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Abstract 

 According to the central dogma of biology, DNA is transcribed into mRNA.  This mRNA 

is then translated into a protein.  Translation of mRNA into protein is extremely precise, and as 

such is controlled by many different factors, both spatially and temporally.  This phenomenon is 

known as translation control.  Many times, this regulation is influenced by secondary structures, 

often in the form of stem loops on the mRNA.  These secondary structures found on mRNA, 

specifically in the 3’Untranslated Region (3’UTR) of mRNA, can influence cellular gene 

expression.  These genes can be upregulated or down regulated, depending on stem loop 

function.  When trans-acting regulatory factors, such as RNA binding proteins (RBPs) bind to 

the 3’UTR mRNA, repression or activation of the gene can be initiated; translation can also be 

controlled by cis-acting factors.  Our research focused on determining whether the 3’UTR 

secondary structures played a role in translation control.  To study the function of these 

secondary structures, we deleted stem loops on 3’UTR mRNA in a specific gene, known as polar 

granule component (pgc), using Drosophila melanogaster as a model organism.  The phenotypes 

of several deleted stem loop mutants were observed via antibody staining.  Using western blot 

and qRT-PCR experiments, the level of expression of the pgc protein and pgc mRNA was 

quantified, to determine if this deletion had an effect in translation control in both embryogenesis 

and oogenesis, two developmental cycles in D. melanogaster. 
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Introduction 

 The central dogma of biology states that DNA is transcribed to messenger RNA 

(mRNA), and this mRNA is translated into a sequence of amino acids to form a protein.  More 

precisely, translation is the process by which the genetic code carried in the mRNA is decoded to 

produce a specific sequence of amino acids that will eventually form a protein.  Translation has 

been shown to be controlled at multiple layers, both spatially and temporally.  Translational 

regulation has also been shown to be capable of altering genetic expression.  Both cis acting 

elements and trans acting factors can act upon a gene and affect translational regulation.  A cis 

acting element is one that is found directly on the transcript, and a trans acting factor is one that 

acts on the transcript (Gebauer, Preiss, & Hentze, 2012).  A gene is made up of several important 

components, including a 5’ Untranslated Region (UTR), promoter, coding sequence (cds), 

3’UTR, and a polyA tail.  The nucleotides found in the coding sequence are the part of the gene 

that will be directly transcribed to mRNA, and then translated to form a protein.  However, the 

other components of the gene, specifically the 3’UTR has been shown to play a role in 

translational control.  In the 3’UTR, certain cis acting elements are found.  Trans acting factors 

can recognize the cis acting elements in the 3’UTR.  This recognition has been shown to have a 

critical role in translation control.  It has been shown that the 3’UTR mRNA is sufficient and 

critical in the regulation of translation (Rangan et. al, 2009). 

 Trans acting factors, such as RNA binding proteins, can act upon this 3’UTR.  It has been 

previously shown that trans acting factors are able to recognize specific mRNA sequences, to 

bind to the mRNA and control translation.  Trans acting factors include RNA binding proteins, 

as previously mentioned, miRNAs, or RNA-RNA interactions (Kramer & Carrington, 2011).  
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The question posed is whether the secondary structure in the 3’UTR is an important 

factor in this protein binding.  In previous research, completed by Katarina Tlučková, a 

bioinformatics approach was used to probe for the structure of the 3’UTR.  It was determined 

that the 3’UTR forms secondary structures with multiple stem loops.  These stem loops were also 

determined to be implicated in RNA protein binding.  In this research, the specific secondary 

stem loops structures found on the 3’UTR were focused on.  These structures have been aptly 

named “stem loops,” due to their loop-like structure on the mRNA.  It was hypothesized that 

these stem loop structures influence the translational of mRNA into a protein.   

The model organism, Drosophila melanogaster, more commonly known as the fruit fly, 

was used to understand the regulation of translation.  D. melanogaster was a good model 

organism to use, as studies on this organism can be conducted very quickly, due to their short life 

cycle that lasts only several weeks (Jennings, 2011).  Additionally, the developmental processes 

of D. melanogaster can be widely applied to many other organisms, as these processes are 

conserved.  Two processes, embryogenesis and oogenesis, were investigated to address 

translational control.  In the early development of the embryo, there are cells known as the 

primordial germ cells.  These cells are the first to specify and first to form in D. melanogaster.   

Primordial germ cells give rise to the germ line stem cells.  These cells will eventually give rise 

to the haploid gametes, or the sperm and the egg.  Germ line stem cells can also replenish 

themselves (Dansereau & Lasko, 2009).  For primordial germ cells to give rise to the germ line 

stem cells, a specialized area of the embryo known as the germ plasm is required.  All organisms 

contain some version of this germ plasm.  In the germ plasm, there is no transcriptional input; 

only translation occurs in this area.  In D. melanogaster, when germ line stem cells divide, one 

daughter cell becomes a sperm or an egg (depending on the sex of the organism) and the other
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daughter cell becomes another germ cell, which can continually repeat this process. Due to this, 

the germ line stem cells are often referred to as “immortal cells.”  Germ cells contrast somatic 

cells, or body cells, in which both daughter cells become somatic cells that will eventually die 

(Lehmann, 2016). 

The primordial germ line cells are stem cells that provide a constant supply of gametes to 

the D. melanogaster.  In a female fly, oogenesis begins with the formation of a 16-cell cyst made 

of interconnected germ cells.  During oogenesis, maternal RNA is produced by the mother and 

deposited into the developing embryo.  This RNA is crucial for the development of the embryo.  

