Ni and V, except for negative Ce 


and Cr anomalies (Fig. 14A).  The back arc basin sediment from the Celebes Sea and an 


average island-arc tholeiite (IAT) have remarkably similar PAAS-normalized patterns 


(Fig. 14B); both are depleted in the light rare-earth elements compared to PAAS, have 


negative Hf, Th and Cr anomalies, and have positive Sc anomalies (Fig. 14B).  Back arc 


basin sediment from the Japan Sea has a flatter PAAS-normalized pattern and a positive 


Ba anomaly (Fig. 14B), which is probably due to a large continental, or calc-alkaline 


volcanic, source component; this sample displays a slight negative slope from La through 


Eu, a result that is similar to the IAT sample and the Celebes Sea back arc basin sediment 


(Fig. 14B).               


   Galice Formation slate from the type area and from the turbidite sequence 


overlying the Josephine ophiolite has similar patterns when normalized to PAAS (Fig. 


14C). They show depletion in light rare-earth elements, a negative Th anomaly, and a 


positive P2O5 anomaly.  A sandstone from the basal part of the turbidite overlying the 


Josephine ophiolite has a similar pattern to the slates, except for a negative Ba anomaly 


and positive Hf, Sc, and Cr anomalies (Fig. 14D).  The Cr anomaly is probably from 


detrital Cr-spinel, since it is common in thin section, and the Sc anomaly is probably 


from the presence of detrital augite, which is abundant in this and most sandstone from 


the basal turbidite overlying the Josephine ophiolite (Harper, 1980).   







 66


The intra-pillow siliceous argillite, which is interbedded with pillow lavas of the 


Josephine ophiolite, has a similar pattern to slate from the Galice Formation turbidite 


(Fig. 14C), suggesting a similar terrigenous source.  This sample, however, has a negative 


rather than a positive P2O5 anomaly; however, since only one of the slates has a 


significant P2O5 anomaly and the sandstone has none P may have been mobile during 


diagenesis and metamorphism.  The pattern for the sandstone sample (Fig. 14D) is shifted 


downward relative to the slates, a relationship that is readily explained by dilution from 


biogenic silica, which is evident in thin section from the presence of Radiolaria.  This 


dilution effect is even greater, as expected, for the chert from the hemipelagic sequence 


overlying the Josephine ophiolite (Fig. 14C).  The pattern for the chert is similar to that 


for the intra-pillow siliceous argillite (Fig. 14C), suggesting a similar terrigenous 


component, although the chert has a prominent positive Ba anomaly of unknown origin 


(seawater?), similar to the metalliferous sediment.  The metalliferous sediment sample 


has a pattern that has similarities to both the slates of the Galice turbidite and to the 


Cyprus umber (e.g., negative Ce and Cr anomalies); this observation is consistent with 


the conclusion of Pinto-Auso and Harper (1985) that the metalliferous sediments in the 


hemipelagic sequence all have substantial terrigenous components, as evident from 


elevated Al/Al+Fe+Mn ratios (Fig. 5). 
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DISCUSSION 


 


Provenance 


 


Plots of detrital modes (Fig. 8), sediment geochemistry (Figs. 12, 13, 14), and Nd 


and Sr isotopes (Frost et al., 2006) show trends for Galice turbidite samples that can be 


explained by mixing between two sources.  The abundance of volcanic rock fragments in 


sandstones and conglomerates (Figs. 8, 9) indicates that one of these sources is volcanic, 


and this source is almost certainly a magmatic arc.  The non-arc source could represent 


basement of the arc, or a geographically distinct continental-like source.   


The microlitic texture of most volcanic clasts suggest that the arc source was 


composed primarily of andesite, although the abundance of detrital clinopyroxene (up to 


5 modal %) is perhaps more consistent with a basaltic-andesite or basalt source.  A 


negative slope for light REE, negative Th anomaly, and positive Eu and Sc anomalies for 


Galice turbidite samples on a PAAS-normalized diagram (Fig. 14) are also suggestive of 


a mafic source.  In addition, the trend in Figure 12 extends from the field for mafic, rather 


than intermediate, igneous provenances.   Nd and Sr isotope data for slates from the 


Galice Formation suggests that the arc was ensimatic (i.e., built on non-continental 


basement).  The high lithic content and generally low modal monocrystalline quartz in 


sandstones (Fig. 8 B), along with the paucity of plutonic clasts in conglomerates (<3%, 


nearly all <1%; Wyld, 1985, Seiders, 1991, written communication, 1992) indicate that 


the arc was essentially undissected.  Many of the sandstones plot in the transitional 


(partially dissected) arc field of the Q-F-L diagram (Fig. 8 A), but this is a result of the 
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inclusion of the chert clasts within total quartz (Q).  Nevertheless, several samples, 


especially those from the southern Klamath Mountains (Wyld, 1985), have sufficiently 


low total lithic clasts, relative to quartz and feldspar that they plot in the transitional arc 


field on a Qm-F-Lt diagram (Fig. 8 B).  This may also be artificial, however, for the 


following reasons:  Wyld’s (1985) samples generally have >30% matrix, which is far 


higher than modern turbidites suggesting a post-depositional reduction of the Lt/F and 


Lt/Qm ratios through the breakdown of lithic clasts; Wyld’s (1985) reported “matrix” in 


her point-count tables includes both orthomatrix and pseudomatrix (i.e., Dickinson, 


1970), and thus lithic clasts are under-represented in the Qm-F-Lt diagram; and Wyld’s 


(1985) conglomerate samples have <3% plutonic clasts.  Ingersoll (1978, 1983) 


suggested that pseudomatrix >20% should be a cautionary sign when analyzing point 


count data.  


Detrital modes of sandstone and conglomerate indicate that the non-arc 


component (source 2 on Figs. 8C and D) consisted almost entirely of chert and siliceous 


argillite.  The inferred end member corresponding to this source component is essentially 


a “lithic recycled” component, in the terms of Figure 8 B.  The rare metamorphic rock 


fragments (phyllite, quartz-mica tectonite, and quartzite) are attributed to this source, as 


are heavy minerals that are typically metamorphic in origin (garnet, glaucophane, garnet, 


epidote, and muscovite).  The staurolite is originating from an unknown source area 


(Snoke, 1977; Harper, 1980)  Ophiolitic rocks were also part of the non-arc source, as 


evident from detrital Cr-spinel compositions that indicate the presence of mantle 


peridotites, at least some of which were part of supra-subduction zone ophiolites (Fig. 10, 


11).  Cr-spinels with compositions that indicate derivation from MORB and transitional 
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MORB-OIB basalts (Fig. 10) were probably derived from non-SSZ ophiolites.  A 


positive Cr anomaly on a PAAS-normalized diagram for a Galice sandstone (Fig. 14) is 


readily interpreted as due to the presence of detrital Cr-spinel.  In contrast, an ophiolitic 


signature (high Cr or Ni) is not evident in the slates.   


Extrapolation of the trend on Figure 12 suggests that the non-arc sources lie in the 


field of “quartzose sedimentary province”.  The Th/Sc versus Zr/Sc diagram is 


compatible with this interpretation in that many of the samples plot close to “continental 


sources” (Fig. 13), but this diagram also shows that highly mature sands resulting from 


recycling, such as those formed along passive rifted margins, are not a significant 


component of Galice sandstones.  Mature sandstones were present in the source area, 


however, based on the presence of very well rounded zircon in sandstone.  Precambrian 


zircon is also present in the euhedral zircon population from Galice sandstones (Miller 


and Saleeby, 1995), indicating that at least some Precambrian sediment is first-cycle.  


Overall, Miller et al. (2003) found that only a small fraction of the detrital zircons are 


Precambrian.  Frost et al. (2006) conclude from Nd and Sr isotope data that Galice slates 


have a significantly larger Precambrian continental component than do sandstones.     


Snoke (1977) concluded that much of the detritus in Galice sandstones could be 


readily derived from older, more easterly terranes in the Klamath Mountains.  This 


hypothesis is consistent with the west-directed flow indicated by paleocurrent data from 


the Galice Formation where it overlies the Josephine ophiolite (Fig. 7 D) (Harper, 1980).  


The Klamath Mountains contain abundant chert and siliceous argillite, much of it Triassic 


(like two pebbles from the Galice Formation), as well as metamorphic and ophiolitic 


rocks (e.g., Irwin, 1966, 1972; Davis et al., 1978; Saleeby and Busby-Spera, 1992).  The 
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basement to all but the eastern Klamath arc rocks, including the Rogue-Chetco arc (Yule, 


1996; Yule et al., 2006), is the early Mesozoic Rattlesnake Creek Terrane (Wright and 


Wyld, 1994; Hacker et al., 1995).  The Rattlesnake Creek terrane contains Triassic chert 


as well as mafic volcanic rocks that could have supplied MORB to MORB-OIB affinity 


detrital Cr-spinel (Fig. 10), although OIB affinity volcanic rocks are also present in the 


Sawyers Bar terrane of the central Klamath Mountains (Hacker et al., 1993).  Units in the 


Klamath Mountains that could have supplied metamorphic detritus include the 


greenschist- to amphibolite-facies central metamorphic belt (e.g., Irwin, 1966; Davis et 


al., 1978).  As for detrital glaucophane, the blueschist-facies Stuart Fork Terrane (Hotz et 


al., 1977 and Skookum Gulch Schist (Cotkin et al., 1992), as well as blueschist blocks in 


mélange of the Eastern Hayfork unit in the Sawyers Bar terrane (Wright, 1982; Hacker 


and Ernst, 1993), could have been the source(s).  The large supra-subduction zone Trinity 


ophiolite could have supplied detrital peridotitic and boninitic Cr-spinel (Fig. 11) (Quick, 


1981; Metcalf et al., 2000).   


Possible contributors of arc detritus from east of the Galice Formation include 


Middle Jurassic rocks in the eastern Klamath Mountains (e.g., Renne and Scott, 1988), 


the ~177-168 Ma Hayfork arc (western Hayfork terrane and related plutonic rocks; 


Wright and Fahan, 1988), and the ~159-165 Ma Wooley Creek plutonic belt (e.g., Hacker 


et al., 1995).  These are not the appropriate age to have provided the ~153 Ma detrital 


zircons in the Galice Formation, nor are they likely to have yielded volcanic glass that is 


abundant in the volcanic-rich sandstones of the basal turbidite.  Three plutons along the 


northeastern margin of the Klamath Mountains, however, may be the subvolcanic 


remains of a ~153 Ma zircon source.  Irwin and Wooden (1999) reported 154 and 156 Ma 
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U/Pb zircon ages for the Jacksonville and White Rock plutons in the northern Klamath 


Mountains, respectively, and Yule et al. (2006) interpret an age of ~152 to 156 Ma from 


complex U/Pb zircon age data for the younger of two phases of the Ashland pluton.  Frost 


et al. (2006) suggest that the Rogue-Chetco arc (Fig. 1) was the source of the ~153 Ma 


volcanic detritus in Galice sandstones and slates, but this seems unlikely because of the 


following:  (1) the arc axis, probably represented by the plutonic Chetco complex lies 


west of the Galice Formation, inconsistent with paleocurrent data; (2) U/Pb zircon ages 


for the Chetco Complex are too old, ranging from 160 to 157 Ma (Yule, 1996; Yule et al., 


2006); (3) the Rogue Formation underlies the Galice Formation and is thus too old, 


although one Ar/Ar hornblende age is 153.4 Ma (Hacker et al., 1995); and (4) some of 


the components in the sandstones (e.g., glaucophane) are not known from the basement 


rocks of the Rogue-Chetco arc complex, which are dominantly ophiolitic (Yule, 1996; 


Yule et al., 2006).  Volcanic members in the Galice Formation, which include coarse 


breccias, were obviously derived from nearby volcanic sources, but volcanic detritus in 


the Galice sandstones and slates had to have been mixed with non-arc sources before 


deposition.   


Derivation of the ~227 Ma detrital zircons within the Galice Formation from the 


Klamath Mountain terranes to the east does appear likely.  This is because there is no 


known source in the Klamath Mountains.  The only known igneous rocks of the 


appropriate age in the Klamath Mountains are dacites in the Pit Formation of the eastern 


Klamath Mountains (Albers and Robertson, 1961), but these apparently are barren of 


zircon (J. Wright, written communication, 2004).  Hacker et al. (1993) infer that arc rocks 


of this age are present in the Sawyers Bar terrane in the central Klamath Mountains, but 
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even if they are, these rocks are predominantly mafic and unlikely to have yielded much 


zircon.  The ~227 Ma detrital zircon, however, might be present in Upper Triassic to 


Middle Jurassic clastic rocks of the Klamath Mountains.  A pre-Cretaceous 


reconstruction by Wyld and Wright (2001) places the Pine Nut terrane and the basinal 


Luning assemblage just east of the Klamath Mountains.  Both the Pine Nut terrane and 


the Luning assemblage contain strata with peak detrital zircon ages of ~225 Ma 


(Manuszak et al., 2000), in addition to rocks of ~230 Ma in the former (Dilles and 


Wright, 1988); thus, these terranes are potential sources of the ~227 Ma detrital zircon in 


Galice sandstones.   


South-directed paleocurrent directions in the type Galice Formation (Fig. 7 B) 


suggest that the main source area for the Galice Formation may have been north of the 


present Klamath Mountains.  Klamath rocks are covered by Cenozoic volcanic rocks to 


the north, but chert, including Triassic chert, (e.g., Pessagno and Whalen, 1982), and 


supra-subduction zone ophiolite peridotite (Bishop, 1995) are present in northeastern 


Oregon.  Significant volumes of ~153 Ma volcanic rocks do not appear to be present 


(e.g., Saleeby and Busby-Spera, 1992), although some andesitic dikes and the Sunrise 


Butte pluton have K/Ar ages in the range of 150 to 158 Ma (Johnson et al., 1995).  Only a 


few probable Late Jurassic arc rocks are exposed farther north in Washington (Miller et 


al., 1993).  Possible source rocks for the ~227 Ma detrital zircons in the Galice may be 


present in the Blue Mountains, Oregon, Washington, and Idaho (e.g., 262-219 Ma Sparta 


complex and Carnian to Norian volcanic rocks of the Olds Ferry terrane; Ave Lallemant, 


1995).  The monocrystalline quartz-poor Galice sandstones are unlikely to have had a 


source to the south because Paleozoic quartz sandstones in the central and southern Sierra 
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Nevada contain zircons much older (>2.2 Ga) than detrital zircons in the Galice 


Formation (Harding et al., 2000).   


 


Regional variations  


 


Miller et al. (2003) found that detrital-zircon age populations for a sandstone 


overlying the Ingalls ophiolite complex in the central Cascade Mountains of Washington 


were very similar to those for a Galice sandstone, with peaks at ~153 and ~227 Ma.  The 


Ingalls sandstone, however, contains no Precambrian zircon.  No modal petrographic data 


are available for the Ingalls sandstones, although the types of clasts are similar to those in 


the Galice Formation, including Cr-spinel (Southwick, 1974; Miller et al., 1993).  


Terranes similar to those of the western Klamath terrane are present in the Sierra 


Nevada region (Davis, 1969; Irwin, 2003).  Conglomerates from the Mariposa Formation 


of the central Sierra Nevada foothills, which has long been correlated to the Galice 


Formation (e.g., Diller, 1907; Davis, 1969), are distinct from Galice conglomerates in 


that they have a much higher proportion of quartzose clasts (Fig. 9) (Seiders and Blome, 


1988; Seiders, 1991, written communication, 1992).  This observation suggests a Sierran 


rather than Klamath Mountains source for the Mariposa Formation (Seiders and Blome, 


1988), even though paleocurrent data reported by Bogen (1984) indicate south-southeast 


transport.  Most of the conglomerates in the southernmost Galice Formation (Wyld, 1985; 


Fig. 1) are similar to those from the Galice Formation farther north, in which pebbles 


consist almost entirely of chert, argillite, or volcanic rocks, but some have elevated  
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Figure 15.  Tectonic model for the generation and emplacement of the Galice Formation 


and the underlying Josephine ophiolite.  The inferred oblique subduction model is similar 


to the modern Andaman Sea.  Arrows indicate probable paleocurrent flow directions.  


Modified from Harper and Wright (1984), Harper et al. (1985), Wyld and Wright (1988), 


and Harper et al. (1994).  A. Paleogeography prior to deposition of Galice turbidite.   B.  


Paleogeography during deposition of Galice turbidite.   
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contents of quartzose clasts and are thus compositionally transitional to conglomerates of 


the Mariposa Formation (Fig. 9).   


 


Temporal variations and tectonic implications 


 


The ~162 to 153 Ma sedimentary rocks of the hemipelagic sequence, the 


hemipelagic-turbidite transition, and within the Josephine ophiolite have similarities to 


the turbidite (Figs. 12, 13, 14, except for the presence of a metalliferous (hydrothermal) 


component in some samples (Fig. 5).  There is a striking similarity in petrography, and 


especially detrital Cr-spinel compositions (Fig. 10, 11), between the thin sandstone bed 


within pillow lavas of the Josephine ophiolite (~162 Ma) and sandstones of the lower 


Galice turbidite (~153 Ma).  This observation and similarities in the geochemistry of 


siliceous argillites and Galice slates suggest that the source area for the Galice turbidite 


was already established by ~162 Ma.  This implies that the Galice source area was 


probably produced during ~165 Ma thrusting (“Siskiyou orogeny”) that preceded 


formation of the Josephine ophiolite (Fig. 15) (Wright and Fahan, 1988; Hacker et al., 


1995).  The inferred basin and source area relationships just after this episode of 


shortening are shown in Figure 15 A.Tectonic setting of deposition 


 


The tectonic setting at ~160 Ma for the western Klamath Mountains is well 


constrained (e.g., Saleeby et al., 1982; Harper and Wright, 1984; Wyld and Wright, 1988; 


Hacker et al., 1995; Yule, 1996; Yule et al., 2006), and a model in which the Josephine 


ophiolite is located within a back arc basin behind the west-facing Rogue-Chetco arc at 
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~160 Ma (Fig. 15 A) is generally accepted (e.g., Dickinson et al., 1996).  The ~177 to 


168 western Hayfork arc would represent a remnant arc at this time, and a tectonic 


highland is inferred because of an ~165 Ma shortening event (Wright and Fahan, 1988), 


sometimes called the “Siskiyou orogeny”.   Seafloor spreading in the back arc basin is 


inferred to have been transform-dominated (Fig. 15 A) based on the east-west orientation 


(in modern coordinates) of spreading centers inferred from sheeted dike orientations and 


other structural data (Harper et al., 1985; Alexander and Harper, 1992).  Parts of both 


sides of this basin were underlain by older rifted Klamath crust, in places cut by 


Josephine-age mafic complexes; the Rogue-Chetco arc was built on older Klamath crust 


rifted away during seafloor spreading in the back arc basin (Saleeby et al., 1982; Harper 


and Wright, 1984; Wyld and Wright, 1988; Yule, 1996; Yule et al., 1996). 


Deposition of the Galice turbidite was interpreted by Harper and Wright (1984) 


and Wyld and Wright (1988) to have occurred in this basin before the Nevadan orogeny, 


with volcanic members derived from the Rogue-Chetco arc from the west (Fig. 15 A).  


This is probably the explanation for the high terrigenous content of sediments within the 


Josephine pillow lava unit and the hemipelagic sequence, with the terrigenous sediment 


derived from the nearby “Siskiyou” highland.  


Based on the closeness in age of the Galice turbidite with the oldest plutons that 


cut the roof (Orleans) thrust, which may have >100 km displacement, Harper et al. (1994) 


reinterpreted the Galice turbidite as a synorogenic deposit (Fig. 15 B).  In this scenario, 


the turbidite was derived from Late Jurassic uplift related to underthrusting of the 


Josephine ophiolite.  The area of uplift is inferred to have been similar to that affected by 


the pre-Josephine (“Siskiyou”) deformation, which would account for the very similar 
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clasts compositions and detrital modes of the sandstone within the Josephine pillow lavas 


(~162 Ma) and the basal Galice turbidite (~153 Ma).  The great increase in amount of 


sandstone at the top of the hemipelagic-turbidite transition based on the peak ~153 m.y. 


age of detrital zircon in a sandstone from the basal turbidite (Miller et al., 2003) as well 


as other geochronologic constraints (Harper et al., 1994).  Widespread ~150 Ma Ar/Ar 


hornblende and mica cooling ages in the central Klamath Mountains (Hacker et al., 1995) 


may record Nevadan underthrusting and uplift.    


The presence of the apparent hiatus at the top of the hemipelagic sequence 


(Pessagno and Blome, 1990; Pessagno et al., 2000), which is underlain by a zone of pre-


cleavage deformation (Fig. 2) (Harper, 2006), is enigmatic.  As discussed above, this 


contact could be a minor unconformity, a normal fault, or a submarine landslide surface.  


A possible explanation for this surface is that it is a disconformity resulting from non-


sedimentation and/or submarine erosion on a flexural bulge in front of the “trench” as the 


ophiolite and overlying Galice were thrust beneath older terranes of the Klamath 


Mountains during the Nevadan Orogeny (Fig. 15).  Passage of crust over a flexural bulge 


in front of a trench can result in an unconformity and normal faulting (e.g., Rowley and 


Kidd, 1981; Bradley and Kidd, 1991).  Underthrusting of the Josephine ophiolite, which 


involved at least 40 km displacement, is broadly analogous to subduction.  In addition, 


relief created by this faulting could have resulted in a submarine landslide that removed 


strata prior to deposition of the hemipelagic-turbidite unit.   


The quartzite-rich conglomerates in the Mariposa Formation in the Sierra Nevada 


foothills (Fig. 9) may suggest that the Mariposa and associated Late Jurassic arc rocks 


have not been translated appreciably relative to older rocks in the Sierra Nevada.  If this 
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is correct, then the Mariposa should contain >2.2 Ga detrital zircon known to be present 


in older rocks of the Sierra Nevada (Harding et al., 2000).  Similarly, the Galice 


sandstones and conglomerates appear to be derived largely from the Klamath Mountains, 


except that there is no known Klamath source for ~227 Ma detrital zircons, and the 


location that provided ~153 Ma zircons is uncertain.  Additional dating of zircon in the 


Klamath Mountains and elsewhere in the Cordillera might better constrain source areas 


for Galice sedimentary rocks and, in turn, better constrain models for Late Jurassic 


tectonics and paleogeography of western North America.  
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CHAPTER THREE  


GEOCHEMISTRY AND GEOLOGY OF THE IRON MOUNTAIN UNIT, 


INGALLS OPHIOLITE COMPLEX, WASHINGTON: EVIDENCE FOR THE 


POLYGENETIC NATURE OF THE INGALLS 


 


ABSTRACT 


  


The Ingalls ophiolite complex mainly consists of ultramafic tectonites, with 


crustal rocks consisting of gabbro, diabase, basalt, and sedimentary rocks.  These crustal 


rocks occur as faulted blocks within serpentinite mélange.  Mafic rocks in most of these 


blocks comprise the Late Jurassic Esmeralda Peaks unit.  Herein, we recognize and 


define an older, Early Jurassic unit within the Ingalls ophiolite complex, which we call 


the Iron Mountain unit.  This unit occurs along the southern edge of the complex and 


consists dominantly of mafic volcanic rocks with minor sedimentary rocks.  A rhyolite 


within the Iron Mountain unit yields a 192 Ma U/Pb zircon age, consistent with an Early 


Jurassic age assignment based on radiolarians in cherts.  Within-plate basalt (WPB) 


magmatic affinities, volcanic lithologies and presence of oolitic limestone suggest that 


the Iron Mountain unit formed as a seamount.  Magmatic affinities range from WPB to 


enriched mid-ocean ridge basalt (E-MORB), however, which is compatible with plume 


eruption close to a ridge.  The Early Jurassic age of the Iron Mountain unit, which is ~30 


m.y. older than the Esmeralda Peaks unit, indicates that the Ingalls ophiolite complex is 


polygenetic.  The Iron Mountain unit most likely represents basement that was rifted in a 
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suprasubduction zone setting in the Late Jurassic during formation of the Esmeralda 


Peaks unit.   


 


INTRODUCTION 


  


Ophiolites are generally considered to be fragments of oceanic crust and upper 


mantle, formed during seafloor spreading, that have been emplaced onto continents (e.g., 


Anonymous, 1972; Moores, 1982; Dilek, 2003).  However, some terranes referred to as 


ophiolitic have older basement rocks and have been interpreted as rift-edge facies (De 


Wit and Stern, 1981; Saleeby et al., 1982; Wyld and Wright, 1988; Dewey, 2003; Stern 


and De Wit, 2003).  Still other incomplete "ophiolites" are interpreted to have formed as 


intra-plate seamounts rather than by seafloor spreading or rifting (Meyer et al., 1996; 


Eddy et al., 1998; Dewey, 2003; Shervais et al., 2005).   


A belt of Middle to Late Jurassic ophiolites extends along the western coast of 


North America for over 1000 km (Fig. 16).  Understanding the origin of this ophiolite 


belt is fundamental to understanding the Jurassic tectonic history of the western North 


America Cordillera (Saleeby, 1992).  Included within this belt are the Josephine ophiolite 


and its rift-edge facies, which were built upon the older ophiolitic Rattlesnake Creek 


terrane (Fig. 16) (Saleeby et al., 1982; Harper, et al., 1994; Wyld and Wright, 1988), and 


the Ingalls ophiolite complex (Fig. 16) (Miller, 1980, 1985; Miller et al., 1993; Harper et 


al., 2003).   


The Ingalls ophiolite complex is the largest and most complete of the northern 


ophiolites of this belt, and has been correlated with the ~162 Ma Josephine ophiolite (Fig.  
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Figure 16. Location of Middle to Late Jurassic ophiolites of the North America 


Cordillera and older Rattlesnake Creek terrane.  JO-DEO = Devils Elbow. Modified from 


Metzger et al. (2002). 
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16) (Miller et al., 1993, Metzger et al., 2002; Miller et al., 2003).  It is intruded by the 91 


to 96.5 Ma Mount Stuart batholith, is overlain by Eocene sediments to the south, and is 


thrust over the Chiwaukum Schist along the Cretaceous Windy Pass thrust to the north 


(Fig. 17) (Miller, 1980, 1985; Matzel, 2004).  


 


INGALLS OPHIOLITE COMPLEX 


 


Mantle peridotites 


 


Most of the Ingalls ophiolite complex consists of peridotite tectonite (Fig. 17).  


The relationship between the ultramafic and crustal units of the Ingalls ophiolite complex 


is not well understood.  A northern lherzolite and clinopyroxene-rich harzburgite unit is 


separated from a southern harzburgite and dunite unit by the Navaho Divide fault zone 


(Fig. 17) (Miller, 1985).  This fault zone (Fig. 17 and 18) consists of serpentinite matrix 


mélange that encases less serpentinized peridotites and crustal units of the complex as 


faulted blocks (Miller, 1980, 1985; Miller and Mogk, 1987).  These faulted contacts dip 


steeply to the north (Miller, 1980, 1985).  The serpentinite matrix mélange of the Navaho 


Divide fault zone overprints mylonitic lherzolite that is transitional into the northern 


lherzolite unit (Fig. 18) (Miller, 1985; Miller and Mogk, 1987).  Miller (1985) and Miller 


and Mogk (1987) proposed that the Navaho Divide fault zone originated as a transform 


fault and fracture zone.  


All other units within the Ingalls ophiolite complex occur as outcrop- to km-scale, 


fault-bounded blocks within the serpentinite matrix mélange of the Navaho Divide fault  
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Figure 17.  Map of the Ingalls ophiolite complex and surrounding units.  EP = Esmeralda 


Peaks; NDFZ = Navaho Divide fault zone; I = Iron Mountain; S = Sheep Mountain.  IAT 


= island-arc tholeiite; MORB = mid-ocean ridge basalt; WPB = within-plate basalt.  


Indicated Jurassic ages are based on Radiolaria in chert (E. Pessagno, 2002, personal 


communication to MacDonald et al. 2006). 
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Figure 18. Geologic map of the southeastern part of the Ingalls Ophiolite Complex.  


Jurassic ages based on Radiolaria (Miller et al., 1993; C. Blome, personal 


communication, 1992; E. Pessagno, personal communication, 2002, 2004).  Modified 


from Tabor and colleagues (1982, 1987, 1993, and 2000) and Harper et al. (2003). 
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zone.  These include the Ingalls sedimentary rocks (Peshastin Formation) and mafic rocks 


of the Esmeralda Peaks and Iron Mountain units.   


 


Ingalls sedimentary rocks 


 


The Ingalls sedimentary rocks occur primarily in the eastern portion of the 


complex (Fig. 17 and 19) (Smith, 1904; Southwick, 1962, 1974; Mlinarevic et al., 2003).  


Argillite predominates, and chert, graywacke, conglomerate, ophiolitic breccia, and 


sedimentary serpentinite are minor constituents (Fig. 19) (Smith, 1904; Southwick, 1962, 


1974; Mlinarevic et al., 2003; MacDonald et al., 2005).  These sedimentary rocks 


depositionally overlie the volcanic and plutonic rocks of the Esmeralda Peaks unit.  


Oxfordian and Kimmeridgian radiolaria occur within cherts from the Ingalls sedimentary 


rocks (Fig. 17, 18, and 19) (Miller et al., 1993; Pessagno, personal communication, 2002; 


Harper et al., 2003).  Ion microprobe U/Pb dating of detrital zircons from an Ingalls 


graywacke gives a bimodal age distribution, and the younger 153 Ma detrital zircon peak 


is interpreted to approximate the age of deposition (Miller et al., 2003).  A bimodal 


source of locally derived ophiolitic debris and a more distal terrigenous source area are 


inferred for the Ingalls sedimentary rocks (Mlinarevic et al., 2003).   


 


Esmeralda Peaks unit 


 


The Esmeralda Peaks unit consists of gabbro, sparse plagiogranite, abundant 


diabase (locally forming sheeted dikes), pillowed and massive basalt, and minor  
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Figure 19.  Stratigraphic section (synthesized from map; not measured) of Sheep 


Mountain, Iron Mountain, Negro creek and west of Negro creek.  Radiolarian ages are 


from Miller et al. (1993), C. Blome (1992, personal communication) and E. Pessagno 


(1999, personal communication).   
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ophiolitic breccia and intra-pillow chert (Miller, 1985; Harper et al., 2003; MacDonald et 


al., 2006).  A gabbro from this unit has yielded a U/Pb zircon age of 161 + 1 Ma (2 σ) 


(Fig. 17) (Miller et al., 2003).  Geochemical affinities of the Esmeralda Peaks volcanic 


rocks are transitional from mid-ocean ridge basalt to island arc tholeiite (MORB-IAT), 


although a few lava samples have boninitic affinities (Fig. 20 and 21) (Metzger et al., 


2002; Harper et al., 2003; MacDonald et al., 2006).  This unit is interpreted to have 


formed in a backarc basin cut by a fracture zone (Miller et al., 1993; Metzger et al., 2002; 


Harper et al., 2003; MacDonald et al., 2006).  For a detailed discussion of the Esmeralda 


Peaks unit refer to MacDonald et al. (2006).  


 


Iron Mountain unit 


 


The Iron Mountain unit (Fig. 17 and 18), described in detail here for the first time, 


consists of volcanic and minor sedimentary rocks (Fig. 19).  This unit occurs as km-scale, 


and smaller, fault blocks within the serpentinite mélange of the Navaho Divide fault zone 


(Fig. 17 and 18).  The faulted contacts dip steeply to the north (Fig. 18).  The Iron 


Mountain unit ranges in thickness from ~100 to >930 m (Fig. 19) and extends 


discontinuously for about 24 km in the southern part of the complex (Fig. 17 and 18).   
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Figure 20.  Chondrite-, MORB-normalized diagram.  (A) Representative samples of 


different magma types including N-MORB, E-MORB, and WPB (Sun and McDonough, 


1989), IAT (SSS5-4; Pearce et al., 1995), and within-plate granite (WPG; Pearce et al., 


1984).  Chondrite and MORB normalizing values are from Sun and McDonough (1989).  


(B) Ten basalt samples and one rhyolite from the Iron Mountain unit along with a shaded 


field for Esmeralda Peaks samples (boninite not plotted).   
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Figure 21.  Th/Yb-Ta/Yb discriminant diagram (Pearce, 1982) for Iron Mountain basalts 


and rhyolite and a shaded field and a labeled boninite for the Esmeralda Peaks unit.  N-


MORB, E-MORB and WPB average values are from Sun and McDonough (1989).  


Within-plate granite (WPG) is from Pearce et al. (1984).  Lau and Mariana back-arc basin 


field were compiled by Harper (2003).  Symbols are the same as Figure 19. 
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Lithologies 


  


Volcanic rocks in the Iron Mountain unit include basalt flows and broken-pillow 


breccia, and minor hyaloclastite and rhyolite.  Most basalt is vesicular and pillowed; 


pillows range from ~10 cm to ~1 m in diameter.  Sparse massive vesicular and sheet 


flows are intercalated with the pillow basalts, and range up to ~2 m in thickness.   


Plagioclase microglomerophenocrysts set in an altered glassy groundmass with 


plagioclase microlites are common in the basalts.  Clinopyroxene was observed in the 


groundmass in several samples, and as microphenocrysts in one sample.  The broken-


pillow breccia is monolithologic, consists of dm-size, angular, typically vesicular, 


fragments of pillows set in a matrix of altered glass, recrystallized calcite and minor 


chert, and makes up roughly one third of all volcanic rocks.  This broken-pillow breccia 


occurs as both small meter-scale outcrops interfingered with the pillow basalts, and as 


laterally extensive breccias extending up to ~685 m in length and reaching ~52 m in 


thickness.  The hyaloclastite consists of altered mafic glass and <10% pillow basalt 


fragments.  These hyaloclastites are commonly medium bedded, are no more then a few 


meters in thickness, and make up <1% of all volcanic rocks.  The rhyolite has quartz and 


plagioclase phenocrysts or, more frequently, microphenocrysts set in a granular 


groundmass of plagioclase and quartz.  Sulfide mineralization occurs in the rhyolite.  At 


one locality, rhyolite occurs as massive flows above broken-pillow breccia and below 


vesicular pillow basalt, and is up to ~65 m thick (Fig. 18 and 19).       


