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Enhanced optical alignment of a digital micro mirror
device through Bayesian adaptive exploration

Kevin B. Wynne,1,2 Kevin H. Knuth,1 and Jonathan Petruccelli1
1Department of Physics, State University of New York Albany, Albany, NY 12222, USA
2Department of Physics, Hudson Valley Community College, Troy, NY 12180, USA

(Received 30 August 2017; accepted 29 November 2017; published online 8 December 2017)

As the use of Digital Micro Mirror Devices (DMDs) becomes more prevalent in optics
research, the ability to precisely locate the Fourier “footprint” of an image beam at the
Fourier plane becomes a pressing need. In this approach, Bayesian adaptive explo-
ration techniques were employed to characterize the size and position of the beam
on a DMD located at the Fourier plane. It couples a Bayesian inference engine with
an inquiry engine to implement the search. The inquiry engine explores the DMD by
engaging mirrors and recording light intensity values based on the maximization of the
expected information gain. Using the data collected from this exploration, the Bayesian
inference engine updates the posterior probability describing the beam’s characteris-
tics. The process is iterated until the beam is located to within the desired precision.
This methodology not only locates the center and radius of the beam with remarkable
precision but accomplishes the task in far less time than a brute force search. The
employed approach has applications to system alignment for both Fourier process-
ing and coded aperture design. © 2017 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5002539

I. INTRODUCTION

Spatial light modulators (SLMs) are widely used in optical research to modulate light in a precise
and controllable manner. They have been used for beam shaping,1–7 computational imaging,8,9 the
design of compact high-dynamic range cameras10,11 and numerous other areas of research where
manipulation of the spatial distribution of light is beneficial such as polarization,12 pulse shaping.13

The application explored here utilizes an SLM as a Fourier plane filter. A Fourier plane is a plane
in an optical system where the Fourier transform of an input field exists. Points in the Fourier plane
are the spatial representation of the light’s direction, and by placing a mask in the Fourier plane these
directional components can be manipulated: their amplitudes can be modulated or relative phase
delay can be introduced between them. For example, consider a sample illuminated with a collimated
beam (one made of parallel rays). These parallel rays will converge to a bright point at the center of
the Fourier plane, rays scattered away from parallel will arrive at the Fourier plane some distance
from this central point. By introducing a mask into the system that obstructs the central bright spot,
a dark field image is created in which features of the object that have scattered light will be imaged
brightly against a dark background. Zernike phase contrast methods also employ Fourier plane masks
to enhance scattered light through manipulation of both its amplitude and phase.14

When using multiple Fourier filters, the ability to dynamically vary the Fourier mask without the
need for mechanical switching or scanning of filters is advantageous since it obviates the need for
mechanical registration and can be done rapidly. Broadly speaking, one type of technology commonly
used for this purpose is a liquid-crystal-based SLM that can rotate the polarization of incident light
at the pixel level, either in reflection or transmission. With the appropriate polarizing filters, such
SLMs can allow modification of phase and/or amplitude of the light. Although these methods are
dynamic and useful, the extinction ratio (contrast) is not 100 percent, frame rates in high resolution
commercial SLMs are limited (often to 60 Hz) and it can be difficult to precisely control only the
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amplitude without impacting the phase. Moreover, an SLM will typically perform as desired only for
a single wavelength of light.

Another SLM technology is the digital micro-mirror device (DMD) which operates by selectively
tilting tiny mirrors between two orientations to control the reflection of the incident beam. If collecting
optics are positioned to receive light from the DMD when it is in one of the two states a true pixel-
by-pixel binary control is created. DMDs allow rapid (kHz and beyond) refresh rates and work over
a broad spectrum. However, they allow only binary amplitude modulation of the field.

One challenge when using SLMs as dynamic Fourier filters is precisely locating the position of
the projected pattern precisely with respect to the center of the beam’s Fourier transform. Although
this could be accomplished by other methods, Bayesian adaptive exploration offers an approach that
is well suited to this type of task. While the focus here is limited to DMDs, the methods explored can
be readily adapted to other SLMs.