Many different RNAs are included in this deposited maternal RNA.  The localization and 

expression of these RNAs is controlled both spatially and temporally.  One of these RNAs is 

known as polar granule component, or pgc (Nakamura et al., 1996). 

Pgc was used as the studied gene of interest, as translation of this maternally deposited 

RNA is highly regulated.  During embryogenesis, certain maternally deposited RNAs begin to 

localize at the pole cells of the embryo, or the germ plasm.  These localized pole cells are the 

cells that will eventually form the germ cells of the next generation of D. melanogaster.  This 

deposited mRNA is required for development of the germ cells, as germ cells are formed by 

translation of proteins from maternal mRNAs.  No transcription occurs in the germ plasm.  Pgc 

is an important maternal RNA, as this gene is a global transcription silencer.  Meaning, that in 

cells in which pgc is translated, there is no transcription of other genes.  This transcriptional 

silencing ensures that the germ line in D. melanogaster is properly maintained and differentiation 

of these germ cells to somatic cells does not occur (Flora et al., 2018).  In the early stages of 

development, the oocyte is made of undifferentiated stem cells which can differentiate into any 

type of specialized cell.  In the embryo, pgc is expressed only in the pole cells, as these are the 
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cells that will make up the next generation.  In pgc mutants, the germ cells can transcribe somatic 

genes, which will cause the germ cells to exit their undifferentiated state, and the germ plasm 

will be lost, causing sterility.  

Pgc RNA is expressed constitutively throughout oogenesis and embryogenesis.    In later 

stages of embryogenesis, pgc RNA has localized to the pole cells.  However, pgc protein is 

expressed during two specific time points; once during oogenesis and once during 

embryogenesis.  Experiments can be conducted at these developmental time points of oogenesis 

and embryogenesis, to determine the effects of pgc 3’UTR mRNA secondary structure.  This 

makes pgc a choice gene to study for our experiments, as its translation from mRNA to protein is 

highly controlled and regulated, as indicated by its expression during two specific time points. 

The 3’UTR portion of pgc mRNA was the area of interest in these experiments.  Since 

the 3’UTR has been implicated to be both required and sufficient in translation control, and pgc 

mRNA is required for proper propagation of the germ line stem cells, this pathway can be used 

to help understand the necessity of the stem loops found on the pgc 3’UTR mRNA.  It was 

hypothesized that RNA binding proteins interact with these stem loops on the pgc 3’UTR mRNA 

and allow the regulation of the germ line stem cells to occur. 

In our experiments, transgenic flies were prepared with a reporter gene.  The pgc 3’UTR 

mRNA was fused with green fluorescent protein, or GFP.  This allowed the expression of pgc 

protein to be tracked with the expression of this fluorophore.  Each fruit fly embryo was injected 

with nos 5’UTR-HA-GFP-ΔSL pgc 3’UTR.  ΔSL (deleted stem loop) represents the portion of 

the gene that will contain a deleted stem loop.  Nanos (nos) was used as a promoter to ensure that 

this pgc transcript was always translated.  Specific stem loops found on the pgc 3’UTR mRNA 

were deleted, to determine whether these stem loops played a role in translation control during 
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both oogenesis and embryogenesis.  Using ovaries and embryos collected from D. melanogaster 

with certain stem loop structures deleted, the implication of these stem loops could be 

determined.  On pgc 3’UTR mRNA, there are ten different stem loop structures.  My research 

focused on a specific number of these stem loops.  Below is a picture of all ten of the stem loops 

that were determined to be found in the pgc 3’UTR mRNA.  Depending on the changes in 

protein and mRNA expression that were detected after deletion of a stem loop from the pgc 

3’UTR mRNA, then it could be concluded that this stem loop is required for translation control. 

 

Figure 1: This figure shows a picture of the pgc 3’UTR mRNA, and the stem loops found on 

this structure, as determined by probing methods, combined with a bioinformatics approach.  

This research was conducted by my colleagues. 

 One of the stem loops, stem loop 10, has been implicated to have a potential binding site 

for a known RNA binding protein.  This protein is a YTH protein, with a YTH domain.  This 

protein domain is highly conserved and has been previously shown to remove transcripts of 

meiosis-specific genes that are expressed in mitotic cells.  In yeast, the YTH domain recognizes 

the specific sequence, shown in the figure below (Zhang et. al, 2010).  A similar sequence is 

found on stem loop 10.  This protein is hypothesized to recognize and bind to stem loop 10.  

After binding, it will recruit other complexes to perform their role.  If this protein is not bound to 

the stem loop, this process is much slower.  Drosophila have two known YTH proteins, CG6422 

and YT521B (Lence et al., 2016).  In our experiments, protein YT521B was focused on.  Three 

different flies with YT521B mutants were analyzed.  CRISPR-Cas mutant flies from an outside 
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lab were acquired, labeled NP1, NP2, and NP3.  All three of these flies had a frameshift 

mutation, making them incapable of producing the YT521B protein.  The YT521B mutant flies 

were crossed with our flies from the lab that carry the pgc transgene, to see how the pgc gene is 

affected when this protein cannot be normally produced by the fly.   

 

A. 

 

B. 

 

 

 

 

Materials and Methods 

Apple Juice Plate Production 

 Two separate solutions were prepared to create apple juice plates.  Solution A contained 

22.5 grams of bacto-agar and 0.75 L of dH2O.  This solution was autoclaved with a stir bar for a 

20 and 10 minute cycle.  Solution B contained 250 mL of apple juice and 25 grams of dextrose.  