 Basalt flows and broken-pillow breccias have albite, epidote, chlorite, pumpellyite 


and sphene as alteration minerals.  Vesicles in the basalts are filled with calcite generally 
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intergrown with epidote and pumpellyite.  The rhyolite has albite, epidote, recrystallized 


quartz, and minor chlorite and sphene as alteration minerals.  Secondary muscovite 


occurs in the rhyolite groundmass in one sample.  Veins of calcite, or calcite plus quartz, 


cut through the basalt and rhyolite, respectively. 


 Sedimentary rocks intercalated with the volcanic rocks include limestone and 


minor argillite, chert, and basaltic tuffs (Fig. 19).  Pink and gray recrystallized limestone 


occurs as interpillow sediment up to ~1 m in diameter and, in places, is uniformly 


distributed throughout the pillow basalts.  Interpillow argillites are locally siliceous and 


impure chert occurs as recrystallized dark green intra-pillow sediments.   


Basaltic tuffs occur between pillows as undisrupted aqueous deposits and as 


reworked beds.  The reworked basaltic tuffs form ~1-cm-thick beds, with total bedded 


thickness ranging up to several meters (Miller, 1980).  These reworked tuffs are 


monolithologic, consisting of poorly sorted mm to cm size basaltic fragments (Miller, 


1980).       


Sedimentary rocks that sit conformably on the volcanic rocks include mudstone, 


limestone, chert, basaltic breccia, and minor sandstone.  Mudstone is the most abundant 


sedimentary rock type.  Locally interbedded with the mudstone is dark gray, thin- to 


medium-bedded radiolarian chert, jasper, red radiolarian chert, and ribbon chert (Figs. 18 


and 19) (Harper et al., 2003).  Radiolarian cherts range from a few centimeters to a few 


meters in thickness.  Basalt breccia consists of dm-size fragments cemented by 


recrystallized calcite, is up to ~21 m thick, and is moderately sorted.  Thin beds of 


graywacke sandstone are massive to well bedded (mm- to cm-scale), poorly to weakly 


graded, and poorly sorted.  Clasts of tuff and chert are common.  These sandstones are 
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more clay rich and less sorted than Late Jurassic sandstones that overlie the Esmeralda 


Peaks unit (Southwick, 1962; MacDonald et al., 2006).    


 Limestone is a minor but distinctive rock type of the Iron Mountain unit (Fig. 18 


and 19).  It occurs as beds up to 80 m thick that lie conformably on the basalt (Fig. 19).  


The limestones are massive and are either light-gray or reddish-pink.  Locally the 


limestone is brecciated, with clasts range up to 8 cm in diameter.  The gray limestone is 


oolitic (Fig. 22), and contains fragments of echinoderms, forams, bivalves, and possibly 


gastropods, as well as red and green algae (C. H. Stevens, personal communication, 


2002).  The fossil fragments are commonly encased in the center of the ooids by 


microcrystalline calcite, and some ooids are composite.  The red limestone is micritic, 


contains radiolarians and forams, and is pelagic in origin (E. Pessagno, personal 


communication, 2004).   


 


Geochemistry 


  


Iron Mountain unit basalts were previously analyzed by Gray (n = 6; 1982) and 


Metzger et al. (n = 2; 2002).  No localities were given for Gray's (1982) samples, which 


were interpreted to have mid-ocean ridge basalt (MORB) affinities.  Metzger et al. (2002) 


recognized within-plate basalt (WPB) affinities for their samples, and similarly 


reinterpreted Gray’s (1982) samples.  Metzger et al. (2002) also suspected that the WPB 


samples belonged to a previously unrecognized unit within the Ingalls ophiolite complex. 


Ten new Iron Mountain samples were analyzed for this paper (Table 3; see data 


repository for analytical discussion).  In our evaluation of the Iron Mountain unit, we  
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Figure 22.  Photomicrograph of oolites in limestone within the Iron Mountain unit. 
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utilized the samples of Metzger et al. (2002), but excluded those of Gray's (1982) due to 


the lack of published sample localities.  Because the volcanics of the Iron Mountain unit 


underwent greenschist facies metamorphism, only geochemical plots with elements that 


are immobile under these metamorphic conditions are used.   


With the exception of two samples discussed below, basalts of the Iron Mountain 


unit have WPB affinities as evident from the Ti-Zr-Y diagram (Fig. 23; Table 3).  


According to Pearce (1996a), this diagram is extremely diagnostic for discriminating 


basalts that formed in a within-plate environment, probably because Y is depleted during 


partial melting of garnet lherzolite.  The Th/Yb-Ta/Yb diagram (Fig. 21) indicates that 


the Iron Mountain basalts have within-plate enrichment of the mantle source, are 


transitional between tholeiitic and alkaline, and display no arc component.  Ti/V ratios 


for the Iron Mountain unit basalts are transitional between alkaline and tholeiitic, and are 


similar to those of Hawaii (Fig. 24).  These basalts have steep patterns on MORB- and 


chondrite-normalized diagrams, and display strong light-ion lithophile element 


enrichment when compared to normal-MORB (Fig. 21) (Metzger et al., 2002).   


 A rhyolite from the Iron Mountain unit also has within-plate affinities and has no 


arc component (Fig. 21 and 21; Table 3).  The Th/Yb-Ta/Yb and rare earth element 


patterns are similar to the basalts from this unit (Figs. 20 and 21).  The rhyolite displays a 


large negative Ti anomaly, and a negative Eu anomaly (Fig. 20B), consistent with Fe-Ti 


oxide and plagioclase fractionation, respectively.   


 The two western most exposures of the Iron Mountain unit, located south of 


Esmeralda Peaks and north of the enigmatic De Roux unit (Fig. 17), occur as isolated 


blocks within serpentinite-matrix mélange.  These exposures have well developed  
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Figure 23.  Ti-Zr-Y discriminant diagram (Pearce and Cann, 1973) for basalts from the 


Iron Mountain unit along with a shaded field and a labeled boninite for the Esmeralda 


Peaks unit.  Symbols are the same as Fig. 19.     
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Figure 24.  Ti-V discriminant diagram (Shervais, 1982) for Iron Mountain basalts along 


with a shaded field for the Esmeralda Peaks unit.  Only mafic rocks are shown.  Calc-


alkaline basalts are excluded because Ti-V changes with fractionation.  The back-arc 


basin field was compiled by Harper et al. (2003) and the Hawaii field was compiled from 


the GEOROC geochemical database (http://georoc.mpch-mainz.gwdg.de/georoc/). 
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vesicular pillow basalt with abundant interpillow limestone, minor interpillow chert and 


basalt breccia, and rare argillite.  Unlike similar rocks to the east, a sample from each 


locality has enriched mid-ocean ridge basalt (E-MORB), rather than WPB, chemical 


affinities (Figs. 20 and 21).  Like other Iron Mountain basalts, these two samples display 


no arc component (Fig. 21), but were derived from a mantle more depleted than other 


samples (Figs. 20 and 21).       


 


Geochronology 


 


A U/Pb zircon date (Table 4; Fig. 25) on five hand-picked, euhedral zircons has 


been obtained from a rhyolite west of Negro Creek (Fig. 18 and 19).  Analysis was 


performed with a Micromass Sector 54 thermal ionization mass spectrometer at the 


University of North Carolina.  Decay constants used were 
238


U = 0.155125 x 10
-9


 yr
-1


, 


and 
235


U = 0.98485 x 10
-9


yr
-1


 (Steiger and Jäger, 1977).  Weights were estimated using a 


video camera and are known to within 10%.  Data reduction and error analysis was done 


using PbMacDat-2 by D. S. Coleman, using the algorithms of Ludwig (1989, 1990).  All 


zircons were extensively air abraded and do not show any appreciable inheritance.  The 


two most concordant zircons have ages of 192 Ma, and are less than 0.7% discordant 


(Table 4).  A weighted mean concordia age for all five zircons of 192.1 ± 0.3 Ma 


(MSWD of concordance = 3.3, including 2σ decay constant errors; Fig. 25) is taken as 


the preferred age. 


Pliensbachian and upper Pliensbachian to middle Toarcian radiolarians 


(Paracanoptum annulatum and Parahsuum sp.; Zone 01, Base Subzone 1A to top of  
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Figure 25.  Concordia diagram for a rhyolite (sample BL-150) from the Iron Mountain 


unit (see Table 4).  Ellipses reflect 2-sigma error. 
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Subzone 01B; Pessagno and Poisson, 1979) are reported from cherts within the Iron 


Mountain unit (Figs. 18, 19; Table 5) (C. Blome written communication, 1992; E. 


Pessagno written communication, 2004).  The Lower Jurassic radiolarian chert occurs at 


three localities: 1) interbedded with Iron Mountain unit pillow basalt ~1.8 km east of the 


summit of Iron Mountain, on the drainage divide south of King Creek (probable late 


Pliensbachian age; Table 5; Figs. 18 and 19); 2) interbedded with argillite ~50 m above 


the Iron Mountain unit basalt on Sheep Mountain (Pliensbachian age; Table 5; Figs. 18, 


19); and 3) interbedded with argillite ~35 m above the Iron Mountain unit basalt west of 


Negro Creek (upper Pliensbachian to middle Toarcian; Table 5; Fig. 18 and 19).  This 


Pliensbachian to probable late Pliensbachian age is slightly younger than the ~192 Ma 


zircon age (Fig. 25) based on the Gradstein et al. (2004) Jurassic time scale 


(Pliensbachian = 189 ± 1.5 to 183 ± 1.5 Ma) (Table 4 and 5; Figs. 18, 19, and 25). 


 


DISCUSSION 


 


 The newly defined Iron Mountain unit occurs along the southern margin of the 


Ingalls ophiolite complex.  It is distinguished from other units in the complex by its Early 


Jurassic age (~192 Ma; Fig. 25; Table 4), oolitic (Fig. 22) and pelagic limestone,  within-


plate magmatic affinities (Fig. 20, 21, and 23), and rhyolite. 


Th/Yb-Ta/Yb and MORB-normalized diagrams (Fig. 20 and 21) are compatible 


with the rhyolite fractionating from the Iron Mountain basalt magma.  Formation from 


partial melting of altered basalt, however, cannot be ruled out (Pearce, 1996b; 


Gunnarsson et al., 1998).  "Granitic" magmas that have fractionated from WPB do occur  
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in small volume in ocean island settings (e.g., within-plate granites on Ascension Island; 


Fig. 20 and 21) (Harris, 1983; Pearce, 1996b). 


The WPB affinities of basalts suggest the Iron Mountain unit formed as a 


seamount (Fig. 26A).  The oolitic limestones (Fig. 22), and disarticulation of fossil 


fragments within the limestone, indicate deposition above wave base.  Also, the highly 


vesicular nature of Iron Mountain basalts is consistent with shallow water eruption 


(Moore, 1970).  The hemipelagic limestone and chert, however, imply deposition in 


deeper water during part of the formation of the Iron Mountain unit (Fig. 26B).  


Schmincke and Sumita (1998) and Schmidt and Schmincke (1999) indicate that 


seamounts are associated with locally derived sediments and explosive eruptions.  The 


broken pillow breccia, basalt breccia, and hyaloclastite of the Iron Mountain unit 


probably represent these types of deposits. 


We propose an off-axis seamount origin for the Iron Mountain unit (Fig. 26A).  


This is based primarily on the transitional WPB to E-MORB geochemical affinities and 


tholeiitic, rather than alkaline, compositions (Fig. 20, 21, 23, and 24).  Transitional WPB 


to E-MORB compositions form where a mantle plume has interacted with an active 


spreading ridge (Shervais, 1982, Pearce, 1996a; Harpp and White, 2001).  Also, 


Schmincke (2004) suggests that seamounts formed in close proximity to active mid-


ocean spreading ridges are tholeiitic, whereas those formed in an open ocean basin are 


more alkaline.   


The Th/Yb-Ta/Yb, chondrite- and MORB normalized diagrams (Fig. 20 and 21) 


imply that the Iron Mountain unit did not originate from a similar mantle as the ~161 Ma  
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Figure 26.  Tectonic diagram for the Ingalls Ophiolite Complex.  (A) Initial formation of 


the Iron Mountain unit as a seamount during the Early Jurassic.  (B) Deposition of the 


Early Jurassic sediments.  (C) Formation of the Esmeralda Peaks unit during the Late 


Jurassic by possible rifting of the older Iron Mountain unit.  (D) Mélange formation that 


enclosed most units.  
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Esmeralda Peaks unit.  εNd(t) data for these two units, +6 to +7 for the Iron Mountain 


unit and +8 to +9 for the Esmeralda Peaks unit, also support this interpretation 


(MacDonald et al., 2002). 


The Early Jurassic age of the Iron Mountain unit and the Late Jurassic age of the 


Esmeralda Peaks unit suggest that the Ingalls ophiolite complex is polygenetic, at least 


along its southern margin.  A possible polygenetic origin for the Ingalls was originally 


indicated by Tabor et al. (1982) and Miller et al. (1993). 


The Iron Mountain unit most likely represents rifted basement of the Late Jurassic 


Esmeralda Peaks unit (Fig. 26C), at least along the southern margin of the complex where 


basalts of the Esmeralda Peaks unit overlie the Iron Mountain unit at Sheep Mountain 


(Fig. 19).  The Esmeralda Peaks unit north of the Iron Mountain outcrop belt may have 


formed by Late Jurassic seafloor spreading and associated transform faulting that 


apparently affected portions of the ophiolite complex (Fig. 26C).  All crustal units within 


the complex were structurally mixed together during mélange formation (Fig. 26D). 


A modern day analog for a rift-edge facies is the western portion of the Lau 


backarc basin (Hawkins, 1995, 2003).  In this part of the basin older crust was rifted apart 


by younger propagating spreading ridges and covered by basalt flows (Hawkins, 1995, 


2003; and references within).  The Iron Mountain unit is analogous to the rifted older 


basement in the western portion of the Lau backarc basin; while the Esmeralda Peaks unit 


is similar to the younger rift-related flows or oceanic crust created by seafloor spreading 


after rifting. 


An alternative hypothesis is that the Iron Mountain unit is a transform-edge facies 


(Fig. 26C).  In this scenario, the unit represents older basement that was juxtaposed 
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against the Esmeralda Peaks unit and mantle peridotite across the Navaho Divide fault 


zone (Fig. 26C), which Miller (1985) interpreted as a fossil fracture zone.  The Esmeralda 


Peaks basalts that overlie the Iron Mountain unit at Sheep Mountain (Fig. 18 and 19) may 


thus represent flows across the fracture zone. 


This setting of younger ophiolitic rocks built upon older ophiolitic rocks is similar 


to that inferred for the Devils Elbow and Preston Peak "rift-edge facies" of the Josephine 


ophiolite, in the Klamath Mountains, of northwest California and southwest Oregon (Fig. 


16) (Saleeby et al., 1982; Wyld and Wright, 1988).  These rift-edge facies, and a similar 


facies recently recognized along the northern margin of the Josephine ophiolite, were 


built upon the Rattlesnake Creek terrane (Fig. 16) (Saleeby et al., 1982; Wyld and 


Wright, 1988; Yule et al., 2006).  This terrane is similar to the Iron Mountain unit in its 


fossil ages, presence of sparse limestone, and WPB to MORB geochemical affinities 


(Wright and Wyld, 1994; Yule et al., 2006).  The Josephine ophiolite, including the 


Devils Elbow remnant, and Esmeralda Peaks unit of the Ingalls ophiolite complex have 


similar ages and IAT-MORB geochemical affinities (Wright and Wyld, 1986; Wyld and 


Wright, 1988; Metzger et al., 2002; Harper, 2003; MacDonald et al., 2006).  The 


sedimentary rocks that sit on the Esmeralda Peaks unit and Josephine ophiolite are 


correlated based on radiolarian ages of cherts and age of detrital zircon in sandstones 


(Miller et al., 2003).  These relationships suggest a similar origin for the Ingalls ophiolite 


complex and the Josephine ophiolite and its rift-edge facies (Fig. 16).   


It should be noted that the lithologies, geochemical affinities, and fossil ages of 


the Rattlesnake Creek terrane are more diverse than the Iron Mountain unit (Wright and 


Wyld, 1994; Yule et al., 2006).  Also, the Rattlesnake Creek terrane consists of a mélange 
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basement and volcanic cover sequence (Wright and Wyld, 1994), which is not seen in the 


Iron Mountain unit.  Therefore, the Iron Mountain unit is not a perfect correlation to the 


Rattlesnake Creek terrane.  


 


CONCLUSION 


 


 We conclude the following about the Iron Mountain unit: 1) it is a newly 


recognized component of the Ingalls ophiolite complex; 2) it is Early Jurassic in age; 3) it 


consists of vesicular basalt, broken-pillow breccia, mudstone, lesser limestone, and minor 


rhyolite, hyaloclastite, chert, tuff, and sandstone; 4) it formed as an off-axis seamount 


(Fig. 26A), with clastic sedimentation occurring later (Fig. 26B); 5) this unit was rifted 


apart during the Late Jurassic, forming the basement to the Esmeralda Peaks unit (Fig. 


26C) (MacDonald et al, 2006); and 6) the Iron Mountain unit was then structurally mixed 


together with other crustal units of the Ingalls ophiolite complex in the mélange of the 


Navaho Divide fault zone (Fig. 26D).  The identification of the Iron Mountain unit 


indicates that the Ingalls ophiolite complex is polygenetic.    
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CHAPTER FOUR 


THE INGALLS OPHIOLITE COMPLEX, CENTRAL CASCADES, 


WASHINGTON: GEOCHEMISTRY, TECTONIC SETTING AND REGIONAL 


CORRELATIONS 


 


ABSTRACT 


 


The Ingalls ophiolite complex consists of ultramafic and mafic plutonic and 


volcanic rocks, as well as lesser sedimentary rocks.  The ophiolite is polygenetic, and is 


composed of an Early Jurassic basement (Iron Mountain unit) and a much more 


voluminous Late Jurassic rift-facies ophiolite, which includes the mafic Esmeralda Peaks 


unit.  Fifty two new geochemical analyses tied carefully to field relations indicate that the 


Iron Mountain unit has transitional within-plate-enriched mid-ocean ridge basalt affinities 


while the Esmeralda Peaks unit has transitional island-arc-mid-ocean ridge basalt and 


boninitic affinities.  Detailed geochemical and field work also allows for the correlation 


of previously enigmatic amphibolites and dikes within the complex to the Esmeralda 


Peaks unit.  This combination of detailed geochemical and field work provides a level of 


detail necessary to evaluate heterogeneities and complexities within Jurassic ophiolites of 


the North American Cordillera.  


The Iron Mountain unit originated as an off-axis-seamount, whereas the 


Esmeralda Peaks unit originated in a backarc basin and was deformed in a fracture zone.  


The presence of boninites within the Esmeralda Peaks unit and the slightly younger age 
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of a proposed outboard arc complex suggest that rifting of the Ingalls complex may have 


began in the forearc.   


The Iron Mountain and Esmeralda Peaks units are similar in age and 


geochemistry to other Jurassic ophiolites within the North American Cordillera.  The 


sedimentary rocks that sit on the Late Jurassic Esmeralda Peaks unit correlate strongly 


with the sedimentary rocks that overlay the Josephine ophiolite and its rift-facies.  This 


correlation, and the age and geochemical similarities, lead us to correlate the Ingalls 


ophiolite complex with the Josephine ophiolite and its related rift-edge facies (Devils 


Elbow remnant and Preston Peak ophiolite).  


 


INTRODUCTION 


 


Seafloor rifting and spreading within suprasubduction zones occurs in the western 


Pacific island arcs and in the East Scotia Sea in the southern Atlantic (e.g., Stern, 2002; 


Hawkins, 2003; Livermore, 2003; Martinez and Taylor, 2003).  Seafloor spreading within 


these suprasubduction zones can start either synchronously with arc formation (Scotia 


Sea; Larter et al., 2003) or by rifting of a previously active arc (Lau and Mariana basins; 


Hawkins, 1995, 2003; Martinez and Taylor, 2003).  Rifting within the forearc also occurs 


within the suprasubduction zone environment (Bloomer, 1983; Bloomer and Hawkins, 


1983; Hawkins and Melchior, 1985).  The suprasubduction zone setting is considered a 


likely place of origin for many, if not most ophiolites (Dewey and Bird, 1971; Miyashiro, 


1973; Pearce et al., 1984, Hawkins, 1995, 2003; Pearce, 2003), including the belt of 


Middle to Late Jurassic ophiolites in the western United States (Fig. 27).  These 
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Cordilleran ophiolites have been proposed to represent oceanic crust formed by extension 


in a variety of suprasubduction zone settings, including backarc or forearc spreading and 


rifting of arc or forearc crust (Harper, 1984, 2003a; Harper and Wright, 1984; Wyld and 


Wright, 1988; Saleeby, 1992; Stern and Bloomer, 1992; Miller et al., 1993; Harper et al., 


1994, 2003; Dickinson et al., 1996; Metzger et al., 2002; Shervais et al., 2005a, b).  The 


origin for some of these ophiolites remains controversial (e.g., Coast Range ophiolite; 


Fig. 27) (Dickinson et al., 1996; Shervais et al., 2004, 2005a) while others are better 


constrained (e.g., Josephine ophiolite; Fig. 27) (Harper, 1984, 2003a, b; Harper and 


Wright, 1984; Harper et al., 1994; Wyld and Wright, 1988). 


The Ingalls ophiolite complex, located within Washington state (Fig. 27), is one 


of these Jurassic Cordilleran ophiolites.  This ophiolite has had various tectonic settings 


proposed for its origin.  Southwick (1974) suggested that the plutonic rocks formed in a 


marginal basin or open ocean setting, whereas the volcanic and sedimentary rocks 


originated in an island arc setting.  Miller and colleagues (Miller, 1985; Miller and Mogk, 


1987; Miller et al., 1993) concluded that the Ingalls ophiolite complex was a fracture 


zone ophiolite that originated in a backarc basin setting.  Metzger et al. (2002) noted that 


the most of the geochemical affinities of the mafic rocks of the Ingalls ophiolite complex 


supported this backarc basin setting, but other mafic rocks had geochemical affinities of 


within-plate tectonic settings.  In this paper, we present new geological and geochemical 


data documenting a polygenetic origin for the ophiolite, and demonstrate that the 


complex contains an older mafic unit (Iron Mountain unit) having within-plate magmatic 


affinities.  These new data are used to compare the Ingalls ophiolite complex with other  


 







 125 


Figure 27.  Location of the Middle to Late Jurassic North American Cordilleran 


ophiolites and the older Rattlesnake Creek terrane.  Modified from Miller et al. (1993) 


and Metzger et al. (2002).  Name of the Inlier containing the Late Jurassic arc complexes 


are, from north to south, Hicks Butte, Manastash and Rimrock Lake (Miller, 1989; Miller 


et al., 1993).  JO-DEO = Devils Elbow ophiolite.  
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Cordilleran ophiolites (Fig. 27), allowing for regional correlations that can help constrain 


the Jurassic evolution of the North American Cordillera.   


 


INGALLS OPHIOLITE COMPLEX 


 


The Ingalls ophiolite complex is the largest (450 km
2
) and most complete 


ophiolite within Washington state (Fig. 27).  It is located within the Northwest Cascade 


System, which consists largely of island arc and oceanic terranes metamorphosed to low 


grades (e.g., Misch, 1966; Brown, 1987; Brandon et al., 1988).  This ophiolite complex is 


intruded by the 91-96.5 Ma Mount Stuart batholith (Miller et al., 2003; Matzel, 2004) and 


is overlain by Eocene sedimentary rocks to the south (Fig. 28 and 29).  It occurs in four 


outcrop areas: 1) a large "horse-shoe-shaped" area to the south of the Mount Stuart 


batholith (Fig. 28 and 29); 2) a northern roof pendent that is isolated by the Mount Stuart 


batholith (Fig. 28); 3) a thin belt located between the eastern side of the Mount Stuart 


batholith and the Tertiary Leavenworth fault (Fig. 28); and 4) several large klippe above 


the Cascade crystalline core (Fig. 28) (Miller, 1980, 1985; Tabor et al., 1982, 1987).  This 


complex has been dextrally faulted to the south ≥ 90 km along the Eocene Straight Creek 


fault (Misch, 1977; Miller et al., 1993; Tabor, 1994).       


 The Ingalls ophiolite complex has been thrust over the Chiwaukum Schist, of the 


Cascade crystalline core, along the Cretaceous Windy Pass thrust (Fig. 28) (Miller, 1980, 


1985).  The major internal structures of the ophiolite are two east-west striking zones of 


serpentinite mélange (the Navaho Divide and Cle Elum Ridge fault zones; Fig. 28) (Pratt, 


1958; Frost, 1973; Miller, 1980, 1985). .  
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Figure 28.  Map of the Ingalls ophiolite complex and surrounding units outlining major 


structures.  Modified from Miller (1980) and Tabor and collaborators (1982, 1987, 1993, 


and 2000).  CERFZ = Cle Elum Ridge fault zone; DPF = Deception Pass fault; LF = 


Leavenworth fault; NDFZ = Navaho Divide fault zone; WPT = Windy Pass thrust. 
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Figure 29.  Map showing the mafic units of the Ingalls ophiolite complex and the 


unrelated De Roux unit.  Modified from Tabor and collaborators (1982, 1987, 1993, and 


2000) and Harper et al. (2003).  EP = location of Esmeralda Peaks; I = location of Iron 


Mountain; S = location of Sheep Mountain. 
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Several researchers have suggested that the Ingalls ophiolite complex may be far 


traveled.  Wyld et al. (2006), using palinspastic reconstructions, propose that the ophiolite 


complex was dextrally faulted between 300-800 km before the Cretaceous; other 


researchers, using paleomagnetic data from the Mount Stuart batholith and other units in 


the northern Cordillera, suggest the Ingalls rocks have been translated as much as 3000 


km from the south (Baja British Columbia hypothesis; Beck et al., 1981; Ague and 


Brandon, 1996; Housen et al., 2003).        


The Ingalls ophiolite complex consists predominantly of variably serpentinized 


peridotite of upper mantle origin with lesser mafic plutonic and volcanic rocks, and minor 


sedimentary rocks (Fig. 29) (Miller, 1980, 1985).  Although the plutonic, volcanic and 


sedimentary rocks all occur as fault-bounded blocks within serpentinite mélange of the 


Navaho Divide fault zone (Fig. 29), a nearly complete ophiolite "stratigraphy" can be 


recognized internally within the faulted blocks (Miller, 1980, 1985).  


Due to our work, as well as previous researchers (Gray, 1982; Ort and Tabor, 


1985; Metzger et al., 2002), a large geochemical database (n = 106) now exists for the 


Ingalls ophiolite complex (see data repository for analytical discussion).  However, data 


for most samples from previous studies (n = 54) are of limited use due to several critical 


aspects: 1) no reported localities for some samples; 2) contamination during processing 


for a number of samples; and 3) collection of samples during reconnaissance-level field 


mapping (see Metzger et al., 2002, for discussion).  The samples of Metzger et al. (2002) 


were analyzed at the same lab as our samples (Washington State University 


GeoAnalytical Lab), eliminating possible inter-lab comparison concerns.  Therefore, 


greatest emphasis is placed on the data of Metzger et al. (2002), as well as our new 


analyses, and only nine samples combined from Gray (1982) and Ort and Tabor (1985) 


are used in this paper and plotted on the geochemical diagrams that follow. 
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Volcanic and plutonic rocks of the Iron Mountain and Esmeralda Peaks units have 


undergone greenschist-facies metamorphism (Table 6; Fig. 28).  A number of important 


geochemical elements are mobile under greenschist facies conditions (Cann, 1970; 


Harper et al., 1988; Harper, 1995).  However, several key elements that give insights into 


igneous petrogenesis (Ti, V, Th, Cr, Ta, Hf, Y, and REE) generally remain immobile up 


to and including amphibolite-facies metamorphic conditions (Pearce, 1996a).  Therefore, 


only these immobile elements are used on geochemical diagrams in this paper.  


   


 


Mantle units 


 


Over two thirds of the Ingalls ophiolite complex consists of ultramafic tectonites, 


representing the residual peridotite left after extraction of a mafic melt (Fig. 29) (Miller, 


1985; Miller and Mogk, 1987; Schultz et al., 2005).  Miller (1985) recognized three 


mantle units within the peridotites.  Mylonitic lherzolite and hornblende peridotite occur 


within and up to a few km north of the serpentinite mélange of the Navaho Divide fault 


zone.  Lherzolite and clinopyroxene-bearing harzburgite, with minor plagioclase 


peridotite and dunite are exposed north of the mylonitic ultramafites (Fig. 29 and 30) 


(Miller, 1980, 1985; Miller and Mogk, 1987).  Harzburgite cut by numerous bodies of 


dunite, some containing podiform chromites, occur south of the Navaho Divide fault zone 


(Fig. 29) (Miller, 1980, 1985; Miller and Mogk, 1987).  The northern lherzolite unit 


grades into the mylonitic lherzolite and hornblende peridotite that roughly coincide with 


the Navaho Divide fault zone; in contrast, the contact between the Navaho Divide fault  
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Figure 30.  Geologic map of the Esmeralda Peaks and Longs Pass area of the Ingalls 


ophiolite complex.  Mapping done by MacDonald, R. Miller and Harper.  See Figure 29 


for key and location. 
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zone and the southern harzburgite and dunite unit is a steep fault (Fig. 29) (Miller, 1985; 


Miller and Mogk, 1987).   


Mineral assemblages in the mylonitic peridotites record high temperatures (> 900 


°C) that suggest they formed in the mantle (Miller and Mogk, 1987).  This observation 


and the spatial correspondence between the mylonites and the serpentinite mélange led to 


the interpretation that the Navaho Divide fault zone is the shallow-level expression of this 


mantle shear zone (Miller, 1985; Miller and Mogk, 1987).   


Ultramafic cumulates of wehrlite and clinopyroxenite occur in a >3-km-long, 


east-west-trending belt in the eastern part of the Ingalls ophiolite complex (Harper et al., 


2003).  The original relationship of these cumulates to the other ultramafic units within 


the ophiolite complex is uncertain. 


Mineralogy, Cr-spinel, and whole-rock chemical compositions suggest that the 


northern lherzolite unit is the residue of mid-ocean ridge basalt magma extraction, and 


may show signs of refertilization (Miller and Mogk, 1987; Metzger et al., 2002; Schultz 


et al., 2005).  In contrast, the southern harzburgite underwent high degrees of partial 


melting, indicative of a supra-subduction zone setting (Miller and Mogk, 1987; Metzger 


et al., 2002; Schultz et al., 2005).  Cr-spinels in the southern dunites--which cut the 


harzburgites--have high Cr/(Cr+Al) ratios, which suggests that they formed when island 


arc tholeiite or boninitic composition magmas passed through the harzburgite (Metzger et 


al., 2002). 


The ultramafic tectonites vary from fresh peridotite to completely serpentinized.  


Serpentinites are commonly highly sheared.  Diabase and gabbro dikes that cut the 


northern lherzolite and mylonitic peridotite are typically, but not invariably, altered to 
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rodingite (Fig. 30), indicating intrusion prior to serpentinization (Miller, 1980; 


MacDonald et al., 2004).  Miller (1985) describes screens and xenoliths of mylonitic 


peridotites within gabbro, and we observed similar xenoliths within gabbro on the 


southern side of Esmeralda Peaks (Fig. 29 and 30).  No mafic dikes have been observed 


to cut the southern harzburgite and dunite unit (Miller, 1980).   


Intrusion of the Cretaceous Mount Stuart batholith into the ultramafic rocks 


produced a contact aureole that reached pyroxene hornfels metamorphic facies (~2-3 kb 


and ~700 °C) (Fig. 29) (Frost, 1973, 1975).  This aureole overprints the serpentinite 


mélange of the Navaho Divide and Cle Elum Ridge fault zones (Frost, 1973, 1975; 


Miller, 1985).   


 


Iron Mountain unit  


 


The Iron Mountain unit consists of volcanic and minor sedimentary rocks which 


extend discontinuously for ~24 km in the southern portion of the complex (Fig. 29).  This 


unit occurs as km-scale and smaller fault-bound blocks within the serpentinite mélange of 


the Navaho Divide fault zone (Fig. 29 and 30).  Detailed petrology and geochemistry of 


the Iron Mountain unit can be found in MacDonald et al. (2006).  


Volcanic rocks within the Iron Mountain unit include vesicular basalt and broken-


pillow breccia, and minor rhyolite, basalt breccia and hyaloclastite (MacDonald et al., 


2006).  Sedimentary rocks within the unit include argillite, chert, limestone and very 


minor sandstone.  Some of the limestone is oolitic and contains fossil fragments 


(MacDonald et al., 2002; Harper et al., 2003).   
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Table 7 displays the major and trace element data for basalts and a rhyolite from 


the Iron Mountain unit.  The basalts have geochemical affinities that are transitional 


between within-plate basalt (WPB) and enriched mid-ocean ridge basalt (E-MORB; Fig. 


31, 32 and 33B).  A rhyolite from the Iron Mountain unit (Table 7) also has within-plate 


affinities; it appears to have been derived from the same mantle source as the basalts (Fig. 


32 and 33B) and is interpreted to have formed by fractionation from the basaltic magmas.   


A new U/Pb zircon date obtained from an Iron Mountain rhyolite (Fig. 29) has a 


weighted mean concordia age of 192.1±0.3 Ma (MSWD of concordance = 3.3, including 


2σ decay constant errors; unpublished data).  Early Jurassic radiolarians, Pliensbachian 


and upper Pliensbachian to middle Toarcian, are reported from the Iron Mountain unit 


(Table 8; C. Blome written communication, 1992; E. Pessagno written communication, 


2004).  These Lower Jurassic radiolarian cherts occur within pillow basalts of the Iron 


Mountain unit, or interbedded with argillites above the pillow basalts of the unit 


(MacDonald et al., 2006 ).   