The physical setup, which will be discussed in detail in the experimental design section, allows
DMD pixels in the Fourier plane to be directed towards or away from a camera or power meter,
which then acquires an intensity measurement. The information gained by this measurement is then
used to estimate the parameters describing the beam’s size and location in the Fourier plane using
a Bayesian inference engine. A Bayesian inquiry engine is then used to choose the next location to
measure based on the maximization of the expected information gain.

Details of this method will be discussed at length in the Computational Methodology section.
The algorithm works through an iterative process switching DMD pixels on and off while taking
power measurements in order to determine the size and location of the beam with high precision
using the least amount of data possible.

A. Fourier optics

Neglecting polarization, a monochromatic beam of light can be represented as a complex field
U(r) where r denotes position. This can be expressed as the superposition of individual plane waves
each possessing a real amplitude an, phase delay δn, a dimensionless unit vector pointing in the
direction of propagation of the wave ûn, and a wave number k = 2π/λ, where λ is the wavelength
of the beam of light. Although a field would typically be represented by an integral over all possible
plane wave directions, a discrete set of plane waves will be assumed, and a summation used for
notational simplicity

U (r)=
N∑

n=1

anei[k(ûn ·r)+δn]. (1)

As the beam of light passes through, or reflects off of an object the individual plane waves are
perturbed. This perturbed field contains amplitude and phase components that would provide detailed
information about the object itself, with the amplitude describing the absorption of light and the phase
describing the thickness/depth.

However, light in the visible spectrum oscillates on the order of 4 � 8 × 1014 Hz which is too
rapid for the field to be directly measured with an imaging camera. As a result, only the time-averaged
amplitude or intensity I of the electric field is detected at any point. The intensity can be modeled as

I = |U |2 (2)

and is defined as the power per unit area striking a surface oriented perpendicular to the beam’s
direction of propagation. Note that typically only relative variations in intensity matter and imaging
cameras produce a measurement proportional to power per unit area (the exact proportionality constant
being unimportant). As a result of multiplying the field by its complex conjugate, the information
about the phase and direction of the complex field is lost. However, the Fourier filtering of a field can
allow its phase to be rendered as measurable variations in intensity.

A lens has the remarkable quality of performing a Fourier transform of the optical beam passing
through it. A simple system for Fourier filtering can be built by placing two identical lenses of focal
length f at a separation of 2f from each other, this results in a configuration known as a 4f system
illustrated in Fig. 1. Consider an input object at Σo illuminated by a normally incident plane wave,
such that the perturbed field from the object consists of a collection of plane waves with different
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FIG. 1. Graphical representation of a 4f system of lenses.

amplitudes and phases. The first lens Lt produces a Fourier transform of this field at the midpoint
between the lenses, Σt . The second lens Li undoes this Fourier transform, producing an inverted copy
of the field at Σi. The importance of this type of optical system is that it creates a Fourier plane
between the lenses that can be manipulated by physical means in order to create a Fourier domain
filter.

The Fourier transformation itself creates a map of the spatial frequencies of individual plane
waves. Consider a collection of individual plane waves represented by the field U leaving the object
Σo. Each plane wave passes through the lens Lt in different directions ûn, these directions translate
to different spatial frequencies directing each plane wave to a specific point at the Fourier plane Σt .
Plane waves traveling parallel to the optical axis converge to a point at the center of the Fourier plane,
and those with larger angles converge at points further from its center. The pattern that manifests
itself at the Fourier plane Σt is transformed back to the original complex field U after passing through
the second lens Li. The grouping of spatial frequencies at the Fourier plane allows selective inclusion
or exclusion of individual plane waves contained within the complex field if a mask is placed in that
plane.