This solution was heated and stirred until both components were completely mixed.  After 

Solution A has been autoclaved and Solution B has been mixed, they were added together while 

Figure 2A: Shows the 

conserved sequence 

domain that is recognized 

by the YTH protein. 

Figure 2B: Displays the 

sequence found on stem 

loop 10, that was 

hypothesized to recognize 

and allow binding with the 

YTH protein, YT521B. 

Stem Loop 10 
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mixing.  Next, 10 mL of 10% tegosept in ethanol was added to this mixing solution.  After 

thoroughly mixed (should take about 5-10 minutes), this solution can be poured into petri dishes.  

After these petri dishes containing the apple juice solution cooled they were stored in 4℃, for 

long-term storage. 

Embryo Collection 

 As many flies as possible were fattened in bottles supplemented with lyophilized yeast 

overnight at 25℃ or 29℃.  Flies that were four days old were optimal, with a 3:1 ratio of 

females to males.  Next, a yeast paste was prepared.  The yeast should have enough deionized 

water added to it so that it was a consistency equivalent to toothpaste.  This yeast could be stored 

at 4℃ until it is used.  The end of serological pipette was used to put a dollop of yeast paste on 

an apple juice plate and was spread. The flies to be analyzed were placed in a fly cage with an 

apple juice plate with yeast on the bottom of the cage.  This cage was stored in 25℃ for 2 hours.  

The apple juice plates were then removed from the cages.  50% bleach and 50% deionized water 

was poured over the apple juice plates and incubated at room temperature for five minutes.  The 

bleach solution was then poured into small tube with a mesh net at the bottom, allowing the 

embryos to be caught.  Water was used to rinse the plates, until all the embryos had been 

removed from the apple juice plates and transferred into the mesh net.   

Ovary Dissection 

 Flies were first sorted to separate male and female flies.  Female flies for dissection were 

placed in bottles with yeast in 25℃ overnight to fatten.  The next day, flies were anesthetized 

using carbon dioxide.  The flies were placed into a crystallizing dish in a PBS solution.  Fine 

needle tweezers were used to separate each egg chamber from one another, while the entire 
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ovary was held at the base with the tweezers.   Visualization of the ovaries for dissection was 

obtained by using microscope.  The ovaries from about 20-30 per fly line were collected and 

placed into a 1.5 mL Eppendorf tube in PBS solution.  Siliconized tubes were used to prevent the 

ovaries from sticking to the sides of the tube.  These ovaries were frozen at -80℃ until needed 

for further use. 

Immunohistochemistry (Embryos) 

 Once embryos were collected onto the mesh net, this net was transferred into a glass 

scintillation vial that contained 1 mL of 1xPBS, 1 mL of 37% formaldehyde, and 8 mL of 

heptane.  The net was swirled around so the embryos were fully removed from the net and 

transferred into the solution.  This vial was shaken was the shaker gently for 40 minutes at 125 

rpm.  Next, the lower formaldehyde phase was removed from solution with a Pasteur Pipette.  It 

was important to ensure that all formaldehyde was completely removed, as it was key to getting 

a good yield of embryos falling down in the methanol step.  Next, the vial was tilted to the side 

to ensure that all the formaldehyde was removed from the solution.  Then, 8-10 mL of methanol 

was added to the vial.  This solution was then shaken vigorously on the shaker for two minutes.  

The embryos that had fallen to the bottom of the vial were transferred to a 1.5 mL Eppendorf 

tube.  The embryos were then washed in 0.5 mL of methanol 2-3 times over a 10 minute period.  

The embryos can then be stored in methanol at -20℃ in 1 mL of methanol, until needed.  When 

the embryos were needed, they were rehydrated in PBST (PBS/ 0.2% tween) for 3-5 minutes at 

each step on the shaker.  In the first step, a 7:3 ratio methanol to PBST was used to rehydrate.  In 

the second step, a 1:1 ratio of methanol to PBST was used to rehydrate.  In the final step, a 3:7 

ratio of methanol to PBST was used to rehydrate.  The embryos were then blocked in BBT (50 

mL of 1xPBST and 500 mg of BSA) in 30 minute time periods, four times.  The embryos were 
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incubated overnight while in 4℃ while rocking in BBT/1°Abs.  The next day, the solution was 

aspirated and the following washes were performed.  1 mL BBT/2% serum was used to wash the 

embryos for 1x10 minutes, 1x20 minutes, and 2x30 minutes.  The embryos were the incubated at 

room temperature while rocking in BBT/2% serum/2°Abs.  Next, the embryos were washed with 

1xPBST for 1x10 minutes and 5x20 minutes.  Then, 1 drop of VectaShield solution was added.  

The embryos were then added to a slide, a coverslip was added, and the coverslip was sealed 

with nail polish.  These slides can be stored at 4°C, until one was ready to image the embryos.   