 


Esmeralda Peaks unit 


  


The Esmeralda Peaks unit was originally defined by Miller (1980, 1985), and is 


herein refined based on new field mapping, geochemistry and U/Pb dating.  This unit 


consists of km-scale, to smaller, fault-bounded blocks of gabbro, diabase, basalt, and 


minor felsic and sedimentary rocks within the serpentinite matrix mélange of the Navaho 


Divide fault zone (Fig. 29 and 30).  The faulted contacts of these blocks have an average 


strike of 269° and an average dip of 69° to the north (Fig. 30) (Miller, 1980, 1985).   The  
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Figure 31.  Ti-V basalt discriminant diagram (Shervais, 1982) displaying mafic rocks 


from the Ingalls ophiolite complex that have basaltic compositions.  Gabbros are 


excluded because many of them appear to be cumulates.  Field for backarc basins is 


compiled by Metzger et al. (2002; references given in Fig. 6, p. 551) and Leat et al. 


(2000).   
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Figure 32.  Th/Yb-Ta/Yb diagram from Pearce (1982) (see Fig. 31 for key to symbols).  


N-MORB, E-MORB and OIB normalizing values are from Sun and McDonough (1989).  


WPG = within-plate granite; from Harris (1983).  Fields for Mariana, and Lau were 


compiled by Harper (2003a; Fig. 7, p. 219) and Scotia Sea is from Leat et al. (2000).  


Field for Hole 786 boninites is from Murton et al. (1992). 
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Figure 33.  Chondrite- and N-MORB-normalized diagrams (see Fig. 31 for key to 


symbols).  Chondrite and N-MORB normalized values are from Sun and McDonough 


(1989).  Gabbros are not plotted due to their apparent cumulus geochemical affinities.  A. 


Modern reference suite.  OIG = WPG from Harris (1983); N-MORB, E-MORB, and OIB 


from Sun and McDonough (1989); IAT from Pearce et al. (1995); boninite from Pearce 


and Parkinson (1993).  B. Iron Mountain unit basalts and rhyolite.  C. Esmeralda Peaks 


unit basalts and diabase.  D. Esmeralda Peaks unit felsic plutonic rocks (triangles) and 


boninites.   
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Esmeralda Peaks unit extends for the entire length of the complex (~30 km), and is 


internally faulted (Fig. 29 and 30).  It ranges in thickness from <100 m to ~3 km, which 


is thinner than average oceanic crust (Miller, 1980, 1985).  Although the blocks that 


comprise the Esmeralda Peaks units are part of a mélange, some are sufficiently large that 


they enclose an intact ophiolite "stratigraphy" within them.     


 


Lithologies 


  


The gabbro of the Esmeralda Peaks unit ranges from fine grained to pegmatitic 


and is minor in occurrence (Table 6).  It occurs as blocks within the Navaho Divide fault 


zone (Fig. 30).  The gabbro is complexly intermingled with diabase or cut by diabase 


dikes, which range from 10-50 cm in thickness.  The gabbro displays a weak magmatic 


foliation and locally cumulus textures (Table 6). 


Felsic rocks occur locally within the Esmeralda Peaks unit as fine-grained tonalite 


and trondhjemite dikes (Table 6).  These felsic dikes commonly cut gabbro and diabase 


and are locally cut by diabase dikes (Miller, 1980).  


Diabase is the most common rock type within the Esmeralda Peaks unit (Fig. 30).  


It commonly grades from gabbro or occurs as dikes.  Diabase dikes are up to ~1 m in 


thickness and true sheeted dikes are rare (Miller, 1980, 1985).  Dike orientations vary in 


strike and have moderate to steep dips (Fig. 30) (Miller, 1980).  Due to the extensive 


faulting of the ophiolite these may not be the original orientations of the dikes.  Diabase 


dikes also cut and, in rare cases, feed into pillow basalts and broken pillow breccias of the 


Esmeralda Peaks unit (Miller, 1980; Metzger et al., 2002). 
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Pillow basalts are common within the Esmeralda Peaks unit (Fig. 30).  Pillows are 


typically lobate, range up to ~1 m in diameter, and have < 1 cm wide, fine-grained rims 


that are altered to chlorite.  Broken pillow breccia is widespread throughout the extrusive 


rocks (Fig. 30).  Angular clasts within broken pillow breccia are a few cm in diameter 


and supported by a matrix of red or green chert that contains recrystallized radiolarians.  


Chert-supported isolated pillow breccia, consisting of lobate pillows 6-25 cm in diameter, 


occurs locally.  


Minor sedimentary rocks are intercalated with the pillow basalts.  These include 


red and green chert, and rare ophiolitic breccia.  The ophiolitic breccia consists of angular 


cm-size clasts of predominantly basalt and diabase, with lesser gabbro and rare felsic 


clasts.  Red and green chert makes up the matrix of the breccia.   


 


Petrography  


  


Gabbros from the Esmeralda Peaks unit originally consisted of plagioclase, 


clinopyroxene, lesser Fe-Ti oxides and rare igneous hornblende (Table 6).  Relict igneous 


plagioclases are not zoned, commonly show albite twins, and have compositions ranging 


from ~An70 to An75 (based on extinction angles).  Textures in the gabbros include 


hypidiomorphic-granular, poikilitic, ophitic, subophitic and pegmatitic (Table 6).  


Commonly, clinopyroxene crystallized before plagioclase (Table 6).  Felsic plutonic 


samples have predominantly hypidiomorphic-granular igneous textures (Table6).  


Diabases are subophitic with a few transitional to ophitic textures (Table 6).  They 


originally consisted of plagioclase, clinopyroxene and Fe-Ti oxides with 







 151 


microphenocrysts of clinopyroxene in a few samples (Table 6).  Basalts range from 


subophitic to hyalophitic, and microphenocrysts of clinopyroxene are common (Table 6).  


The basalts originally consisted of plagioclase, clinopyroxene, Fe-Ti oxides and glass 


(Table 6).  Except rarely, Esmeralda Peaks basalts have < 1% vesicles, suggesting that 


they erupted in deep water (Moore, 1970).  Several basalts have variolitic textures typical 


of boninites (e.g. Cameron et al., 1980), displaying altered needles of pyroxene set in a 


groundmass of altered glass (Table 6).  Some of the variolitic samples also have altered 


olivine and pyroxene microphenocrysts that commonly contain spinel inclusions (Table 


6).  


Albite, chlorite, epidote, pumpellyite and sphene are the common alteration 


minerals in the Esmeralda Peaks unit (Table 6).  Prehnite veins are also common.  


Esmeralda Peaks gabbro and some of the diabase show higher-grade, amphibolite-facies 


alteration marked by the replacement of pyroxene by hornblende (Table 6).  This higher 


temperature metamorphism is typical of the deeper levels of altered oceanic crust (e.g., 


Mottl, 1983; Seyfried, 1987).  The hornblendes in these gabbros and diabases have been 


overprinted by actinolite, chlorite and epidote, suggesting a retrograde metamorphic 


progression.   


 


Geochemistry 


  


Table 9 displays whole rock major and trace element data for basalt, diabase and 


felsic plutonic samples from the Esmeralda Peaks unit.  Gabbros from the Esmeralda 
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Peaks unit are given in Table 10, but are not plotted on most geochemical diagrams 


because they have patterns indicating they are cumulates.   


The pillows, pillow breccias and diabases range in composition from basalts 


through andesites (Table 9).  Ti/V, Cr/Y, Cr/Yb, Th/Yb-Ta/Yb, chondrite- and MORB-


normalized diagrams indicate magmatic affinities that are island-arc tholeiite (IAT), 


MORB and transitional between IAT and MORB (Fig. 31, 32, 33C, 34 and 35) (Shervais, 


1982; Pearce, 1982; Pearce and Parkinson, 1993).  Their Ta/Yb ratios, Y and Yb values, 


and MORB-normalized patterns suggest that they originated from a mantle that was 


slightly enriched from N-MORB and underwent a high degree of melting (Fig. 32, 33C, 


34 and 35) (Pearce, 1982; Sun and McDonough, 1989; Pearce and Peate, 1995; 


McDonough and Sun, 1995).  They are generally enriched in Th and depleted in Ta and 


Nb with respect to N-MORB (Fig. 33C), which are characteristics of magmas erupted in 


suprasubduction zone settings (e.g., Pearce et al., 1984). 


The felsic plutonic rocks from the Esmeralda Peaks unit (Table 9) have chondrite- 


and MORB-normalized patterns that are similar to, but elevated from the pillows, pillow 


breccias and diabases of the unit (Fig. 33C and 33D).  They have negative Eu and Ti 


anomalies (Fig. 33D), suggesting extensive plagioclase and Fe-Ti oxide fractionation.  


These felsic plutonic samples plot transitionally between IAT and calc-alkaline basalts 


(CAB) on the Th/Yb vs. Ta/Yb diagram (Fig. 32), and their Ta/Yb ratios indicate that 


they originated from the same mantle source as the mafic rocks of the Esmeralda Peaks 


unit (Fig. 32).  These features imply the felsic plutonic rocks were fractionated from the 


same magmas that produced the diabases and pillow basalts.    
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Figure 34.  Cr-Y discriminant diagram (Pearce, 1982) (see Fig. 31 for key to symbols).  


Arrows A, B, and C represent crystallization paths for magmas fractionating Cr-spinel + 


olivine + pyroxene for MORB, IAT and boninites respectively.  See Figure 31 and 32 for 


references to fields.  Only basaltic compositions are plotted on the diagram and gabbros 


are excluded. 
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Figure 35. Cr-Yb diagram for melt and residue compositions (Pearce and Parkinson, 


1995) (see Fig. 31 for key to symbols).  Field for Hole 786 boninites is from Murton et al. 


(1992).  Only basaltic composition Ingalls ophiolite samples are plotted and gabbros are 


excluded.  FMM = fertile-MORB-mantle.    
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Two variolitic pillow basalt samples from the Esmeralda Peaks unit have SiO2, 


TiO2 and MgO values that classify them as boninites (EL-72-3 & IO-111; Table 9) (Le 


Maitre, 2002).  A third variolitic pillow basalt from the Esmeralda Peaks unit, which does 


not have SiO2 and MgO values of a boninite (MS-15B; Table 9), was classified as a 


boninite by Metzger et al. (2002) based on petrographic criteria of Cameron et al. (1980) 


and other geochemical criteria.  These three samples have elevated Cr and are depleted in 


Y and Yb with respect to other Esmeralda Peaks samples (Fig. 34 and 35).  They have 


chondrite- and N-MORB-normalized values that are generally lower than other 


Esmeralda Peaks samples and one sample has a typically boninitic "u-shaped" chondrite-


normalized pattern (EL-72-3; Fig. 33D) (Beccaluva and Serri, 1988).  When normalized 


to fertile-MORB-mantle the patterns for these three samples (Fig. 36A) are enriched in 


the moderate and highly compatible elements Cr, Mg and Ni.  They are depleted in the 


moderately and highly incompatible elements Sc, V, Yb, Y and Ti with respect to other 


Esmeralda Peaks samples (Fig. 36A).  Due to the hydrothermal greenschist-facies 


alteration of these samples, which mobilizes Ca (Seyfried, 1987; Harper et al., 1988; 


Berndt et al., 1988; Harper, 1995), it is not possible to use the high- vs. low-Ca boninite 


classification of Crawford et al. (1989) for these samples. 


 


Geochronology 


  


A multi-fraction thermal ionization mass spectrometer U/Pb zircon date from a 


hornblende pegmatite gabbro of the Esmeralda Peaks unit (Fig. 29) yielded a concordant 


age of 161 ± 1 Ma (2σ weighted mean 
206


Pb/
238


U age of three essentially concordant  







 161 


Figure 36. Fertile-MORB-mantle-normalized diagrams (Pearce and Parkinson, 1995) for 


Ingalls ophiolite complex mafic samples.  Esmeralda Peaks unit basalts and diabases are 


shown as the shaded field.  Hole 786 boninites are from Murton et al. (1992).  A. 


Esmeralda Peaks boninites.  B. Dikes that cut mylonitic peridotite and dikes that cut 


amphibolites.  See Figure 31 for key to symbols.   
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fractions; Miller et al., 2003). Sensitive high resolution ion microprobe reverse geometry 


dating of zircons from the same sample confirms this age (163 ± 2 Ma; J. S. Miller, 


written communication, 2004).   


This date is significantly older than a previous, apparently discordant, U/Pb zircon 


age (155 ± 2 Ma; Hopson and Mattinson, 1973; Miller et al., 1993), for a gabbro from the 


same general sample locality as Miller et al.'s (2003) sample (C. Hopson, 2005, personal 


communication). 


  


Amphibolite and dikes 


  


Amphibolite occurs in the western portion of the Ingalls ophiolite complex as a 


fault-bounded block within the Navaho Divide fault zone (Fig. 29), and in the Cle Elum 


Ridge fault zone (Frost, 1973, 1975; Miller, 1980, 1985).  Amphibolites in the roof 


pendent of the Mount Stuart batholith (Fig. 28) are the result of Cretaceous 


metamorphism and not related to the other amphibolites of the Ingalls ophiolite complex 


(Miller, 1980, 1985, 1988).  The amphibolites tend to be massive, displaying well 


preserved igneous textures (Fig. 37A), or strongly foliated to mylonitic (Fig. 37B).  These 


amphibolites are mostly derived from gabbro, and less commonly diabase and basalt.  In 


the western portion of the Ingalls ophiolite complex (Fig. 29) the amphibolites are 


commonly cut by undeformed diabase dikes (Fig. 37), suggesting that metamorphism and 


deformation occurred during sub-seafloor metamorphism. 


The amphibolites and dikes that cut them (Table 11) have similar Ti/V, Cr/Y and 


Cr/Yb ratios as the Esmeralda Peaks samples (Fig. 31, 34 and 35) (Metzger et al., 2002).   
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Figure 37. A. Dike, on right side of the sample, cutting an amphibolite that was 


originally a gabbro.  B. Two small dikes, right one showing a propagating tip, cutting a 


foliated amphibolite from the same locality as in A. 
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The dikes have similar fertile-MORB-mantle-normalized patterns as the Esmeralda Peaks 


unit (Fig. 36B).  One amphibolite and a dike that cuts a different amphibolite have Cr, Y 


and Yb values that are similar to boninites from the Esmeralda Peaks unit and the Izu-


Bonin forearc (Fig. 34 and 35).  This same dike has a fertile-MORB-mantle-normalized 


pattern that is similar to the Esmeralda Peaks boninites and the Izu-Bonin forearc 


boninites (Fig. 36).  


 


Dikes cutting mylonitic peridotite 


 


Undeformed dikes of diabase and lesser gabbro cut the mylonitic lherzolite 


adjacent to the fault-bounded blocks of the Esmeralda Peaks unit (Fig. 30) (Miller, 1980, 


1985).  These dikes display variable hydrothermal alteration, and some are totally altered 


to rodingite (Pratt, 1958; Frost, 1973, 1975; Miller, 1980, 1985).  The strikes of these 


dikes vary from ~north-south to east-west (Fig. 30). 


The dikes that cut the mylonitic lherzolite (Table 12) plot with the mafic 


Esmeralda Peaks samples on the Ti-V, Cr-Y, Cr-Yb and fertile-MORB-mantle-


normalized diagrams (Fig. 31, 34, 35 and 36).  These samples are typically MORB, and 


two are transitional between MORB and IAT (Fig. 31, 34 and 35).  Two samples have 


high TiO2 and FeO
T
 values that are similar to Fe-Ti basalts that are most commonly 


found at propagating spreading centers on mid-ocean ridges and back-arc basins (Table 


12) (Sinton et al., 1983; Pearce et al., 1994).   
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Ingalls sedimentary rocks 


 


Smith (1904) first described the sedimentary rocks that stratigraphically overlie 


the volcanic and plutonic rocks of the Ingalls ophiolite complex.  These rocks are mostly 


argillite, and occur predominantly as fault-bounded blocks within the eastern portion of 


the Ingalls ophiolite complex (Fig. 29).  Most of the argillite is massive, with minor 


interbeds of graywacke, pebble conglomerate, pebbly mudstone, chert and ophiolitic 


breccia (Southwick, 1962, 1974; Miller, 1980, 1985; Mlinarevic et al., 2003; MacDonald 


et al., 2005).  The ophiolitic breccias consist mainly of mafic igneous or serpentinite 


clasts (Harper et al., 2003; MacDonald et al., 2005).  Isolated boulders and some km-


scale outcrops of diabase or gabbro observed within the argillite have been interpreted as 


olistoliths (Harper et al., 2003).      


 


Petrography 


 


Limited point count data exist for the graywackes of the Ingalls sedimentary 


rocks.  Southwick's (1962) two samples plot in the feldspathic litharenite field on the 


sandstone classification diagram of McBride (1963) and in the undissected arc field on 


the tectonic provenance diagram of Dickinson et al. (1983). A new sample counted by 


one of us (Mlinarevic) plots in the litharenite field on the sandstone classification 


diagram of McBride (1963) and in the recycled orogenic field on the tectonic provenance 


diagram of Dickinson et al. (1983).  Southwick (1974) suggested that the Ingalls 


graywackes were derived from a mature island arc.       
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Depositional age 


 


Miller et al. (1993) reported Late Jurassic (probably Oxfordian or Kimmeridgian) 


radiolarian ages for cherts that overlay the Esmeralda Peaks unit (Table 8).  Other Late 


Jurassic radiolarian assemblages, indicating an upper Callovian to lower-middle 


Oxfordian age (Superzone 1, zone 1H, through Zone 2, Subzone 2δ; Table 8) (Pessagno 


et al., 1993), are reported from cherts we collected from the Ingalls sedimentary rocks (E. 


Pessagno written communication, 1999-2004).  These radiolarian cherts are interbedded 


with argillites and are probably low in the sedimentary section.  U/Pb ages of detrital 


zircons found within an Ingalls sandstone have a bimodal age distribution of 153 Ma and 


~227 Ma; the 153 Ma peak age is interpreted as the approximate age of deposition 


(Miller et al., 2003).   


The Late Jurassic age determinations are based on the radiolarian biostratigraphic 


time scale of Pessagno et al. (1993).  Baumgartner et al. (1995) and Shervais et al. 


(2005a) have suggested that this time scale is incorrect.  Using the time scale of 


Baumgartner et al. (1995), the Ingalls cherts range from Early Bajocian to Middle 


Oxfordian.  However, the radiolarian ages based on Pessagno et al. (1993) fit the Late 


Jurassic time scale of Gradstein et al. (2004) and are consistent with the 161 ± 1 Ma 


zircon age for the mafic rocks beneath the cherts.        
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DISCUSSION 


 


Tectonic setting of the Iron Mountain unit  


 


The presence of basalt displaying within-plate affinities (Fig. 32 and 33B), 


limestone and abundant locally derived basaltic breccias are all consistent with a 


seamount origin for the Iron Mountain unit.  The transitional WPB-E-MORB 


composition of the unit and its tholeiitic composition (Fig. 31, 32 and 33B) suggest that 


the Iron Mountain seamount formed close to an active mid-ocean spreading ridge 


(Shervais, 1982; Pearce, 1996a; Harpp and White, 2001).   


The Iron Mountain rhyolite fractionated from a magma derived from the same 


mantle that produced the basalts. Similar rhyolites are known from a few within-plate 


ocean island settings (e.g., Harris, 1983; Pearce, 1996b).  An Early Jurassic age (~192 


Ma) is assigned to the Iron Mountain unit based on U/Pb zircon and radiolaria ages.          


 


Tectonic setting of the Esmeralda Peaks unit 


 


Backarc basin setting of the Esmeralda Peaks unit 


 


The geochemical affinities of modern backarc basins include N-MORB, E-


MORB, IAT and CAB (Fig. 31, 32 and 34) (e.g., Hawkins and Melchior, 1985; Hawkins 


et al., 1990; Falloon et al., 1992; Pearce et al., 1994; Leat et al., 2000; Fretzdorff et al., 


2002; Hawkins, 2003; Pearce, 2003).  The Esmeralda Peaks samples have transitional 
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IAT-MORB, IAT, and MORB geochemical affinities and consistently plot within the 


fields defined by modern backarc basins (Fig. 31, 32 and 34).  They originated from a 


mantle source that was slightly enriched when compared to N-MORB and that apparently 


underwent a high percentage of melting that typically occurs in suprasubduction zone 


settings (Fig. 32, 33C, and 35) (Pearce, 1982).  The transitional IAT-MORB composition 


of the Esmeralda Peaks unit leads us to infer that the unit formed in a Late Jurassic 


backarc basin setting.   


The arc source for the Late Jurassic sediments that overly the Esmeralda Peaks 


unit (Southwick, 1974; Mlinarevic et al., 2003) is consistent with a backarc basin setting 


for the Ingalls ophiolite complex.  Also, located south of the Ingalls ophiolite complex 


are the Late Jurassic Quartz Mountain stock, Hicks Butte complex and Indian Creek 


complex (Fig. 27) (Miller, 1989; Miller et al., 1993).  These plutonic rocks have been 


interpreted as part of an active arc located outboard of the Late Jurassic Ingalls backarc 


basin (Miller et al., 1993), and further support a backarc origin for the Esmeralda Peaks 


unit.   


 


Esmeralda Peaks boninites 


 


Pearce and Parkinson (1993) used the fertile-MORB-mantle-normalized diagram 


in order to display mantle compositions and degrees of mantle melting that are 


independent of subduction components which show up on chondrite- and N-MORB-


normalized diagrams (Pearce, 1982; Plank and Langmuir, 1993).  The fertile-MORB- 


mantle-normalized patterns for the three Esmeralda Peaks boninites suggest that they 
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originate from a mantle source that underwent higher degrees of melting than other 


Esmeralda Peaks samples (Fig. 36A).  High Cr and low Y and Yb values (Fig. 34 and 35) 


also suggest that the sources for these three samples underwent high degrees of mantle 


melting.  The Esmeralda Peaks boninites have fertile-MORB-mantle-normalized patterns 


that are similar to the Izu-Bonin forearc boninites (Fig. 36A) (Murton et al., 1992).  They 


also plot within or around the field for the Izu-Bonin forearc boninites on Figures 32, 34 


and 35.  Crawford et al. (1989) and Deschamps and Lallemand (2003) suggest that 


boninite enrichment in Si, large-ion lithophile elements, Cr, Ni and light-rare earth 


elements is the result of the melting of a refractory mantle source in the presence of a 


dehydrating slab.  The Esmeralda Peaks samples display all of these geochemical 


characteristics described for boninites by Crawford et al. (1989) and Deschamps and 


Lallemand (2003) (Fig. 31, 32, 33D, 34, 35 and 36A; Table 9), and thus are inferred to 


have originated from second stage melting of the mantle that produced the other 


Esmeralda Peaks samples.  Second stage melting is considered to be a common origin for 


boninites (van der Laan et al., 1989; Pearce et al., 1992). 


Boninites only occur in suprasubduction zone settings (Bloomer and Hawkins, 


1983; Hawkins, 2003; Deschamps and Lallemand, 2003).  They usually occur in forearcs, 


but also occur in backarc basins (Bloomer and Hawkins, 1983; Hawkins, 2003; 


Deschamps and Lallemand, 2003).  The boninites within the Esmeralda Peaks mafic unit 


may have initiated by forearc rifting and most likely persisted after an outboard arc and 


backarc basin formed. 
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Geochemical correlation of mafic units 


 


The basalt and diabase of the Esmeralda Peaks unit have similar geochemical 


affinities (Fig. 31, 32, 33, 34 and 35).  This suggests that these rocks originated from the 


same mantle source.  This geochemical correlation agrees with field observations that 


suggest dikes cut and feed into the pillow basalts (Miller, 1980, 1985; Gray, 1982). 


We suggest that the amphibolites, dikes that cut them (Fig. 37), and the dikes that 


cut the mylonitic lherzolite (Fig. 30) are related to the Esmeralda Peaks unit.  The 


geochemical affinities of these rocks are very similar to those of the Esmeralda Peaks unit 


(Fig. 31, 34, 35 and 36B).  Fertile-MORB-mantle patterns suggest that all of the mafic 


rocks, including the boninites, originated from a similar mantle source (Fig. 36).   


 


Fracture zone setting for the Late Jurassic Esmeralda Peaks unit 


 


The fracture zone interpretation of the Navaho Divide fault zone and the Ingalls 


Ophiolite Complex was based on a number of features in the complex that are analogous 


to those of modern fracture zones: (1) The juxtaposition of two petrologically distinct 


mantle peridotites by a fault zone (Fig. 29) (e.g., Hayes transform; Smith, 1994) (Miller, 


1985; Miller and Mogk, 1987; Schultz et al., 2005);  (2) The mineral chemistry, 


geothermometry, and microstructures of the high-temperature mylonitic ultramafites 


(Miller and Mogk, 1987);  (3) Locally derived ophiolitic breccia and sedimentary 


serpentinite (e.g., Romanche and Ecuador fracture zones; Bonatti et al., 1973; Anderson 


and Nishimori, 1979) (Miller, 1985; MacDonald et al., 2005);  (4) Dikes of diabase and 
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gabbro cutting serpentinized peridotite (Fig. 30) (e.g., Kane fracture zone; Fox and Gallo, 


1984; Tartarotti et al., 1995); and (5) Amphibolites that are deformed gabbros (Fig. 29 


and 37) (e.g., Vema fracture zone; Honnorez et al., 1984) (Miller, 1985).  The 


geochemical similarities between the amphibolites, dikes that cut them, and dikes that cut 


the mylonitic peridotite with the Esmeralda Peaks unit suggest that the fracture zone that 


disrupted the mafic units of the Ingalls ophiolite complex was active in the Late Jurassic.        


 


Polygenetic origin of the Ingalls ophiolite complex 


 


Miller et al. (1993), Metzger et al. (2002) and Harper et al. (2003) all suggested a 


backarc basin origin for the Ingalls ophiolite complex.  We agree with these researchers; 


however, the new geochemical and age data for the Ingalls ophiolite complex allows us 


to further constrain this tectonic setting.  


The Ingalls ophiolite complex is polygenetic.  The Early Jurassic component, the 


Iron Mountain unit, originated as a shallow-water, intra-plate off-axis seamount 


(MacDonald et al., 2002, 2006).  These Early Jurassic rocks were subsequently rifted 


apart during the Late Jurassic to form the ophiolitic basement of the rift-facies, Late 


Jurassic Esmeralda Peaks unit (Fig. 38).  The Late Jurassic rocks originated in a backarc 


basin setting and were deformed by a fracture zone (Miller and Mogk, 1987; MacDonald 


et al., 2005).  Faulting in this fracture zone formed the large-scale serpentinite mélange 


within which lie the crustal units of the ophiolite (Miller, 1985). 
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Figure 38. Tectonostratigraphy of the Ingalls ophiolite complex, Devils Elbow remnant 


of the Josephine ophiolite and underlying Rattlesnake Creek terrane (RCT), and the 


Josephine ophiolite.  See text for discussion of fossil and U/Pb zircon ages and chemical 


affinities.  Devils Elbow remnant and Josephine ophiolite modified from Harper et al. 


(1994) and Wright and Wyld (1994). 
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Regional correlation of the Ingalls ophiolite complex 


 


Comparison of sedimentary rocks  


 


Sandstones from the Late Jurassic Galice Formation, which overlays the 


Josephine ophiolite (Fig. 38), have similar compositions to, and plot within the same  


fields on tectonic provenance diagrams as sandstones from the Late Jurassic Ingalls 


sedimentary rocks (MacDonald et al., 2006).  Detrital zircons from a Galice Formation 


sandstone and an Ingalls sandstone have identical bimodal age distributions (153 Ma and 


~227 Ma) (Fig. 38), and these sandstones have similar age-corrected 
143


Nd/
144


Nd values 


(0.51278 ± 1 and 0.51273 ± 1 respectively; Miller et al., 2003).  The Late Jurassic cherts 


from the Galice Formation contain radiolaria that are identical to those within Ingalls 


cherts (Fig. 38) (E. Pessagno written communication, 1999-2004).   


The Middle Jurassic Coast Range ophiolite (Fig. 27) is overlain by tuffaceous 


chert and mudstone, which is in turn overlain by the Great Valley Group (e.g., Hopson et 


al., 1981; Ingersoll, 1983; Robertson, 1990; Shervais et al., 2005a).  Originally, an 


Oxfordian through Tithonian age was assigned to the tuffaceous chert and mudstone and 


a Tithonian age to the overlying basal Great Valley Group.  These age assignments were 


based on radiolarians from chert (Pessagno, 1977; Pessagno et al., 2000) and the 


pelecypod Buchia (Imlay and Jones, 1970).  There was thought to be a regional 


unconformity and ~9 m.y. depositional hiatus between the Coast Range ophiolite and the 


sedimentary rocks that overlie it (Hopson et al., 1996; Pessagno et al., 2000).  Hopson et 


al. (1996) and Pessagno et al. (2000) indicate that the oldest radiolarian assemblages in 
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the sediments above the Coast Range ophiolite originated from an equatorial paleo-


environment.  This differs from the more northern paleo-environment inferred for the 


oldest radiolarian assemblages within the Galice Formation (Pessagno et al., 2000), and 


therefore the comparable radiolarian assemblages within the Ingalls sedimentary rocks. 


Recently however, Shervais et al. (2005a), using Baumgartner et al.'s (1995) 


Unitary Association radiolarian zones, reinterpreted the age of the tuffaceous chert and 


mudstone that depositionally overlies the Coast Range ophiolite.  Shervais et al. (2005a) 


assigned a Bajocian age to the oldest radiolarians and suggested that no depositional 


hiatus exists between the tuffaceous chert and mudstone and underlying Coast Range 


ophiolite.  They also correlated the tuffaceous chert and mudstone that overlie the Coast 


Range ophiolite with the Galice Formation by reassigning the lowest members of the 


Galice Formation a Bajocian age (see Shervais et al., 2005a, for discussion).  This 


suggests that the tuffaceous chert and mudstone that overlie the Coast Range ophiolite 


may also correlate with the Ingalls sedimentary rocks if the radiolarian zones of 


Baumgartner et al. (1995) are correct and if the radiolarian zones of Pessagno et al. 


(1993) are incorrect.  It should be noted that Gradstein et al. (2004) suggest that there are 


large uncertainties for the Late Jurassic time scale. 


Detrital zircons from the Great Valley Group originated from a source area that 


differs in age from the detrital zircons that sit on the Esmeralda Peaks unit and the 


Josephine ophiolite (DeGraeff-Surpless et al., 2002; Miller et al., 2003).  Surpless et al. 


(2006) suggest that the basal Great Valley Group may be Early Cretaceous, and not Late 


Jurassic (Tithonian), based on the presence of Cretaceous detrital zircons.   
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The sedimentary rocks that occur within and unconformably overlie the Fidalgo 


Igneous Complex, a Middle Jurassic ophiolite and intruding island-arc complex located 


within the San Juan Islands, Washington (Fig. 27) (Brown et al., 1979; Brandon et al., 


1988), are the informal Trump unit and Lummi Group, respectively (Garver, 1988a).  


These sediments are Tithonian or younger in age and sandstones from the Trump unit and 


Lummi Group have different compositions than Ingalls sandstones (Garver, 1988a).  The 


Lummi Group has been correlated to the Great Valley Group by Garver (1988b).   


The sedimentary rocks of the Ingalls ophiolite complex, tuffaceous chert and 


mudstone that overlie the Coast Range ophiolite, and the sedimentary rocks that overlie 


the Fidalgo Igneous Complex do not display the Late Jurassic deformation attributed to 


the Nevadan orogeny.  In contrast, the Galice Formation that overlies the Josephine 


ophiolite displays Nevadan deformation (Harper, 1984, 2006; Wyld and Wright, 1988; 


Harper et al., 1994).  Numerous syn-Nevadan dikes intrude the Galice Formation but are 


absent in the sediments associated with the Ingalls, Coast Range and Fidalgo ophiolites 


(Harper et al., 1994; Harper, 2006).  Sandstone of the Galice Formation sandstone has 


Precambrian detrital zircons (Miller and Saleeby, 1995; Miller et al., 2003), while the 


Ingalls sandstone does not (Miller et al., 2003).  The Ingalls sedimentary rocks also lack 


the metalliferous sediments that are located near the contact between the Galice 


Formation and Josephine ophiolite (Pinto-Auso and Harper, 1985).   
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Time relations of ophiolites 


 


The age of the Esmeralda Peaks unit is 161 ± 1 Ma (U/Pb zircon; Miller et al., 


2003).  The U/Pb zircon age of the older rifted basement to the Esmeralda Peaks unit, the 


Iron Mountain unit, is 192 ± 0.3 Ma.  Radiolaria in cherts interbedded with pillow basalts 


of the Iron Mountain unit have Early Jurassic ages (Table 8).  Similar Jurassic ages occur 


in other ophiolites within the North American Cordillera (Fig. 27).   


Harper et al. (1994) reported a U/Pb zircon age of 162 ± 1 Ma from the Josephine 


ophiolite (Fig. 27); however, Palfy et al. (2000) recalculated this age to 162 +7/-2 Ma 


based on the lack of duplicate concordant fractions and apparent lead loss.  The rift-facies 


of the Josephine ophiolite, the Devils Elbow and Preston Peak ophiolites (Fig. 27), both 


have U/Pb zircon ages of 164 ± 1 Ma (Fig. 38) (Wright and Wyld, 1986; Saleeby, 1990).   


The rifted basement of the Josephine ophiolite rift facies, the Rattlesnake Creek 


terrane (Fig. 27), consists of a serpentinite matrix mélange basement and volcanic cover 


sequence (Wright and Wyld, 1994; Yule et al., 2006).  Fossils from the mélange have 


Paleozoic, Late Triassic and Early Jurassic ages (Fig. 38) (Wright and Wyld, 1994, and 


references within).  Fossils from the volcanic cover sequence yield Late Triassic and 


Early Jurassic ages (Wright and Wyld, 1994, and references within).  The mélange and 


cover sequence of the Rattlesnake Creek terrane are intruded by 193-207 Ma (U/Pb 


zircon) plutons (Wright and Wyld, 1994).   


The Fidalgo Igneous Complex (Fig. 27) yielded generally discordant U/Pb zircon 


ages ranging from 170-160 Ma (Whetten et al., 1978, 1980).  These dates are from the 


island-arc complex and represent the minimum age of the ophiolitic rocks of the Fidalgo 
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Igneous Complex (Brandon et al., 1988).  Radiolaria from chert interbedded with pillow 


basalts of the ophiolitic rocks are Middle to Late Jurassic (Garver, 1988a; Brandon et al., 


1988, and references within).  