At this point, it might be instructive to consider a crude technique utilizing Fourier filtering that
would recover the phase information lost to time averaging. If only two of the many plane waves that
make up the complex field could be isolated, for example by placing two pinholes in the Σt plane, the
phase difference between the two waves could be recovered. The intensity distribution in the image
plane Σi is then given by

I = a2
1 + a2

2 + 2a1a2 cos {k [(û2 − û1) · r] + (δ2 − δ1)} (3)

where the subscripts 1 and 2 indicate the two plane waves allowed through the Fourier domain mask.
Equation (3) describes the sum of the individual intensities a2

1 and a2
2 of the two waves and the

sinusoidal pattern resulting from the interference of the two waves.
If the intensity were measured with only one pinhole opened at a time, a2

1 and a2
2 could be

directly measured. A measurement with both pinholes opened as in Eq. (3) would then allow the
phase difference to be calculated from the resulting interference pattern. This can be readily achieved
with a DMD placed in the Fourier plane by turning on only two pixels on the DMD, individually and
then both together. This method could be extended to include all pairwise combinations of available
plane waves to determine the phase of the complex field, however this brute force approach is not
practical as it is highly inefficient, using all the detector pixels in three separate measurements to
obtain three scalar parameters and would require 2N-1 measurements to retrieve the phase differences
for N plane wave components of the field. More sophisticated algorithms exist that could use the
DMD as a Fourier filter to accomplish the same results more efficiently.15,16 Because knowing which
plane waves correspond to which DMD pixels is critical for these methods, it is important to precisely
locate the DMD within the Fourier plane. It is for this reason that the focus of the process developed
here is to assure this precise location.

Note also that Eq. (3) describes an intensity across the camera that is sinusoidal interference
pattern whose wavelength is λ/|û2 �û1| such that widely separated plane wave directions are required
to resolve sharp features at the camera. As a consequence, Fourier plane filters can also modify
the system’s resolution. By passing only light near the center of Fourier space, only large intensity
features can be produced at the camera, reducing the resolution of the image. Furthermore, due to
the directional nature of the interference pattern in Eq. (3), blocking the outer regions of the Fourier
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plane in the horizontal direction reduces horizontal resolution and in the vertical direction reduces
vertical resolution.17

B. Computational methodology: Inquiry and inference engines

The DMD consists of an array of ten micron square micro mirrors that can be individually
addressed and operated through Matlab. The mirrors exist in one of two states, they can tilt by twelve
degrees in a positive or negative direction relative to an axis parallel to the surface of the DMD.
Simple experiments can be performed that consist of engaging a micro mirror or a set of neighboring
micro mirrors and measuring the reflected intensity. Each experiment has the potential to provide
some information about the position and radius of the beam on the DMD.

The beam itself is modeled as a circle projected onto the planar surface of the DMD. This circle
is summarized by three model parameters: the x-position of the beam center x0, the y-position of the
beam center y0, and the beam radius r0. The goal is to learn the values of these model parameters that
best describe the beam on the DMD. This is accomplished by relying on the coupling of two software
engines: an inquiry engine, which decides which experiments to perform by flipping micro mirrors,
and an inference engine that learns all it can about the beam parameters from the data collected from
all of the experiments.

The inference engine relies on applying Bayesian probability theory along with all of the data
collected in a set of experiments to infer the three beam parameters. This is accomplished by employ-
ing a Monte Carlo sampling technique known as nested sampling,18 which explores the posterior
probability density of the three beam model parameters.

The inquiry engine utilizes samples drawn from the posterior probability density of the beam
model parameters to determine a set of optimal micro mirror locations on the DMD so that flipping
those micro mirrors would provide the greatest expected information gain to aid in the search for the
beam’s circle. In essence, the inquiry engine designs an optimal experiment to perform based on the
information provided by the proceeding experiments.

Although the computational details underlying the inference and the inquiry engines are described
in the following sections, an overall description of the algorithm structure is represented in Fig. 2.
The algorithm begins by flipping on all of the mirrors of the DMD one quadrant at a time in an
attempt to narrow down the search to one quadrant. It then records a uniformly distributed set of
intensity measurements from within that quadrant to seed the inference engine for the first iter-
ative loop. These initial data points are not required for the algorithm to converge,27,28 but they

FIG. 2. Bayesian inference and inquiry cycle. The inference engine estimates the parameter values that describe the beams
location and size, and the inquiry engine determines the highest quality measurement to take next.
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do help to decrease the time it takes to do so. The inference engine then estimates the parameter
values for the location and size of the beam utilizing the data collected so far. During this pro-
cess the inference engine collects samples from the posterior probability space to aid the inquiry
engine in its task of designing the next experiment or location to measure. If the estimated param-
eter values determined by the inference engine are within a prescribed uncertainty range then the
algorithm reports the values and terminates. If the values are not within this range the samples
recorded by the inference engine are passed to the inquiry engine so it can determine what loca-
tion on the DMD would provide the most informative data to return to the inference engine. The
algorithm then measures the light intensity of the locations determined by the inquiry engine and
passes that data back to the inference engine. This cycle will continue until the parameter val-
ues that are estimated by the inference engine fall within the uncertainty range prescribed by the
user.