Immunohistochemistry (Ovaries) 

 Collected ovaries were taken from -80℃ and were fixed at room temperature for 30 

minutes in 500 μL of Formaldehyde (methanol free).  If the ovaries were to be stored after this 

step, they were washed with 1 mL of 1xPBS three times for five minutes at room temperature 

and stored at 4℃.  Next, the PBS was removed and 1 mL of permeabilizing solution (made of 

PBST and 1% Triton-X-100) and rotated at room temperature for one hour.  Then, the PBST and 

Triton-X-100 solution was removed and replaced with BBT (PBST + 1% BSA).  The ovaries 

were blocked in BBT for more than two hours at room temperature, while rotating.  They could 

also have been blocked at 4℃.  Next, the BBT was removed, and replaced with primary antibody 

diluted in 0.5 to 1 mL of BBT.  This was incubated overnight at 4℃ while rotating.  Then, the 

primary antibody was removed, and the ovaries were washed at room temperature while rotating 

with several different washes.  The first was for 10 minutes with BBT.  The second was for 20 

minutes with BBT. The third was for 30 minutes with BBT.  And the final wash was for 30 

minutes with BBT/2% normal donkey serum.  One mL of each solution was used in these 

washes.  Then, the secondary antibody was added to the solution.  The serum used was from the 

source in which the secondary antibody was generated.  The BBT/serum wash was removed, and 
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the secondary antibody (which contained a fluorescent marker) was added.  This was incubated 

at room temperature while rotating, or overnight at 4℃.  Next, the ovaries were washed in PBST 

5 times, each wash lasting 10 minutes.  After, the ovaries were resuspended in 100 μL of 

mounting solution.  The mounting solution was made of 50% glycerol and 0.2% DABCO.  The 

ovaries sat in this solution for 30 minutes to 1 hour.  Finally, this solution was mounted on a 

slide and a coverslip was added.  The slip can be sealed with nail polish, after excess liquid was 

absorbed.   

Western Blot 

 Protein from embryos or ovaries was first prepared.  The ovaries and embryos were 

collected via the previously mentioned two methods.  The ovaries or embryos were homogenized 

at 4℃ in 50 µL of lysate solution.  Next, this lysated material was spun down at 4℃ at full speed 

in the centrifuge for fifteen minutes.  Once done centrifuging, there was a top layer, middle layer, 

and a pellet.  The middle layer, containing the protein, was carefully removed and put into a new, 

clean, labeled 1.5 mL centrifuge tube.  A Bradford Assay was conducted, to determine the 

concentration of protein in each sample.  The Bradford Assay allowed the creation of a curve of 

absorption vs. known concentration, and the absorption of our samples were compared to this 

curve in order to determine the exact concentration of each sample.   

 In test tubes, protein extract, water, and a mixture of Loading Dye: BME in a 9:1 ratio 

was mixed together.  3.75 µL of LD:BME mixture was be added to each test tube.  A total of 15 

µL of solution was be present in each test tube.  These samples were spun down, and incubated 

at 95℃ for five minutes. Next, the gel was set up for the western blot.  1X sodium dodecyl 

sulfate (SDS), an anionic detergent, was added to the apparatus, as this was the solution in which 

the gel was run.  5 µL of ladder was loaded into the first gel well, and 15 µL of each sample was 
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subsequently added after the ladder.  The gel was run at 100 V for 1 hour.  After the gel had 

finished running, it was transferred, in transfer buffer, onto a thin nitrocellulose membrane.  The 

transfer sandwich was assembled in the following order: sponge, two transfer papers, gel, 

nitrocellulose membrane, two transfer papers, and sponge.  It was ensured that the gel was 

closest to the negative side of the apparatus, and the membrane was closest to the positive side of 

the apparatus.  The transfer apparatus was then surrounded by ice, a stir bar was added, and the 

transfer was allowed to run at 100 V for one hour. 

 After the transfer was complete, the membrane must be blocked with 5% milk (10 grams 

of powdered milk and 200 mL of PBST) for two hours at room temperature.  Next, the 

membrane was washed with primary antibody diluted with 5% milk (3.3 µL of Rat HA antibody 

with 10 mL of 5% milk) for one hour at room temperature, or overnight at 4℃.  The membrane 

was then rinsed with 0.5% milk at room temperature, and the secondary antibody was prepared.  

The membrane was washed with the secondary antibody diluted with 5% milk (2 µL of Rat HRP 

and 10 mL of 5% milk) for one hour at room temperature.  The membrane was washed with 

PBST at room temperature and imaged.   

 The membrane was blocked for two hours with 5% milk once again at room temperature, 

and a second antibody staining was completed.  After blocking, the membrane was washed with 

a primary antibody solution diluted with 5% milk (2 µL of Rb Vasa and 10 mL of 5% milk) for 

one hour at room temperature.  The solution was washed with 0.5% milk at room temperature, 

and then the membrane was washed with the secondary antibody diluted with 5% milk (2 µL of 

Rb HRP and 10 mL of 5% milk) for one hour at room temperature.  Finally, the membrane was 

washed with PBST at room temperature, and imaged for a final time.
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qRT-PCR 

 The previously collected embryos or ovaries were taken and 100 μL of Trizol reagent 

was added.  This solution was then homogenized with a pestle.  900 μL of Trizol was added for a 

total volume of 1 mL.  The homogenized tissue was incubated at room temperature for five 

minutes.  Then 200 μL of chloroform was added to the solution, and the tubes were covered 

tightly and shaken for 15 seconds.  The samples were then incubated at room temperature for 5 

minutes.  After incubation, the solution was centrifuged at 13,000 x g for 20 minutes at 2 to 8°C.  