U/Pb zircon ages for the Coast Range ophiolite (Fig. 27) mostly range between 


164 to 173 Ma (Hopson et al., 1981; Mattinson and Hopson, 1992; Shervais et al., 


2005a), although ages as young as 144-148 ± 2 Ma, 152-153 ± 3 Ma and 156 ± 2 Ma 


have been reported from different remnants of the ophiolite (Hopson et al., 1981).  U/Pb 


zircon ages from two remnants of the Coast Range ophiolite in Oregon (Fig. 27) are 169 


± 1 Ma (Saleeby, 1984) and 163-164 ± 1 Ma (Saleeby, 1999, written communication to 


Kosanke, 2000 and Harper et al., 2002). 


 


Comparison of geochemical affinities 


 


The Josephine ophiolite and Coast Range ophiolite have transitional IAT-MORB 


geochemical affinities, similar to those of the Esmeralda Peaks unit (Fig. 39) (Menzies et 


al., 1977; Harper, 1984, 2003a, b; Lagabrielle et al., 1986; Shervais, 1990; Coulton et al., 


1995; Giaramita et al., 1998; Kosanke, 2000; Metzger et al., 2002).  The Josephine 


ophiolite, Coast Range ophiolite, and Esmeralda Peaks unit all contain boninites or 


"boninitic" affinity lavas (Shervais and Kimbrough, 1985; Lagabrielle et al., 1986; 


Shervais, 1990; Giaramita et al., 1998; Kosanke, 2000; Metzger et al., 2002; Harper, 


2003a).  Dikes that cut the mylonitic peridotite in the Esmeralda Peaks unit (Fig, 30) have 


Fe and Ti values that trend to Fe-Ti basalt compositions (Fig. 31; Table 12).  Fe-Ti 


basalts   
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Figure 39. Ta-Hf-Th discriminant diagram of Wood (1980).  A. Ingalls ophiolite samples 


and field (see Fig. 31 for key to symbols) for backarc basins (see Fig. 31 for 


compilation).  Esmeralda Peaks gabbros (sideways triangles) are plotted because 


fractionation and crystal accumulation does not significantly change the ratios of these 


elements.  B. Rattlesnake Creek terrane (Wright and Wyld, 1994).  C. Josephine ophiolite 


(references given in text).  D. Coast Range ophiolite (references given in text). 
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are found in the late dikes and lava flows of the Josephine ophiolite (Harper, 2003b) and 


the fourth stage volcanic rocks of the Coast Range ophiolite (Shervais et al., 2004). 


The late stage of the Stonyford volcanic complex of the Coast Range ophiolite 


and blocks of basalt in the Rattlesnake Creek mélange have WPB affinities (Fig. 39) 


(Wright and Wyld, 1994; Shervais et al., 2005b; Yule et al., 2006).  These WPB 


compositions are similar to those of the Iron Mountain unit (Fig. 39).  The rocks of WPB 


affinity in all of these ophiolites are transitional to E-MORB and tholeiitic-alkaline 


compositions (Fig. 39) (Wright and Wyld, 1994; Shervais et al., 2005b).     


 


CONCLUSIONS 


  


The sedimentary rocks of the Galice Formation that sit conformably on the 


Josephine ophiolite and the Esmeralda Peaks unit of the Ingalls ophiolite complex have 


similar sandstone compositions, detrital U/Pb zircon dates, and fossils (Fig. 38).  This 


allows for a strong correlation between the Late Jurassic sedimentary rocks of the Ingalls 


ophiolite complex and Galice Formation (Fig. 38). 


The age of the Josephine ophiolite overlaps within uncertainty the age of the 


Esmeralda Peaks unit (Fig. 38).  The U/Pb zircon and fossil ages for the basement to the 


Josephine ophiolite rift facies, the Rattlesnake Creek terrane, overlap the age of the 


basement to the Esmeralda Peaks unit, the Iron Mountain unit (Fig. 38) (Wright and 


Wyld, 1994; Yule et al., 2006).  The U/Pb zircon ages of the Coast Range ophiolite, and 


its equivalent the Fidalgo Igneous Complex are generally older than those of the 


Esmeralda Peaks unit, although some of the ages overlap. 
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 The geochemical affinities of the Esmeralda Peaks unit are extremely similar to 


those of the Josephine ophiolite and its rift-facies (Fig. 38 and 39), and are also 


comparable to the Coast Range ophiolite (Fig. 39).  However, the WPB affinity rocks of 


the Coast Range ophiolite at Stonyford are ~28 m.y. younger than those of the Ingalls 


ophiolite complex (Fig. 39), whereas the WPB affinities rocks of the Rattlesnake Creek 


terrane are similar to those of the Ingalls ophiolite complex (Fig. 38 and 39). 


Based on the strong correlation of conformable overlying sedimentary rocks, 


U/Pb zircon and fossil dates, and geochemical affinities we suggest that the Late Jurassic 


Esmeralda Peaks unit is a rift-facies correlative to that of the Josephine ophiolite, and that 


the Early Jurassic Iron Mountain unit represents the older rifted basement (Fig. 38).  This 


tectonic setting for the Ingalls rocks is thus identical to that of the Devils Elbow remnant 


of the Josephine ophiolite (Wyld and Wright, 1988), the rift-edge facies along the 


northern margin of the Josephine ophiolite (Yule et al., 2006), and the Preston Peak 


ophiolite (Fig. 38) (Snoke, 1977; Saleeby et al., 1982), Klamath Mountains.  The 


Rattlesnake Creek terrane represents the older rifted basement of the Josephine ophiolite 


rift-edge facies (Saleeby et al., 1982; Wyld and Wright, 1988; Harper et al., 1994; Yule et 


al., 2006).  The initial rifting that formed the Late Jurassic Ingalls basin may have 


originated in the forearc, based on the presence of boninites within the Esmeralda Peaks 


unit, although boninitic rocks also rarely occur in backarc basin settings (Pearce et al., 


1994; Hawkins, 2003; Deschamps and Lallemand, 2003).   


The Late Jurassic plutons, located south of the Ingalls ophiolite complex (Fig. 


27), have been interpreted as a potential outboard active arc to the Late Jurassic Ingalls 


basin (Miller et al., 1993; Harper et al., 2003).  This arc complex has also been correlated 
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to the Rogue-Chetco arc complex (Miller et al., 1993), which has been interpreted to be 


the outboard active arc for the Late Jurassic Josephine basin (Saleeby et al., 1982; Harper 


et al., 1994).     


Based on these correlations, and Wyld et al.'s (2006) reconstruction that places 


the Ingalls ophiolite close to the Josephine ophiolite in the Late Cretaceous, we suggest 


that these two ophiolites occupied different parts of the same oceanic backarc basin, 


adjacent to the western coast of North America in the Jurassic.  The Ingalls ophiolite 


complex, however, lacks Nevadan deformation and was not intruded by Late Jurassic 


calc-alkaline igneous rocks in contrast to the Josephine Ophiolite, thus suggesting that 


there was some distance between these ophiolites during their formation.  Subsequently, 


the Ingalls ophiolite complex may have been dextrally displaced from the Josephine 


ophiolite, and its outliers, by strike-slip faulting.  This interpretation requires much 


smaller displacement for the Ingalls ophiolite complex, and the Mount Stuart batholith 


that intrudes it (Fig. 28 and 29), than the paleomagnetic data suggest (300-800 km vs. 


≈3000 km, respectively; Beck et al., 1981; Ague and Brandon, 1996; Butler et al., 2001; 


Housen et al., 2003; Wyld et al., 2006). 
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CHAPTER FIVE 


SEDIMENTARY SERPENTINITES AND OPHIOLITE BRECCIAS OF THE 


INGALLS OPHIOLITE COMPLEX: FURTHER EVIDENCE OF A LATE 


JURASSIC FRACTURE ZONE SETTING 


 


ABSTRACT 


 


The Ingalls Ophiolite Complex is one of several Mid to Late Jurassic ophiolites in 


the North American Cordillera.  It is located within the central Cascades of Washington, 


and has been interpreted to have formed in a fracture zone setting.  Sedimentary rocks 


(Peshastin Fm), consisting mostly of argillite, occur predominantly within the eastern 


portion of the complex.  Abundant ophiolitic breccias are intercalated with argillite, and 


isolated outcrops of diabase or gabbro within the argillite are interpreted as olistoliths. 


Sedimentary serpentinites are associated with the ophiolitic breccias and also form 


sheared, fault-bounded outcrops.   Sedimentary serpentinites are mostly unsorted breccias 


with angular to subangular clasts, but well-sorted, cross-bedded, and graded serpentinite 


sandstone and pebble conglomerate beds with flame structures exists.  Abundant detrital 


Cr-spinels within the sedimentary serpentinites have supra-subduction zone geochemical 


affinities.   Spinels from a third sedimentary serpentinite have a similar source, but show 


the effects of serpentine alteration.   These detrital spinels have compositions similar to 


the harzburgite and dunite unit of the Ingalls ophiolite complex.   This, along with the 


mostly poor sorting and the association with ophiolitic breccia, suggests that the 


sedimentary serpentinites from the Ingalls were derived locally; most likely as mantle 
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rock was exposed along fault scarps.   This scenario matches the occurrences of 


sedimentary serpentinites and ophiolite breccias in modern fracture zones such as the 


Romanche and Ecuador fracture zones. 


 


INTRODUCTION 


 


Sedimentary serpentinites are an unusual rock type found within modern oceanic 


settings and Paleozoic to late Cenozoic zones of continental accretion or intercratonic 


collisions (Lockwood, 1971a; Bonatti et al., 1973; Phipps, 1984; Fryer et al., 1999, 2000; 


Wakabayashi, 2004).  They are an important rock type because they are only found in 


three distinct tectonic settings: 1) within forearcs (Lockwood, 1971b; Phipps, 1984; Fryer 


and Mottl, 1992; Fryer et al., 1999, 2000; Wakabayashi, 2004); 2) in oceanic fracture 


zones (Bonatti et al., 1973; Saleeby, 1984); and 3) as landslide deposits associated with 


rifted margins (Gibson et al., 1996).   


Clasts tend to be poorly sorted monolithic serpentized peridotite, usually of 


differing color, with a calcite matrix and a range of grain sizes; however, other clasts, 


such as mafic minerals, eclogites, blueschists, metagabbro, metabasalt and sedimentary 


rocks occur (Lockwood, 1971b; Saleeby, 1984; Fryer and Mottl, 1992; Phipps, 1984; 


O'Hanley, 1996; Fryer et al., 1999, 2000; Wakabayashi, 2004).  Eclogite and blueschist 


clasts are restricted to forearc sedimentary serpentinites (Fryer and Mottl, 1992; Fryer et 


al., 1999, 2000).  Marine fossils can also be found within sedimentary serpentinites 


(Lockwood, 1971b; Bonatti et al., 1973).  Commonly, bedding in sedimentary 


serpentinites in forearcs and rifted margins is chaotic (Lockwood, 1971b; O'Hanley, 
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1996; Fryer and Mottl, 1992; Fryer et al., 2000), while in fracture zones it may be graded, 


crossbedded and commonly associated with 'ophiolitic' sediments (Bonatti et al., 1973; 


Saleeby, 1984; O'Hanley, 1996).   


Sedimentary serpentinites have been reported from within the Ingalls ophiolite 


complex (Fig. 40) (Harper et al., 2003; MacDonald et al., 2005).  This complex probably 


originated in a fracture zone setting (Miller and Mogk, 1987; Miller et al., 1993).  The 


sedimentary serpentinites within the Ingalls ophiolite complex provides an opportunity to 


test the fracture zone setting proposed for this complex, and can be relevant to other 


fracture zone ophiolites located throughout the globe.  This study is important in that few 


sedimentary serpentinites have been recognized within ophiolites, but these types of 


deposits are probably common as they are found in oceanic settings.   


 


INGALLS OPHIOLITE COMPLEX 


 


 The polygenetic Ingalls ophiolite complex is located within the central Cascades, 


Washington state (Fig. 40).  It is intruded by the Late Cretaceous Mount Stuart batholith 


and is overlain by Eocene rocks (Fig. 40) (Smith, 1904; Pratt, 1958; Southwick, 1962, 


1974; Miller, 1980, 1985).  This complex was thrust over the Cascade crystalline core 


along the Cretaceous Windy Pass thrust to the north (Miller, 1980, 1985).  It consists 


largely of variably serpentinized mantle tectonites (Fig. 40).  Plutonic, volcanic, and 


sedimentary rocks of the complex are divided into: 1) the Early Jurassic Iron Mountain 


unit (Fig. 40) (MacDonald et al., submitted); 2) Late Jurassic Esmeralda Peaks unit (Fig. 


40) (Miller, 1980, 1985; Miller et al., 2003; MacDonald et al., submitted); and 3) Late  
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Figure 40.  Map showing the Ingalls ophiolite complex, the De Roux unit, and 


surrounding geology.  Inset map shows the position of the ophiolite within Washington 


state.  Also shown on the map are the locations of the sedimentary serpentinite localities.  


Modified from Tabor and collaborators (1982, 1987, 1993, and 2000) and Harper et al. 


(2003).  EP = location of Esmeralda Peaks; I = location of Iron Mountain; ND = Navaho 


Divide; S = location of Sheep Mountain. 
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Jurassic sedimentary rocks (Fig. 40) (Smith, 1904; Southwick, 1962, 1974; Miller, 1980, 


1985; Miller et al., 1993; Mlinarevic et al., 2003).  


 


Mantle units 


 


More than two thirds of the Ingalls ophiolite complex consists of ultramafic 


tectonites, representing the residual peridotite left after extraction of a mafic melt (Fig. 


40) (Miller, 1985; Miller and Mogk, 1987; Schultz et al., 2005).  Two large serpentinite 


mélange fault zones, the Navaho Divide (Fig. 40) and Cle Elum Ridge fault zones, 


disrupt the ultramafic tectonites of this complex (Pratt, 1958; Frost, 1973; Miller, 1980, 


1985).  Plutonic, volcanic, and sedimentary rocks of the complex are enclosed within 


these mélanges as faulted blocks (Fig. 40).  Fault contacts of these blocks dip steeply to 


the north (Miller, 1980, 1985). 


Miller (1980, 1985) recognized three mantle units within the ultramafic tectonites: 


1) mylonitic lherzolite and hornblende peridotite; 2) lherzolite and clinopyroxene-bearing 


harzburgite, with minor plagioclase peridotite, and dunite, located north of, and 


gradational to, the mylonitic ultramafites; and 3) harzburgite cut by numerous bodies of 


dunite, some containing podiform chromite, located south of the mylonitic ultramafites.  


The mylonitic ultramafites coincide with, and occur just north of the Navaho Divide fault 


zone (Fig. 40) (Miller, 1980, 1985).  The northern lherzolite unit grades into the 


mylonitic ultramafites; in contrast, the southern harzburgite and dunite unit is steeply 


faulted against the Navaho Divide fault zone (Fig. 40) (Miller, 1980, 1985; Miller and 


Mogk, 1987). 
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Mineral assemblages in the mylonitic ultramafites record high temperatures (> 


900 °C) that suggest they formed in the mantle (Miller and Mogk, 1987).  This 


observation and the association between the mylonites and the serpentinite mélange led to 


the interpretation that the Navaho Divide fault zone is the shallow-level expression of a 


mantle shear zone ( = fracture zone) (Miller, 1985; Miller and Mogk, 1987). 


Ultramafic cumulates of wehrlite and clinopyroxenite occur in a >3-km-long belt 


in the eastern part of the Ingalls ophiolite complex (Harper et al., 2003).  The relationship 


of the cumulates to the other ultramafic units within the Ingalls ophiolite complex is 


uncertain. 


Cr-spinel compositions suggest that the northern lherzolite unit is the residue of 


mid-ocean ridge basalt magmas (Fig. 41) (Miller and Mogk, 1987; Metzger et al., 2002).  


Schultz et al. (2005) suggested that mineral and whole-rock chemical compositions of the 


northern lherzolite unit may demonstrate refertilization.  In contrast, the Cr-spinel 


compositions of the southern harzburgite show high degrees of partial melting, indicative 


of a supra-subduction zone setting (Fig. 41) (Miller and Mogk, 1987; Metzger et al., 


2002; Schultz et al., 2005).  Cr-spinels in the southern dunites, which cut the 


harzburgites, have high Cr/(Cr+Al) ratios; which may have formed when island arc 


tholeiite or boninitic magmas passed through the harzburgite (Fig. 41) (Metzger et al., 


2002).  Cr-spinels from the mylonitic ultramafites have very low Cr/(Cr+Al) ratios 


suggesting modest partial melting and are similar to those for peridotites formed at mid-


ocean ridge-transform fault intersections (Fig. 41) (Hebert et al., 1983; Miller and Mogk, 


1987). 
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Figure 41.  Cr/(Cr+Al) versus Mg/(Mg+Fe
2+


) diagram for detrital Cr-spinels from three 


sedimentary serpentinites of the Ingalls ophiolite complex.  See inset for symbol key.  A. 


displaying fields for Cr-spinels from various magma types.  Fields for SE Alaska 


intrusions and abyssal peridotites (MORB residue) from Dick and Bullen (1984); field for 


Hole 839 in the Lau Basin is from Allan (1994); field for low-Ca boninites is from 


Umino (1986); field for high-Ca boninites from Cameron (1985); and field for supra-


subduction zone peridotite is modified from Parkinson and Pearce (1998).  B. Plot for 


detrital Cr-spinels from Ingalls sedimentary serpentinites.  Fields for Ingalls peridotite 


from Miller and Mogk (1987). 
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Iron Mountain unit 


 


 The Iron Mountain unit consists of mafic volcanic and minor sedimentary rocks 


(MacDonald et al., submitted).  It occurs as faulted blocks within the mélange of the  


Navaho Divide fault zone (Fig. 40).  U/Pb zircon and radiolarian ages indicate that the 


Iron Mountain unit is Early Jurassic (Fig. 40) (~192 Ma; MacDonald et al., submitted).  


Geochemical affinities and oolitic limestone suggest that the Iron Mountain unit formed 


as a seamount near an oceanic spreading ridge.  


 


Esmeralda Peaks unit 


 


 The Esmeralda Peaks unit consists of gabbro, diabase, basalt, and minor 


sedimentary rocks and amphibolite (Miller, 1980, 1985; MacDonald et al., submitted).  It 


occurs as fault-bound blocks within the serpentinite mélange of the Navaho Divide fault 


zone (Fig. 40).  A gabbro from the unit has been dated as Late Jurassic (Fig. 40) (~161 


Ma U/Pb zircon; Miller et al., 2003).  Geochemical affinities are transitional island-arc 


tholeiite to mid-ocean ridge basalt and rarely boninite (Metzger et al., 2002; MacDonald 


et al., submitted).  The Esmeralda Peaks unit is interpreted to have originated in a backarc 


basin that was deformed by a fracture zone (Miller et al., 1993; Metzger et al., 2002; 


MacDonald et al., submitted). 
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Ingalls sedimentary rocks 


 


The Ingalls sedimentary rocks, first described by Smith (1904), conformably 


overlay the Esmeralda Peaks unit (Southwick, 1962, 1974; Miller, 1980, 1985; 


Mlinarevic et al., 2003).  They are mostly massive argillite and occur predominantly 


within the eastern portion of the Ingalls ophiolite complex (Fig. 40).  Minor sandstone, 


pebble conglomerate, pebbly mudstone, and chert are interbedded with the argillite 


(Southwick, 1962, 1974; Miller, 1980, 1985; Mlinarevic et al., 2003).  The Ingalls 


sedimentary rocks are inferred to be a combination of local detritus and detritus from a 


more distal arc deposited in a nodal basin (fracture zone-spreading ridge intersection) 


(Southwick, 1974; Miller, 1980, 1985; Harper et al., 2003; Mlinarevic et al., 2003). 


  Radiolarians from chert indicate that the Ingalls sedimentary rocks are Oxfordian  


to possibly Kimmeridgian (Late Jurassic; Fig. 40) (Miller et al., 1993; Metzger et al., 


2002; MacDonald et al., submitted; C. Blome, written commun., 1992; E. Pessagno, 


2004, written commun.).  Detrital zircon from a sandstone yielded two U/Pb (SHRIMP) 


age peaks at ~153 and ~223 Ma (Miller et al., 2003).  This graywacke is rich in volcanic 


detritus and compositionally immature; therefore, it is interpreted that the ~153 Ma peak 


approximates the age of deposition (Harper et al., 2003; Miller et al., 2003). 


Abundant ophiolitic breccias intercalated within the argillite have been reported 


from the Ingalls ophiolite complex (Miller, 1980, 1985; Mlinarevic et al., 2003; 


MacDonald et al., 2005). These ophiolitic breccias are generally poorly sorted and 


nonstratified, with angular to subangular clasts of diabase, gabbro, basalt, serpentinite, 


amphibolite, and less common quartz diorite and felsic volcanic rocks.  Clasts are matrix 
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supported, and the matrix consists of abundant amphibole and serpentinite, with lesser 


gabbro, diabase, and basalt.  The ophiolitic breccias are 10's of cm to 10's of m in 


thickness.  According to Mlinarevic et al. (2003), they occur throughout the sedimentary 


section, are lenticular in shape, and extend for up to 1 km in length.  Isolated outcrops of 


diabase and gabbro within argillite are interpreted as olistoliths (Fig. 42) (Harper et al., 


2003); however, some of these outcrops have slickensides, brittle shearing, and small 


faults along their contact with the argillite (Harper et al., 2003). 


  The geochemical affinities of these ophiolite-derived clasts are normal- and 


enriched-mid-ocean ridge basalt, and transitional between island-arc tholeiite and mid-


ocean ridge basalt (Fig. 43; Table 13).  A felsic igneous clast has boninitic affinities (Fig. 


43; Table 13) (Harper et al., 2003; Mlinarevic et al., 2003), and a large gabbro olistolith 


has island-arc tholeiite affinities (Fig. 43B; Table 13) (Harper et al., 2003; Mlinarevic et 


al., 2003).  Sedimentary serpentinites are commonly associated with the ophiolitic 


breccias (Harper et al., 2003; MacDonald et al., 2005). 


 


Sedimentary serpentinites 


 


Sedimentary serpentinites are located in the eastern portion of the Ingalls 


ophiolite complex (Fig. 40).  They occur as sheared, fault bound isolated outcrops or 


discontinuous, lens shaped beds within other sedimentary deposits.  Beds are 0.1 to 5 


meters thick and 10 to 15 m long.  They are mostly unsorted breccias with angular to 


subangular clasts (Fig. 44A, and 45).  Clasts consist of clay- through pebble size 


serpentinite, with minor amphibole, pyroxene and mafic  
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Figure 42. A. Gabbro block within argillite, interpreted as a huge olistolith (block in 


submarine landslide).  B. Gabbro boulder in argillite, interpreted as an olistolith.  Other 


smaller clasts of diabase and gabbro are located within this outcrop. 
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Figure 43.  A. Ti/V discriminant diagram (Shervais, 1982) for mafic clasts from the 


Ingalls ophiolitic breccias.  Shaded field is for Esmeralda Peaks unit (Metzger et al., 


2002; MacDonald et al., submitted).  Only mafic rocks are shown, and gabbros are 


excluded, as many of them appear to be cumulates. Calc-alkaline basalts are not plotted 


because this diagram is not useful for distinguishing them (Ti/V changes with 


fractionation).  B. Ta-Hf-Th discriminant diagram of Wood (1980) for all clasts from the 


Ingalls ophiolitic breccias, and a large gabbro olistolith (Fig. 3A; empty triangle).  


Shaded field is for Esmeralda Peaks samples (Metzger et al., 2002; MacDonald et al., 


submitted).  All rock compositions are plotted on this diagram because fractionation and 


crystal accumulation does not significantly change the ratios of these elements. 
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Figure 44.  A. Photomicrograph of poorly sorted sedimentary serpentinite (BL-139-1).  


Note angular to subangular clasts.  B. Photomicrograph of a graded bed of sedimentary 


serpentinite (EL-89-1).  Note angular clasts and grading. 
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Figure 45. Photo of sedimentary serpentinite (sample EL-216).   


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 


 







208







 209 


 







 210 


volcanic/plutonic rock fragments (Fig. 44 and 45).  Clasts tend to be both grain and 


matrix supported (Fig. 44 and 45).  Clast sizes range from clay to boulder (< 3.9 * 10
-3


 to 


>256 mm).  Most sedimentary serpentinites are mass or not bedded (Fig. 45); however, 


moderately sorted, cross-bedded, and graded serpentinite sandstone and pebble 


conglomerate beds with flame structures occurs near Navaho Divide (Fig. 40, 44B, and 


46) (Harper et al., 2003).  These moderately sorted beds have more abundant clasts of 


diabase and gabbro (Fig. 44B).  They are located depositionally above basalts of the 


Esmeralda Peaks unit and Oxfordian age argillite (from radiolaria in chert; sample EL-


92-4 in Table 8) that contains large boulders of gabbro (Fig. 46).  Due to the massive 


nature of the argillite, internal faulting within the figure 46 area might be present and 


cannot be ruled out.  


 


Detrital spinel compositions 


 


Silt- through sand-size grains of spinel (mostly Cr-spinel; Fig. 44) occur within 


the sedimentary serpentinites.  Lockwood (1971b) and Bonatti et al. (1973) reported that 


Cr-spinels commonly occur within sedimentary serpentinites.  McLennan et al. (1993) 


suggested that Cr-spinel indicate an ophiolitic source area.  Lee (1999) suggested that 


deposition of Cr-spinels occur within proximity of their source area.  Arai and Okada 


(1991), Cookenboo et al. (1997), and Lee (1999) indicate that detrital Cr-spinels chemical 


composition can be used to identify source areas.   


Spinels from three sedimentary serpentinites were analyzed for this study (Tables 


14, 15 and 16).  One poorly sorted and angular sample (BL-139-1; Table 14) is from a  
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Figure 46.  Annotated photo looking north from Navaho Divide.  Contact between the 


Esmeralda Peaks unit basalt and Navaho Divide fault zone is faulted.  All other contacts 


appear conformable; however internal faulting within the argillite cannot be ruled out.  


Large gabbro bodies are interpreted as olistoliths.  The tree within the photo is ~ 4 meters 


tall. 
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fault slice located on US Highway 97 and is associated with ophiolite derived breccia, 


argillite and sandstone (field trip stop 6 from Harper et al., 2003).  A second poorly 


sorted and angular sample (BL-216-1; Table 15) occurs within massive sedimentary 


serpentinite beds that have been faulted.  The third sample (El-89-1; Table 16; Fig. 44B) 


is graded and moderately sorted serpentinite sandstone associated with ophiolitic breccia 


and probable gabbro olistoliths near Navaho Divide (Fig. 40 and 46).   


Sample BL-139-1 and BL-216-1 (Tables 14 and 15) were analyzed with a JEOL 


8900 electron microprobe at Binghamton University, Binghamton, New York.  Ti, Al, Cr, 


Mn, Mg, Ni, and Fe were analyzed using a 15 kV accelerating voltage, 30 nÅ beam 


current, and a submicron beam diameter.  Elements were counted for 10 seconds on peak 


and 3 seconds on the upper and lower backgrounds.  Pure single element standards were 


used for Ti, Al, Fe, and Mg, chromite for Cr, spessartine for Mn, and Ni metal for Ni. 


Sample EL-89-1 (Table 16) was analyzed with a Cameca SX-100 microprobe at 


the Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, 


Troy, New York.  Si, Ti, Al, Cr, Mn, Mg, Ni, and Fe were analyzed using a 15 kV 


accelerating voltage, 20 nÅ beam current, and a 20 μm beam.  Sample USNM 117075 


from Tiebaghi Mine, New Caledonia, was used as an Al, Cr, Mg, and Fe standard at 


Rensselaer Polytechnic Institute.  Other elemental standards used were rutile for Ti, 


tephroite for Si and Mn, and diopside glass for Ni.   


The detrital Cr-spinels from the 3 sedimentary serpentines (least altered spinels 


from samples EL-89-1; see discussion below) have Cr/(Cr+Al) values that range from 


~0.53 to ~0.76, and their Mg/(Mg+Fe
2+


) values range from ~0.55 to ~0.67 (Fig. 41; Table  







 216 


Figure 47.  Al2O3 verses TiO2 diagram showing detrital Cr-spinels from three 


sedimentary serpentinites of the Ingalls ophiolite complex.  Inset shows key to symbols.  


Fields are from Kamenetsky et al. (2001).  This diagram is a good discriminator for 


tectonic setting and distinguishing volcanic from peridotite spinels.  MORB = mid-ocean 


ridge basalt; SSZ = supra-subduction zone.  Also shown are the fields for spinels from 


the Ingalls peridotites (Miller and Mogk, 1987). 
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14, 15, and 16).  They have Al2O3 values that range from ~16 to 34 weight %, and TiO2 


values that range from <0.011 to ~0.153 weight % (Fig. 47; Table 14, 15 and 16). 


The Al2O3 vs. TiO2 diagram (Fig. 47) (Kamenetsky et al., 2001) is an excellent 


discriminator between volcanic and peridotite Cr-spinels.  The detrital Cr-spinels from  


the 3 sedimentary serpentines (least altered spinels from samples EL-89-1; Fig. 41) plot 


within the overlap between suprasubduction zone and MORB peridotite fields on this 


diagram (Fig. 47).  These detrital Cr-spinels plot close to the fields defined by the 


northern lherzolite and southern harzburgite and dunite units of the Ingalls ophiolite 


complex (Fig. 47).  They plot away from the fields defined by the mylonitic lherzolite 


unit and volcanic Cr-spinels (Fig. 47). 


These same detrital Cr-spinels have high Cr/(Cr+Al) values (least altered spinels 


from samples EL-89-1; Fig. 41).  They plot within the field defined by suprasubduction 


zone peridotite (Fig. 41).  The detrital Cr-spinels plot close to the fields defined by the 


southern harzburgite and dunite unit (Miller and Mogk, 1987) plot close to (Fig. 41), but 


away from the fields defined by the northern lherzolite and mylonitic lherzolite units and 


abyssal (MORB) peridotites (Fig. 41). 


Many detrital spinels in sample EL-89-1 display well developed rims (Fig. 48).  


Figure 49 displays that the most detrital spinels within sample EL-89-1 are enriched in Fe 


(both Fe
2+


 and Fe
3+


; Table 16 and depleted in Al and Cr.  These rims of these spinels 


have high Fe
3+


 and low Al and Cr (Fig. 48 and 49), and were determined by microprobe 


to be magnetite.  The cores are Cr-spinel and plot with other detrital Cr-spinels on 


geochemical diagrams (Table 16; Fig. 49).  These spinels have elevated Cr/(Cr+Al) 


values and have Si intergrowths (Table 16). 
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Figure 48. Backscatter electron image of a well zoned detrital spinel from sample EL-89-


1.  Core is rich in Cr and Al, while rim is rich in Fe and contains Si.  Si is most likely 


from an intergrown silicate phase as a result of serpentinization (Burkhard, 1993). 
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Figure 49. Al-Cr-Fe
3+


 diagram from Burkhard (1993) for detrital spinels from Ingalls 


sedimentary serpentinites.  See inset for symbol key.  Serpentinite alteration trend 


displays first the loss of Al and then Cr relative to an increase in Fe
3+


.  Two core-rim (C = 


core; R = rim) pairs are connected with dashed lines. 
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DISCUSSION 


 


The low TiO2 values of the detrital spinels suggest that they all originated from 


mantle peridotite (Fig. 47).  The high Cr/(Cr+Al) and low Al2O3 values of the detrital 


spinels suggest that the peridotites underwent high degrees of partial melting (Fig. 41 and 


47; Table 14, 15, and 16) (Dick and Bullen, 1984; Kamenetsky et al., 2001).  The low 


Al2O3 is because Al partitions into the melt while Cr remains during mantle melting 


(Dick and Bullen, 1984).  The high Cr/(Cr+Al) values of the detrital spinels suggest that 


they originated in a suprasubduction zone setting (Fig. 41 and 47).  H2O enrichments in 


arc settings allow for higher degrees of partial melting, resulting in higher Cr/(Cr+Al) 


values in spinels (Dick and Bullen, 1984) (Fig. 41). 


These detrital Cr-spinel compositions are similar to the more southern harzburgite 


and dunite unit of the Ingalls ophiolite complex (Fig. 40 and 41) (Miller and Mogk, 


1987).  This chemical similarity, and poor sorting and angularity of serpentinite clasts 


(Fig. 44), suggest that the source for the sedimentary serpentinites was the harzburgite 


and dunite unit (Fig. 40 and 41).  Exposure and erosion of the harzburgite and dunite unit 


most likely occurred along fault scarps during the formation of a fracture zone in the 


Ingalls ophiolite complex (Fig. 50).  The lack of eclogite and blueschist clasts within the 


sedimentary serpentinites indicates that a forearc origin for these deposits was not likely 


(Fryer and Mottl, 1992; Fryer et al., 1999, 2000).           


Burkhard (1993) identified serpentinized Cr-spinels that have well developed rims 


of magnetite and unaltered cores similar to EL-89-1 (Fig. 48).  Burkhard (1993) suggests 


that serpentinization can decrease Al, Mg and Cr while enriching Fe in spinels.  The high  
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Figure 50. Tectonic model for the formation of the ophiolitic breccia and sedimentary 


serpentinite in a Late Jurassic fracture zone setting.  Argillite is far greater than ophiolitic 


debris, therefore this cartoon represents a time before much of the argillite was deposited.  


Note the source areas of the Esmeralda Peaks and harzburgite and dunite units.         
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Fe, low Al and Cr in the detrital spinels from EL-89-1 are most likely the result of 


alteration associated with serpentinization (Fig. 49; Table 16).  Mg values in these spinels 


are not markedly low (Table 16), probably because Mg tends to be more resistant to 


alteration during serpentinization (Sobolev and Logvinova, 2004).  Burkhard (1993) 


noted that alteration of spinels during serpentinization results in an intergrown silicate 


phase, which can account for the Si within the EL-89-1 spinels (Table 16).  Barnes 


(2000) and Barnes and Roeder (2001) noted that igneous magnetite has low Cr/(Cr+Al) 


values, while metamorphic magnetite has high Cr/(Cr+Al) values.  The high Cr/(Cr+Al) 


for the detrital spinels from EL-89-1 most likely suggest they are metamorphic, formed 


during serpentinization (Table 16).   