1. Inference engine

There are number of excellent textbooks and review papers that provide a wealth of informa-
tion regarding Bayesian probability theory and data analysis. These include, but are not limited to,
Refs. 18–25. For this experiment, the interested reader should look specifically to Refs. 26 and 18
and especially Refs. 27 and 28 for additional information.

Bayes’ theorem is applied to the beam model M with its three model parameter values
θM = {(x0, y0), r0} given some data D. By taking the model M and the data D as the given context, one
can compute the degree (probability) to which the model M and the data D imply the hypothesized
model parameter values θM by

P (θM |D, M, I)=P (θM |M, I)
P (D|θM , M, I)

P (D|M, I)
. (4)

The first term on the right-hand side of Eq. (4), P (θM |M, I), is the prior probability, which
quantifies what one knows about the model parameter values θM conditional on one’s prior information
I as well as the fact that a particular model M has been hypothesized. The ratio on the right is
composed of two data-dependent terms: the likelihood P (D|θM , M, I) and the evidence P (D|M, I).
The likelihood represents the degree to which the model, its hypothesized model parameter values, and
the prior information could have resulted in the recorded data. As will be described in more detail, the
likelihood relies on the forward (or predictive) model, which, given the hypothesized model, predicts
what one would expect to observe in the course of an experiment. By comparing the predicted results
to the observed results (manifested as the data D) one can quantify the probability that a physical
situation described by the model could have given rise to the recorded data. The data-dependent
term in the denominator is called the evidence or the marginal likelihood. In parameter estimation
problems, one can conceive of this term as a normalization factor. But it can also be shown23 that the
evidence quantifies the degree to which the data D supports a given model M. This data-dependent
ratio of the likelihood over the evidence modifies the prior probability for the model parameter values
resulting in the posterior probability P (θM |D, M, I), which quantifies the degree to which the model,
the data and the prior information together imply the hypothesized model parameter values. In this
way, Bayes’ theorem acts as a learning rule, which updates one’s knowledge about a model after the
consideration of additional data.

The learning process must be jump-started by the assignment of prior probabilities for the model
parameter values. As will be described, the model parameters were assigned based on uniform
probability distributions so that the analysis is dominated by the data-dependent likelihood.

As described earlier, the beam’s location on the DMD is modeled as a circle with three parameters
[the center position (x0, y0) and the radius r0]:

θM = {(x0, y0), r0} . (5)

The inference engine is designed to estimate these three beam parameter values using data collected
from previous experiments and provide the inquiry engine with a set of posterior samples from which
it can determine the next optimal experiment. This is accomplished by working with a forward model
MC that describes the basic configuration of a circle (beam), and any data di collected with a power
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meter during the N previous light measurements made by flipping the micro mirrors at points (xi, yi)
on the DMD.

The model utilized by the inference engine is based on the assumption that a mirror within the
beams radius will produce a bright power reading if turned on, and a mirror outside of the beams
radius will produce a dark power reading when turned on. At the beginning of the experiment the
algorithm measures the dark field power reading and assigns a bright reading value that considers the
instruments noise level. When taking a power measurement, the algorithm assigns a value of fifty to
the reading if it is above the threshold, and assigns a value of twenty five for measurements below the
threshold. Although the power measurements themselves have units of (W /m2) the values assigned
by the algorithm have arbitrary units. The collective measurements are labeled as

D= {{(x1, y1), d1} , {(x2, y2), d2} , . . . ., {(xN , yN ), dN }} . (6)

Since the DMD consists of a discrete set of micro mirrors that can be precisely accessed, the positions
of the measurements (meaning the positions of the mirrors that are flipped) are assumed to be known
with certainty.

