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Abstract 

Certain non-coding DNA sequences in the eukaryotic genome regulate gene expression.  

These non-coding regulatory regions, including promoters and enhancers, are controlled by the 

binding of multiple transcription factors which act together to regulate gene transcription. The 

number of potential transcription factor combinations regulating any gene presents a massive 

experimental challenge. One well-known transcription factor, p53, activates multiple 

transcription pathways involved in tumor suppression, primarily through engagement with 

enhancers.  p53 is one member of a paralogous transcription factor family, which includes the 

factor p63. Whereas p53 is involved in tumor suppression, p63 is a transcription factor 

responsible for maintaining epithelial cell populations through its ability to bind to and regulate 

enhancers. p63 and p53 are often bound to the same enhancers in the genome, suggesting a more 

complex regulation than predicted by their canonical functions. We therefore aimed to better 

understand how genomic binding sequences and other factors regulate p53 and p63 activity at 

enhancers. Luciferase reporter gene assays were utilized to measure the transcriptional output of 

various p63 and p53 enhancers after genetically altering flanking DNA sequence motifs. We 

found that changing these flanking regions revealed core regulatory sequences that drive p53 and 

p63 transcriptional activity. We also determined that p63-bound enhancers, but not those bound 

by p53, had context-dependent activity. Depending on the cell type, these enhancers are active or 

inactive, with basal expression of p63 determining their activity. Our data provide new insight 

into the regulation of p53 family enhancers, and further work will lead to a better understanding 

of transcription factor activity and function at enhancers. 
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Introduction 

Genes are sequences of DNA which can vary from a few hundred to more than 2 million 

base pairs in length (Biscotnini, 2019). The information within genes can be decoded by a 

process called transcription, whereby the DNA information is transcribed into a new molecule 

called mRNA (messenger RNA). The information on an mRNA is then decoded by ribosomes to 

produce a polypeptide. Gene transcription is tightly controlled by gene regulatory networks to 

ensure the correct spatial and temporal expression of the gene. This regulation occurs through 

regulatory elements, which include enhancers and promoters. Promoters are DNA sequences 

upstream of a target gene, where transcription factors and RNA polymerase bind to a 

transcription start site in order to initiate transcription. While promoters are strictly required for 

transcription, enhancers are not required for basal transcription. However, enhancers control the 

abundance and frequency of transcription, as well as the spatial and temporal expression of genes 

in the larger organism. Both regulatory elements function through the combinatorial binding of 

transcription factors, which direct and regulate the general transcription machinery. The 

expression of different sets of genes in different tissues and at different times is known as 

differential gene expression. This requires the coordinated effort of multiple transcription factors, 

which then binds to different combinations of enhancers and promoters. 

Enhancers are unique, non-coding sections of the eukaryotic genome that regulate 

transcription by recruiting transcription factors. Enhancers are a few hundred base pairs in 

length, and they can be located at various distances from the target gene, up to a mega base 

away. However, transcription factors rarely act alone at enhancers. The binding of the correct 

combination and orientation of factors to both the enhancer and promoter regions initiates 
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transcription of the gene. Their activity should therefore be studied in combination with other 

transcription factors (Spitz & Furlong, 2012).  

The p53 family of transcription factors includes p53, p63, and p73, and is highly enriched 

at enhancer regions. These proteins can bind to the same DNA sites, have similar DNA binding 

domains, and can activate some of the same target genes. However, there is evidence that they 

are not identical nor redundant, as previous studies have demonstrated that the loss of one family 

member during embryonic mouse development results in severe deformations, if not lethality 

(Nostrand et al., 2017). While p53 has a major role in tumor suppression, p63 is responsible for 

epithelial morphogenesis, and p73 is known to maintain neuronal structures. We are primarily 

focused on the activities and functions of p53 and p63. p53 is a transcription factor that is 

expressed in every cell type. It acts a trans-activator, which enhances the transcription of p53 

target genes by recruiting histone-modifiers (Brady & Attardi, 2010). Furthermore, p53 is 

mutated in 50% of cancers due to its crucial role in the regulation of downstream genes 

responsible for cell cycle arrest, senescence, autophagy, and apoptosis (Zilfou & Lowe, 2009). 