All grains were either completely altered to magnetite or well zoned (Fig. 48), and 


no broken zoned metamorphosed spinel grains were observed in sample EL-89-1.  .  


Therefore, it is not possible to determine if the serpentization that altered the Cr-spinels 


occurred before or after deposition; however, the lack of broken rims is suggestive of at 


least some serpentinization after deposition.  If so, the original serpentinite clasts must 


have contained relict olivine or orthopyroxene. 


The geochemistry of the mafic clasts within the ophiolitic breccia is similar to that 


of the Late Jurassic Esmeralda Peaks unit (Fig. 43) (MacDonald et al., submitted).  This 


includes transitional mid-ocean ridge basalt to island-arc tholeiite and rare boninite (Fig. 


43) (Metzger et al., 2002; MacDonald et al., submitted).  These clasts are also angular 


and poorly sorted suggesting that they were locally derived.  Ophiolitic olistoliths within 


the Ingalls sedimentary rocks also resemble rocks within the Esmeralda Peaks unit (Fig. 


43).  These ophiolitic sediments were most likely locally derived when large sections of 
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the Esmeralda Peaks unit were exposed during Late Jurassic faulting probably associated 


with movement on a transform fault (Fig. 50) (Miller, 1985; Miller and Mogk, 1987).   


     


INTERPRETATIONS 


 


The Late Jurassic age of the argillite unit (Fig. 46), and clasts of ~161 Ma 


Esmeralda Peaks units (Fig. 42, 43 and 46) that are associated with the sedimentary 


serpentinite, indicates that these deposits are Late Jurassic in age (Fig. 50).  Harper et al. 


(2003) and Mlinarevic et al. (2003) interpreted the association of ophiolitic breccias with 


mudstones that are locally interbedded with turbidites to reflect a mixture of locally 


derived, uplifted oceanic crust and upper mantle, probably exposed on fault scarps 


resulting from deformation along a fracture zone, with distal deep-marine terrigenous 


sediments.  The chemistry of the ophiolitic clasts and detrital Cr-spinels, and lack of 


eclogite and blueschist clasts, supports this interpretation (Fig. 41, 43, and 47).  The 


ophiolitic breccias and sedimentary serpentinites probably formed from localized debris 


flows from escarpments created by transform faulting within the Ingalls fracture zone 


setting (Fig. 50) (Miller, 1985; Miller and Mogk, 1987).  These localized debris flow 


were apparently intermittently deposited during Late Jurassic deposition of sediments 


derived from a more distal arc (Fig. 46 and 50) (Southwick, 1974; Mlinarevic et al. 


2003). 


This association of ophiolite-derived breccia and sedimentary serpentinite occurs 


in modern fracture zones (e.g., Romanche fracture zone, Bonatti et al., 1973; and Ecuador 


fracture zone, Anderson and Nishimori, 1979).  These ophiolite-derived sediments thus 
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support the interpretation of Miller (1985) and Miller and Mogk (1987) that the Ingalls 


ophiolite complex formed in a fracture zone setting (Fig. 50).   


Extension at a slow spreading ridge could have also been the area of deposition 


for these sedimentary serpentinites; however, their geologic setting within the Navaho 


Divide fault zone favors a fracture zone setting. 


The interpretation that sedimentary serpentinites within an ophiolite mélange 


represent fracture zone deposits is not a new one (Saleeby, 1984); however, the 


importance of this study is that it helps support the fact that sedimentary serpentinites 


within ophiolitic mélanges form in two distinct tectonic settings: fracture zones; and fore-


arcs.  Further studies of sedimentary serpentinites within ophiolitic mélanges should 


carefully test both fracture zone and fore-arc tectonic settings before coming to a 


conclusion.       
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CHAPTER SIX 


PETROGENESIS, AGE, TECTONIC EVOLUTION, AND POSSIBLE 


REGIONAL CORRELATIONS OF PRE-CENOZOIC ROCKS WITHIN THE 


CENTRAL CASCADES, WASHINGTON: THE MANASTASH INLIER AND DE 


ROUX UNIT 


 


ABSTRACT 


 


Pre-Cenozoic rocks within the central Cascades, Washington, have not been 


studied in as much detail as other pre-Cenozoic Cordilleran rocks.  The pre-Cenozoic 


rocks within Washington state, including several minor inliers, can provide significant 


insight into the tectonic evolution of the Mesozoic North American Cordillera.  These 


include the Hicks Butte, Manastash, and Rimrock Lake inliers, and the De Roux unit.   


The Manastash inlier consists primarily of the Hereford Meadow amphibolite, 


Lookout Mountain Formation, Quartz Mountain stock, and Helena-Haystack mélange.  


The Hereford Meadow amphibolite is, in part, interpreted as a pre-Late Jurassic 


dismembered ophiolite.  Geochemical data indicate that it has supra-subduction zone 


geochemical affinities.  The metasedimentary rocks of the Lookout Mountain Formation 


consist of metasiltstone, metashale, and lesser metasandstone; the latter was probably 


derived largly from a volcanic source.  Detrital zircon age populations of the Lookout 


Mountain Formation are ca. 160 Ma, 177 Ma, 195 Ma, as well as Triassic, Devonian, 


Neoproterozoic, Mesoproterozoic, and Paleproterozoic.   The youngest peak of ~160 Ma 


is interpreted as the age of deposition, consistent with the Formation being cut by the 
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~157 Ma Quartz Mountain stock.  Possible source areas of detrital zircon populations 


within the Lookout Mountain Formation suggest that it originated from northern North 


American cratonic sources, and possibly the Klamath Mountains region.  A new U/Pb 


zircon data confirm the Late Jurassic age of the Quartz Mountain stock (~157 Ma), and 


geochemical data suggest that this stock, along with other Jurassic arc rocks of 


Washington state, were probably part of the outboard arc of the Late Jurassic Ingalls 


back-arc basin.   


The Helena-Haystack mélange consists of metasedimentary and metaigneous 


blocks within a serpentinite matrix.  This mélange has been interpreted as a major crustal 


suture between terranes of Washington state.  It has been displaced ~98 km to the south 


by right-lateral motion along the Eocene Straight Creek fault.   


New field observations, geochemistry, and possible regional correlations are also 


presented for the De Roux unit, central Cascades, Washington.  This unit consists of 


metasedimentary and metaigneous rocks, as well as serpentinite, that were tectonically 


mixed together.  Geochemical data suggest that metavolcanic rocks have a wide range of 


magmatic affinities.  These rocks are very similar lithologically and geochemically to 


several pre-Cenozoic terranes within Washington state, including the western and eastern 


mélange belt, Helena-Haystack mélange, and Russell Ranch Complex of the Rimrock 


Lake inlier.   
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Figure 51.  Simplified geologic map showing the tectonic elements of the central and 


northwest Cascades.  HHM = Helena-Haystack mélange; NWCS = Northwest Cascade 


System; WEMB = western and eastern mélange belts.  Area of figure 52 is also shown on 


the map.  Modified from Tabor et al. (1989), Miller et al. (1993), and Tabor (1994). 
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INTRODUCTION 


 


 The Mesozoic tectonic evolution of the North American Cordillera involved the 


amalgamation of mainly oceanic- and arc- affinity terranes; these terranes originated  


either associated with, or are far traveled and exotic to, the North American craton 


(Wilson, 1968; Burchfiel and Davis, 1972; Monger et al., 1972; Davis et al., 1978; Coney 


et al., 1980; Burchfiel et al., 1992; Saleeby, 1992; Saleeby and Busby-Spera, 1992).  


There are significant uncertainties associated with the origin of some of these terranes, 


which require detailed geologic studies in order to better constrain their tectonic origin 


and possible regional correlations (Miller, 1989; Miller et al., 1993; Ague and Brandon, 


1996; Cowan et al., 1997; Butler et al., 2001; Wyld et al., 2006).  The pre-Cenozoic rocks 


of the central and northwest Cascades, Washington state (Fig. 51), are involved in this 


Cordilleran terrane amalgamation (Beck et al., 1981; Brown, 1987; Brandon et al., 1988; 


Garver, 1988a; Miller, 1989; Miller et al., 1993; Ague and Brandon, 1996; Housen et al., 


2003; Wyld et al., 2006).   


 The pre-Cenozoic rocks of the central and northwest Cascades are divided into 


five major tectonic elements: 1) the Northwest Cascades System; 2) the western and 


eastern mélange belts; 3) the Helena-Haystack mélange; 4) the Cascades crystalline core; 


and 5) the Methow basin (Fig. 51) (e.g., Misch, 1966; Brown, 1987; Tabor et al., 1989; 


Tabor, 1994).  The Northwest Cascades System, Helena-Haystack mélange, and western 


and eastern mélange belts are separated from the Cascades crystalline core by the Eocene 


Straight Creek fault (Fig. 51) (90-190 km of displacement; Misch, 1977; Vance and 


Miller, 1981; Tabor et al., 1984; Tabor, 1994).  The Methow basin is separated from the  
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Figure 52.  Simplified geologic map displaying the tectonic elements east of the Straight 


Creek fault and south of the Cascades Crystalline Core.  The northern-most Easton 


Metamorphic suite on this map is equal to the Kachess Lake inlier of Ashleman (1979).  


Modified from Tabor and colleagues (1982, 1987, 1993, 2000), Miller (1985, 1989), and 


Miller et al. (1993). 
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Cascades crystalline core by the Late Cretaceous to Paleogene Ross Lake fault zone (Fig. 


51) (Misch, 1966). 


 Several pre-Cenozoic terranes occur south of the Cascades crystalline core (Fig. 


51 and 52).  These include the Hicks Butte, Manastash, and Rimrock Lake inliers, plus 


the De Roux unit and Ingalls ophiolite complex (Fig. 51 and 52) (Miller, 1974, 1980, 


1985, 1989; Tabor et al., 1989; Miller et al., 1993).  These terranes show similarities to 


the pre-Cenozoic terranes west of the Straight Creek fault (Fig. 51), as well as to pre-


Cenozoic terranes located within Oregon and California to the south (Fig. 53) (Miller, 


1989; Tabor et al., 1989; Miller et al., 1993).  Being the only exposures of pre-Cenozoic 


rocks within the Columbia embayment, these rocks are vital links between the Mesozoic 


rocks of Washington and those of Oregon, California, and British Columbia, and are 


critical to the understanding of the Mesozoic tectonic evolution of the North American 


Cordillera.       


    This paper is a comprehensive study of the geology of the Manastash inlier and 


De Roux unit of the central Cascades, Washington.  These terranes, in combination with 


other pre-Cenozoic terranes of Washington state, are interpreted for tectonic significance 


and regional correlations within the North American Cordillera.         
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Figure 53.  Location of the Ingalls ophiolite complex, inliers east of the Straight Creek 


fault, Blue Mountains Provance, Klamath Mountains, and Northern Sierra terrane.  


Modified from Miller et al. (1993) and Metzger et al. (2002). 
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Figure 54.  Structural stacking of terranes within the northwest Cascades, Washington 


state.  Modified from Tabor (1994). 
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REGIONAL WASHINGTON GEOLOGY WEST OF THE STRAIGHT CREEK 


FAULT 


 


Northwest Cascades System 


 


The Northwest Cascades system consists of thrust stacks of Paleozoic to 


Mesozoic oceanic and arc affinity rocks (Fig. 54) that have undergone low-temperature 


and low- to high-pressure metamorphism (Fig. 51) (Misch, 1966, 1988; Brown, 1986, 


1987; Tabor et al., 1989).  The structurally lowest terrane in the Northwest Cascades 


System consists of the Wells Creek Volcanics and Nooksack Formation (Fig. 54) (Misch, 


1966; Brown, 1987; Tabor et al., 1989, 2003; Tabor, 1994).  The Wells Creek Volcanics 


is Middle Jurassic in age (Misch, 1966; Franklin, 1985) and is interfingered with, and 


overlain by arc-derived sediments of the Late Jurassic to Early Cretaceous Nooksack 


Formation (Danner, 1959; Misch, 1966; Sondergaard, 1979; Tabor et al., 2003).  Tabor et 


al. (2003) interpreted the Wells Creek Volcanics as a member of the Nooksack Formation 


(Fig. 54).  Misch (1966) consider the Wells Creek Volcanics as para-autochthonous.     


The next highest thrust sheet is comprised of the Chilliwack Group and the Cultus 


Formation (Fig. 54) (Misch, 1966; Brown, 1987; Tabor et al., 1989; Tabor, 1994).  The 


Chilliwack Group consists of deformed basaltic and andesitic arc metavolcanic and 


metasedimentary rocks (Cairns, 1944; Tabor et al., 1989; Tabor, 1994).  Fossils from 


marbles yield Silurian to Permian ages, with most being Pennsylvanian (Tabor et al., 


1989; Tabor, 1994).  The less deformed and metamorphosed Cultus Formation is 


interpreted to conformably overlay the Chilliwack Group (Monger, 1970; Tabor et al., 







 242 


1989).  It consists of Triassic to Early Jurassic deep-marine sediments and arc volcanic 


rocks (Daly, 1912; Monger, 1970; Tabor et al., 1989).   


Structurally overlying the lower terranes of the Northwest Cascades System are 


rocks of the Bell Pass Mélange (Fig. 54) (Misch, 1966, 1988; Brown, 1987; Tabor et al., 


1989; Tabor, 1994).  The Bell Pass Mélange underwent low- to high-temperature and 


pressure metamorphism and includes the Yellow Aster Complex (Misch, 1966), the 


Elbow Lake Formation and Baker Lake blueschist (Brown et al., 1987), and the Vedder 


Complex (Armstrong et al., 1983) (Fig. 54).  This mélange consists of foliated 


metasedimentary and basaltic rocks and low- to high-grade metaplutonic rocks (Misch, 


1966; Armstrong et al., 1983; Brown et al., 1987; Tabor et al., 1989).  Fossil ages of 


Pennsylvanian, Triassic, and Jurassic were reported by Tabor (1994), a Permian K-Ar 


metamorphic age was reported by Armstrong et al. (1983), and discordant U-Pb ages 


from detrital zircons from paragneiss were interpreted to show Precambrian ages 


(Mattinson, 1972a; Rasbury and Walker, 1992). 


The structurally highest terrane in the Northwest Cascades System is the Easton 


Metamorphic Suite (the Shuksan Metamorphic Suite of Misch, 1966) (Fig. 54).  This 


terrane consists of the Darrington Phyllite and Shuksan Greenschist, which is in part a 


blueschist (Misch, 1966; Brown, 1986, 1987; Brown and Blake, 1987; Tabor et al., 1989; 


Tabor, 1994).  The Easton Metamorphic Suite records higher P/T metamorphism than 


most terranes in the Northwest Cascades System (Brown, 1986, 1987; Brown and Blake, 


1987; Tabor, 1994).  The protoliths of the Darrington Phyllite were shale and minor 


sandstone, with the Shuksan representing ocean-floor basalts that underlay the Darrington 


(Haugerud et al., 1981; Dungan et al., 1983; Brown, 1986).  Fe-Mn-rich sediments 
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locally occur along the contact between the Shuksan and Darrington units (Street-Martin, 


1981; Haugerud et al., 1981).  Felsic metaigneous rocks located within the Darrington 


Phyllite were interpreted by Gallagher et al. (1988) to be arc-volcanic rocks associated 


with the Easton Metamorphic Suite.  Brown et al. (1982) and Armstrong et al. (1983), 


based on K-Ar and Rb-Sr isotopic data, suggested that the age of metamorphism for the 


Easton Metamorphic Suite was between 120 and 130 Ma.  These authors also suggested 


that the protolith age was Middle to Late Jurassic (~ 150-165 Ma) (Brown et al., 1982; 


Armstrong et al., 1983; Armstrong and Misch, 1987).  A U-Pb zircon age of 163 ± 3 Ma 


from a metamorphosed quartz diorite confirms this Middle to Late Jurassic protolith age 


(Gallagher et al., 1988); however, the faulted nature of this diorite suggests that this age 


could be unrelated to the formation of the Easton Metamorphic Suite (see Dragovich et 


al., 1998, 2000, for discussion).  Tabor et al. (1993) reported discordant Precambrian Pb-


Pb ages from detrital zircons from a Darrington Phyllite sample, suggesting that this 


terrane was derived from North American craton sources.                                  


 


The western and eastern mélange belts 


 


The western mélange belt (Fig. 51 and 54) consists of metasedimentary and 


metaigneous rocks of marine origin in a matrix of poorly foliated argillite and disrupted 


sandstone (Jett and Heller, 1988; Tabor et al., 1989, 2002; Tabor, 1994).  These rocks 


underwent low temperature and pressure metamorphism.  Fossils from the western 


mélange belt range from Jurassic to Early Cretaceous in age; however, marbles have 


Mississippian to Permian fossils (Danner, 1957; Wiebe, 1963; Danner, 1966; Tabor et al., 
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1993, 2002).  Zircon ages (U-Th-Pb) from metatonalites and metagabbros from this belt 


range from 170 -150 Ma (Whetten et al., 1980; Frizzell et al., 1987; Tabor et al., 1993).  


Jett and Heller (1988) suggest that the sediments were originally arc-derived trench 


deposits.   


The eastern mélange belt (Fig. 51 and 54) consists of extremely disrupted and 


metamorphosed igneous and sedimentary rocks of marine origin, in a deformed 


sedimentary matrix (Tabor et al., 1989, 1993, 2002).  These rocks underwent low 


temperature and pressure metamorphism.  Fossil ages for this belt range from Late 


Permian (from marbles; Danner, 1966) through Jurassic (Tabor et al., 1993, 2002).  A 


discordant zircon age (U-Th-Pb) from a deformed tonalite of a migmatitic gneiss phacoid 


within this mélange is ~190 Ma (Whetten et al., 1980). 


 


Helena-Haystack mélange 


 


The Helena-Haystack mélange (Fig. 51 and 54) structurally separates the 


Northwest Cascades System from the eastern and western mélange belts (Tabor, 1994).  


This mélange consists of variably metamorphosed blocks of igneous and sedimentary 


rocks within a serpentinite matrix (Vance et al., 1980; Whetten et al., 1988; Tabor et al., 


1989; Tabor, 1994).  Fault slices of Tertiary rocks have also been reported from within 


this mélange (Goetsch, 1978; Tabor, 1994).  The Eocene Darrington-Devils Mountain 


fault zone coincides with this mélange (Fig. 51) (Vance et al., 1980; Tabor, 1994).  


Blocks within this mélange include fragments apparently derived from the western and 


eastern mélange belts, the Easton Metamorphic Suite of the Northwest Cascades System, 
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and blocks of unknown origin (Tabor et al., 1989; Tabor, 1994).  Fossils from 


sedimentary rocks within this mélange are Mesozoic, possibly Triassic, in age (Tabor, 


1994).  Zircon ages (U-Pb) from igneous blocks were reported from Whetten et al. (1980; 


160-170 Ma), Brown et al. (1987; ~168 Ma), Dragovich et al. (1998; ~163 Ma, 


discordant age), and Tabor et al. (2002; ~150 Ma, discordant age).  Vance et al. (1980) 


reported a metamorphic age of 137 ± 5.5 Ma (K/Ar) from a Helena-Haystack melange 


amphibolite.  Tabor (1994) interprets the Helena-Haystack mélange as a major suture 


between the western and eastern mélange belts and the Northwest Cascades System (Fig. 


54), along which these two terranes were tectonically mixed.  Tabor (1994) also 


suggested that the Helena-Haystack mélange represents a highly disrupted extension of 


the ophiolitic Fidalgo Complex (Fig. 51).  Dragovich et al. (1998, 2000), however, 


suggested that the Helena-Haystack mélange represents a structurally higher level 


equivalent of the Easton Metamorphic Suite, and includes this mélange within the 


Northwest Cascades System.  Dragovich et al.'s (1998, 2000) interpretation is based on 


more localized studies than Tabor (1994), and does not account for the presence of blocks 


derived from other terranes within the Helena-Haystack mélange.  


 


PRE-CENOZOIC UNITS EAST OF THE STRAIGHT CREEK FAULT 


 


 Correlative units to the Northwest Cascades system, western and eastern mélange 


belts, and Helena-Haystack mélange also occur on the eastern side of the Straight Creek 


fault (Fig. 51 and 52) (Smith, 1904; Smith and Calkins, 1906; Stout, 1964; Ashleman, 


1979; Goetsch, 1979; Miller, 1980, 1985, 1989; Treat, 1987; Tabor et al., 1989; Miller et 
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Figure 55.  Detailed geologic map of the Hick Butte and Manastash inliers displaying 


geochronological localities.  DDMFZ = Darrington-Devils Mountain fault zone.  


Modified from Goetsch (1978), Tabor et al. (1982, 2000), Treat (1987), Miller et al. 


(1993) and new mapping by J. MacDonald. 
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al., 1993; Tabor, 1994).  These include rocks of the Hicks Butte, Rimrock Lake, and 


Manastash inliers, as well as the De Roux unit (Fig. 51 and 52).  


 


Hicks Butte inlier 


 


The Hicks Butte inlier consists of the Easton Metamorphic Suite to the north, the 


Hicks Butte complex to the south, and a "tectonic zone" separating them (Fig. 52 and 55) 


(Smith and Calkins, 1906; Stout, 1964; Treat, 1987; Miller et al., 1993; Tabor, 2000).  A 


short review of these units is given below.  Structural, metamorphic, and isotopic studies 


of this inlier were made by Hopson and Mattinson (1973), Treat (1987), Miller et al. 


(1993), and Tabor et al. (2000). 


The Easton Metamorphic Suite within the Hicks Butte inlier consists of both the 


Shuksan Greenschist and Darrington Phyllite (Fig. 55) (Treat, 1987; Miller et al., 1993; 


Tabor et al., 2000).  It has a continuous schistosity and displays compositional layering 


(Miller et al., 1993).  Miller et al. (1993) report that ≤ 10 % of the Shuksan within the 


Hicks Butte is blueschist.  Treat (1987) reports estimated temperatures and pressures of 


500° C ± 100° C and 5 ± 1 kb for the greenschists and 450° C ± 100° C and 9 ± 2 kb for 


Shuksan blueschists within the Hicks Butte inlier.  


 The Hicks Butte complex consists of variably metamorphosed and deformed 


hornblende tonalite, with lesser quartz diorite, diorite, and hornblendite (Fig. 52 and 55) 


(Stout, 1964; Treat, 1987; Miller et al., 1993; Tabor et al., 2000).  The higher-grade 


metamorphic rocks of this complex are well foliated and lineated (Stout, 1964; Treat, 


1987; Tabor et al., 2000).  Deformation of the Hicks Butte complex increases toward the 
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contact with the tectonic zone and Easton Metamorphic Suite to the north (Fig. 55) 


(Stout, 1967; Treat, 1987; Miller et al., 1993; Tabor et al., 2000).  Plagioclase and 


amphibole from this complex are intermediate in composition (An35 - An67; 


magnesiohornblende - tschermakite; Stout, 1964; Treat, 1987; Miller et al., 1993).  Treat 


(1987) reports estimated metamorphic temperatures and pressures of 500 - 550° C ± 50° 


C and 5.4 - 6 kb for the Hicks Butte complex.  A concordant U-Pb zircon age of 153 Ma 


± 3 Ma from a Hicks Butte tonalite, interlayered with amphibolite of the tectonic zone 


(Fig. 55), is interpreted as the crystallization age of the complex (Hopson and Mattinson, 


1973; Miller et al., 1993).  A K-Ar hornblende age of 127.7 ± 16.1 from the Hicks Butte 


complex (Fig. 55) may be related to the 120 - 130 Ma metamorphism of the Easton 


Metamorphic Suite (Brown et al., 1982; Armstrong et al., 1983; Miller et al., 1993; Tabor 


et al., 2000); however, the large uncertainty of this age makes it difficult to interpret.  The 


U-Pb age, estimated temperatures and pressures, and intermediate composition lead Treat 


(1987) and Miller et al. (1993) to suggest that the Hicks Butte complex represents the 


root of a Late Jurassic magmatic arc. 


 The tectonic zone is a ~500 m-wide belt of highly lineated and foliated 


amphibolite (L > S) and mylonite (Fig. 55) (Stout, 1964; Treat, 1987; Miller et al., 1993; 


Tabor et al., 2000).  Lenses of mylonitic gneiss and lesser serpentinite occur within the 


amphibolite (Treat, 1987; Miller et al., 1993; Tabor et al., 2000).  The mylonitic gneiss is 


interpreted to have been derived from the Hicks Butte complex (Stout, 1964; Treat, 1987; 


Miller et al., 1993; Tabor et al., 2000).  Treat (1987) and Miller et al. (1993) noted that 


the contacts between the tectonic zone, the Easton Metamorphic Suite, and the Hicks 


Butte complex are hard to map and may be gradational.  The compositions of amphiboles 
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from the tectonic zone are broadly similar to the compositions of both the amphiboles 


from the Shuksan Greenschists and Hicks Butte complex (Treat, 1987), possibly 


supporting this interpretation.  Miller et al. (1993), however, suggest that limited 


evidence (possible strongly deformed enclaves and screens) indicates that the Hicks Butte 


complex intruded the tectonic zone before or during deformation.     


 


Rimrock Lake inlier   


 


 The Rimrock Lake inlier is the southern-most occurrence of pre-Cenozoic rocks 


within Washington state (Fig. 51).  This inlier consists of the fault bounded Russell 


Ranch and Indian Creek Complexes (Miller, 1989).  An overview of this inlier is given 


below.  Mattinson (1972b), Miller (1989), and Miller et al. (1993) provide the most 


through descriptions of the geology within the Rimrock Lake inlier. 


 The Russell Ranch Complex is a mudstone-matrix mélange (Miller, 1989).  It 


consists of clastic rocks, chert, greenstone, and lesser olistromal breccia, metatuff, and 


foliated felsic volcanic rocks (Miller, 1989).  Miller (1989) suggests that the clastic rocks 


are arkosic and were derived from a dissected arc.  Greenstones commonly preserved 


pillow structures, and have WPB and MORB geochemical affinities (Miller, 1989).  


Ellingson (1972) reported that limestone clasts had a Permian age, and Miller (1989) 


reported Late Jurassic to Early Cretaceous radiolaria from cherts.  Miller (1989) and 


Miller et al. (1993) interpreted the Russell Ranch Complex as a tectonic mélange. 


 The Indian Creek Complex consists of gabbro, tonalite, trondhjemite, orthogneiss, 


and amphibolite (Miller, 1989).  These rocks have geochemical and isotopic affinities 
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that are indicative of volcanic arc compositions (Mattinson, 1972b; Miller, 1989).  Two 


concordant U-Pb zircon ages give a crystallization age of ~154 Ma for this complex 


(Miller et al., 1993).  Miller (1989) and Miller et al. (1993) suggested that the Indian 


Creek Complex represents the roots of an arc.   


 


Manastash inlier 


 


A 2 to 7 km wide belt of Tertiary rocks separate the Hicks Butte inlier from the 


Manastash inlier (Fig. 52 and 55).  The Manastash inlier consists of the Hereford 


Meadow amphibolite (name introduced in this paper), the Lookout Mountain Formation, 


the Quartz Mountain stock, and the tectonic complex of Stout (1964) (Fig. 55; Plate 1) 


(Smith and Calkins, 1906; Stout, 1964; Goetsch, 1978; Miller et al., 1993; Tabor et al., 


1989, 2000; Tabor, 1994).  Tabor et al. (1989, 2000) and Tabor (1994) correlated the 


tectonic complex of Stout (1964) with the Helena-Haystack mélange (Fig. 51 and 55; 


Plate 1).  No evidence was found to refute this interpretation; therefore, the tectonic 


complex of Stout (1964) will be referred to as the Helena-Haystack mélange within this 


paper.   


Tertiary rocks sit unconformably on the Hereford Meadow amphibolite, Lookout 


Mountain Formation, and Quartz Mountain stock (Fig. 55; Plate 1).  They are faulted 


against the Helena-Haystack mélange and Hereford Meadow amphibolite along the 


steeply dipping Darrington-Devils Mountain fault zone (equals Taneum Lake fault of 


Goetsch, 1978) (Fig. 55; Plate 1) (Tabor et al., 1989, 2000; Tabor, 1994).  The 


Darrington-Devils Mountain fault zone has been displaced ~98 km (dextral offset) from 
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its northern continuation by the Straight Creek Fault (Fig. 51 and 52) (Tabor et al., 1984, 


1989; Tabor, 1994).  In the Manastash inlier area, the Darrington-Devils Mountain fault 


zone forms part of the Olympic-Wallowa lineament of Raisz (1945) (Tabor et al., 1984; 


Tabor, 1994).     


The research presented in this paper primarily deals with the petrogenesis, 


possible tectonic settings, and regional correlations of the rocks within the Manastash 


inlier.  Detailed structural analysis of these rocks can be found in Goetsch (1978) and 


Miller et al. (1993).  Also, almost all new observations presented in this paper are based 


solely on work done in the southeastern portion of this inlier (Plate 1).  


 


HEREFORD MEADOW AMPHIBOLITE 


 


The Hereford Meadow amphibolite occurs as two belts within the Manastash 


inlier (Fig. 55; Plate 1).  The northern belt is ~ 5 km long (Fig. 55) and was studied in 


detail by Goetsch (1978).  The southern belt is ~ 8 km long (Fig. 55; Plate 1) and was 


studied in detail by Goetsch (1978) and this researcher.  Stout (1964) and Goetsch (1978) 


indicate that the best exposures of the Hereford Meadow amphibolite occur on Lookout 


Mountain in the northern belt, and along northeast facing cliffs, adjacent to the Helena-


Haystack mélange, in the southern belt (Fig. 55; Plate 1).  Hereford Meadow occurs 


adjacent to these cliffs (Plate 1), and outcrops of amphibolite within the meadow are few; 


however, the lack of any other geographically named locality within the amphibolite of 


the Manastash inlier lead to the use of this name (Plate 1) (Plate 1, Goetsch, 1978; sheet 


1, Tabor et al., 2000).  







 253 


 The Hereford Meadow amphibolite consists of well foliated amphibolite and 


lesser felsic orthogneiss (quartz diorite gneiss of Goetsch, 1978), gneissic amphibolite,  


cataclasites, and epidosites.  Rare compositional layering occurs within the amphibolite.  


It is steeply faulted against the Helena-Haystack mélange, more gently faulted against the 


Lookout Mountain Formation, and is intruded by the Quartz Mountain stock (Fig. 55; 


Plate 1).   


 Typical mineral assemblages within the amphibolites are hornblende, quartz, and 


plagioclase (An26-An47; Stout, 1964; Goetsch, 1978).  Secondary minerals include 


epidote, clinozoisite, sphene, Fe-Ti oxide, and calcite (Goetsch, 1978).  Actinolite 


commonly overprints hornblende.  The amphibolites range from fine to coarse grained.  


Foliation orientations within the southern belt average N56W, 64°SW (Plate 1).  


Goetsch's (1978) data displays an average foliation of N63W, 57°SW for the amphibolite 


(reinterpertation of her data). Hornblende within the amphibolite has a mineral lineation 


that averages 46°, S88W (Goetsch, 1978).  Local isoclinal folds occur within the 


amphibolite, with hinge lines generally paralleling hornblende lineation (Goetsch, 1978; 


Miller et al., 1993).  Boudinage and rare asymmetric augen structures also occur in the 


amphibolite on both meso- and microscopic levels.  Mylonitic amphibolite occur at one 


locality (Man-6; Table 17). 


 Relict igneous textures and structures are locally observed within the Hereford 


Meadow amphibolite.  Goetsch (1978) and Miller et al. (1993) report deformed 


amygdules of calcite and amphibole pseudomorphs after clinopyroxene.  Relict 


hypidiomorphic-granular, subophitic, and ophitic igneous textures and screens of 


metagabbro between metadiabase were observed on surfaces oriented perpendicular to 
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foliation and lineation.  The metadiabase locally displays highly deformed chilled dike 


margins and dike tips.   


 The felsic orthogneiss occurs as layers within the amphibolite.  These layers range 


in thickness from 10's of cm to ~ 2 m.  They are foliated, with foliation parallel to sub-


parallel to that in the adjacent amphibolite.  Some orthogneiss displays cataclastic 


deformation (Goetsch, 1978; this study).  At several localities the felsic orthogneiss 


layers display well developed boudinage.  These rocks have tonalite, granodiorite, and 


quartz diorite compositions (Table 17).  Typical mineral assemblages within the felsic 


orthogneiss are quartz, plagioclase (An28-An50; Goetsch, 1978), hornblende and very rare 


apatite and zircon.  Secondary minerals include actinolite, chlorite, epidote, and Fe-Ti 


oxide.  Highly altered relict K-feldspar occurs in a few samples.  Grain size reduction has 


occurred within these rocks.  Schistosity, cataclastic, porphyroclastic (plagioclase), and 


micro-boudinage are typical textures and structures observed within the orthogneiss.   


 Goetsch (1978) reports a garnet amphibolite within the northern Hereford 


Meadow belt.  The garnets within this amphibolite occur as poikiloblasts that are 


flattened, broken, and microboudinaged (Goetsch, 1978).  Hornblende makes up about 50 


% of this rock (Goetsch, 1978).  Goetsch (1978) interprets this garnet amphibolite as 


having a sedimentary protolith. 


 


Geochemistry of the Hereford Meadow amphibolite   


 


Goetsch (1978) and Ort and Tabor (1985) analyzed two samples each from the 


Hereford Meadow amphibolite.  The samples of Goetsch (1978) were analyzed for major   
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elements by atomic absorption, and Ort and Tabor (1985) samples were analyzed for 


major and several trace elements by x-ray fluorescence.  Where possible, Ort and Tabor’s 


(1985) samples are plotted on geochemical diagrams in this paper.   


Eighteen new samples from the Hereford Meadow amphibolite (Table 17) were 


analyzed for major and trace elements at Washington State University, Pullman, by x-ray 


fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP-MS; see 


appendix for analytical methods).  Rocks of the Hereford Meadow amphibolite have 


undergone amphibolite-facies metamorphism, with a lower greenschist-facies overprint.  