The prior probability P (θM |MC , I) for the circle’s parameter values were assumed to be uni-
formly distributed within the confines of the DMD (1024 X 768) and have a radius uniformly
distributed between twenty and three hundred DMD mirrors. These assumptions resulted in the
following normalized prior probability assignments

P (x0 |MC , I)= (xmax − xmin)−1 (7)

P (y0 |MC , I)= (ymax − ymin)−1 (8)

P (r0 |MC , I)= (rmax − rmin)−1 , (9)

where xmax = 1024, xmin = 0, ymax = 768, ymin = 0, rmax = 300, and rmin = 20.
In the context of an optics experiment it is assumed that the entire beam will be situated on

the DMD surface, however the algorithm only assumes that the center of the beam is confined to
the surface of the DMD and the radius of the beam is not constrained other than a maximum and
minimum size. This freedom allows for the possibility of the beam to be partially outside of the
DMD’s surface area, despite this freedom the algorithm would still be able to characterize the beam
as long as reasonable portion of the beam remained within the boundaries of the DMD. This relaxation
of the radius constraints not only increases the speed at which the algorithm operates, it also allows
the algorithm the ability to explore more of the probability density.

The probability density explored by nested sampling within the inference engine is also con-
strained by the likelihood P (D|θM , MC , I). The likelihood function quantifies the degree to which the
recorded intensities could have been generated by the model using a particular set of model parameter
values. A Gaussian likelihood function was used in this experiment. The general form of this function
for the discretized version used for this experiment is

P (D|θM , MC , I)= (2πσ2)−N/2 exp

− *
,

1

2σ2

N∑
i=1

(MC(xi, yi; x0, y0, r0) − di)
2+
-


(10)

where the forward model, MC , predicts the greatest intensity of 50 units if the micro mirror location
(xi, yi) is inside the hypothesized beam footprint at (x0, y0) with radius r0, and predicts the lowest
intensity of 25 units if the micro mirror location is outside of the hypothesized footprint:

MC(xi, yi; x0, y0, r0)=



50, if (xi − x0)2 + (yi − y0)2 ≤ r2
0

25, if (xi − x0)2 + (yi − y0)2 > r2
0 .

(11)

The simplest explanation of the likelihood function used here is, if the measured position is
within the hypothesized beam footprint then it expects that the measurement will be bright, and if
it is outside the hypothesized footprint it expects it to be dark. In this way the likelihood function
is a function of the intensity predicted by the model. Furthermore, the parameter σ in Eq. (10)
represents the expected squared deviation of the N number of measured values from the ideal values
predicted by the model MC in Eq. (11) and for the purposes of this experiment had a value of



125207-7 Wynne, Knuth, and Petruccelli AIP Advances 7, 125207 (2017)

FIG. 3. The samples, (or walkers) positions within the posterior probability space are determined by their individual parameter
values and thus are represented by circles. During the iterative process of nested sampling the samples move towards the most
likely set of parameter values to have produced the recorded data. The series of images shown represent the progress of the
samples during the final inference cycle using all of the recorded data.

five. The posterior probability Eq. (4) is proportional to the product of the prior probability and the
likelihood.

Nested sampling18 explores the posterior probability by creating and evolving a group of samples,
also called walkers Fig. 3, each of which is defined by its coordinates in the model parameter space
[(x0, y0), r0] so that it represents a single hypothesis. Nested sampling is designed to numerically
integrate the posterior probability via stochastic integration. However, it also allows one to compute
mean parameter values and their associated uncertainties from the posterior samples.

A more detailed explanation of nested sampling begins with the prior function creating the one
hundred individual samples that will explore the posterior probability space. Each sample represented
as circles in Fig. 3 are defined by the individual parameter values [(x0, y0), r0] that are randomly
selected from within the prior probability density Eqs. (7)–(9). The likelihood associated with each
sample is computed from Eq. (10) using the N number of data points recorded at that point. This value
quantifies the likelihood that the parameter values represented by the individual sample could have
produced the recorded data. The algorithm then determines the object that is the least likely to have
produced the data and looks to replace its parameter values with values that have a higher likelihood.
It chooses these new values by randomly exploring the volume around another more likely sample
and moving the sample in question to the new location. This procedure is repeated in an iterative
process that moves the samples inexorably towards the most likely parameter values as shown in
Fig. 3 (bottom right). During the process the algorithm stores the discarded sample values and uses
them to perform the integration as well as the mean model parameter values and their uncertainties
by taking weighted averages.18

Given the saved sample values generated by the nested sampling algorithm, a set of samples
can be generated from the posterior. These posterior samples, which provide a representative set of
possible model parameter values, are passed to the inquiry engine, which uses them to determine the
optimal location at which to take the next measurement.