While p63 shares some of the same target genes with p53, p63 primarily regulates 

downstream targets that drive the early development of epidermal structures and their functions 

(Koster, 2010). Loss of both proteins is known to compromise cell senescence and apoptosis, 

leading to many different cancers and diseases. Previous studies have shown that p63-knockout 

mice develop with truncated limbs, the absence of a stratified epidermis, and deformations of 

other appendages (Romano et al., 2012). The literature also suggests that p63 can and does 

interact with the p53 network. However, it is unknown what defines a p63 enhancer, what the 

role of p63 is at enhancers, and what the target genes of p63-dependent enhancers are. 
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A previous experiment in our lab screened hundreds of p53 and p63 enhancers including 

a single group which all bind p63, but do not bind p53. We found this interesting because both 

proteins bind a highly similar DNA response element and often bind the same regions. However, 

this group of p63 enhancers showed minimal activity in a massively parallel reporter assay 

(MPRA) when the p63 protein was present and did not respond to p53 induction. Loss of p63 or 

p63 binding site led to decreased enhancer activity. This study also shows that the loss of p53 

and/or p63 had detrimental effects on p53/p63 bound enhancers but positive effects on p53/p63 

independent enhancers. We wanted to identify the gene associated with these seemingly p63 

bound but lowly active enhancers in vivo. We hope to dissect these regions and to understand the 

interplay between p53 and p63 using these locations. In order to further investigate these results, 

we chose a number of enhancers from this p63-only group. Luciferase assays were performed 

using two different cell lines in order to study the effect of the presence and absence of p63 in 

the native cell environment on enhancer activity. The enhancers were chosen based on their 

location to genes that were downregulated in p63 knockdown cell lines, their enrichment of p63 

protein, and the presence of active enhancer chromatin marks.  

To study the activity of these enhancers, dCas9-KRAB was targeted to the p63 binding 

sites of each of the enhancers. RNA sequencing was utilized to measure the output of these ten 

blocked enhancers to determine their enhancer functions. Further experiments can then be done 

to identify the core regulatory sequences that determine the activity of these enhancers. 

Ultimately, better knowledge of how p53 and p63 enhancers function under stress conditions will 

lead to a better understanding of their full impact on gene expression.   
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Materials and Methods 

I. Cloning cluster 2 enhancers for Luciferase assays

1. Construction of reporter plasmid

The three enhancers were first given a numeric code: E231 for CUX1, E245 for CTSV, 

and E220 for DTHD1. Primers were designed using IDT PrimerQuest Tool to amplify enhancer 

regions from human genomic DNA. SnapGene and an online primer design tool (NEBuilder) 

were used to generate primers for Gibson assembly into pGL4.24, and were purchased from IDT. 

The enhancer sizes were verified by running them on a 2% agarose gel with a 100bp ladder. The 

three bands containing the different enhancer sequences were then cut from the gel for DNA 

extraction and purification.  

Additionally, the pGL4.24 plasmid was restriction digested using the HindIII and KpnI 

restriction enzyme sites. The size of the cut plasmid was then verified by running a 1% agarose 

gel with a 1000bp ladder. The band was excised from the gel and purified using the NEB 

Monarch Gel Extraction kit. Finally, Gibson assembly was used to ligate each enhancer to a 

pGL4.24 plasmid at the HindIII and KpnI sites using the NEB HiFi Genome Assembly kit. 

Ligation products were selected after transformation and growth on LB-Ampicillin plates, and 

DNA sequencing was performed to verify the correct sequence and orientation of the ligated 

plasmid.  

2. Bacterial transformation

The reporter assay plasmids were transformed into chemically-competent bacterial cells 

(stbl3 from New England BioLabs) and then plated onto LB-Ampicillin plates. One colony per 
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enhancer was picked and grown overnight in 5mL of liquid culture at 37˚C in shaking culture.  

Plasmid DNA was then isolated using standard silica column and alkaline lysis methodologies.  

3. Luciferase assays of cluster 2 enhancers in HCT116 and MCF10a cells

HCT116 WT, HCT116 Np63, MCF10a WT, and MCF10a p63KD cells were seeded at 

150,000 cells into 6-well dishes. The cell lines were then transfected with either one of the 

cluster 2 enhancers (E220, E231, E245), a no-enhancer negative control, or an ATF3 positive 

control using JetPrime transfection reagent. Dual Luciferase assays (Promega Dual-Glo) were 

then performed on each of the cell lines in three technical and three biological replicates as per 

manufacturer’s standard recommendations.  