The presence of epidosites also suggests a hydrothermal metamorphic event, in that 


formation of epidosites involves extensive metasomatism (e.g., Harper et al., 1988; 


Harper, 1995).  A number of important elements are typically mobile during regional and 


hydrothermal metamorphism (e.g., Cann, 1970; Harper et al., 1988; Harper, 1995).  


However, several key elements that give insights into igneous petrogenesis (Ti, V, Th, 


Cr, Ta, Hf, Y, and REE) generally remain immobile up to, and including, amphibolite-


facies metamorphic conditions (Pearce, 1996a).  Therefore, immobile elements are used 


on geochemical diagrams. 


 


Amphibolite geochemistry 


 


Samples of amphibolite from the Hereford Meadow amphibolite have SiO2 values 


that indicate they are basalts to basaltic andesites, except for one andesite (Table 17), 


assuming SiO2 has not been significantly affected by metamorphism.  Amphibolite 


samples plot in the island-arc tholeiite (IAT) field on the Th/Yb-Ta/Yb diagram of Pearce 
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(1982) (Fig.56). They mostly plot in and near the field defined by modern back-arc basins 


on this diagram (Fig. 56).  These same samples also have IAT patterns on the chondrite- 


and N-MORB-normalized diagrams (Fig. 57).  When compared to normal mid-ocean 


ridge basalt (N-MORB), these samples are enriched in the large ion lithophile elements 


Th, La, and Ce, and are depleted in the high field strength elements Ta and Nb (Fig. 57), 


which are characteristics of rocks erupted in volcanic arcs and many back-arc basins 


(Pearce et al., 1984; Hawkins, 2003; Pearce, 2003).   


Amphibolite samples plot within the IAT and MORB fields on the Ti-V diagram of 


Shervais (1982) (Fig. 58).  They also plot mostly within the field defined by modern 


back-arc basins on this diagram (Fig. 58).  These amphibolite samples plot predominantly 


in the IAT field on the Cr-Y diagram of Pearce (1982) (Fig. 59).  These samples do not 


display the low Y and high Cr values that are indicative of boninites (Fig. 59) (Pearce and 


Parkinson, 1993; Hawkins, 2003).  Two amphibolites plot transitionally between IAT and 


MORB on this diagram (Fig. 59).  These amphibolite samples mostly plot within and 


near the field defined by modern back-arc basin basalts on the Cr-Y diagram (Fig. 59). 


Several of the amphibolite samples have low Cr values, indicative of mafic 


mineral fraction (Fig. 59) (Pearce, 1982).  Two of these samples have elevated N-MORB 


normalized patterns when compared with other amphibolites (Fig. 57D).  One of these 


two amphibolite samples (Man-11b; Table 17) has a negative Ti anomaly on figure 57D, 


suggestive of Fe-Ti oxide fractionation.  Figure 60 displays that two Hereford Meadow 


amphibolite samples (Man-11b and Man-13; Table 17) have very high Zr, indicative of 


mineral fractionation.  This graph, and the Ti-V graph, shows that two Hereford Meadow 
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Figure 56.  Th/Yb-Ta/Yb discrimination diagram for Hereford Meadow samples (Pearce, 


1982).  N-MORB, E-MORB and OIB normalizing values are from Sun and McDonough 


(1989).  N-MORB = normal-mid-ocean ridge basalt; E-MORB = enriched-mid-ocean 


ridge basalt; OIB = ocean island basalt (= within-plate basalt).  Field for backarc basins 


was compiled by Harper (2003; Fig. 7, p. 219) from Mariana and Lau backarc basins. 
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Figure 57.  Chondrite- and N-MORB-normalized diagrams (see Fig. 56 for key to 


symbols).  Chondrite and N-MORB normalized values are from Sun and McDonough 


(1989).  A and B. Modern reference suite.  N-MORB, E-MORB, and OIB from Sun and 


McDonough (1989); IAT and CAB from Pearce et al. (1995).  C. Chondrite-normalized 


IAT affinity Hereford Meadow amphibolites.  D. N-MORB-normalized IAT affinity 


Hereford Meadow amphibolites.  E. Chondrite-normalized diagram for orthogneiss and 


gneissic amphibolite.  F. N-MORB-normalized diagram for orthogneiss and gneissic 


amphibolite. 
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Figure 58.  Ti-V basalt discriminant diagram (Shervais, 1982) displaying mafic rocks 


from the Hereford Meadow amphibolite that have mafic compositions.  See figure 56 for 


key to symbols.  Field for backarc basins is compiled by Metzger et al. (2002; references 


given in Fig. 6, p. 551) and Leat et al. (2000).   
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Figure 59.  Cr-Y basalt discriminant diagram (Pearce, 1982) (see Fig. 56 for key to 


symbols).  Arrows A, B, and C represent crystallization paths for magmas fractionating 


Cr-spinel + olivine + pyroxene for MORB, IAT, and boninite respectively.  Field for 


backarc basins is compiled by Metzger et al. (2002; references given in Fig. 6, p. 551) 


and Leat et al. (2000).   Field for Fe-Ti basalts is from Harper (2003b).  Only basaltic 


compositions are plotted on the diagram. 
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Figure 60.  Zr vs. TiO2 diagram.  Zr increases with increasing fractionation.  Symbols are 


the same as figure 56.  The decrease in TiO2 for each trend is the result if the onset of Fe-


Ti fractionation (e.g., Perfit et al., 1983).  Modified from Harper (2003b).  Reference 


trends from three MORB affinity propagating spreading centers are: Galápagos Rift at 


85°W (Perfit et al., 1983); Galápagos Rift at 95°W (Clague et al., 1981); and Central Lau 


spreading center (CLSC) (compiled by Harper, 2003b; figure 5, page 778). 
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amphibolite samples have TiO2 values close to, or greater than 2.00 weight % (Man-10a 


and Man-13; Fig. 58 and 60; Table 17).  These samples also have FeO
T
 values around 


12.00 weight % (Table 17).  This indicates that the Hereford Meadow amphibolite 


includes rare Fe-Ti basalts (Sinton et al., 1983).  These same samples plot around the 


field defined by modern Fe-Ti basalts on the Cr-Y diagram (Fig. 59).   


 


Orthogneiss geochemistry      


     


Orthogneiss samples have intermediate SiO2 values, while an gneissic 


amphibolite is andesitic (Table 17).  These samples are distinct from the amphibolites in 


that they mostly plot in the calc-alkaline field on the Th/Yb-Ta/Yb diagram of Pearce 


(1982) (Fig. 56).  It is valid to plot these samples on this diagram because fractionation 


does not greatly affect these ratios (Pearce, 1982; Pearce and Peate, 1995).  The 


orthogneiss and gneissic amphibolite have patterns typical of calc-alkaline rocks on the 


chondrite- and N-MORB-normalized diagrams (Fig. 57).  They are enriched in the large 


ion lithophile elements Th, La, and Ce, and are depleted in the high field strength 


elements Ta and Nb, when compared to N-MORB (Fig. 57C and 57D).  Negative Ti and 


Eu anomalies on the normalized diagrams are suggestive of magnetite and plagioclase 


fractionation, respectively (Fig. 57E and 57F) (Pearce, 1982; Rollinson, 1993). 
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LOOKOUT MOUNTAIN FORMATION 


 


 The Lookout Mountain Formation consists of biotite semi-schists and lesser 


biotite schists.  Primary structures within sedimentary beds are generally apparent.  These 


schists were originally siltstone, shale, and lesser fine-grained sandstones.  One outcrop 


of recrystallized ribbon chert was observed (NAD27; UTM coordinates: N47° 05.477; 


W121° 04.965).  This formation is in fault contact with the Helena-Haystack mélange 


and Hereford Meadow amphibolite, and is intruded by the Quartz Mountain stock as well 


as numerous smaller bodies (Fig. 55; Plate 1); however, there is no obvious contact 


aureole. 


 Beds within the Lookout Mountain Formation range from 0.4 to 15 cm in 


thickness.  Sandstones and siltstones are well-to-moderately sorted, graded, and 


occasionally form lenticular beds.  Laminations are common and some are cross-bedded.  


Other primary structures within the Lookout Mountain Formation include cut-and-fill, 


flame structures, rip-up clasts, troughs, ripple marks, cross-beds, and soft-sediment 


deformation features (Stout, 1964; Goetsch, 1978; Miller et al., 1993; this study). 


 Relict sand and silt clasts are subprismoidal to subdiscoidal and subrounded, and 


are primarily quartz and plagioclase (Goetsch, 1978; this study).  Between 30 and 40% of 


the sand clasts are highly recrystallized lithic fragments, some of which were originally 


mafic volcanic in origin.  Rare accessory detrital minerals include zircon, apatite, 


tourmaline, Cr-spinel, and sphene (Stout, 1964; Goetsch, 1978; this study).  Cr-spinel and 


sphene were identified with an electron microprobe. 
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Deformation within the Lookout Mountain Formation is heterogeneous. Both 


spaced and continuous foliations were observed, with a well developed schistosity being 


rare.  Compositional layering, interpreted to be metamorphic in origin, occurs locally 


(Stout, 1964; Goetsch, 1978).   Commonly beds are overturned, but mesoscopic folding is 


rare (Goetsch, 1978; this study).  Goetsch (1978) reports that poles to bedding within the 


Lookout Mountain Formation define two maxima.  She interprets this as being 


compatible with subhorizontal folding of the Lookout Mountain Formation about a 


northwest-trending axis.  Foliation intensity within the Lookout Mountain Formation 


intensifies in proximity to the contact with the Hereford Meadow amphibolite (Goetsch, 


1978; Miller et al., 1993).   


 Biotite, quartz, plagioclase, graphite, muscovite, and ilmenite are the principal 


metamorphic minerals (Stout, 1964; Goetsch, 1978; this study).  Goetsch (1978) reported 


that ilmenite was identified by electron microprobe, and subsequent microprobe analysis 


by this researcher confirmed this finding.  Rare magnetite was also identified by electron 


microprobe.  Porphyroblasts and poikiloblasts of staurolite, garnet, andalusite, and rare 


cordierite occur throughout the formation (Stout, 1964; Goetsch, 1978; this study).  


Goetsch (1978) suggests that the metamorphic mineral assemblages within the Lookout 


Mountain Formation are indicative of Buchan-type metamorphism.     


Microscopically, biotite and porphyroblasts occur both randomly and aligned with 


foliation (Goetsch, 1978; this study).  Some porphyroblasts and poikiloblasts are 


synkinematic, displaying inclusion trails and microboundinage (Goetsch, 1978; this 


study), while others are helicitic. Pressure shadows commonly occur around 
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porphyroblasts.  Spotted, web, and decussate metamorphic textures are common in the 


vicinity of intrusions. 


 


Detrital zircon geochronology of the Lookout Mountain Formation  


 


A moderately sorted, fine-grained sandstone from the Lookout Mountain 


Formation was selected for detrital U-Pb zircon age dating (Fig. 52 and 55; Table 18).  


Seven kilograms of this sample were crushed, and zircons were isolated using standard 


density and magnetic techniques at Union College, Schenectady, New York.  At Stanford 


University, Palo Alto, California,  >100 zircons were randomly selected, mounted in 


epoxy, polished to about half the mean grain thickness, gold coated, and imaged with 


reflected light and cathodoluminescence to identify internal structures. 


Zircons have sharp to rounded edges, with most being doubly terminated with 


slightly smoothed edges.  A few zircon grains were broken.  Cathodoluminescence 


showed that no zircons had inherited cores.  Almost all grains had well-developed 


oscillatory zoning typical of igneous zircons (Caironi et al., 1996; Corfu et al., 2003). 


U and Pb isotopes of detrital zircons from the Lookout Mountain Formation were 


analyzed by sensitive high resolution ion microprobe reverse geometry (SHRIMP-RG), at 


the Stanford University-U. S. Geological Survey Micro Analysis Center (Table 18).  


Count times of 12 minutes for each detrital zircon were used and a total of 66 detrital 


zircons were analyzed (Table 18).  Sample R33 (accepted age of 419 Ma; Charlier et al., 


2005) was analyzed as a standard after every sixth unknown zircon, and an age of 419 ± 


3.2 Ma (2σ) was obtained.  Zircon sample CZ3 was used as a calibration standard 
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TABLE 18.   SHRIMP ANALYSIS OF DETRITAL ZIRCONS FROM THE LOOKOUT MOUNTAIN FORMATION 


Spot Name U (ppm) Th (ppm) % comm 
206


Pb*
238


U/
206


Pb
†


1σ error
207


Pb/
206


Pb
†


1σ error
206


Pb/
238


U
#


1σ error


MAN-16-1 122 41 <0.01 5.899 1.28 0.07262 2.07 1009.69 12.57


MAN-16-2 253 86 <0.01 11.562 1.02 0.05992 2.18 533.59 5.36


MAN-16-3 526 313 0.0517 4.399 0.57 0.09163 0.73 1310.95 7.27


MAN-16-4 144 167 0.5634 28.807 1.75 0.05561 4.61 218.61 3.85


MAN-16-5 737 334 0.1635 31.873 0.80 0.05291 2.18 198.44 1.59


MAN-16-6 1644 686 0.1782 7.387 0.36 0.08681 0.56 798.87 2.82


MAN-16-7 307 125 0.3047 33.593 1.27 0.04949 3.59 189.19 2.41


MAN-16-8 337 87 0.3146 39.687 1.25 0.05155 3.56 159.96 2.02


MAN-16-9 1054 520 <0.01 32.103 0.65 0.05162 1.82 197.36 1.29


MAN-16-10 102 24 <0.01 10.728 1.50 0.06159 2.98 572.88 8.47


MAN-16-11 165 97 0.4450 25.325 1.57 0.05320 4.14 249.03 3.92


MAN-16-12 249 139 <0.01 22.796 1.22 0.05205 3.21 276.68 3.39


MAN-16-13 201 106 0.2826 9.856 1.10 0.06283 2.18 621.25 6.70


MAN-16-14 307 87 0.1214 5.885 0.84 0.07572 1.32 1008.50 8.25


MAN-16-15 83 211 0.9886 27.919 2.28 0.05132 6.48 226.68 5.20


MAN-16-16 233 72 1.2444 38.475 1.55 0.05358 4.37 164.54 2.58


MAN-16-17 818 455 <0.01 44.681 0.89 0.05002 2.60 142.48 1.28


MAN-16-18 740 978 0.1648 40.727 0.90 0.05038 2.59 156.14 1.41


MAN-16-19 685 434 <0.01 9.255 0.58 0.06180 1.14 661.31 3.76


MAN-16-20 2002 1043 0.2714 40.620 0.52 0.04997 1.50 156.63 0.82


MAN-16-21 159 219 <0.01 10.955 1.26 0.05951 2.68 562.69 6.98


MAN-16-22 582 180 0.1806 38.553 0.96 0.04944 2.76 165.06 1.59


MAN-16-23 697 356 0.1300 33.466 0.81 0.05054 2.28 189.65 1.55


MAN-16-24 2665 1698 0.0379 38.977 0.44 0.04968 1.25 163.23 0.72


MAN-16-25 411 155 0.2883 42.448 1.19 0.05170 3.42 149.61 1.79


MAN-16-26 1897 1005 0.0810 42.097 0.54 0.05001 1.58 151.17 0.83


MAN-16-27 592 309 0.1825 38.493 0.95 0.04990 2.77 165.22 1.59


MAN-16-28 1812 618 1.1076 39.361 0.53 0.05801 1.46 159.97 0.86


MAN-16-29 286 94 0.7477 36.090 1.38 0.05127 3.90 175.83 2.45


MAN-16-30 252 93 <0.01 4.544 0.84 0.08515 1.14 1280.07 10.43


MAN-16-31 725 393 0.1484 39.278 0.86 0.04965 2.49 162.00 1.40


MAN-16-32 436 137 <0.01 37.502 1.12 0.05246 3.16 169.01 1.91


MAN-16-33 761 246 <0.01 39.658 0.83 0.05043 2.39 160.30 1.34


MAN-16-34 584 386 <0.01 38.258 0.95 0.04909 2.77 166.39 1.59


MAN-16-35 426 228 0.3163 25.035 0.95 0.05406 2.51 251.61 2.40


MAN-16-36 1583 477 0.0626 5.973 0.36 0.07833 0.56 991.15 3.51


MAN-16-37 131 44 0.3300 15.506 1.51 0.05417 3.79 403.18 6.04


MAN-16-38 96 48 <0.01 5.384 1.39 0.07390 2.13 1100.93 14.85


MAN-16-39 116 39 <0.01 35.716 2.03 0.05377 5.81 177.09 3.64


MAN-16-40 102 65 <0.01 4.407 1.28 0.09089 1.70 1309.55 16.37


MAN-16-41 418 197 0.6247 40.019 1.14 0.04991 3.34 158.97 1.82


MAN-16-42 532 348 <0.01 41.775 1.09 0.05099 3.15 152.14 1.67


MAN-16-43 250 90 <0.01 27.392 1.27 0.05007 3.49 231.35 2.95


MAN-16-44 88 42 0.2329 2.725 1.34 0.13006 1.75 2001.75 27.24


MAN-16-45 1274 935 0.2499 38.920 0.65 0.04993 1.87 163.42 1.06


MAN-16-47 345 123 <0.01 40.604 1.25 0.05143 3.57 156.40 1.97


MAN-16-48 499 217 <0.01 36.526 1.02 0.04907 2.96 174.22 1.79


MAN-16-49 176 158 0.5578 35.781 1.68 0.04970 4.80 177.67 3.01


MAN-16-50 835 422 0.2261 40.903 0.79 0.04770 2.35 155.99 1.25


MAN-16-51 444 315 0.3763 36.413 1.04 0.04953 3.00 174.65 1.83


MAN-16-52 728 510 <0.01 40.956 0.85 0.05475 2.34 154.43 1.32


MAN-16-53 1254 312 0.1061 38.054 0.63 0.05030 1.80 167.03 1.06


MAN-16-54 210 283 0.9646 15.299 1.15 0.05131 2.76 409.94 4.68


MAN-16-55 144 42 <0.01 33.812 1.82 0.05896 4.82 185.77 3.41


MAN-16-56 451 338 0.2742 15.519 0.78 0.05430 1.88 402.78 3.13


MAN-16-57 114 60 0.1879 2.997 1.17 0.12217 1.15 1838.10 21.25


MAN-16-58 271 171 0.3116 10.563 0.92 0.05949 1.92 583.06 5.28


MAN-16-59 212 150 0.1056 2.993 0.84 0.11848 0.83 1848.24 15.42


MAN-16-60 185 71 <0.01 36.731 1.64 0.04916 5.68 173.24 2.88


MAN-16-61 177 84 0.8133 10.298 1.15 0.06523 2.25 593.58 6.70


MAN-16-62 140 78 0.0655 2.556 1.04 0.13614 0.92 2119.08 22.31


MAN-16-63 48 10 1.4196 26.059 2.81 0.04908 7.75 243.33 6.84


MAN-16-64 332 169 0.0261 32.267 1.17 0.05240 3.52 196.17 2.32


MAN-16-65 267 101 <0.01 33.050 1.32 0.05162 3.67 191.76 2.55


MAN-16-66 1781 867 0.1833 39.633 0.53 0.05019 1.53 160.45 0.86


MAN-16-67 162 63 0.3425 10.033 1.19 0.06156 2.45 611.55 7.18


   *From 207 correction


   
†
Uncorrected data


   
#
207 corrected age  
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(Williams, 1998; Ireland and Williams, 2003).  Data reduction of the standard R33 was 


done using the SQUID 1.02 program of Ludwig (2001), and data reduction of the 


Lookout Mountain Formation detrital zircon analyses was done using the Isoplot 3.00 


program of Ludwig (2003).       


Dodson et al. (1988) used the equation P = (1 - )
n
 to identify the possibility of 


missing a significantly older detrital zircon population during single crystal analysis.  P is 


the probability of missing a provenance component,  is the frequency of an older 


population, and n is the number of single analyzed grains (Dodson et al., 1988).  


According to this equation, to achieve 95 % chance of finding every population that 


occurs with a  of 5 %, n should equal ~58.4.  66 detrital zircon grains were analyzed 


from the Lookout Mountain Formation to ensure a > 95% confidence level (~ 97%) that 


all age populations are represented. 


Detrital zircon U-Pb ages are plotted on concordia diagrams in order to determine 


whether ages are discordant (Fig. 61).  Figure 61A is shown to display the concordance 


of older zircons grains, while figure 61B is shown for younger grains.  Error ellipses 


regularly overlap concordia, and no significance discordance is observed (Fig. 61).  Table 


18 and Figure 61B display that common lead, which would increase age discordance, did 


not affect these samples.  The age data from the Lookout Mountain Formation detrital 


zircons are also plotted on histograms with superimposed probability density distributions 


in order to display the U-Pb ages and associated errors (Fig. 62 and 63).  
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Figure 61.  Concordia diagrams for Lookout Mountain Formation detrital zircons.  Error 


ellipses are 2σ.  A. 
206


Pb/
238


U vs. 
207


Pb/
235


U diagram.  B. 
207


Pb/
206


Pb vs. 
238


U/
206


Pb 


diagram.      
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Figure 62.  Age histograms and probability density distributions for detrital zircons from 


the Lookout Mountain Formation.  Boundaries of geologic ages on graph are taken from 


Gradstein et al. (2004). 
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Figure 63.  Age histograms and probability density distributions for the youngest (n = 


43) detrital zircons from the Lookout Mountain Formation.  Boundaries of geologic ages 


are taken from Gradstein et al. (2004). 
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 The ages of the detrital zircons from the Lookout Mountain Formation, using the 


geological time scale of Gradstein et al. (2004), are listed in Table 19 from oldest to 


youngest.  Four detrital zircons are Paleoproterozoic (1838 - 2119 Ma; Fig. 62; Table 18 


and 19), six are Mesoproterozoic (1009 - 1311 Ma; Fig. 62; Table 18 and 19), and nine 


are Neoproterozoic (563 - 661, 799, and 991 Ma; Fig. 62; Table 18 and 19).  One detrital 


zircon is Cambrian (534 Ma), and three are Devonian (403 - 410 Ma; Fig. 62; Table 18 


and 19).  


 Figure 63 displays the histogram with superimposed probability density 


distribution for the 43 youngest detrital zircons from the Lookout Mountain Formation 


sample.  This is done in order to show the great variation of younger ages (Fig. 63) that 


the resolution of figure 62 can not display.  Six detrital zircons are Permian to Triassic 


(219 - 277 Ma; Fig. 63; Table 18 and 19).  Seven detrital zircons have an Early Jurassic 


average age of ~195 Ma (Fig. 63; Table 18 and 19), and seven zircons have a Middle 


Jurassic average age of ~177 Ma (Fig. 63; Table 18 and 19).  The youngest and most 


abundant detrital zircon age population, consisting of 24 grains, has an average Late 


Jurassic age of ~160 Ma (Fig. 63; Table 18 and 19).  The youngest age population shown 


on figure 62, which consists of 37 detrital zircons, is ~162 Ma. 


 


IGNEOUS INTRUSIONS OF UNKNOWN AGE 


 


 Numerous igneous bodies intrude both the Hereford Meadow amphibolite and the 


Lookout Mountain Formation, many too small to display on maps (Plate 1) (Smith and 


Calkins, 1906; Stout, 1964; Goetsch, 1978).  These intrusions are dioritic in composition;  







 282 


TABLE 19. AGES OF DETRITAL ZIRCONS AGES FROM THE LOOKOUT MOUNTAIN FORMATION 


Spot Name
206


Pb/
238


U* 1σ error
#


EON ERA Period Epoch


MAN-16-62 2119.08 22.31 Proterozoic Paleo-proterozoic Rhyacian


MAN-16-44 2001.75 27.24 Proterozoic Paleo-proterozoic Orosirian


MAN-16-59 1848.24 15.42 Proterozoic Paleo-proterozoic Orosirian


MAN-16-57 1838.10 21.25 Proterozoic Paleo-proterozoic Orosirian


MAN-16-3 1310.95 7 27 Proterozoic Meso-proterozoic Ectasian


MAN-16-40 1309.55 16.37 Proterozoic Meso-proterozoic Ectasian


MAN-16-30 1280.07 10.43 Proterozoic Meso-proterozoic Ectasian


MAN-16-38 1100.93 14.85 Proterozoic Meso-proterozoic Stenian


MAN-16-1 1009.69 12.57 Proterozoic Meso-proterozoic Stenian


MAN-16-14 1008.50 8 25 Proterozoic Meso-proterozoic Stenian


MAN-16-36 991.15 3 51 Proterozoic Neo-proterozoic Tonian


MAN-16-6 798.87 2 82 Proterozoic Neo-proterozoic Cryogenian


MAN-16-19 661.31 3.76 Proterozoic Neo-proterozoic Cryogenian


MAN-16-13 621.25 6.70 Proterozoic Neo-proterozoic Ediacaran


MAN-16-67 611.55 7.18 Proterozoic Neo-proterozoic Ediacaran


MAN-16-61 593.58 6.70 Proterozoic Neo-proterozoic Ediacaran


MAN-16-58 583.06 5 28 Proterozoic Neo-proterozoic Ediacaran


MAN-16-10 572.88 8.47 Proterozoic Neo-proterozoic Ediacaran


MAN-16-21 562.69 6 98 Proterozoic Neo-proterozoic Ediacaran


MAN-16-2 533.59 5 36 Phanerozoic Paleozoic Cambrian Early


MAN-16-54 409.94 4.68 Phanerozoic Paleozoic Devonian Early


MAN-16-37 403.18 6.04 Phanerozoic Paleozoic Devonian Early


MAN-16-56 402.78 3.13 Phanerozoic Paleozoic Devonian Early


MAN-16-12 276.68 3 39 Phanerozoic Paleozoic Permian Cisuralian


MAN-16-35 251.61 2.40 Phanerozoic Paleozoic Permian Lopingian


MAN-16-11 249.03 3 92 Phanerozoic Mesozoic Triassic Early


MAN-16-63 243.33 6 84 Phanerozoic Mesozoic Triassic Middle


MAN-16-43 231.35 2 95 Phanerozoic Mesozoic Triassic Middle


MAN-16-15 226.68 5 20 Phanerozoic Mesozoic Triassic Late


MAN-16-4 218.61 3 85 Phanerozoic Mesozoic Triassic Late


MAN-16-5 198.44 1 59 Phanerozoic Mesozoic Jurassic Early


MAN-16-9 197.36 1 29 Phanerozoic Mesozoic Jurassic Early


MAN-16-64 196.17 2 32 Phanerozoic Mesozoic Jurassic Early


MAN-16-65 191.76 2 55 Phanerozoic Mesozoic Jurassic Early


MAN-16-23 189.65 1 55 Phanerozoic Mesozoic Jurassic Early


MAN-16-7 189.19 2.41 Phanerozoic Mesozoic Jurassic Early


MAN-16-55 185.77 3.41 Phanerozoic Mesozoic Jurassic Early


MAN-16-49 177.67 3.01 Phanerozoic Mesozoic Jurassic Early


MAN-16-39 177.09 3.64 Phanerozoic Mesozoic Jurassic Early


MAN-16-29 175.83 2.45 Phanerozoic Mesozoic Jurassic Early


MAN-16-51 174.65 1 83 Phanerozoic Mesozoic Jurassic Middle


MAN-16-48 174.22 1.79 Phanerozoic Mesozoic Jurassic Middle


MAN-16-60 173.24 2 88 Phanerozoic Mesozoic Jurassic Middle


MAN-16-32 169.01 1 91 Phanerozoic Mesozoic Jurassic Middle


MAN-16-53 167.03 1.06 Phanerozoic Mesozoic Jurassic Middle


MAN-16-34 166.39 1 59 Phanerozoic Mesozoic Jurassic Middle


MAN-16-27 165.22 1 59 Phanerozoic Mesozoic Jurassic Middle


MAN-16-22 165.06 1 59 Phanerozoic Mesozoic Jurassic Middle


MAN-16-16 164.54 2 58 Phanerozoic Mesozoic Jurassic Middle


MAN-16-45 163.42 1.06 Phanerozoic Mesozoic Jurassic Middle


MAN-16-24 163.23 0.72 Phanerozoic Mesozoic Jurassic Middle


MAN-16-31 162.00 1.40 Phanerozoic Mesozoic Jurassic Middle


MAN-16-66 160.45 0 86 Phanerozoic Mesozoic Jurassic Late


MAN-16-33 160.30 1 34 Phanerozoic Mesozoic Jurassic Late


MAN-16-28 159.97 0 86 Phanerozoic Mesozoic Jurassic Late


MAN-16-8 159.96 2.02 Phanerozoic Mesozoic Jurassic Late


MAN-16-41 158.97 1 82 Phanerozoic Mesozoic Jurassic Late


MAN-16-20
†


156.63 0 82 Phanerozoic Mesozoic Jurassic Late


MAN-16-47
†


156.40 1 97 Phanerozoic Mesozoic Jurassic Late


MAN-16-18
†


156.14 1.41 Phanerozoic Mesozoic Jurassic Late


MAN-16-50
†


155.99 1 25 Phanerozoic Mesozoic Jurassic Late


MAN-16-52
†


154.43 1 32 Phanerozoic Mesozoic Jurassic Late


MAN-16-42
†


152.14 1.67 Phanerozoic Mesozoic Jurassic Late


MAN-16-26
†


151.17 0 83 Phanerozoic Mesozoic Jurassic Late


MAN-16-25
†


149.61 1.79 Phanerozoic Mesozoic Jurassic Late


MAN-16-17
†


142.48 1 28 Phanerozoic Mesozoic Cretaceous Early


   *From Table 18


   
†
Younger then Quartz Mountain stock (~158 Ma) that intrudes this formation.


   
#
1 σ error based on the error of the standard.  Calculated by the Isoplot program of Ludwig (2003)


   Note, geologic time scale of Gradstein et al. (2004) used for dates.  
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however, Goetsch (1978) reports a dacite sill and an ultramafic intrusion within the 


northern occurrence of the Lookout Mountain Formation.  The grain-size of the 


intrusions range from fine-grained to pegmatitic.  Commonly, these intrusions are 


recrystallized to greenschist-facies. Metamorphic foliations are pervasive throughout 


these intrusions, and foliations within country rocks seem to wrap around them.   The 


foliations are at a high angle to the regional foliations of the rocks that they intrude (Plate 


1).  This differs from the orthogneiss in the Hereford Meadow amphibolite, where 


foliations are parallel.  These igneous rocks do not intrude the Quartz Mountain stock 


(Goetsch, 1978).    


 The dioritic intrusions are hypidiomorphic-granular with less common ophitic and 


poikilitic textures.  Plagioclase, hornblende, Fe-Ti oxide, K-feldspar, lesser quartz, and 


rare zircon define the igneous mineral assemblage within them.  Actinolite, chlorite, 


biotite, albite, and epidote are the common metamorphic minerals.  Most quartz and 


feldspar grains are strained.  Adjacent to the dioritic intrusions the Hereford Meadow 


amphibolite and Lookout Mountain Formation display hornfelsic texture, suggesting that 


they were contact metamorphosed by them.  Goetsch (1978) provides a detailed 


description of the dacite and ultramafic intrusions.  


 


QUARTZ MOUNTAIN STOCK 


 


 The Quartz Mountain stock intrudes the Lookout Mountain Formation and 


Hereford Meadow amphibolite, and is depositionally overlain by Tertiary volcanic rocks 


(Fig. 55; Plate 1).  It consists of tonalite and granodiorite, with minor diorite and gabbro 
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along its margins (Goetsch, 1978; Miller et al., 1993; Tabor et al., 2000; this study).  


Goetsch (1979) and Miller et al. (1993) suggested that the stock is weakly zoned.  The 


main body of the stock is surrounded by cupolas of various sizes, some being too small to 


display on maps (Fig. 55; Plate 1).    Mafic enclaves are common within the tonalite and 


granodiorite, and Goetsch (1978) reports rare amphibolite xenoliths.  


 A moderately defined magmatic foliation, that averages S11W, 54°NW in 


orientation, can be seen throughout the main phase of the stock and the large northern 


cupola (Plate 1).  A high-temperature, locally developed, solid-state foliation of a few cm 


in width, that is associated with grain-size reduction and mineral lineation, averages 


N84W, 50°NE and cuts the magamtic foliation (Plate 1).   


 Quartz, plagioclase, hornblende, K-feldspar, biotite, and spinel, with lesser zircon 


and apatite, are the common igneous minerals within these rocks.  Hypidiomorphic-


granular, ophitic, and subophitic textures are common.  Grains are typically sudhedral, 


and quartz and feldspar show undulose extinction.  Plagioclase (An23 to An28) is 


commonly twinned, compositional zoned, and Goetsch (1978) noted that reverse zoning 


is common.  Albite, actinolite, chlorite, epidote, and garnet are pervasive metamorphic 


minerals within the stock, and imply a regional greenschist facies metamorphic event. 


 The enclaves are more mafic and finer-grained then the stock, angular, and 


equidimensional in size.  Commonly, the enclaves are ~10 cm in diameter.  They consist 


of similar igneous and metamorphic minerals assemblages as the host, but lack zoning in 


plagioclase, and have more K-feldspar.  Subophitic to ophitic textures are common in the 


enclaves. 
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Geochronology of the Quartz Mountain stock 


 


Hopson and Mattinson (1973) reported a U-Pb age of ~155 Ma for the Quartz 


Mountain stock.  Miller et al. (1993), using the same sample of Hopson and Mattinson 


(1973), reported a U-Pb crystallization age of 157 ± 2 Ma from the large northern cupola 


of the Quartz Mountain stock (Fig. 55).  These researchers, however, reported a 


207
Pb/


206
Pb age of 165 ± 5 Ma, suggesting that the age was discordant and might have 


experienced lead loss.   


A new U-Pb age was obtained from the main phase of the stock using the 


SHRIMP-RG at the Stanford University-U. S. Geological Survey Micro Analysis Center 


(Table 20).  The same sample preparation, standard, calibration standard, and count times 


were used as the Lookout Mountain Formation detrital zircons; however, zircons were 


extracted from the sample at the University of North Carolina, Chapel Hill.  Zircons were 


broken and a few displayed minor compositional zoning.  The standard R33 (419 Ma 


accepted age) was run after every 3 unknown zircons, and an age of 419 ± 2.7 Ma (2σ) 


was obtained.  Data reduction of the standard R33 and the Quartz Mountain stock zircons 


was done using the SQUID 1.02 program of Ludwig (2001) and the Isoplot 3.00 program 


of Ludwig (2003).       