2. Inquiry engine

The inquiry engine, armed with the posterior samples provided by the inference engine, looks
to determine the next position on the DMD to measure, or equivalently, the optimal experiment to
perform. Drawing on the theory provided by Ref. 26 one can consider the proposed experiment E
as taking a measurement at position (xe, ye). Although the measurement value or the circle’s true
parameter values are not known, the probability of the measured intensity de in terms of the joint
probability of de and θM can be written as



125207-8 Wynne, Knuth, and Petruccelli AIP Advances 7, 125207 (2017)

P (de |D, (xe, ye) , I)=
∫

P (de, θM |D, (xe, ye) , I) dθM . (12)

Employing the product rule Eq. (12) can be written as

P (de |D, (xe, ye) , I)=
∫

P (de |θM , D, (xe, ye) , I) P (θM |D, (xe, ye) , I) dθM . (13)

This can be simplified by noting that if the model parameter values θM were known then the data D
would not be needed, so the dependence of the first probability under the integral for de on D can be
omitted:

P (de |D, (xe, ye) , I)=
∫

P (de |θM , (xe, ye) , I) P (θM |D, (xe, ye) , I) dθM . (14)

Probability theory does not allow one to make a precise decision. To decide on an optimal
measurement location (x̂e, ŷe), one needs to define a utility function U(outcome, action) which can
be optimized with respect to the probability of the expected measured intensity de

(x̂e, ŷe)=
∫

P (de |D, (xe, ye) , I) U (de, (xe, ye)) dde. (15)

where the measurement location (xe, ye) represents the action and the measurement result de represents
the outcome.27 Since the aim is to take measurements that maximize the expected information gain,
the Shannon information was employed as the utility function

U (de, (xe, ye))=
∫

P (θM |de, D, (xe, ye) , I) logP (θM |de, D, (xe, ye) , I) dθM . (16)

By writing the integrals for the joint entropy for θM and de two ways, it can be shown26 that the
experiment that promises to provide the most information is the one that maximizes the entropy of
the distribution of possible measurements:

(x̂e, ŷe)≡ argmax(xe,ye)

(
−

∫
P (de |D, (xe, ye) , I) logP (de |D, (xe, ye) , I) dde

)
. (17)

That is, the best place to measure is the place where you are least certain as to what the result will be.
The inquiry engine works by considering each possible measurement location (xe, ye) and uses

the set of posterior samples provided by the inference engine along with the likelihood Eq. (10)
to make a set of predictions of what de could be measured. This set of predictions of de for each
measurement location represents a set of samples from the probability density of de. From this, the
entropy of the density of de can be estimated by constructing an optimal histogram model of the
density function from the samples,29 and the experiment E = (x̂e, ŷe) with the greatest entropy is
selected for the next experiment, which will in turn provide additional data for the inference engine
completing the inference-inquiry learning loop. This inference-inquiry process is repeated until the
model parameters are estimated within a pre-defined tolerance.

II. EXPERIMENT

A. Experimental design

The optical setup Fig. 4 consisted of a linearly polarized Research Electro-Optics Inc. model
30995 HeNe laser that operated at 17 mW with a wavelength of 633 nm. The laser beam passed
through a spatial filter consisting of microscope objective and a five µm pinhole aperture. The beam
then passed through an iris and a f=50 mm parabolic lens collimating the beam. The beam passed

FIG. 4. The optical setup with the beam entering from the right and focusing on the DMD in the image Fourier plane.
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FIG. 5. A DMD array of micro mirrors (a) and their function (b) (Courtesy of Texas Instruments).

through the remaining lenses with the DMD placed at the Fourier plane. The DMD used for the
experiment was manufactured by Texas Instruments Incorporated and had a resolution of 1024 X 768
mirrors and was controlled by the Vialux ALP-4.1 Control Suite by Pixel Precision.