450 mL of the colorless aqueous phase, containing RNA, was removed and added to a fresh 1.5 

mL Eppendorf tube.  45 μL of sodium acetate (10%), 900 μL of 100% ethanol, and 1 μL of 

glycol blue was added to the tube and was mixed.  The sample was incubated at room 

temperature for 5-10 minutes.  The sample was moved to -20°C or -80°C for 1-2 hours.  The 

sample was centrifuged at 13,000 x g for 20 minutes at 4°C.  The RNA precipitate formed a 

pellet on the side and bottom of the tube.  The RNA pellet was washed with 500 μL of 75% 

ethanol, while vortexed.  The sample was centrifuged at 13,000 x g for 5 minutes at 4°C.  The 

RNA pellet was dried at room temperature for 20 minutes by air-drying.  All ethanol was 

removed with a P20 before air drying.  After 10 minutes, excess ethanol was removed again.  25 

μL of water was added to the RNA pellet.  A micropipette was used to facilitate dissolution of 

the pellet at 50°C for 10 minutes.  The RNA sample was then Nano-dropped.  A 10 ug aliquot of 

nucleic acid was added to a 1.5 mL microcentrifuge tube.  The volume was brought up to 17 μL 

with RNase free water.  2 μL of 10X TURBO Dnase buffer was added to the solution.  Then, 1 

μL (2 U) of TURBO Dnase was added to the solution.  The solution was incubated at 37°C for 

30 minutes.  The 10X Dnase Inactivation Reagent was vortex and 2 μL of this solution was 

added to the reaction.  The reaction was incubated at room temperature for 5 minutes, while 
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occasionally flicking the tube.  The solution was spun down at 10,000 x g for 1.5 minutes.  After   

centrifugation, the supernatant was transferred to a fresh tube.  Nano-drop was again performed, 

using the RNA sample and 1 ug of RNA in a First-Strand cDNA Synthesis Reaction.   

 In a PCR tube mix together 1 μL of of oligo(dT), 1 μL of dNTP mix, X μL RNA (1-5 ug 

total RNA), and 10 μL nuclease-free water.  This sample was incubated at 65°C for 5 minutes, 

then incubated on ice for at least 1 minute, and was spun briefly.  Then 4 μL of 5x First-Strand 

Buffer, 1 μL DTT (0.1 M), 1 μL RnaseOUT (40 U/ μL), 1 μL SuperScript III RT (200 U) or 1 μL 

of nucelase-free water (for -RT control).  This solution was mixed by pipetting gently, then 

incubated at 50°C for 1 hour.  Then the sample was incubated at incubated at 70°C for 15 

minutes and placed on ice.  This could be stored at -20°C, until needed for further use.  In a PCR 

tube, 19,875 μL of nuclease-free water, 2.5 μL of Taq DNA Polymerase PCR Buffer (10x), 0.5 

μL of 10 mM dNTP mix, 1 μL cDNA (template), 0.5 μL of 10 μM forward primer, 0,5 μL of 10 

μM reverse primer, 0.125 μL Taq DNA polymerase were added and mixed.  This mix was made 

for the control, and experimental + and – RT reactions.  The PCR tubes were put in the PCR 

machine and the thermocycling conditions were set. 

Results 

Stem Loop 6 Analysis: Oogenesis 

The first process analyzed was oogenesis in flies that had stem loop 6 deleted.  In our 

western blot of Drosophila ovaries, we first stained the blot with HA antibody.  This antibody 

showed the expression of GFP.  As the genome of the 3’UTR pgc has GFP injected into our fly 

lines, staining for GFP also stains for protein translated by pgc.  The quantification of the GFP 
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shown by the HA antibody, can allow quantification of pgc protein.  The western blot is below, 

along with the graph analyzing the level of protein for each fly line. 

 

Vasa antibody was used to stain for Vasa protein, a normally occurring protein in our fly 

lines.  Vasa staining is used as a control for the western blot and is also used to quantify the blot.  

The graph below shows the quantification of the western blot of dSL6. 
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Figure 3: This 

image displays 

the expression 

of GFP (or pgc), 

and the 

expression of 

Vasa in the 

ovaries of the 

WT, 36c1, and 

dSL6 flies. 

 

Figure 4: The quantification of the expressed protein level in fly line with stem loop 6 deleted, 

when normalized to Vasa.  There is no significant difference in protein level between the control 

(36c1) and the flies with stem loop 6 deleted. 
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Next, the level of EGFP mRNA expression was determined in the ovaries of the flies 

with stem loop 6 deleted, through a qRT-PCR experiment.  dsL6/8 was focused on specifically, 

and the level of mRNA in dsL6/8 was compared to the level of mRNA in the control.  As shown 

in the graph below, the when standard error was considered, there was no significant difference 

between the level of mRNA expressed in the control and flies with stem loop 6 deleted. 

 

  

Finally, the level of protein translated in dsL6 must be normalized to the level of mRNA.  

Both the sample and the control must be normalized in order to determine the actual expression 

of the gene.  As all dsL6 samples are the same, just injected into the plasmid in different ways, 

these differences must be normalized, to account for human error, in order to determine the 

actual expression of the gene.  These stem loop deletions must be normalized and can then be 

compared to the control, to determine whether an upregulation, downregulation, or no change in 

gene expression occurred.  Below is the normalization of dsL6, compared to the control, 36c1.
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Figure 5: qRT-PCR analysis of 36c1 and dsL6/8.  There is no significant difference between 

mRNA level in the control and in flies with stem loop 6 deleted. 
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Next, an antibody staining of both the embryos and ovaries of dsL6 were analyzed.  This 

allowed us to determine if there was a phenotype visible in embryogenesis or oogenesis in this 

mutant fly line.  A confocal microscope was used to image the embryos and the ovaries.  The 

images on the right show the embryos and the images on the left show the ovaries. 
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Figure 6: This figure shows the normalization of the level of protein dsL6 to the level of mRNA.  The 

control is incorporated for comparison.  No significant difference was observed between the control and 

flies with stem loop 6 deleted. 