Error ellipses for the Quartz Mountain stock zircons generally overlap concordia 


(Fig. 64A).  Zircons from this stock have low common lead values (Table 20).  Figure 


64B displays a 
206


Pb/
238


U age of 157.4 ± 1.2 Ma (2σ; MSWD = 2.5) for all ten zircons 


probed from the Quartz Mountain stock.  This age takes into account the 2σ error in the  
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standard.  The 157.4 Ma age is interpreted as the crystallization age of the stock, and 


corroborates the 157 ± 2 Ma age of Miller et al. (1993). 


 


Geochemistry of the Quartz Mountain stock 


 


Five tonalite, granodiorite, and diorite samples were analyzed from the main 


phase of the Quartz Mountain stock (Table 21).  The samples chosen for analysis were 


most representative of the rock types within the Quartz Mountain stock.  These samples 


(Table 21) were analyzed for major and trace elements at Washington State University, 


Pullman, by x-ray fluorescence and inductively coupled plasma mass spectrometry (see 


appendix for analytical methods).   


These samples have intermediate SiO2 values (Table 21), ranging from ~55 to ~ 


66 weight percent (Fig. 65). The aluminum saturation index (ASI; molecular Al/ [Ca - 


1.67P + Na + K]; Frost et al., 2001) for four of these samples is less than 1, while another 


is 1.06 (Fig. 65A; Table 21); however, most samples have an ASI around 1 (Fig. 65A; 


Table 21).  The molecular (Na + K)/Al ratio for these samples suggest that they are 


metaluminous, with one being peraluminous (Table 21).  The modified alkali-lime 


index(Na2O + K2O - CaO; Frost et al., 2001) for these samples indicates that they are 


calcic (Fig. 65B; Table 21).  The Fe-number for these samples, except for sample Man-28 


(Table 21; Fig. 65C), shows that they are ferroan (Fig. 65C) (Frost et al., 2001).  Also 


displayed on figure 65 are the average values for igneous source (I-type), sedimentary 


source (S-type), mantle source (M-type) and anorogenic (A-type) granites.  The Quartz  
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Figure 64.  A. 
206


Pb/
238


U vs. 
207


Pb/
235


U concordia diagram for zircons from the Quartz 


Mountain stock.  Error ellipses are 2σ.  B. Average mean 
207


Pb/
206


Pb age of all 10 


analyses from the Quartz Mountain stock.  Error bars are 2σ. 
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Figure 65.  A. Aluminum saturation index (ASI) vs. SiO2 diagram for Quartz Mountain 


stock samples.  See text for calculation of ASI.  B.  Modified alkali-lime index 


(Na2O+K2O-CaO) vs. SiO2 diagram for Quartz Mountain stock samples.  Fields from 


Frost et al. (2001).  C. FeO
T
/(FeO


T 
+ MgO) vs. SiO2 diagram for Quartz Mountain stock 


samples.  Also plotted on all diagrams are the average values for A-type, I-type, M-type, 


and S-type granites (Collins et al., 1982; Whalen et al., 1987; Chappell and White, 1992; 


compiled by Winter, 2001).     
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Mountain samples plot closest to the average value for M-type granites on these diagrams 


(Fig. 65). 


The Quartz Mountain stock samples plot within the volcanic-arc granite (VAG) 


field on the Ta-Yb diagram of Pearce et al. (1984a) (Fig. 66A).  Sample Man-28 (Table 


21) is elevated in Ta compared to other Quartz Mountain samples (Fig. 66A).  Even 


though it has only 54.56 weight % SiO2, it is valid to plot sample Man-28 (Table 21) on 


Pearce et al. (1984) granitic discrimination diagrams because it has more than 5 % modal 


quartz.  The granitic samples plot near the average value for M-type granites on this 


diagram, and away from the average values for all other granitic types (Fig. 66A).  All 


Quartz Mountain stock samples plot tightly together within the VAG field on  the Rb-


Y+Nb diagram of Pearce et al. (1984a) (Fig. 66B).  On this diagram, the Quartz 


Mountain stock samples plot very close to the average value of M-type granites and away 


from all other types (Fig. 66B).    


The Quartz Mountain stock samples display a strong Th enrichment on the 


Th/Yb-Ta/Yb diagram of Pearce (1982) (Fig. 67).  These element ratios are not greatly 


affected by fractionation, therefore it is acceptable to plot felsic samples on this diagram 


(Fig. 67) (Wood, 1980; Pearce, 1982).  These samples display calc-alkaline affinities on 


this diagram (Fig. 67) and, with the exception of one mafic sample (Man-28; Table 21), 


plot within the field defined by oceanic island-arcs (Fig. 67).  Again, the granitic Quartz 


Mountain stock samples plot close to the average value for M-type granites, and away 


from all other granitic types (Fig. 67).   
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Figure 66.  A. Ta-Y discrimination diagram for granitic rocks from Pearce et al. (1984b) 


for samples from the Quartz Mountain stock.  B. Rb-Y+Nb discrimination diagram for 


granitic rocks from Pearce et al. (1984b) for samples from the Quartz Mountain stock.  


Also plotted on all diagrams are the average values for A-type, I-type, M-type, and S-


type granites (Collins et al., 1982; Whalen et al., 1987; Chappell and White, 1992; 


compiled by Winter, 2001).  ORG = ocean ridge granites; syn-COLG - syn-collision 


granites; VAG = volcanic arc granites; WPG = within-plate granites.    
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Figure 67.  Th/Yb-Ta/Yb discrimination diagram for Quartz Mountain stock samples 


(Pearce, 1982).  N-MORB, E-MORB and OIB normalizing values are from Sun and 


McDonough (1989).  N-MORB = normal-mid-ocean ridge basalt; E-MORB = enriched-


mid-ocean ridge basalt; OIB = ocean island basalt (= within-plate basalt).  Field for 


volcanic arcs was compiled by Pearce (1982, 1983).  Also plotted on all diagrams are the 


average values for A-type, I-type, M-type, and S-type granites (Collins et al., 1982; 


Whalen et al., 1987; Chappell and White, 1992; compiled by Winter, 2001). 
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HELENA-HAYSTACK MELANGE OF THE MANASTASH INLIER 


 


 The Helena-Haystack mélange of the Manastash inlier occurs as two belts faulted 


against the Hereford Meadow amphibolite, Lookout Mountain Formation, Darrington 


Phyllite of the Easton Metamorphic Suite, and Tertiary rocks (Fig. 55; Plate 1).  This 


mélange consists of assorted tectonic blocks with sizes ranging from < 1 m to 1.5 km, 


within a sheared serpentinite matrix (Stout, 1964; Goetsch, 1978; Tabor et al., 1989; 


Miller et al., 1993; Tabor, 1994).  The matrix displays a northwest-striking, primarily 


steeply dipping shear foliation (Goetsch, 1978; Miller et al., 1993) (Plate 1).  Foliations 


within tectonic blocks also display a northwest-striking, primarily steeply dipping 


foliation (Plate 1).  Isoclinal folds were observed within greenschist, metatuff, and 


metasedimentary tectonic blocks (Goetsch, 1978). 


 Tectonic block types within the Helena-Haystack mélange of the Manastash inlier 


include the following: metabasalt, metatuff and metatuffaceous sedimentary rocks, 


metaandesite, metadiorite, meta-felsic volcanic rocks, slate, phyllite, schist, metadiabase, 


metagabbro, meta-peridotite, amphibolite, volcanic and sedimentary breccia, epidosites, 


recrystallized limestone, and biotite gneiss (Stout, 1964; Goetsch, 1978, this study).  The 


contacts between the blocks and matrix are poorly exposed.  Greenstone and phyllite 


commonly occur together within individual blocks.  Goetsch (1978), Tabor et al. (1989, 


2000), Miller et al. (1993), and Tabor (1994) suggested that some of the metaigneous and 


metasedimentary blocks within the mélange were derived locally from the Hereford 


Meadow amphibolite, Lookout Mountain Formation, and Easton Metamorphic Suite.  


These researchers also suggested that many of the blocks were exotic.  Goetsch (1978) 
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and Tabor (1994) suggested that some diabase blocks within the mélange originated from 


the Eocene Frost Mountain basalt and/or Teanaway dikes (Tabor et al., 1982, 1984, 


2000).   


 Stout (1964), Goetsch (1978), Miller et al. (1993), and Tabor et al. (2000) all 


indicate that the tectonic blocks underwent cataclastic to blastomylonitic deformation 


during mélange formation.  Goetsch (1978) also noted that all tectonic blocks display a 


greenschist-facies overprint.  The ultramafic blocks consist of wehrlite and lesser olivine 


clinopyroxenite, and differ genetically from the serpentinite matrix which was originally 


dunite and harzburgite (Goetsch, 1978).    


Several greenstone blocks preserve well developed pillow structures, as 


previously noted by Goetsch, (1978).  Pillows range in size from ~ 15 cm to > 1 m, and 


are highly vesicular.  Limestone, limestone breccia, carbonate-supported basalt breccia, 


and broken pillow breccia are commonly interbedded with the pillows.  Limestone is 


recrystallized, gray in color, and beds are ≤ 10 cm in thickness and ≤ 1 m in length.  


Breccia clasts consist of cm-size gray limestone fragments that are recrystallized.  Relict 


igneous textures within the least altered greenstones include microporphyitic, pilotaxitic, 


vesicular, and hyalopilitic.  Microporphyitic, allotriomorphic-granular, subophitic, 


vesicular, and pilotaxitic relic igneous textures can be observed within the more highly 


deformed greenstones.  One well preserved sample (Man-5; Table 22) contains strongly 


reddish brown pleochroic clinopyroxene, suggesting it is high in Ti (Deer et al., 1992). 
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Age of mélange formation   


 


Tabor (1994), using structural and sedimentiological observations, suggests that 


formation of the Helena-Haystack mélange occurred either before or during the Eocene 


(Fig. 51 and 54).  Miller et al. (1993) suggested that the mélange formation was post-


early Eocene, due to the presence of blocks of the early Eocene Frost Mountain basalt 


and/or Teanaway dikes.  They also suggested that blocks of the Easton Metamorphic 


Suite, which was metamorphosed in the Early Cretaceous, provided an upper age limit to 


mélange formation.    Tabor et al. (2000) obtained a 113.6 ± 4 Ma K/Ar age from an 


amphibolite block within the mélange (Fig. 55), and suggested that this date may reflect 


the age of metamorphism of the mélange.  Miller et al. (1993), however, suggested that 


no regional scale metamorphic event of this age exists within Washington state.  They go 


on to suggest that this ~113 Ma age is the result of Ar loss (Miller et al., 1993). 


 


Geochemistry of tectonic blocks within the Helena-Haystack mélange of the 


Manastash inlier  


 


Tabor (1994) analyzed three samples from the Helena-Haystack mélange in the 


Manastash inlier area.  These samples were analyzed for major and several trace elements 


by x-ray fluorescence (Tabor, 1994).  Where possible, Tabor's (1994) samples are plotted 


on the geochemical diagrams in this paper. 


Thirteen new samples from the mélange (Table 22) were analyzed for major and 


trace elements at Washington State University, Pullman, by x-ray fluorescence and 
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inductively coupled plasma mass spectrometry (see appendix for analytical methods).  


Rocks of the Helena-Haystack mélange of the Manastash inlier have undergone 


greenschist-facies metamorphism.  Thus, as discussed above, only immobile elements are 


used on geochemical diagrams. 


Most samples have basaltic to basaltic andesite SiO2 values (Table 22).  Three 


samples have rhyolitic SiO2 values (Table 22).  The Ti-Y-Zr diagram of Pearce and Cann 


(1972) shows that six of the basaltic tectonic blocks have within-plate basalt (WPB) 


affinities (Fig. 68).  According to Pearce (1996a), this diagram is extremely diagnostic for 


discriminating basalts that formed in a within-plate environment, perhaps since Y is 


depleted during partial melting of a garnet lherzolite mantle source.  It is important to 


note that all of the WPB affinity samples, here and discussed below, are from the least 


deformed blocks in the mélange, and are commonly vesicular pillow basalts with intra-


pillow limestone.   


 These basaltic blocks (Fig. 68) plot within the WPB field on the Ti-V diagram of 


Shervais (1982) (Ti/V ratio > 50; Fig. 69).  Other basaltic blocks have MORB and one 


has IAT affinities on this diagram (Fig. 69).  One MORB affinity sample (Man-4; Table 


22; Fig. 69) has high FeO
T
 and TiO2, indicating that it is a Fe-Ti basalt (Sinton et al., 


1983).  Mélange blocks of all SiO2 ranges can be plotted on the Th/Yb-Ta/Yb diagram of 


Pearce (1982) (Fig. 70).  This is because fractionation has little effect on these element 


ratios (Fig. 70) (Wood, 1980; Pearce, 1982).  The six samples that have WPB affinities 


(Fig. 68 and 69) display within-plate enrichment on figure 70.  These samples also plot as 


transitional between alkali and tholeiitic on this diagram (Fig. 70).  Other Helena-


Haystack mélange blocks from the Manastash inlier plot on the boundary between  







 304 


Figure 68.  Ti-Zr-Y basalt discriminant diagram (Pearce and Cann, 1973) for Helena-


Haystack mélange of the Manstash inlier samples.  Only basaltic compositions are 


plotted.  Symbols are the same as Fig. 70.  Also shown on this diagram is a shaded field 


for the De Roux unit and a dashed-line field for the Helena-Haystack mélange west of the 


Straight Creek fault.  Older data taken from Ort and Tabor (1985), Tabor (1994) and 


Dragovich et al. (1998).   
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Figure 69.  Ti-V discriminant diagram (Shervais, 1982) for Helena-Haystack mélange 


samples of the Manstash inlier.  Only basaltic compositions are plotted.  Symbols are the 


same as Fig. 70.  Also shown on this diagram is a shaded field for the De Roux unit and a 


dashed-line field for the Helena-Haystack mélange west of the Straight Creek fault.  


Older data taken from Ort and Tabor (1985), Tabor (1994) and Dragovich et al. (1998). 
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Figure 70.  Th/Yb-Ta/Yb discrimination diagram for Helena-Haystack mélange and De 


Roux unit samples (Pearce, 1982).  N-MORB, E-MORB and OIB normalizing values are 


from Sun and McDonough (1989).  N-MORB = normal-mid-ocean ridge basalt; E-


MORB = enriched-mid-ocean ridge basalt; OIB = ocean island basalt (= within-plate 


basalt).  Also shown on this diagram is a shaded field for the De Roux unit and a dashed-


line field for the Helena-Haystack mélange west of the Straight Creek fault (Ort and 


Tabor, 1985; Tabor, 1994; Dragovich et al., 1998).   
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normal-MORB (N-MORB) and IAT, enriched-MORB (E-MORB), and CAB on the 


Th/Yb-Ta/Yb diagram (Fig. 70). 


The six mélange blocks that have WPB affinities on the geochemical diagrams 


(Fig. 68, 69 and 70) have chondrite- and N-MORB-normalized patterns similar to that of 


modern WPB (Fig. 71C and 71D).  One sample (Man-42; Table 22) displays E-MORB 


chondrite- and N-MORB-normalized patterns (Fig. 71C and 71D).  One sample (Man-4; 


Table 22) is similar to N-MORB in that it has an LREE depleted chondrite normalized 


pattern (Fig. 71E) and a nearly flat  N-MORB-normalized pattern  (Fig. 71F); the 


presence of a slight negative Ta and Nb anomaly, however, suggests it may be 


transitional to IAT.  All other mélange blocks have calc-alkaline chondrite- and N-


MORB-normalized patterns (Fig. 71E and 71F).  These volcanic arc samples are enriched 


in the large ion lithophile elements Th, La, and Ce, and are depleted in the high field 


strength elements Ta and Nb (Figs. 70, 71E and 71F). 


 A strongly foliated metatuff, which is interbedded with greenschists, was 


analyzed geochemically (Man-40c; Table 22).  This metatuff plots with the WPB affinity 


greenstones, within the mantle array, on the Th/Yb-Ta/Yb diagram of Pearce (1982) (Fig. 


70).   It also has chondrite- and N-MORB-normalized patterns that are similar to modern 


WPB.  The greenschist which this tuff is interbedded with has calc-alkaline affinities 


(Man-40b; Table 22).   
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Figure 71.  Chondrite- and N-MORB-normalized diagrams (see Fig. 70 for key to 


symbols).  Chondrite and N-MORB normalized values are from Sun and McDonough 


(1989).  A and B. Modern reference suite.  N-MORB, E-MORB, and OIB from Sun and 


McDonough (1989); IAT and CAB from Pearce et al. (1995).  C. Chondrite-normalized 


diagram for WPB and E-MORB affinity samples from the Helena-Haystack mélange of 


the Manastash inlier.  D. N-MORB-normalized diagram for WPB and E-MORB affinity 


samples from the Helena-Haystack mélange of the Manastash inlier.  E. Chondrite-


normalized diagram for arc-affinity samples from the Helena-Haystack mélange of the 


Manastash inlier.  F. N-MORB-normalized diagram for arc-affinity samples from the 


Helena-Haystack mélange of the Manastash inlier. 
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DARRINGTON PHYLLITE OF THE EASTON METAMORPHIC SUITE 


 


 The Darrington Phyllite of the Easton Metamorphic Suite occurs as a ~1.3 km 


long fault-slice in the northeastern area of the Manastash inlier (Fig. 55; Plate 1).  This 


phyllite is faulted against the Helena-Haystack mélange and Tertiary rocks.  Outcrops 


within the phyllite are sparse, and it cannot be ruled out that this phyllite is a large 


tectonic block within the Helena-Haystack mélange. 


 The Darrington Phyllite is blue-gray to black in hand sample and has a continuous 


foliation.  In thin section, the S1 foliation is overprinted by a spaced foliation (S2) that is 


orientated in the same general strike.  Quartz, sericite, plagioclase, and biotite are 


common minerals.  No high P/T minerals were observed, although studies elsewhere 


indicate this unit formed under high P/T conditions (transitional greenschist/blueschist 


facies) (Brown et al., 1982; Brown, 1986, 1987).  


 


DE ROUX UNIT 


 


Pratt (1958) originally recognized and mapped the rocks of the De Roux unit, and 


correlated them to adjacent rocks to the north; however, Miller (1975, 1980, 1985) 


recognize the De Roux as a new unit, and named it for its occurrence along the De Roux 


Creek south of Esmeralda Peaks (Fig. 52 and 72).  This unit consists of metasedimentary 


and metaigneous rocks.  It is fault bound and occurs within the mélange of the Navaho 


Divide fault zone at two different localities, and is faulted against the Eocene Swauk  
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Figure 72.  Geologic map of the type area of the De Roux unit.  Modified from Miller 


(1980, 1985) and Tabor et al. (1982).  New mapping done by J. MacDonald. 
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Formation in its type area (Fig. 52 and 72) (Miller, 1980, 1985; Miller and Mogk, 1987; 


Harper et al., 2003).   


 Most of the metasedimentary rocks consist of slate and phyllite, some of which 


are siliceous (Fig. 72) (Miller, 1975, 1980, 1985).  These metapelites grade into 


metamorphosed silty argillites, and rare graywacke and pebbly mudstone.  Miller (1975, 


1980) and Miller et al. (1993) reported that the graywacke, based on detrital mineral 


compositions, had a volcanic-arc and ophiolitic source.  The meta-pebbly mudstone has 


subangular clasts of chert, tuff, limestone, and lesser greenstone in a fine-grain pelitic 


matrix.  Clasts within the pebbly mudstone are slightly flattened.   


Intercalated with the slate and phyllite are massive and bedded metacherts.  Chert 


tends to be black and light gray in color.  Recrystallized radiolarians, too altered to 


identify (Pessagno written communication, 2004), occur in most chert beds.  Beds within 


the chert range up to 4 cm in thickness, and ribbon cherts are common (Miller, 1975, 


1980).  Foliated phyllitic partings can be found within most cherts (Miller, 1975, 1980). 


 Very fine-grained tuffs are interlayered with slate, phyllite, and chert (Miller, 


1975, 1980, 1985).  Miller (1980, 1985) suggested that the tuffs are reworked.  These 


tuffs make up about 5% of the De Roux unit, and individual beds are typically about 1 m.  


They weather light-green, and are siliceous to intermediate in composition (Miller, 1975, 


1980).  Miller (1980, 1985) interpreted the tuff to be water-lain ash falls from a distal 


volcanic arc source. 


 Minor but widespread pods of limestone occur within the slate and phyllite 


(Miller, 1975, 1980, 1985).  Miller et al. (1993) observed more than 50 limestone bodies.  


Limestone is gray and recrystallized; no fossils are preserved (Miller, 1975).  It occurs as 
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elongate bodies, the largest is 15 m by 5 m, and the long axes are parallel to the slate and 


phyllite foliation (Miller, 1975, 1980; Miller et al., 1993). 


 Metavolcanic rocks make up about half the rocks of the De Roux unit (Fig. 72) 


(Miller, 1975, 1980, 1985).  These rocks originally consisted of mafic to felsic flows, 


pillows, and breccias (Miller, 1975, 1980).  They have undergone greenschist-facies 


metamorphism, with a prehnite-pumpellyite facies overprint (Miller, 1975, 1980).  Many 


metavolcanic occurrences are > a meter in size, while others continue for a few meters 


along strike (Fig. 72).  A small metadacite (< 5 m in length and < 2 m in thickness) that is 


interlayered within greenstones (DRJM-34; Fig. 72; Table 23) has a discordant U-Pb age 


of ~166 Ma, with a ~ 270 Ma inheritance (J. S. Miller written communication, 2004).     


Most of the metavolcanic rocks were originally massive flows, with consisting of 


plagioclase and clinopyroxene phenocrysts (Miller, 1975, 1980).  Less common are well 


developed pillow structures (Fig. 72) that are vesicular.  Vesicles are commonly 


flattened.  Relict textures in thin section include microporphyitic and variolitic.  


Microphenocrysts consist of chlorite and epidote, and calcite pseudomorphs after olivine 


are common.  Cr-spinel is ubiquitous in all mafic metavolcanic rocks. 


Other rock types within the De Roux unit include minor serpentinite, and rare 


metagabbro, metadiorite, and amphibolite (Fig. 72) (Miller, 1975, 1980, 1985).  The 


serpentinite occurs as fault slices next to the phyllite and metavolcanic rocks.  Miller 


(1985) and Miller et al. (1993) could not rule out that the serpentinite may be fragments 


of the Ingalls ophiolite complex faulted into the De Roux unit. 


This unit underwent penetrative deformation (Miller, 1985).  The metasediments 


are commonly foliated, with generally east-west orientation (Fig. 72) (Miller, 1980, 
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1985).  Folding occurs locally, with folds being open to isoclinal.  Some metavolcanic 


rocks are well foliated and lineated, while less deformed ones can be classified as 


greenstones.  For a detailed structural study of the De Roux unit refer to Miller (1975, 


1980, 1985).      


 


Geochemistry of De Roux unit metavolcanic rocks  


 


Five samples were analyzed for some major and trace elements by J. Gray at the 


University of Kansas using x-ray fluorescence.  Miller et al. (1993) suggested that all of 


these samples have MORB geochemical affinities.   


Seventeen new geochemical analyses of samples from the De Roux unit are 


presented here (Table 23).  These samples were analyzed for major and trace elements at 


Washington State University, Pullman, by x-ray fluorescence and inductively coupled 


plasma mass spectrometry (see appendix for analytical methods).  Metavolcanic rocks of 


the De Roux unit have undergone greenschist-facies metamorphism; therefore, only 


immobile elements are used on geochemical diagrams. 


Four of the De Roux unit samples have WPB affinities (Fig. 68, 69, and 70; Table 


23).  All of these samples are deformed vesicular pillow basalts.  Other De Roux samples 


that have basaltic compositions plot in the IAT and MORB fields on the Ti-V diagram of 


Shervais (1982) (Fig. 69).   These same samples define a field that overlaps the N-MORB 


and IAT boundary on the Th/Yb-Ta/Yb diagram (Fig. 70), suggesting that they are 


transitional between N-MORB and IAT.  One MORB affinity sample has unusual high   
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Fe-Ti affinities (Fig. 69; Table 23).  Other De Roux unit samples plot as CAB, except for 


one sample that plots as an E-MORB, on the Th/Yb-Ta/Yb diagram (Fig. 70).  A metatuff 


from the De Roux unit was analyzed (DRJM-12A; Table 23) and plots within the mantle 


array on the Th/Yb-Ta/Yb diagram of Pearce (1982), indicating that it did not originate 


from an arc (Fig. 70).  The metatuff displays within-plate enrichment on the Th/Yb-


Ta/Yb diagram, and plots close to the metatuff from the Helena-Haystack mélange of the 


Manstash inlier (Man-40c; Table 22) (Fig. 70).     


 


DISCUSSION 


 


Hereford Meadow amphibolite 


 


The protoliths of the Hereford Meadow amphibolite (gabbro, diabase, basalt, and 


minor sedimentary rocks) are similar to those of the crustal section of ophiolites and 


modern oceanic crust (e.g., Anonymous, 1974; Moores, 1982, Dilek, 2003).  Therefore, it 


is suggested here that this unit, in part, represents a metamorphosed and dismembered 


ophiolite.  Although boscured by deformation, the grain-size of the amphibolite and 


presence of gabbro screens and dike margins suggest that most of the Hereford Meadow 


amphibolite in the study area was originally the transitional zone between gabbro and 


diabase dikes.  Relict vesicles, fine grain sizes, and minor, possibly intercalated 


metasedimentary rocks (as suggested by Goetsch, 1978) also suggest that some of the 


Hereford Meadow amphibolites were originally basalts with lesser intra-basalt sediments.  


Goetsch (1978) suggested that these amphibolites represented pillow basalts.  This is 
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consistent with the upper levels of oceanic crust, which is sometimes intercalated with 


minor sediments (Anonymous, 1974; Coleman, 1977; Moores, 1982).     


The only age constraint of the Hereford Meadow amphibolite age is that it is 


intruded by the ~157 Ma Quartz Mountain stock.  If the contact between the Lookout 


Mountain Formation and Hereford Meadow amphibolite was originally conformable, 


then the amphibolite could be Middle or Late Jurassic; however, the difference in 


deformation between these two units, as outlined by Goetsch (1978), does not make this 


likely.        


The transitional IAT-MORB geochemical affinities of the Hereford Meadow 


amphibolite samples are indicative of modern supra-subduction zone environments (Fig. 


56, 57, 58, and 59) (Pearce et al., 1984a; Hawkins, 2003; Pearce, 2003).  The samples 


commonly plot in and near the fields defined by modern back-arc basins on all 


geochemical diagrams (Fig. 56, 58, and 59).  Also, highly fractionated samples (rare Fe-


Ti basalts and oceanic andesite) of the Hereford Meadow amphibolite are similar to 


modern propagating spreading centers, which are common in modern back-arc basins 


(Fig. 60) (Sinton et al., 1983; Harper, 2003b, and references within).  However, a 


subducting ridge setting, where subduction-related contamination of the MORB mantle 


can occur (e.g., Chile Ridge; Klein and Karsten, 1995; Strum et al., 2000), cannot be 


ruled out.  Extrapolating vertically down to the mantle array on the Th/Yb-Ta/Yb 


diagram can be done in order to identify the original mantle composition (Fig. 56) 


(Pearce, 1982, 1983; Pearce and Peate, 1995).  Based on these analyses, the Hereford 


Meadow amphibolite samples originated from an N-MORB to E-MORB mantle source 


(Fig. 56).   
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Orthogneiss of the Hereford Meadow amphibolite 


 


 The orthogneiss and gneissic amphibolite of the Hereford Meadow amphibolite 


are distinct geochemically from the amphibolites.  They have calc-alkaline affinities and 


originated from a mantle that was more enriched than the amphibolites (Fig. 56, 57E and 


57F).  The geochemistry of the orthogneiss suggest it originated in a magmatic arc (Fig. 


56, 57E, and 57F).  These samples could be related to the Quartz Mountain stock, but 


they generally have a larger subduction component then Quartz Mountain granitic 


samples; however, they are similar to the more mafic quartz diorite from the margin of 


the stock (Man-28; Table 21; Fig. 56 and 67).     


Goetsch (1978) indicates that these gneisses underwent cataclastic deformation, 


which is not seen in the amphibolites.  However, foliations within the orthogneiss are 


approximately parallel to foliation in the amphibolite (Goetsch, 1978; Miller et al., 1993, 


this study); therefore, these rocks share, at least in part, a similar deformation history.  


This relationship differs from the metamorphic foliations within the mafic intrusions that 


intrude the Lookout Mountain Formation and Hereford Meadow amphibolite.  Foliations 


in these rocks are at a high angle to the regional foliation of the Hereford Meadow 


amphibolite (Plate 1).  Also, no rocks resembling the orthogneiss are found within the 


Lookout Mountain Formation.   
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Lookout Mountain Formation 


 


 Goetsch (1978) interpreted the clastic sediments of the Lookout Mountain 


Formation as representing a turbidite sequence.  The absence of thick sandstone beds, 


convoluted and cross-bedded laminations, ripple marks, and sole marks suggest the 


presence of C and D units of a turbidite sequence (Bouma, 1962).   This suggests that the 


sandstone represent "distal turbidites" with deposition possibly on a basin plain (e.g., 


Mutti and Ricci-Lucci, 1972).  


Based on the low P/T metamorphic mineral assemblages within the Lookout 


Mountain Formation, Goetsch (1978) suggested that it underwent regional Buchan-type 


metamorphism.  Goetsch (1978) proposed that the Lookout Mountain Formation was not 


contact metamorphosed; however, biotite commonly has spotted, web, and decussate 


textures around intrusions.  These textures are indicative of contact metamorphism 


(Williams et al., 1954).  Also, primary structures are best preserved near igneous 


contacts, and these rocks have a "baked" hornfels appearance in the field.  This suggests 


that the numerous igneous intrusions within the Lookout Mountain Formation contact 


metamorphose it.  The lack of definitive contact metamorphic minerals could be a result 


of the original composition of the Lookout Mountain Formation.  If this formation was 


sufficiently enriched in Fe and Mg, as suggested from its abundant metamorphic biotite, 


then the contact metamorphic mineral assemblages would not differ greatly from that of a 


regional Buchan metamorphic mineral assemblage (Spear, 1993).  


Based on the presence of detrital plagioclase and quartz, Goetsch (1978) and 


Miller et al. (1993) propose that the source area for the Lookout Mountain Formation was 
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volcanic; in addition, the 30-40% detrital lithic fragments, some mafic in origin, support 


this interpretation (Dickinson, 1970, 1985; Dickinson et al., 1983).  The euhedral detrital 


zircons, which commonly display igneous zoning, indicates that the source area once had 


active magmatisim (Caironi et al., 1996; Corfu et al., 2003).  The presence of detrital 


plagioclase and lithic volcanic clasts, as well as euhedral igneous zircons suggests that 


the Lookout Mountain Formation is immature and that magmatism was coeval with 


deposition. 


The youngest detrital zircon U-Pb age population from the Lookout Mountain 


Formation is ~160 Ma (Fig. 55, 62 and 63).  Due to the immature nature of the 


sandstones and vocanic source area, this ~160 Ma age (Fig. 63) most likely represents the 


age of deposition.  It is not known where in the Lookout Mountain Formation’s 


stratigraphic section this sample originates; however, the ~157 Ma Quartz Mountain 


stock provides a younger age limit for this Formation (Fig. 55 and 64B; Plate 1).  The 


~160 Ma age of the Lookout Mountain Formation indicates it is early Late Jurassic in age 


(lower Oxfordian based on the time scale of Gradstein et al., 2004). 


The youngest detrital zircons from the Lookout Mountain Formation are younger 


then the intrusive Quartz Mountain stock (Fig. 55, 62, 63; Plate, 1; Table 19).  Numerous 


researches have suggested that SHRIMP-RG U-Pb dating is as accurate and precise as 


other U-Pb age dating techniques (Claoue-Long et al., 1995; Compston, 1999; Stern and 


Amelin, 2003); however, these researches were using zircons from igneous and not 


detrital samples.  Zircons from the Lookout Mountain Formation which are younger than 


the ~157 Ma stock that intrudes this Formation suggests that the error of single detrital 


zircon age dating may not be as certain as previously thought.     
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Many Jurassic age sedimentary rocks, that are broadly similar to the Lookout 


Mountain Formation, occur within the North American Cordillera.  A comparison of a 


few will be given below. 


The Late Jurassic age (Fig. 62 and 63) and probable volcanic source of the 


Lookout Mountain Formation resemble the sedimentary rocks of the western and eastern 


mélange belts (Fig. 51).  Jett and Heller (1988) indicate that sedimentary rocks of the 


western mélange belt were arc-derived, and Tabor et al. (1993, 2002) report Jurassic 


fossils from this belt.  The eastern mélange belt is less well studied, but Jurassic fossil 


ages are also reported (Tabor et al., 1993, 2002).   


Garver (1988b) suggests that sandstones within the western mélange belt correlate 


to the sediments that sit on the ophiolitic rocks of the Fidalgo Complex (Fig. 51).    E. H. 


Brown (written communication, 2006) has obtained a youngest detrital zircon U-Pb age 


population of ~148 Ma from a sandstone above the ophiolitic rocks of the Fidalgo 


Complex, which is significantly younger than that for the Lookout Mountain Formation; 


however, the sediments above this ophiolite range from Oxfordian to Tithonian in age 


(Brandon et al., 1988, and references within; Garver, 1988c).  Sandstones are lacking 


from the Oxfordian section of these sedimentary rocks, therefore comparison with the 


Lookout Mountain Formation may not be possible (Brown et al., 1979; Brandon et al., 


1988; Garver, 1988c).   