The DMD itself consists of an array of 13.68 micron micro mirrors Fig. 5(a) that can be indi-
vidually addressed and operated through Matlab. The mirrors exist in a state of either tilting twelve
degrees in the positive or negative direction Fig. 5(b). In the optical setup Fig. 4 the DMD was held
at 12 degrees in relation to the optical axis allowing it to either reflect the beam back through a beam
splitter to produce an image at the Point Gray camera or in the other direction to the Thorlabs digital
power meter. This selection could be accomplished at the pixel level creating a very precise binary
filter at the Fourier plane.

The algorithm begins by directing all of the mirrors on the DMD away from the power meter
and then towards it to establish a baseline dark and full light reading. Armed with these values the
algorithm divides the DMD into four sections to facilitate a coarse search for the beam’s location.
It does this by directing all of the mirrors in a particular quadrant towards the power meter and
eliminates quadrants that do not produce a reading above the dark baseline. This allows the algorithm
to quickly narrow the playing field down considerably. This process could be continued but it was
decided to place the burden of locating the circle on the algorithm.

FIG. 6. The inquiry engine produces an entropy map that displays the regions in the posterior probability space that would
produce the most informative measurement results shown as a lighter region of gray (a). A closeup view of the region of
interest (b) shows points that have been tested but were dark (black squares), points that were light (white squares), and the
four points that would yield the most information in the search for the beam (white triangles). These points would then be
measured and added to the total data set and passed back to the inference engine.
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TABLE I. Final Parameter Values.

Parameter Value Uncertainty

x0 (mirrors) 304 .001
y0 (mirrors) 457 .002
r0 (mirrors) 16 .01

The algorithm then selects between one and four testing points that are uniformly distributed
within the remaining playing field, this is done to seed the inference engine with initial data further
reducing the overall time required for the task. The inference engine then uses this data to estimate the
beam’s size and location while exploring the posterior probability density. In addition to providing
the estimated parameter values with their uncertainties, the inference engine provides samples drawn
from the posterior probability density that will be used by the inquiry engine to determine the next
experiment.

The inquiry engine then uses the samples provided by the inference engine to create a map of
the expected information gain at each point in the playing field illustrated graphically in Fig. 6. The
lighter shades of gray represent higher regions of entropy and thus points sampled from within these
regions will provide data with the highest probability of information gain. The algorithm then selects
several points from the highest entropy region represented as triangles in Fig. 6 and measures their
intensity values. It then adds the new data to the data set and passes it all to the inference engine for
consideration. This process of inference and inquiry continues until the data collected provides an
estimation of the beam’s size and position with an uncertainty that is below a specified precision.
When the specified precision is reached the algorithm reports its final results and tests the validity of
the chosen parameter values.

B. Experimental results

The algorithm was run with the system configured as illustrated in Fig. 4 without the target. This
allowed only the collimated illuminating beam to be considered. The collimated beam travels nearly
parallel to the optical axis creating a very concentrated point of light at the center of the Fourier

FIG. 7. Shows the resulting image of a high resolution image of the Thorlabs target when the DMD creates a circle of mirrors
that starts at r=2 mirrors (a) and then increases to r=30 mirrors (b), then to r=50 mirrors (c), then to r=75 mirrors (d) then to
r=100 mirrors (e).
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plane. Although the beam of light is most accurately modeled as a wide Gaussian beam passing
through a circular aperture, it is accurate enough for the purposes of this experiment to model it
as a circle of uniform intensity. The central region of the beam propagating through the system is
nearly circular, and the utilization of a more complicated model would not have provided significantly
superior parameter estimations.

The experiment produced the final parameter estimates listed in Table I. The search required fif-
teen cycles of inference and inquiry producing a total of one hundred and sixty nine data points;
this number includes the initial seed data distributed throughout the 512 x 384 mirror playing
field.

In an effort to verify the size and position of the beam at the Fourier plane a series of tests
were performed. The system first directed a circle of mirrors determined by the inference engine to
be the beam’s size and location towards the power meter. As expected the power meter recorded a
power level equal to the initial full light reading recorded at the beginning of the experiment. It then
directed those same mirrors away from the power meter and the remaining mirrors toward the meter.