Figure 7: The above image compares the Vasa and GFP channels of the ovaries of dsL6 flies to 

the ovaries of control flies, as captured through confocal microscopy. 
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Stem Loop 1 Analysis: Oogenesis 

 A western blot was analyzed for protein level of pgc in oogenesis in flies with stem loop 

1 deleted.  Each western blot was completed in triplicate, in order to standardize the results.  HA 

and Vasa antibodies were used to stain, again using HA to show pgc protein and Vasa for 

normalization.  The results of this western blot are shown below. 

 

 

 

 

 

 Just as was performed in the analysis of stem loop 6, a quantification of the western blot 

was performed.  This quantification is shown below. 
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Figure 8: This image 

shows the western blot 

of dSL1 flies.  The 

protein level of pgc, as 

determined through 

staining for GFP, is 

shown in the green 

box.  The protein level 

of Vasa, for 

normalization is shown 

above. 

Figure 9: Shows the quantification of the western blot, after the GFP protein level was normalized 

to the Vasa protein level.  dSL1 is compared to the control (36c1). 
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After completing the western blot and quantification, a qRT-PCR experiment was 

performed to determine the level of mRNA in flies with stem loop 1 deleted.  The graph below 

shows the results from the quantification of this experiment. 

 

 

Finally, just as was performed in mutant flies with stem loop 6 deleted, the level of pgc 

protein in dsL1 was normalized to the level of EGFP mRNA expression in dsL1. The graph of 

this normalization is shown below. 
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Figure 10: Displays the quantification of the qRT-PCR performed on deleted stem loop 1, as 

compared to the control, 36c1. 

Figure 11: Shows the 

normalization of protein 

to the mRNA in flies 

with stem loop 1 deleted.  

The 36c1 fly line was 

used as a control for 

comparison. 
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Next, an antibody staining was completed of the ovaries of flies with stem loop 1 deleted.  

Both the Vasa and GFP channels of the confocal microscope were used to complete this analysis. 

 

Stem Loop 1 Analysis: Embryogenesis 

 The same procedure that was completed in order to understand oogenesis in transgenic 

flies was used to understand embryogenesis.  However, instead of performing experiments on the 

ovaries of these transgenic flies, the embryos were used.  First, a western blot was completed in 

triplicate for the dsL1 transgenic flies.  The western blot shown below was obtained after 

analysis of the dsL1/9 transgenic fly line. 

 

  

 

 

 

Figure 12: An image from 

confocal microscope 

showing the ovaries of a fly 

line with stem loop 1 deleted 

compared to the control.  

The Vasa channel is shown 

on the top and the GFP 

channel is shown on the 

bottom. 

Vasa 

GFP 

Figure 13: Shown here is the western blot performed on the embryos of dsL1 transgenic flies.  Three 

biological samples of each line were run at once, to avoid running three separate blots. The control and 

wild type flies were also included for comparison. 
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This western blot was then quantified.  The results of this quantification are shown 

below. 

 

 

 

 

 

 

Next, a qRT-PCR analysis was completed on the embryos of the dsL1 transgenic fly line.  

The results of this experiment are shown below. 
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Figure 14: The quantification of the western blot of the embryos of the transgenic dsL1 

fly line. 

Figure 15: This graph shows the quantification of the qRT-PCR experiment that was 

performed, to determine the level of mRNA in the embryos of transgenic dsL1 flies. 
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Finally, a normalization of the level of protein to mRNA was completed, to determine 

whether the pgc gene was upregulated, downregulated, or unchanged in the embryos, after 

deleting stem loop 1.  

 

 Finally, an antibody staining was completed for the embryos dsL1 transgenic flies.  This 

image is shown below. 
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Figure 16: The normalization of protein level to mRNA in embryos of transgenic dsL1 flies is 

shown in this graph. 

Figure 17: This 

image shows the 

embryos of flies with 

stem loop 1 deleted, 

under the Vasa and 

GFP channel, as 

compared to control 

(36c1) fly. 
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Stem Loop 10 Analysis: Embryogenesis and Oogenesis 

 Transgenic flies that had stem loop 10 deleted were analyzed.  The antibody stainings 

performed on the ovaries and the embryos are shown below. 

     

 

 

 

 

 

 

 

 As in the previous experiments, a western blot was completed in triplicate, and a qRT-

PCR experiment was run on the embryos and ovaries of the flies that had stem loop 10 deleted.  

Instead of showing each graph for western blot, qRT-PCR, and normalization, just the 

normalization graph is shown below.  This graph shows the normalized protein expression, in 

both oogenesis and embryogenesis, to the expression of mRNA in transgenic flies with stem loop 

10 deleted.

Figure 18: This figure shows the ovaries of 

transgenic flies that had stem loop 10 deleted, as 

compared to the control ovaries. 

Figure 19: This figure shows the 

embryos of transgenic flies that had stem 

loop 10 deleted, as compared to the 

control embryos. 
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Protein YT521B Depletion: Oogenesis 

 In order to see whether there was an interaction between stem loop 10 and RNA binding 

protein YT521B during oogenesis, the transgenic flies that had stem loop 10 deleted and the 

CRISPR-Cas mutant flies that had protein YT521B depleted were crossed with each other.  

There were three different YT521B mutants.  A western blot was then run in triplicate on the 

ovaries of these flies, and the following results were obtained. 