II. Cloning cluster 2 enhancers for in vivo analysis of p63 dependent enhancer activity

1. Construction of reporter plasmid

The ten randomly selected Cluster 2 enhancers were first given a numeric code: 197, 198, 

200, 206, 213, 236, 254, 258, 275, 288 in order to blind us to their identity during future 

experiments. One to two guide RNAs per enhancer were designed using the MIT CRISPR 

Design (reference) tool to target each of the enhancer sequences and were purchased from IDT 

(Integrated DNA Technologies). Additionally, the parental KRAB plasmid (Addgene plasmid 

#110820, dCas9-KRAB was a gift from Alejandro Chavez & George Church) was restriction 

digested using the Esp31 (BsmBI) restriction enzyme sites and then 5’ phosphates were removed 

using shrimp alkaline phosphatase (SAP). Primer pairs were phosphorylated at the 5’ end using 

T4 PNK and ATP at 37˚C for 30 minutes. Phosphorylated primers were then annealed by mixing 

equimolar amounts (10mM) in water, heating to 95˚C, followed by controlled cooling to 25˚C (at 
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a rate of 1˚C/minute) in a thermocycler. Annealed primers were diluted to 10uM and used in a 

ligation reaction with dephosphorylated backbone and T4 DNA ligase.  

2. Bacterial transformation

Ligation products were transformed into New England BioLabs stbl3 E.coli cells and 

then plated onto LB-Ampicillin plates for selection of correctly ligated products. Plasmids were 

isolated from bacterial transformations and sent for Sanger sequencing to test for proper ligation 

products.  

3. Viral transduction

HEK293FT cells were seeded at 900,000 cells per well of a 6-well dish. The cell lines 

were then transfected with sequence-verified lentiviral-dCas9-KRAB-gRNA constructs targeting 

either one of the 10 test enhancers, a known enhancer positive control (GDF15), or the negative 

control (FGF2 enhancer, inactive in MCF10A cells). The viral media was collected after 24 

hours and again after 48 hours, filtered, and 8g/L of polybrene was added to increase 

transduction efficiency. MCF10A cells were seeded at 150,000 cells into 6-well dishes. The cell 

lines were then transduced with 1mL each of the twelve viral preparations, along with a negative 

control containing no virus. Cells were selected 48 hours post-transduction with 2g/mL 

Puromycin for 24 hours. Cells surviving selection were cryopreserved or used directly in 

experiments.   
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4. RNA-seq analysis

Total RNA was extracted and purified from virally-transduced cell lines using the EZNA 

Total RNA Kit (Omega BioTek). An RNA-seq library was made using the BioO NEXTflex 

Rapid Directional RNA-Seq method. To summarize, 1ug of total RNA was used as the starting 

point for polyA-RNA selection using poly-dT-coupled magnetic beads. The resulting polyA-

RNA was fragmented to an average size of 250bp. These fragments were then used for randomly 

primed 1st strand synthesis, followed by 2nd strand synthesis using RNAseH-mediated nicking 

and substitution of dTTP with dUTP. This allows for downstream detection of the original 

strand, thus allowing quantification of strandedness. Sequencing adapters and PCR were then 

performed to add both required sequencer information and unique barcode sequences. The 

quality of the resulting library was confirmed using a Qubit fluorimeter, qPCR (using the BioRad 

iTaq Universal SYBR Green One-Step Kit), and with capillary electrophoresis (Agilent 

Bioanalyzer at the University at Albany Cancer Research Center). All 12 libraries were pooled at 

an equal molar amount and a 1x75bp sequencing run was performed using a NextSeq 500 

instrument. Transcript abundance was determined using salmon (reference) against the hg19 

RefSeq genome assembly.  

5. MIR205 CRISPR-KRAB-dCas9 qPCR

MCF10a WT cells were seeded at ??? cells into a 6-well dish. The cell lines were then 

transfected with either E197, the positive control (GDF15), or no virus. The cells were then 

selected 48 hours post-transduction with 2g/mL Puromycin for 24 hours. Transduced cells were 

lysed and the total RNA was extracted and purified using the ENZA Total RNA Kit. qPCR was 

then performed on cDNA generated from total extracted RNA. 
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Results 

We began by randomly selecting three enhancer sequences from the previously 

performed MPRA experiment. The three p63 enhancer sequences (E245, E231, E220) were first 

amplified out of genomic DNA utilizing PCR. The primers were designed to encompass what we 

believed represented the entire enhancer sequence, using DNAseI-hypersensitivity data from the 