FIG. 8. An image of the Thorlabs target was captured by the camera (b) and (c) and a Fourier transformation was compu-
tationally performed with Matlab (a). A Fourier plane mask was then applied (d), (g) and (j), both computationally (center
column) and physically with the DMD (right column). It can be seen that the resulting images are remarkably similar which
proves that the DMD is acting as a functional Fourier filter with proper alignment.
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This resulted in a power reading equal to the dark baseline reading taken at the beginning of the
experiment. This initial procedure supports the claim that the algorithm had correctly determined the
size and position of the illuminating beam.

In order to further verify that the center and size of the beam in the Fourier plane had been
correctly characterized, an image of a Thorlabs resolution target was acquired with this system. A
variety of Fourier plane filters were then applied both computationally and physically using the DMD.
The parameter values used for the physical manipulation of the Fourier plane by the DMD were those
provided by the inference engine.

A procedure was then performed to verify the concentricity between the determined beam loca-
tion and the center of the physical Fourier plane. As described in Section 1.A., resolution depends
on the separation between mirrors that are redirecting light to the camera: the resolution of features
oriented perpendicular to the mirror separation improves as mirror separation increases. Therefore, a
series of circles were created on the DMD at the beam’s determined location with a radius that varied
from r=0 to r=100 mirrors in ten mirror increments until the entire image was in focus Fig. 7. The
resulting images were recorded at each iteration for analysis. If the circle of mirrors and the beam were
concentric, the resolution target features in both the horizontal and vertical planes should improve
at the same rate. This predicted behavior is exactly what was recorded verifying the concentricity of
the beam.

In order to verify the alignment of the system, filters were used to reduce the resolution in two
orthogonal directions in both simulation and experiment. The Fourier masks used, and the resulting
Matlab images are displayed in the first two columns of Fig. 8. The third column of Fig. 8 is the
result of the same mask displayed on the DMD at the Fourier plane. The mask shown in Fig. 8(d)
with results in Figs. 8(e) and (f) is designed to produce a blurry image in the vertical direction while
preserving horizontal sharpness. The mask shown in Fig. 8(g) with results in Figs. 8(h) and (i) is
designed to blur in the horizontal, but not vertical direction. The mask shown in Fig. 8(j) with results
in Figs. 8(k) and (l) is designed to remove the incident beam and preserve only light that has been
perturbed by the sample, highlighting its edges on a dark background. There is good agreement
between the simulated results and the experimental results. However there are some discrepancies
that are likely due to stray reflections and diffractive effects not included in the simulation. This is
particularly evident in Figs. 8(k) and (l).

III. SUMMARY

The size and location of a coherent beam of light reflecting off of a 1024 x 768 DMD which
was located in the Fourier plane of a 4f lens system was estimated utilizing a Bayesian inference
and inquiry algorithm. The search was facilitated by measuring the power of the light reflected off of
individual mirrors of the DMD which were selected for measurement by the algorithm.

The algorithm began with a coarse binary search which narrowed the remaining area to one
quarter of the entire DMD, it then measured one hundred and eleven evenly spaced points within the
remaining area to obtain initial data to work with. The algorithm then performed fifteen cycles of
inference and inquiry to select fifty eight points within the search area that it determined to provide
the most information for the search.

These results are in sharp contrast to the expected performance of a brute force search. If one
were to consider a playing field that was not much larger than the circle itself, a brute force search
would require a considerable portion of the circle’s approximately eight hundred mirrors to be tested
in order to characterize the circle’s parameters to the precision realized with the algorithm. In contrast
the algorithm itself would require approximately ten cycles of inference and inquiry to accomplish
the same task.

This marked improvement in performance is due to the learning capabilities of Bayes’ theorem. It
enables the algorithm to learn from the data collected and consider which experiment will provide the
most information to further its knowledge. Although in the described experiment, this capability has
been applied to finding a circle of light within a field of mirrors, the same concept can be applied to any
situation that requires a system to not only perform data analysis but to also design the experiments
autonomously.
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