Figure 20: Normalized 

protein expression after 

completion of western blot 

(in triplicate) and qRT-

PCR experiments on flies 

with stem loop 10 deleted.  

Normalized protein 

expression in 

embryogenesis and 

oogenesis are compared to 

one another in transgenic 

flies and control flies. 

Figure 21: Shows the 

different levels of pgc 

protein in each of the 

YT521B mutants during 

oogenesis after 

quantification of the 

western blot. 



24 

Next, a qRT-PCR experiment was completed on the ovaries of these flies.  The following 

results were obtained. 

 

 

 

 

 

 

 

 

 Finally, the results of the western blot were normalized to the results of the qRT-PCR, in 

order to determine the normalized protein expression.  The graph below shows this 

normalization. 

 

 

 

 

 

 

 

 

Figure 22: Shows the 

different levels of EGFP 

mRNA expressed in the 

different YT521B mutants 

after quantification of the 

qRT-PCR. 

Figure 23: Shows the 

normalization of the 

protein to the EGFP 

mRNA expression in the 

ovaries of YT521B 

mutants. There was no 

significant difference 

between the normalized 

protein levels in the control 

and mutants. 
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Protein YT521B Depletion: Embryogenesis 

 Next, protein YT521B depletion in embryogenesis was analyzed.  A western blot was 

completed in triplicate on the embryos of these flies.  The results of the western blot experiments 

are quantified below. 

 

 Next, a qRT-PCR was completed on the embryos of these flies, in order to determine the 

relative expression of mRNA in these flies during embryogenesis.  The results of this experiment 

are shown below. 

 

Figure 24: Shows the 

quantification of the 

western blot, completed in 

triplicate, on the embryos 

of the YT521B mutants, as 

compared to the control. 

Figure 25: Shows the 

quantification of the qRT-

PCR experiment, 

completed on the embryos 

of the YT521B mutants, as 

compared to the control. 
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 Finally, the results from the western blot experiments were normalized to the results of 

the qRT-PCR experiment, in order to obtain the normalized protein expression.  The results of 

this experiment are shown below. 

 

EMSA Staining 

 To ensure that RNA binding protein YT521B was actually binding to stem loop 10, an 

electrophoretic mobility shift (EMSA) was performed.  The YTH domain for protein YT521B 

was purified and tested.  The results of this experiment are shown below.

Figure 26: Shows the 

normalization of the level 

of protein to EGFP mRNA 

expression in the embryos 

of the YT521B mutants. 

There was a significant 

difference in expression 

between the mutants and 

the control flies. 
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Discussion 

 The data collected from antibody staining, western blots, and qRT-PCR experiments, 

were analyzed, to determine if there was a phenotypic change in the flies with deleted stem 

loops, as compared to the flies with normal stem loop expression.  If there were higher levels of 

RNA expressed than expected, as determined through qRT-PCR, and there were also similar 

high levels of protein expressed, as determined through western blot analyses, then it could be 

determined that this deleted stem loop was not causing a problem with the control of translation.  

Rather, this was upregulation was occurring due to where the transgene was inserted into the pgc 

3’UTR.  If qRT-PCR determined that the level of RNA was at an expected level, yet there was a 

higher or lower amount of protein than should have been present in the cell, as determined by the 

western blot, then we can assume that this stem loop has a role in translation control.  In order to 

Figure 27: Shows the image of the performed EMSA.  The RNA bound to stem loop 10 is 

shown in the red box.  The unbound RNA is displayed at the bottom of the image.  
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come to these conclusions, the level of RNA and the level of protein must be normalized.  

Additionally, antibody staining experiments were used in order to observe the visible changes 

that the deletion of certain stem loops caused in the transgenic flies. 

Deletion of stem loop 6 is not significant during oogenesis 

 First, antibody stainings of the ovaries of transgenic flies with stem loop 6 deleted (dsL6) 

were compared to the control.  There was no observable difference between the ovaries of these 

two types of flies, as determined through use of the confocal microscope. A western blot was 

completed to determine if there was a difference between the two fly lines that could not be 

determined via antibody staining. 

 The image of the western blot of dSL6 ovaries, as well as the quantification of the 

western blots completed in triplicate, showed that the level of pgc protein in the dSL6 transgenic 

flies was relatively the same as the pgc protein level in the control.  When observing the level of 

protein expressed in the image of the western blot, as stained with GFP, the three dsL6 samples 

appear to have the same amount of protein expressed as the control.  Vasa protein was also 

stained for, as a control.  Vasa protein occurs normally in our fly lines, so it was used as a control 

to quantify our blots.  The lanes on the western blot should show relatively the same amount of 

Vasa protein.  When looking at the image of the western blot, the level of Vasa appears to be the 

same for each sample, so the level of Vasa determined can be used to normalize the GFP 

staining.  This process was used for each western blot completed, in order to quantify our data. 

 The qRT-PCR experiment performed on the dSL6 ovaries showed that there was no 

significant difference between the level of EGFP mRNA expressed in the ovaries of the control 

flies, as compared to the ovaries of the dsL6 flies, after standard error was taken into 
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consideration.  Finally, the level of pgc protein in control flies and dsL6 flies was normalized to 

the level of mRNA.   No significant difference was observed between the normalized level of 

pgc protein in dsL6 flies, as compared to control flies. After this normalization was completed, it 

was concluded that there was no upregulation or downregulation of the pgc gene in oogenesis, 

when stem loop 6 was deleted. 