ENCODE Project (Thurman et al., 2012).  The primers were designed to have 5’ homology to 

the enhancer test vector pGL4.24 in order to allow for downstream Gibson cloning. The 

enhancer sizes ranged from 265 to 530bp after considering the entirety of the DNAseI-

hypersensitive region, as confirmed by 2% agarose gel analysis with a 100bp ladder. The three 

enhancer sequences amplified out of genomic DNA match with their expected amplicon sizes 

based on their primer sequences (Fig.1). The bands containing the different enhancer sequences 

were then cut from the gel for DNA extraction and purification and the resulting concentrations 

were measured with the Qubit High Sensitivity dsDNA kit and the Qubit fluorimeter.  

Additionally, the pGL4.24 plasmid was restriction digested using the HindIII and KpnI 

restriction enzymes. This plasmid serves as the backbone and contains a minimal RNA 

polymerase II promoter driving expression of the firefly luciferase gene. The correct size of the 

digested plasmid (4300bp) was then verified by running a 1% agarose gel with a 100bp ladder 

(Fig.2.) This band was then cut from the gel for DNA extraction and purification. Finally, 

Gibson Assembly was used to ligate each enhancer to the restriction digested and purified 

pGL4.24 plasmid at the HindIII and KpnI sites. After selection of ampicillin-resistant colonies, 

plasmid DNA was extracted and sequenced to verify the correct sequence and orientation of 

insertion.  
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Once these plasmids were sequence-verified, they were then re-transformed into sbl3 

competent E.coli cells in order to generate more copies of the plasmids containing one of the 

three enhancer sequences. Finally, a midi-prep process was used to extract pure, supercoiled and 

endotoxin-free DNA from bacterial cells. These plasmids are used in further experiments with 

mammalian epithelial cells (MCF10a cells) and human colorectal cancer cells (HCT116 cells) 

expressing the two isoforms of p63 to verify that they perform enhancer functions. 

A set of Luciferase assays were performed on two cell types: MCF10a (derived from 

normal human breast epithelial cells) and HCT116 (derived from human colon cancer cells).  

MCF10A cells natively express p63 while HCT116 cells do not. These experiments aimed to test 

the ability of p63 to activate enhancers and whether p63 would be sufficient for this activity.  In 

order to do this, we created two cell models. First, we created an MCF10A cell line with reduced 

expression of p63, called MCF10a p63KD. A short hairpin RNA (shRNA) was designed against 

the p63 DNA binding domain, which is predicted to target all p63 mRNA transcripts. This was 

restriction cloned into a lentiviral vector backbone downstream of an RNA polymerase III-

promoter. This vector also contained a selectable marke for puromycin resistance. A control 

shRNA was produced that targets an Arabadopsis-specific mRNA, such that it would not 

actually affect RNA stability in human cell lines. Virus was produced as described in Materials 

and Methods, and infected cells were selected using puromycin. 

We then created a version of the HCT116 cell line that expresses either the Np63 or the 

TAp63 isoform under control of a doxycycline (dox)-inducible promoter. Np63 and TAp63 

were subcloned into a lentiviral backbone plasmid downstream of a dox-inducible CMV 

promoter. This backbone also contained a cassette for the expression of the reverse Tet-

transactivator protein, which allows inducible expression of Np63 or TAp63 in the presence of 
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tetracycline analogs like dox. This backbone also contained a puromycin resistance gene for 

selection of infected cells with puromycin. Virion were produced and cells infected as described 

in Materials and Methods, and uninfected cells were removed from the population by selection 

with puromycin.  

We then confirmed that the infected cell lines produced the phenotypes we desired.   

First, we performed a western blot experiment testing for p63 and p53 expression in MCF10a 

cells demonstrated that both proteins were expressed in this cell type and served as a positive 

control for the p63 antibody (Fig. 3A). We confirmed the construction of the inducible Np63 

and TAp63 HCT116 cell lines through western blots an antibody against a common region 

present in both p63 isoforms (Figure 3B). In both cases, we did not observe any expression in the 

absence of doxycycline, confirming the inducibility of the gene. We next measured expression of 

p63 in either control MCF10A or p63shRNA-expressing MCF10A cells after exposures to either 

a control (DMSO) or two different p53-activating drugs (Nutlin-3A or etoposide). The rationale 

for exposing the cells to the different drugs was demonstrate that p63 and p53 are regulated in 

different manners. Expression of p53 increases in response to these drugs (data not shown). As 

expected, cells expressing p63shRNA show reduced protein expression of p63 (Fig. 3C).   