The Middle Jurassic portion of the Nooksack Formation of the Northwest 


Cascades System (Fig. 51 and 54) may correlate in part to the Lookout Mountain 


Formation.  This formation had diverse depositional environments, and includes 


turbidites of volcanic arc origin (Sondergaard, 1979; Tabor et al., 2003).  E. H. Brown 
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(written communication, 2006) dated detrital zircons from a Cretaceous sandstone within 


the Nooksack Formation.  This sample has a considerable Jurassic age population (n ≈ 


79) that overlaps the ~160 Ma and ~177 Ma age peaks of the Lookout Mountain 


Formation (Fig. 63).  U-Pb detrital zircon analyses of an older, Jurassic Nooksack 


Formation sample would help test a correlation to the Lookout Mountain Formation. 


The Tyoax Pass Formation of the Relay Mountain Group, Tyaughton-Methow 


basin, southwest British Columbia, may also correlate to the Lookout Mountain 


Formation.  Umhoefer et al. (2002) indicate that the Tyoax Formation is Callovian to 


lower Oxfordian in age.  This formation is predominantly mudstone with common 


turbidites (Umhoefer et al., 2002).  The Oxfordian age section of the Tyoax Formation is 


Fe-rich, and had a volcanic-plutonic source (Umhoefer et al., 2002).  The biotite-rich 


slates and phyllites of the Lookout Mountain Formation could have been derived from 


Fe-rich Oxfordian sedimentary rocks.           


The Fe-rich hemipelagic and hemipelagic-turbidite transition zone of the lower 


Galice Formation, Klamath Mountains OR-CA (Fig. 53), may correlate with the Lookout 


Mountain Formation (Harper, 1980, 1994; MacDonald et al., 2006).  The lower Galice 


Formation is Late Jurassic (Oxfordian) in age (Harper, 1980, 1994; MacDonald et al., 


2006).  A rare sandstone from the hemipelagic section of the Galice Formation had a 


volcanic source not unlike the minor sandstones from the Lookout Mountain Formation 


(MacDonald et al., 2006).  Therefore, it is possible that the Fe-rich, Oxfordian age 


hemipelagic sequence of the lower Galice Formation may correlate with the biotite-rich, 


Oxfordian age Lookout Mountain Formation.  Detrital zircon age data from the lower 


Galice Formation is needed to test this correlation.  
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Smith and Calkins (1906) correlated the Lookout Mountain Formation with 


sedimentary rocks that overlie the Ingalls ophiolite complex (Peshastin Formation) (Fig. 


51 and 52).  Miller et al. (2003) and Harper et al. (2003) report that the youngest detrital 


zircon U-Pb age population for the Peshastin Formation is ~153 Ma, indicating that these 


sedimentary rocks are somewhat younger than, and thus not directly correlative with the 


Lookout Mountain Formation.   


Stout (1964) correlated the Lookout Mountain Formation with the Tonga 


Formation, which is located in the Cascades Crystalline Core (Fig. 51).  E. H. Brown 


obtained a youngest detrital zircon U-Pb age population of ~125 Ma from the Tonga 


Formation (written communication, 2006), indicating that Stout's (1964) correlation is 


incorrect.  


The older detrital zircon U-Pb age populations from the Lookout Mountain 


Formation (Fig. 62 and 63) allow for the identification of possible source areas.  This can 


be done because of the large number of detrital age populations in this sample (Fig. 62 


and 63).  Gehrels (2000) and DeGraaff-Surpless et al. (2003) suggest that a potential 


source area for sediment should include plutonic rocks that overlap in age most, if not all, 


of the detrital zircon age populations.  Also of importance to the provenance of the 


detrital zircons is that they are rounded as well as euhedral.  This suggests that the 


Lookout Mountain Formation zircons were derived from recycled as well as magmatic 


sources (Caironi et al., 1996; Corfu et al., 2003).    


The Lookout Mountain Formation may have been translated >1000 km along the 


pre-Cretaceous margin of North America (Beck et al., 1981; Ague and Brandon, 1996; 


Housen et al., 2003).  The interpretation of Wyld et al. (2006) that the Jurassic rocks of 
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Washington state were dextrally faulted 300 to 800 km, using palinspastic 


reconstructions, is preferred over paleomagnetic studies (Beck et al., 1981; Ague and 


Brandon, 1996; Housen et al., 2003).  This is because Wyld et al. (2006) place the 


Jurassic rocks of the central Cascades, Washington state, adjacent to the Klamath 


Mountains (Fig. 53) during the Cretaceous, where geologic correlations exist between 


Mesozoic ophiolitic and arc rocks (Miller et al., 1993; Metzger et al., 2002; MacDonald 


et al., submitted).   


The ~160 Ma zircon population within the Lookout Mountain Formation (Fig. 62 


and 63; Table 19) has many possible plutonic sources within Washington state; however, 


most of these Late Jurassic plutonic sources are too minor to have supplied abundant 


detrital zircons to the Lookout Mountain Formation (Whetten et al., 1980; Brown et al., 


1987; Frizzell et al., 1987; Brandon et al., 1988; Gallagher et al., 1988; Tabor et al., 1993; 


Dragovich et al., 1998; Miller et al., 2003; J. S. Miller, written communication, 2005).  


Armstrong (1988) and Friedman and Armstrong (1995) report Late Jurassic magmatism 


in the southern Canadian Cordillera.  Abundant Late Jurassic plutons are exposed in the 


Klamath Mountains (Wright and Wyld, 1986; Harper et al., 1994; Irwin and Wooden, 


1999, and references within), as well as the northern Sierra Nevada Muntains (Irwin and 


Wooden, 2001, and references within).   


Limited sources for the Lookout Mountain Formation's Middle to Early Jurassic 


(~177 Ma average; Fig. 63; Table 19) detrital zircon population can be found within 


Washington state.  Whetten et al. (1978; U/Pb) reports a 170 ± 3 Ma plutonic age from 


the Fidalgo Complex (Fig. 51 and 53).  A Middle Jurassic age is also reported for 


plutonic rocks from the western mélange belt (Fig. 51) (U-Th-Pb; Whetten et al., 1980), 
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and the Wells Creek Volcanics of the Nooksack Formation, Northwest Cascades System, 


are Middle Jurassic (Fig. 51 and 54) (Misch, 1966; Franklin, 1985).  More widespread 


Middle Jurassic plutons can be found within the Klamath Mountains and the Northern 


Sierra terrane (Fig. 53) (Hacker et al., 1995; Irwin and Wooden, 1999, 2001, and 


references within).   


Minor sources for the Lookout Mountain Formation's Early Jurassic (~195 Ma 


average; Fig. 63; Table 19) detrital zircon population are exposed within Washington 


state (Whetten et al., 1980; Tabor et al., 2002; MacDonald et al., submitted).  Armstrong 


(1988, and references within) reports Early Jurassic magmatism in the southern Canadian 


Cordillera, and Armstrong et al. (1977, and references within) reports minor Early 


Jurassic magmatism in northern Washington and western Idaho.  Early Jurassic plutonic 


sources can be found within the southern Klamath Mountains and Northern Sierra terrane 


(Fig. 53) (Wright and Wyld, 1994; Hacker et al., 1995; Irwin and Wooden, 1999, 2001, 


and references within). 


The Permian to Late Triassic detrital zircon U-Pb age population from the 


Lookout Mountain Formation (Fig. 63; Table 19) has minor possible sources exposed 


within Washington state (Mattinson, 1972a; Tabor et al., 1987).  Avé Lallemant (1995) 


reports Permian to Triassic magmatic ages from the Blue Mountains province (e.g., 262-


219 Ma Sparta complex and Carnian to Norian volcanic rocks of the Olds Ferry terrane) 


(Fig. 53).  Sparse Triassic plutons occur within the Pine Forest and Black Rock terranes 


of northwestern Nevada (Wyld, 1990, 2000).  It also cannot be ruled out that these 


Permian to Triassic detrital zircon within the Lookout Mountain Formation (Fig. 63; 


Table 19) are reworked from sedimentary sources.  The Triassic Pine Nut and Luning 
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assemblages, of western Nevada have detrital zircon age ranges of 210-250 and 210-235, 


respectively (Manuszak et al., 2000). 


The Early Devonian detrital zircon population from the Lookout Mountain 


Formation (Table 19), which has an average age of ~401 Ma (Fig. 62), have no well 


established plutonic source in Washington state.  These zircons are commonly rounded.  


Devonian plutons intrude metasedimentary rocks within the Kootenay terrane of the 


southern Canadian Cordilleran (Okulitch, 1985; Simony et al., 1990; Parrish, 1992).  


Early Devonian plutonic rocks occur within the Klamath Mountains (Fig. 53) (Wallin et 


al., 1995; Wallin and Metcalf, 1998; Irwin and Wooden, 1999, and references within).  


Rare Early Devonian plutons also occur within the Northern Sierra terrane (Fig. 53) 


(Irwin and Wooden, 2001, and references within).  The rounded nature of the Early 


Devonian zircons of the Lookout Mountain Formation (Fig. 62; Table 19) suggest they 


are recycled (i.e., from a sedimentary source).  Devonian detrital zircons occur within the 


Bragdon Formation of the Redding section of the Eastern Klamath terrane (Fig. 53) 


(Gehrels and Miller, 2000), and from the Mount Roberts Formation, southeastern 


Quesnellia, British Columbia and Washington (Roback and Walker, 1995).      


Rounded detrital zircons from the Lookout Mountain Formation that have U-Pb 


ages ranging from ~533 to ~661 Ma (predominantly Neoproterozoic; Table 19), with 


average ages of ~582 and ~660 Ma (Fig. 62), are recycled.  Ultimately, however, they 


were derived from the North American craton.  Plutonic rocks of these ages do not occur 


within the Cascades but are found to the south.  Wallin et al. (1988, 1995) report 


Neoproterozoic zircon ages along the northwestern part of the Trinity terrane, Klamath 


Mountains (Fig. 53).  Saleeby (1990) reports an Neoproterozoic age from the Shoo Fly 
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Complex, Northern Sierra terrane (Fig. 53).  Ross and Parrish (1991a) report 


Neoproterozoic detrital zircons from metasediments within the Omineca Belt, Canadian 


Cordillera.  Also, Gehrels and Miller (2000) report Neoproterozoic detrital zircons from 


the eastern Klamath terrane (Fig. 53).  


The Grenville age (~1.0-1.3 Ga) detrital U-Pb ages from the Lookout Mountain 


Formation (Fig. 62; Table 19) have no known source within the northern Cordillera (Fig. 


73).  These zircons are well rounded, and are most likely recycled from older sediments.  


A paragneiss from the Yellow Aster Complex of the Northwest Cascades System (Fig. 51 


and 54), contains detrital Grenville-age zircons (E. H. Brown written communication, 


2006).  Also, Roback and Walker (1995) report Grenville age detrital zircons from the 


Mount Roberts Formation, southern Quesnellia, British Columbia and Washington.  


Gehrels et al. (1995, 2000) indicate that detrital Grenville age zircons are universal in 


Cambrian to Triassic Cordilleran strata, and are of little use in provance studies.  


The 1.8 to 2.1 Ga detrital zircons (Fig. 62; Table 19) from the Lookout Mountain 


Formation are suggestive of a northern North American cratonic provance (Fig. 73) 


(Gehrels, 2000).  These zircons are well rounded, and are thus almost certainly recycled.  


Similar age detrital zircon ages are found within the following: 1) Yellow Aster Complex 


(Fig. 51 and 54) (E.H. Brown written communication, 2006); 2) Bonner Formation, Belt 


Supergroup, Montana (Ross and Parrish, 1991b); 3) metasedimentary rocks of the 


Omineca Belt (Ross and Parrish, 1991a); and 4) Mount Roberts Formation (Roback and 


Walker, 1995). 
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Figure 73.  Schematic geologic map showing the study area in relation to first-order 


Precambrian basement provinces of western North America.  Modified from Gehrels 


(2000, and references within). 
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Quartz Mountain stock 


 


 Although the number of analyzed samples for the Quartz Mountain stock are 


limited (Table 21), some interpretations can still be made.  These samples are enriched in 


the large ion lithophile and subduction-derived elements Rb and Th relative to the high 


field strength elements Nb, Ta, Y, and Yb (Fig. 66 and 67).  This type of enrichment is 


indicative of a magma that formed above a subduction zone (Pearce et al., 1984b; Harris 


et al., 1986; Pearce, 1996b).  Also, the metaluminous and calcic nature of these samples 


suggest they formed in an arc setting (Fig. 65A and 65B) (Pearce, 1996b; Frost et al., 


2001).  The Th/Yb-Ta/Yb ratios for the four granitic samples are similar to modern 


oceanic island-arcs (Fig. 67) (Pearce, 1982, 1983; Pearce et al., 1984).  These four 


samples commonly plot close to the average value of M-type granites (Fig. 65, 66, and 


67).  The mafic sample Man-28 (Table 21; Fig. 66A and 67) appears to represent a 


distinct magma.  Man-28 was collected close to the margin of the stock, and may 


represent a more mafic phase as this pluton is weakly zoned (Goetsch, 1978; Miller et al., 


1993).  Pearce (1996b) proposes that island-arc plutons can form dioritic-to-tonalitic, 


amphibole-phyric, zoned plutons.  The Quartz Mountain stock has dioritic to tonalitic 


compositions (Table 21), is hornblende-phyric, and weakly zoned.        


One Quartz Mountain stock sample is peraluminous while three other samples 


have ASI ≥ 0.95 (Fig. 65A; Table 21).  Also, samples from the stock are ferroan (Fig. 


65C).  Pearce (1996b) and Frost et al. (2001) point out that granitic samples that are 


calcic, peraluminous, and ferroan are not common.  The elevated Fe and Al within the 


Quartz Mountain stock may be the result of assimilation of Lookout Mountain Formation 
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and Hereford Meadow amphibolite during emplacement; however, no inherited zircon 


ages were observed (Fig. 63).  Goetsch (1978) reports xenoliths of amphibolite within the 


stock.  


The two U-Pb ages from the Quartz Mountain stock indicate that it has a Late 


Jurassic crystallization age (~157 Ma) (upper Oxfordian according to the time scale of 


Gradstein et al., 2004) (Fig. 55 and 63B; Plate 1) (Hopson and Mattinson, 1973; Miller et 


al., 1993).  This, along with the petrographic and geochemical compositions for this stock 


(Fig. 65, 66, and 67), indicates that it represents part of the roots of a Late Jurassic island-


arc.  The Quartz Mountain stock samples plot near the average value for M-type granites 


on all geochemical diagrams (Fig. 65, 66, and 67) and within the field for modern 


volcanic island-arcs (Fig. 67), which supports this island-arc interpretation; however, 


more geochemical samples are needed to support this interperation.   


Many of the numerous dioritic bodies that intrude the Hereford Meadow 


amphibolite and Lookout Mountain Formation may be related to the Quartz Mountain 


stock.  These intrusions have similar metamorphic histories and intrude the same rocks 


(Plate 1) (Goetsch, 1978).  More detailed geochemical and isotopic studies of these 


dioritic intrusions are needed.  


 


Helena-Haystack mélange of the Manastash inlier 


 


 The Helena-Haystack mélange of the Manastash inlier contains rocks with WPB, 


N-MORB, E-MORB, IAT, and CAB geochemical affinities (Fig. 68, 69, and 70).  One 


MORB affinity tectonic block within this mélange has rare Fe-Ti basalt affinities (Man-4; 
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Fig. 69; Table 22).  A within-plate affinity metatuff located within calc-alkaline affinity 


greenstones is unusual (Fig. 70 and 71; Table 22).  The tectonic scenarios needed to 


produce rocks with these diverse geochemical signatures are complex.  This sample could 


have originated as a dike, sill, or screen within the greenstones; however, it is fragmental 


in thin section supporting its origin as a tuff.  The tectonic block that this sample 


originates from is internally folded and faulted; therefore, these samples could have been 


structurally mixed together.   


A large geochemical data set (n = 58) exists for the Helena-Haystack mélange on 


the western side of the Straight Creek fault (Fig. 51) (Tabor, 1994; Dragovich et al., 


1998).  These are in part reinterpreted by the author and include WPB, N-MORB, E-


MORB, IAT, and CAB (Fig. 68, 69, and 70).  Five of the MORB affinity tectonic blocks 


from the western Helena-Haystack mélange also have Fe-Ti basalt affinities.   


The rock types within the Helena-Haystack mélange on both sides of the Straight 


Creek fault are identical (Fig. 51; Plate 1) (Goetsch, 1978; Vance et al., 1980; Tabor et 


al., 1989; Miller et al., 1993; Tabor, 1994; Dragovich et al., 1998, 2000).  For these 


reasons, Stout's (1964) "tectonic complex" in the Manastash inlier is considered to be the 


Helena-Haystack mélange, and it has been dextrally faulted ~98 km to the south 


sometime during the Paleogene (most likely Eocene) (Fig. 74) (Vance and Miller, 1981; 


Tabor et al., 1984; Tabor, 1994).  Tabor and colleagues (1984, 1989, 2000) and Tabor 


(1994) correctly interpreted Goetsch's (1978) Taneum Lake fault as a southern extension 


of the Darrington-Devils Mountain fault zone (Fig. 55, 74). 


 Tabor (1994) interpreted the Helena-Haystack mélange as a major suture between 


the Northwest Cascades System and the western and eastern mélange belts (Fig. 51 and  







 338 


Figure 74.  Reconstruction of the pre-Tertiary rocks in western Washington after ~98 km 


of displacement on the Straight Creek fault.  HHM = Helena-Haystack mélange; NWCS 


= Northwest Cascade System; WEMB = western and eastern mélange belts.  Modified 


from Tabor et al. (1989), Miller et al. (1993), and Tabor (1994).   
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54), mixing these terranes within the Helena-Haystack mélange.  This interpretation can 


be tested by comparing the geochemistry of the tectonic blocks within the mélange to 


other terranes within the Cascades (Fig. 51 and 52).  Within the Manastash inlier vicinity 


the Hereford Meadow amphibolite, De Roux unit, Ingalls ophiolite complex, Russell 


Ranch Complex, and Shuksan Greenschist could have provided the WPB, N-MORB, E-


MORB, IAT, and CAB geochemical affinity blocks to the Helena-Haystack mélange 


(Fig. 52, 55, 63, 68, 69, and 70; Plate 1) (Ashleman, 1979; Gray, 1982; Ort and Tabor, 


1985; Miller, 1989; Tabor, 1994; Metzger et al., 2002; MacDonald et al., submitted).  


The De Roux unit and Ingalls ophiolite complex could have also supplied the MORB 


affinity Fe-Ti basalts (Fig. 69) (MacDonald et al., submitted).  On the western side of the 


Straight Creek fault (Fig. 51) the Elbow Lake Formation, Chilliwack Group, Yellow 


Aster Complex, western and eastern mélange belts, Shuksan Greenschist, Deadman Bay, 


Orcas pillow basalts, Garrison terrane, Constitution Formation, Lopez Complex, and 


Fidalgo Complex could have supplied blocks of WPB, MORB, IAT, and CAB 


geochemical affinity to the Helena-Haystack mélange (Brown et al., 1979; Dungan et al., 


1983; Brandon et al., 1988; Gallagher et al., 1988; Sevigny and Brown, 1989; Tabor, 


1994, and references within; Dragovich et al., 1998).  The Shuksan Greenschist of the 


Easton Metamorphic Suite could have supplied the rare MORB affinity Fe-Ti basalts to 


the Helena-Haystack mélange (reinterpretation herein of published data) (Ashleman, 


1979; Dungan et al., 1983; Gallagher et al., 1988).  Also, the geochemistry of a metatuff 


from the Helena-Haystack mélange is almost identical to one from the De Roux unit (Fig. 


52 and 71; Table 22 and 23), and unusual in that it has within-plate affinities.   
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Thus all tectonic geochemical affinities within the Helena-Haystack mélange can 


be accounted for within terranes structurally above and below it (Fig. 51, 54, and 55; 


Plate 1).  Also, dated tectonic blocks within the mélange, including Mesozoic ages, 


possibly Triassic fossils (Tabor, 1994) and  ~150-170 Ma U-Pb zircon ages from plutonic 


rocks (Whetten et al., 1980; Brown et al., 1987; Dragovich et al., 1998; Tabor et al., 


2002), can also be found in the neighboring terranes (Mattinson, 1972a; Brown et al., 


1982; Armstrong et al., 1983; Armstrong and Misch, 1987; Brandon et al., 1988; 


Gallagher et al., 1988; Tabor, 1994; Miller et al., 2003; J. S. Miller written 


communication, 2004; MacDonald et al., submitted).   


These observations, including the lithologic similarities discussed above (Tabor, 


1994, and references within), support the interpretation of Tabor et al. (1989) and Tabor 


(1994) that the Helena-Haystack mélange, on both sides of the Straight Creek fault (Fig. 


51), is a major suture that structurally mixed other terranes within it (Fig. 54, 74).  The 


mixing of these rocks from diverse structural levels was not well explained by Tabor 


(1994); however, many of the units structurally mixed within the Helena-Haystack 


mélange were originally mélanges, indicating that crustal scale mixing might not have 


been necessary.  


 


De Roux unit 


 


 MacDonald et al. (2003) and Harper et al. (2003) incorrectly included the De 


Roux unit within the Ingalls ophiolite complex (Fig. 52 and 72).  Miller (1975, 1980, 


1985) and Miller et al. (1993) indicated that this unit underwent more penetrative 
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deformation then similar rocks within the Ingalls.  Also, the limestone within the De 


Roux unit most likely originated as submarine slide blocks (olistoliths) from an unknown 


source (Miller, 1975, 1980; Miller et al., 1993).  Much of the limestone within the Ingalls 


ophiolite complex is oolitic and associated with pillow basalts of the Iron Mountain unit 


(MacDonald et al., 2002, submitted). 


 The geochemical affinities of metavolcanic blocks within the De Roux unit (Fig. 


68, 69, and 70) are similar to blocks within the western and eastern mélange belts 


(excluding CAB) (Ort and Tabor, 1985; Tabor, 1994).  The De Roux unit is most similar 


to the western mélange belt (Fig. 51 and 52).  The western mélange belt and the De Roux 


unit 1) are lithologically similar, 2) have large limestone olistoliths, 3) have lithologic 


similarities, 4) underwent similar low P/T metamorphism, and 5) have plutonic blocks 


with similar Late Jurassic U-Pb zircon ages (Danner, 1957; Wiebe, 1963; Danner, 1966; 


Miller, 1974, 1980, 1985; Whetten et al., 1980; Jett and Heller, 1988; Frizzell et al., 


1987; Tabor et al., 1989; 1993, 2002; J. S. Miller, written communication, 2004).  Thus, 


Miller et al.'s (1993) interpretation that the De Roux unit correlates with the western 


and/or eastern mélange belts is most plausible (Fig. 51 and 52).  Miller (1989) also 


describes rocks similar to the De Roux unit within the Rimrock Lake inlier (Fig. 51). 


 


Tectonic Implications 


 


Numerous workers have suggest that Jurassic rocks within Washington state have 


been displaced between 300 and 800 km northward from similar rocks within the 


Klamath Mountains (Fig. 53) (Brown and Blake, 1987; Brandon et al., 1988; Garver, 
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1988; Burchfiel et al., 1992; Wyld et al., 2006).  Possible source areas for the detrital 


zircon age populations within the Lookout Mountain Formation (Fig. 62 and 63) can all 


be found in and around the Klamath Mountains (Fig. 53).  Therefore, it is suggested here 


that 1) the source areas for the Lookout Mountain Formation were located in the Klamath 


Mountains (Fig. 53 and 75), 2) the Lookout Mountain Formation, and Quartz Mountain 


stock that intrudes it, did not originate at a latitude far south of the Klamath Mountains 


(Fig. 53, 73, and 75) as suggested by many workers ("Baja BC hypothesis"; e.g., Beck et 


al., 1981; Ague and Brandon, 1996; Housen et al., 2003), and 3) the interpretation of 


Wyld et al. (2006) that Jurassic rocks within Washington state were sinistraly faulted 


from the south is likely correct.  


The possible correlation between the Tyoax Pass Formation of the Relay 


Mountain Group of southwest British Columbia, and the Lookout Mountain Formation is 


a significant one.  These rocks share similar lithologies, source areas, and ages.  


Umhoefer et al. (2002) suggested that the Tyoax Pass Formation was part of the fore-arc 


associated with a Jurassic subduction zone within the Klamath Mountain terrane (Harper 


and Wright, 1984; Wyld and Wright, 1988; Harper et al., 1994; Harper, 2003a).  


Therefore, if the Lookout Mountain-Tyoax Pass correlation is correct, the Lookout 


Mountain Formation may also have been part of the Jurassic Klamath Mountain fore-arc.  


Harper (2003) postulated that formation of the ~162 Ma Josephine ophiolite began in the 


fore-arc.  Abundant plutonic and cratonic material was available within the Klamath 


Mountains during the Jurassic (Irwin and Wooden, 1999, and references within); 


therefore, the Lookout Mountain, and Tyoax Pass could have originated in different parts 


of the same Jurassic fore-arc basin (Fig. 75).  However, the Lookout Mountain Formation 
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may not, and the Tyoax Pass Formation does not, display the Late Jurassic Nevadan 


deformation that is seen in the Klamath Mountains (Harper et al., 1994; Umhoefer et al., 


2002).    


The Quartz Mountain stock of the Manastash inlier, Hicks Butte complex of the 


Hicks Butte inlier, and Indian Creek complex of the Rimrock Lake inlier constitute a Late 


Jurassic (153-157 Ma) arc complex (Treat, 1987; Miller, 1989; Miller et al., 1993).  


Miller (1989) suggested that the Jurassic plutonic rocks within the mélanges and Fidalgo 


Complex west of the Straight Creek fault (Fig. 51) may be older remnants of the same 


arc.  This arc complex, when corrected for displacement on the Straight Creek fault (Fig. 


74), sits outboard of the Ingalls ophiolite complex and may represent the coeval arc to the 


Ingalls Late Jurassic backarc basin (Fig. 75) (Miller et al., 1993; Metzger et al., 2002; 


Harper et al., 2003; Miller et al., 2003).  J. S. Miller (written communication, 2004) 


indicates that unpublished U-Pb crystallization ages from the Ingalls ophiolite complex 


(~159 Ma) approache the younger 157 Ma age limit of this Jurassic arc. 


Miller et al. (1993) correlated the plutonic arc rocks with the Rogue-Chetco 


volcanic arc complex, Klamath Mountains (Fig. 53 and 75).  The Rogue-Chetco arc 


ranges from 153-160 Ma, and sat outboard of the Late Jurassic Josephine backarc basin 


(Fig. 75) (Saleeby et al., 1982; Harper and Wright, 1984; Wyld and Wright, 1988; Harper 


et al., 1994).  Miller et al. (1993), Metzger et al. (2002), and Miller et al. (2003) correlate 


the Ingalls ophiolite complex with the Josephine ophiolite, and this helps support the 


Cascades-Klamath Mountain arc correlation (Fig. 53 and 75).  This correlation also 


supports previous interpretations that Jurassic rocks within Washington state originated 


near the Klamath Mountains (Fig. 53 and 75) (Brown and Blake, 1987; Brandon et al., 
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1988; Garver, 1988; Burchfiel et al., 1992; Wyld et al., 2006).  The arc rocks within 


Washington state, however, did not undergo deformation during the Late Jurassic 


Nevadan orogeny, unlike correlative rocks within the Klamath Mountains (Harper et al., 


1994). 


The emplacement of the Quartz Mountain stock within the metasedimentary rocks 


of the Lookout Mountain Formation is very similar to Modern and ancient ridge 


subduction settings (Fig. 75) (Bradley et al., 2003; Sisson et al., 2003; Schoonmaker and 


Kidd, 2006).  In these settings magmatic arcs can develop within a deforming 


accretionary prism as an active oceanic spreading ridge is subducted (Fig. 75) (Bradley et 


al., 2003; Sisson et al., 2003).  Sisson et al. (2003) suggest that forearc extension within 


the Klamath Mountains during the Jurassic could have been the result of a ridge 


subduction event.      


 


CONCLUSIONS 


 


 The Hereford Meadow amphibolite is possibly, in part, a highly dismembered 


ophiolite of pre-Late Jurassic age (Fig. 55; Plate 1).  This unit originated in a supra-


subduction zone setting based on transitional IAT-MORB geochemical affinities that are 


most compatible with a back-arc basin origin (Fig. 56, 57, 58, and 59).  However, a ridge-


subduction environment cannot be ruled out.  Rare Fe-Ti affinities suggest that the 


oceanic spreading ridge(s) that formed these rocks may have been propagating (Fig. 58, 


59, and 60) (Harper, 2003b).  It is unknown if the Lookout Mountain Formation was 


originally deposited on the Hereford Meadow amphibolite; however, differences in  
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Figure 75.  Tectonic model for the formation of the Lookout Mountain Formation and 


Quartz Mountain stock.  A. Oblique subduction during the Middle Jurassic.  B. Forearc 


rifting and sedimentation during the Upper Callovian to Lower Oxfordian.  This rifting 


may have been the result of a ridge subduction event.  C. Rogue-Chetco arc formation, 


including the Quartz Mountain stock, and Ingalls-Josephine basin formation during the 


Upper Oxfordian.   
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deformation and metamorphism suggest that this is not likely (Goetsch, 1978; Miller et 


al., 1993). 


Orthogneiss from the Hereford Meadow amphibolite most likely did not originate 


from the same mantle as the amphibolites (Fig. 57).  The geochemistry of these rocks 


suggests that they originally formed in an arc setting (Fig. 56, 57E, and 57F).  They are 


more deformed than the Quartz Mountain stock and the numerous intrusions that occur 


within the Lookout Mountain Formation and the Hereford Meadow amphibolite.  They 


are geochemically similar to one distinct sample from the Quartz Mountain stock (Man-


28; Fig. 56 and 67); however, they display greater deformation than the stock and do not 


intrude the Lookout Mountain Formation; therefore, they are most likely not related to 


the Quartz Mountain stock.     


 The Lookout Mountain Formation is a Late Jurassic turbidite unit, with an ~160 


Ma age of deposition (Fig. 63; Table 19).  Detrital minerals, especially zircon, indicate 


that this turbidite unit had a vaocanic source area (Fig. 62 and 63), and rounded 


Precambrian detrital zircons suggest that it had older cratonic sources (Fig. 62; Table 19).  


The 1.8 to 2.1 Ga detrital zircons (Fig. 62; Table 19) suggests that the Lookout Mountain 


Formation did not originate very far south of North American source areas with these 


ages (Fig. 73 and 75). 


The Quartz Mountain stock is a component of a Late Jurassic arc (Fig. 64, 66, 67, 


and 75).  The numerious intrusions of this stock within the metasedimentary Lookout 


Mountain Formation suggests that it may have formed as a result of a ridge subduction 


event (Fig. 75).  Limited geochemistry suggests that this arc was oceanic (Fig. 65, 66, and 
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67).  The petrography and weak zoning of this stock supports this limited geochemical 


interpretation (Pearce, 1996b; Frost et al., 2001).  


Data supports the interpretation of Tabor et al. (1989, 2000) and Tabor (1994) that 


the tectonic complex of Stout (1964) is a displaced fragment of the Helena-Haystack 


mélange (Fig. 51 and 74).  The geochemical affinities of the blocks within this mélange 


are similar to the affinities within terranes that are located structurally above and below it 


(Fig. 51, 54, 68, 69, 70, and 71).  This supports Tabor's (1994) interpretation that the 


Helena-Haystack mélange is a major suture between structural terranes of the 


Washington Cascades (Fig. 54), and structurally mixed these terranes within it.  The 


correlation of the Helena-Haystack mélange suggests ~98 km of Tertiary dextral 


displacement along the Straight Creek fault (Fig. 51 and 74) (Vance and Miller, 1981; 


Tabor et al., 1984, 1989; Tabor, 1994). 


The De Roux unit is probably a fragment of the western mélange belt that has 


been faulted against the Ingalls ophiolite complex (Fig. 51, 52, and 72).  This unit may 


also be correlative to the eastern mélange belt (Fig. 51 and 52).  Garver (1988b) and 


Tabor (1994) suggest that the western and eastern mélange belts could be deformed 


fragments of the San Juan Islands (Fig. 51); therefore, the De Roux unit could also 


represent a deformed fragment of the San Juan Islands (Fig. 51, 52, and 72).   
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APPENDIX A 


ANALYTICAL METHODS 


 


Analysis of most new samples was performed by GeoAnalytical Laboratory at 


Washington State University (WSU).  Samples were crushed and hand picked to >60 g 


each at the University at Albany; in order to assure both sample quality and to provide 


enough samples for both X-ray fluorescence (XRF) and inductively coupled plasma 


source mass spectrometer (ICP-MS).  Grinding of samples for XRF and ICP-MS was 


done at WSU, using tungsten carbide mill and iron equipment respectively (Johnson et 


al., 1999; web page http://www.wsu.edu:8080/~geology/Pages/Services/ICP.html for 


ICP-MS discussion).  Major and selected trace elements were then analyzed by XRF on a 


single fused glass disk (Johnson et al., 1999) and rare earth, Th, Hf, Ta, and other trace 


elements were analyzed by ICP-MS at WSU.  Estimates of accuracy and precision for 


both XRF and ICP-MS at WSU are given by Johnson et al. (1999) and on the website: 


(http://www.wsu.edu:8080/~geology/Pages/Services/ICP.html).  Analytical methods for 


analyses taken from Metzger et al. (2002) are given in the Journal of Geology data 


repository.   


The rare earth, Th, Hf, Ta, and other trace elements for some samples were done 


at Union College, Schenectady, New York by James MacDonald.  If powders for these 


samples were not prepared at WSU, then they were prepared by James MacDonald at the 


University at Albany.  An Al ball mill was used to powder these samples in order to 


ensure no contamination during ICP-MS analysis at Union College.  Excellent precision 


was obtained for the trace elements from these samples at Union College (standard 
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deviation much less than one for all samples), and Pal-889 was run as a standard (see 


Wirth, 1991 and Romick et al., 1992 for values).  Accuracy could not be measured 


because multiple standards were not run. 
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APPENDIX B 


OUTCROP MAP OF IRON MOUNTAIN AREA 
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APPENDIX C 


OUTCROP MAP OF ESMERALDA PEAKS AREA 
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APPENDIX D 


OUTCROP MAP OF QUARTZ MOUNTAIN AREA 
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APPENDIX E 


OUTCROP MAP OF DE ROUX CREEK AREA 
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