 We then moved forward to test the effect of either removal of p63 (from MCF10A) or 

forced expression of p63 (in HCT116) on activity of our different enhancers. Enhancers 220, 

231, and 245 were transfected (along with a control vector consitutively expressing Renilla 

luciferase) into MCF10a WT, MCF10a p63KD, and HCT116 WT cell lines, and were expressed 

in the HCT116 Np63 cell line using 1 µg/µL Doxycycline. A reporter construct lacking an 

enhancer was used as a negative control in all Luciferase assays. The Luciferase results were first 

normalized to the expression of Renilla, which represents a control to measure transfection 
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efficiency across experimental conditions. All of the enhancers were then compared to the 

control “no enhancer” value (experimental/control). This allows for the comparison of enhancer 

activity and transfection efficiency across conditions and cell types.  

The three enhancers we tested appear to have enhancer activity in MCF10A WT cells 

(where p63 is expressed natively), as their activity levels are higher than that of the no enhancer 

control (Fig. 4). Luciferase assays performed on the same enhancers in a MCF10a p63KD cell 

line shows a substantial decrease in their activity levels compared to MCF10a WT cells (Fig. 5). 

These differences between control and p63shRNA-expressing cells are statistically significant. 

This suggests that p63 is required for full activity of these enhancer elements. To determine if 

p63 expression is sufficient to drive this activity, Luciferase assays were performed on HCT116 

WT cells (which do not natively express p63). The results show a reduction of enhancer activity 

compared to MCFT10A WT cells (Fig. 6). Furthermore, two of the three enhancers showed such 

low activity levels that they have the same or worse activity than the no enhancer control. This 

suggests that all of the enhancers are more active in MCF10A cells and that two (220 and 231) 

have activity in HCT116 cells.  To determine if reduction in activity was due to the absence of 

p63 in the native cell environment, Luciferase assays were performed on HCT116 inducible-

Np63 cells, where expression of the Np63 isoform is forced through the use of a doxycycline-

responsive transcriptional unit. The results show that overexpressing p63 in HCT116 cells was 

not sufficient to activate any of the enhancers beyond the level we see in cells lacking p63 (Fig. 

7). These data suggest that p63 expression alone is insufficient to drive the activity, but that it is 

required for enhancer function in MCF10A cells.   

We next wanted to better understand what genes are regulated by p63-bound enhancers. 

Enhancers can be great distances from the regulated gene, therefore it is often difficult to 
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attribute an enhancers activity to a given gene.  To further investigate the activity of these cluster 

2 enhancers and the genes that they regulate, we selected an additional ten regions from the 

original MPRA experiment that were shown to be enhancers. We designed an experiment using 

utilizing CRISPR-dCas9-KRAB to block the activity of a given enhancer element and then 

measure the expression of thousands of genes in parallel using RNA-seq. CRISPR-dCas9-KRAB 

binds to any region of the genome that we desire and blocks critical transcription factors from 

interacting with the enhancer DNA sequences through formation of H3K9me3-enriched 

heterochromatin.  The guide RNA sequences for dCas9 were designed to target dCas9 KRAB to 

the p63 binding sites of the 10 enhancers. We included both a positive control for a known 

enhancer at the GDF15 gene and a negative control, which was targeting an enhancer that is 

inactive in MCF10A cells (FGF2). Therefore, we could benchmark our results and determine 

whether the experiment was performed properly since we had an expectation of the results.  

A lentiviral contruct was used to transduce MCF10A cells with a specific gRNA 

sequence and dCas9 KRAB, and infected cells were selected using puromycin. Upon 

establishment of stably-expressing cell lines, total RNA was isolated and used for polyA+ RNA 

selection using polydT-coupled magnetic beads. Barcoded RNA sequencing libraries were 

generated from the polyA+RNA for all 12 cell lines. Successful sequencing library generation 

was first verified through capilary electrophoresis (Fig.8), in which the presence of DNA 

between 200 and 600bp indicate the correct sizes of the RNA sequencing library. These libraries 

were then absolutely quantified using known quantities of DNA library using a qPCR-based 

approach and pooled together. The library was then sequenced in a 75 cycle/read reaction on an 

Illumina NextSeq500 at the Center for Functional Genomics. RNA-expression values 
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(Transcripts Per Million, TPM) were generated by aligning the sequenced RNA reads against the 

human hg19 RefSeq reference transcriptome using salmon.  

 The expression level of GDF15, our positive control, was dramatically reduced (≈20 

fold) compared to FGF2 targeting (black, control) when the dCas9-KRAB complex was targeted 

to it’s known enhancer positive element (Figure 9A). As evidence of specificity, the nearest 7 

genes upstream and 7 genes downstream were unaffected by placement of dCas9-KRAB at the 

GDF15 enhancer (Figure 7A). We also saw no effect on nearby gene expression when targeting 

the FGF2 enhancer, globally (black dots, Figure 9A). When the dCas9-KRAB complex was then 

targeted to ten different cluster 2 enhancers, we only found clear evidence of enhancer activity 

when targeting dCas9-KRAB to enhancer 197. This led to the downregulation of three nearby 

genes, LINC01698, MIR205, and CAMK1G. We confirmed MIR205 expression was reduced 

when enhancer 197 was targeted by dCas9-KRAB using RT-qPCR compared to control targeting 

of dCas9-KRAB to the inactive FGF2 enhancer. This result is statistically significant (Figure 

10). Overall, these data suggest that dCas9-KRAB-targeting to p63 bound enhancers coupled to 

RNA-seq can identify gene targets of those enhancers but that not all p63-bound enhancers might 

act as enhancers in all contexts.  
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Conclusions 

A preliminary massively parallel reporter assay (MPRA) revealed a group of enhancers 

which only bound to p63 (Fig. 11) and were unable to be bound by the paralog p53. We aimed to 

identify whether p63 activity was required for enhancer function and whether p63 binding or 

expression alone would be sufficient to activate these enhancers outside of the native cell 

context. We then asked whether we could use a targeted enhancer inhibition approach (dCas9-

KRAB) to identify the gene targets of p63-bound enhancers. We began by asking about the role 

of p63 at enhancers by studying three random p63-bound enhancers we chose from our MPRA 

screen. We clones the three enhancers from genomic DNA and successfully cloned them into a 

Luciferase reporter plasmid. We then used these enhancers to investigate whether p63 can bind 

and activate these enhancer regions. These plasmids were then transfected into HCT116 cells, 

which natively do not express p63, and demonstrated these enhancers had reduced or no activity. 

Expression of both isoforms of p63 in HCT116 cells suggests that p63 expression alone is 

insufficient to drive expression of these enhancers.  

 Our results focus on three different p63-bound enhancers, which our MPRA suggests 

might be p63-dependent. In MCF10a WT cells, these DNA sequences seem to have enhancer 

activity as suggested by previous assays. In order to determine whether p63 was required, the 

MCF10a p63KD cell line was created to modulate levels of p63. Luciferase assays performed on 

this cell line shows that the activity of the same three enhancers decreases significantly compared 

to the wild-type cell line. These results suggest that p63 is required for the activity of these 

enhancers.  

To determine whether p63 alone was sufficient to drive the activity of these enhancers, 

we performed Luciferase assays on HCT116 WT cells. Compared to MCF10a WT cells, the 
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three cluster 2 enhancers all show decreased activity levels in HCT116 WT cells, suggesting 

some transcription factors required for MCF10A-level activity are missing. Alternatively, a 

repressor protein/proteins might be present in HCT116 that leads to the observed reduction in 

activity. Interestingly, two of the enhancers exhibited such low activity levels that they were 

equivalent or less than the no enhancer controls, suggesting that enhancer activity is strongly 

context and cell type-dependent. Furthermore, when we forced expression of Np63 in HCT116 

cells we do not observe an increase enhancer activity. This suggests that p63 alone is not 

sufficient to drive the activity of these cluster 2 enhancers.  

These data allow us to put forth a potential model for the activity of p63 at enhancers. 

p63 involving the differing cellular environments and proteins expressed between the two cell 

types. MCF10a cells natively express p63 and are an epithelial cell type, while HCT116 cells do 

not express p63 and are a tumor-derived cell lines that is mesenchymal in nature. The most 

straightforward model is that p63 activity requires additional factors that are present in MCF10A 

cells but absent from HCT116. That is to say, the set of factors and cofactors expressed in 

MCF10A allows full enhancer activity. HCT116 colorectal cancer cells are derived from colon. 

It is possible that certain transcription factors or cofactors that are required to interact with the 

p63 network may be compromised compared to that of MCF10a cells, which are derived from 

non-cancerous epithelial cells. Additionally, there may be key epithelial factors present in 

MCF10a cells that drive certain enhancers to work better. Further work can be done to examine 

the exact cofactors that work with p53- and p63-dependent enhancers in MCF10as, and to 

compare the activity of these enhancers in both cell types. One option is to perform saturating 

mutagenesis approaches to identify additional DNA sequences within the enhancer regions that 

might bind other required transcription factors. Additionally, we could perform DNA 
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footprinting experiments to infer the occupancy of different DNA elements within the enhancer. 

Finally, and perhaps most importantly, a comprehensive yeast-1-hybrid experiment can be 

performed against a bait of the p63-bound enhancer against a prey library of human transcription 

factors. This would allow the unambigous identification of the factors binding. This approach is 

limited by the difficulty of obtaining a genome-scale transcription factor library and by the non-

native context of the assay (yeast versus intact human cell lines).  

We then also sought to investigate the target genes of these p63-dependent enhancers. 

This question is perhaps the most difficult in all of transcriptional regulation, due to the highly 

contextual nature of enhancers. What we mean by this is that one gene can have many enhancers, 

and these enhancers can be redundant or context-dependent. Therefore, if we delete or block a 

redundant enhancer, we would be unable to identify the gene target. Further, because enhancers 

can be located incredily far from their target gene, proximity-based approaches (such as only 

looking at the nearest gene) tend to fail more often than not.  We decided to answer this question  

in vivo using CRISPR-KRAB dCas9, which rapidly blocks enhancer activity. If we block the 

enhancers activity, then we presumably affect the linked gene. In order to measure the gene 

without prior knowledge of which gene could be affected by the enhancer, we used a 

transcriptome-wide measurement technique called RNAseq. This allowed us to target dCas9-

KRAB to any enhancer and then measure the effect on the expression of all genes in the genome 

in an unbiased fashion.  

Ten putative enhancers were chosen at random from our list of regions that were active in 

MCF10A cells in the MPRA assay. All of these enhancers showed high p63 occupancy. The 

KRAB domain facilitates the assembly of the proteins that generate heterochromatin, which 

blocks the activity of the enhancer by preventing the recruitment and binding of critical 
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transcription factors and co-factors. Using this approach, we discovered that enhancer 197 likely 

controls expression of up to three different genes nearby. Excitingly, one of these genes is 

MIR205, a microRNA that appears to be important for epithelial integrity. This is interesting 

because regulation of epithelial integrity is the same phenotype shared with p63. Our work 

provides a direct link between a master regulator of epithelial biology (p63) and a microRNA 

that is required for the same process. There are additional genes regulated by enhancer 197, 

including a long noncoding RNA (lncRNA) with as of yet undetermined function. Enhancers 

often work in hubs, where one enhancer might regulate expression of multiple promoters. 

Therefore, future work could investigate whether this enhancer regulates multiple genes directly 

or whether the reduction in expression of three genes is an indirect effect of the reduced 

expression of one of those genes. Overall, our work provides evidence for the enhancer function 

of this p63-dependent enhancer. Surprisingly, we did not see evidence for gene regulatory 

activity of the other p63-dependent enhancers. This can be for a number of biological and 

technical reasons. First, p63 has been shown to be repressive, therefore repressing this region 

with heterochromatin or with p63 binding might lead to the same functional outcome. RNAseq is 

very sensitive, but we did not perform multiple independent biological experiments, which might 

help us resolve whether small differences are in fact legitimate. Finally, we know enhancers 

oftentimes are redundant and work with other enhancers. In this case, blocking a redundant 

enhancer would not provide evidence of regulation unless the other enhancer was blocked.  

 We propose a model in which p63 works in vivo along with other cofactors in a complex 

regulatory network to drive transcription of downstream target genes responsible for epithelial 

morphogenesis. Our findings have enabled us to begin to decipher the complex gene regulatory 

networks that the p53 family of transcription factors is involved in. By examining the activity of 
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p63-bound enhancers in different native cell environments, we begin to understand what defines 

an enhancer, what cofactors an enhancer requires, and what transcription factors such as p63 do 

when they bind to their enhancer. Our results have also paved the way for distinguishing the 

characteristics of p63-bound enhancers from p53 enhancers, which appear to be more active and 

functional only after p53 stabilization. Further experiments can then be performed on this 

network to investigate other transcription factors that act in combination with these enhancers, as 

well as the other target genes of p63-dependent enhancers in addition to MIR205. Ultimately, 

understanding how the p63 network regulates gene transcription leads to a better understanding 

of the dynamics of these complex regulatory regions. 
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A B C D E F G H

template DNA (µL) 2 3 2 3 2 3 2 3

primers (µL) 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25

mastermix (µL) 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5

water (µL) 9.25 8.25 9.25 8.25 9.25 8.25 9.25 8.25

500bp 

A B C D E F G H 

Figure 1: Amplifying p63 enhancers out of the genome
PCR reaction run on a 2% agarose gel with a 100bp ladder. Lanes A and B contain reactions to amplify E186, 

lanes C and D to amplify E245, lanes E and F to amplify E231, and lanes G and H to amplify E220. Each pair 

of lanes contained either 100 or 150 ng of genomic DNA to optimize enhancer amplification. 
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1 2 3 4

template DNA (µL) 1 1 1 1

primers (µL) 1.25 1.25 1.25 1.25

mastermix (µL) 12.5 12.5 12.5 12.5

water (µL) 10.25 10.25 10.25 10.25

(+) control (-) control

DNA (µL) 3.88 3.88

KPNI (µL) 1 0

HindIII (µL) 1 0

buffer (µL) 5 5

water (µL) 39.12 41.12

A B 

500bp 
3000bp 

2 1 3 4 

Figure 2: Performing Gibson assembly to ligate p63 enhancers with pGL4.24
(A) Gibson primers were first ligated to the four enhancers and then run on a 2% agarose gel with a 100bp ladder.

Lane 1 corresponds to E186, lane 2 to E245, lane 3 to E231, and lane 4 to E220. (B) pGL4.24 was restriction

digested at the HINDIII and KPNI sites, and the cut plasmid was run on a 1% agarose gel with a 1kb ladder.
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Figure 3: p63 is expressed in MCF10a and HCT116 WT cells, and is not 

expressed in MCF10a p63KD cells 
(A) p63 is expressed in MCF10a cells in the presence of DMSO, 5 µM Nutlin and 100 µM

Etoposide. p53 is expressed in presence of 5µM Nutlin and 100µM Etoposide.

(B) ∆Np63 and TAp63 were expressed in HCT116 WT cells in the presence of 1 µg/mL

Doxycycline.

(C) p63 expression is greatly decreased in MCF10a p63KD cells. This was achieved by

targeting shRNAs to p63 mRNA transcripts to target them for destruction by host machinery.

GAPDH was used as a control in all three experiments

A B

C
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Enhancer Minimal Promoter Firefly Luciferase

A

B

Figure 4: Cluster 2 enhancers are active in MCF10a cells
(A) Luciferase assay schematic.

(B) Enhancers 220, 231, 245 expressed in MCF10a cells.
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Figure 5: Reduced cluster 2 enhancer activity in MCF10a p63KD cells 

compared to MCF10a WT cells
(A) Enhancer 220 expressed in MCF10a p63KD cells vs. MCF10a cells.

(B) Enhancer 231 expressed in MCF10a p63KD cells vs. MCF10a cells.

(C) Enhancer 245 expressed in MCF10a p63KD cells vs. MCF10a cells.
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Figure 6: Cluster 2 enhancers show low activity in HCT116 WT cells
Enhancers 220, 231, 245 expressed in HCT116 WT cells. 
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Figure 7: Expressing p63 in a non-native cell context is not sufficient to 

increase enhancer activity
Enhancers 220, 231, 245 expressed in HCT116 ΔNp63 cells vs. HCT116 WT cells. ∆Np63 

was expressed in HCT116 WT cells in the presence of 1 µg/mL Doxycycline.  



27 

Figure 8: CRISPR-KRAB dCas9 libraries are of the appropriate size and 

composition for sequences
The presence of peaks verifies the correct sizes of the RNA sequencing library. Ten enhancers were 

studied along with a positive control, GDF15 and FGF2. 
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Figure 9: RNA-seq of KRAB-bound enhancer 197 reveals the 

downregulation of 3 downstream genes 
(A) The GDF15 enhancer was targeted by dCas9 KRAB as a control.

(B) Targeting dCas9 to enhancer 197 causes the expression of LINC01698, MIR205, and

CAMK1G to decrease.
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Figure 10: qPCR of MIR205 gene 
qPCR was performed on the MIR205 gene after dCas9-KRAB 

was targeted to enhancer 197. 
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