Deletion of stem loop 6 is not significant during embryogenesis 

 The embryos of transgenic dsL6 flies were also observed via antibody staining using a 

confocal microscope, to observe the phenotypic differences (if any) between the dsL6 embryos 

and control embryos.  The antibody staining showed no phenotypic difference between the 

control and dsL6 flies, so no further investigation of dsL6 was conducted.  dsL6 flies appeared 

identical to control flies in both stage 2 (an early embryo stage) and stage 6 (later stage of 

development).  In stage 6, the pgc, as shown through the GFP channel, should be localized to the 

pole cells, as is observed.  After investigating both the ovaries and embryos of dSL6 flies, it was 

concluded that the deletion of stem loop 6 does not cause upregulation or downregulation of the 

pgc gene and therefore has no bearing on translational control in the cell. 

Deletion of stem loop 1 causes 3-fold upregulation of pgc gene in oogenesis 

 Next, the dSL1 flies were analyzed for a phenotype in oogenesis under the confocal 

microscope through antibody staining.  In these images, through use of the Vasa and GFP 

channels, it is apparent that there is a higher expression of GFP in the ovaries.  This phenotype 

needed to be quantified, so a western blot was performed on theses ovaries. 

 Once again, using Vasa as our control, and staining for GFP protein to see the level of 

pgc protein in the ovaries, it was determined that there was a much higher level of pgc protein in 
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these cells than was in our positive control.  Next, a qRT-PCR was performed, in order to 

determine the level of EGFP mRNA expression in the ovaries.  While completing this 

experiment, we determined there was about the same level of mRNA in both the control and 

transgenic dsL1 flies.  However, there was an extremely high level of error in dsL1/2 transgenic 

flies in the qRT-PCR, after quantification.  Therefore, it was decided to not use the dsL1/2 fly 

line for further experimentation, and instead use dsL1/9.  The standard error determined through 

quantification of the qRT-PCR of dsL1/9 flies was much lower. 

 Finally, the level of pgc protein in dsL1 fly line and the control was normalized to the 

level of EGFP mRNA expressed.  It was determined that there was a 3-fold upregulation of the 

pgc gene of the dsL1 fly line, when compared to the control fly line, indicating that stem loop 1 

plays an important role in translation control.  When this stem loop was deleted, the translation 

of the pgc gene did not occur properly.  As indicated by the 3-fold upregulation, there was a loss 

of translational regulation. 

Deletion of stem loop 1 causes 3-fold upregulation of pgc gene in embryogenesis 

 Next, an antibody staining of the embryos from flies with stem loop 1 deleted (dsL1) was 

examined.  Here, there appeared to be a loss of translational control of pgc in the pole cells, as 

determined under the GFP channel.  Pgc should be localized completely to the pole cells by stage 

6 of embryogenesis, yet pgc can be seen expressed both inside and outside of the pole cells, 

indicating that translation did not occur properly.   It was necessary to quantify these results, so a 

western blot was completed in triplicate to measure pgc protein levels and qRT-PCR was 

completed to quantify EGFP mRNA expression in dsL1 embryos
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After performing a western blot analysis, it was immediately apparent that there was a 

greater amount of pgc protein in dsL1 embryos, as compared to the control.  When the western 

blot was quantified, it was determined that the pgc protein level had increased 4-fold, when the 

dsL1 was compared to the control.  Next, a qRT-PCR was performed, to determine the level of 

EGFP mRNA expressed in the dsL1 embryos.  This qRT-PCR showed that there was about the 

same level of mRNA expressed in both control flies and in dsL1, after calculating standard error.  

Finally, these results were normalized.  After normalization, a 3-fold upregulation of the pgc 

gene was determined.  When stem loop 1 is deleted, there is a loss of translational control in both 

embryogenesis and oogenesis (as discussed previously). 

Deletion of stem loop 10 causes 5-fold upregulation of pgc gene in embryogenesis 

 The embryos and ovaries of flies that had stem loop 10 deleted were first analyzed via 

antibody staining and use of the confocal microscope.  These images showed a loss of 

translational regulation embryogenesis.  In embryogenesis, this loss is evident in the pole cells, 

as GFP (indicating the expression of pgc protein), is expressed throughout the embryo, rather 

than being localized to the pole cells.  On the other hand, no phenotypic difference was observed 

in the ovaries of dsL1 flies.  It was hypothesized that dsL1 is important for translational 

regulation during embryogenesis, but not during oogenesis. 

A western blot was completed in triplicate, to determine the level of pgc protein 

expressed in ovaries and the embryos.  A qRT-PCR experiment was also run, to determine the 

EGFP mRNA expression, to determine the level of pgc mRNA expressed in the ovaries and 

embryos.  After completion of these experiments, the results were normalized to each other, and 

shown on one graph in the results.  It was determined that there was no significant change in 

regulation during oogenesis when stem loop 10 was deleted.  However, there was a significant 
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upregulation of the pgc gene during embryogenesis, when stem loop 10 was deleted.  It was 

hypothesized that an RNA binding protein may be interacting with stem loop 10, in order to 

control translation. 

Depletion of protein YT521B causes no change in regulation in oogenesis 

After deletion of stem loop 10, there was determined to be an increase in the level of 

normalized protein expression during embryogenesis, however this increase was not observed 

during oogenesis.  It was hypothesized this discrepancy was due to a protein, specifically the 

RNA binding protein YT521B, binding to this stem loop during embryogenesis, and not during 

oogenesis, in order to control translational regulation.  Protein YT521B is a protein that has a 

YTH domain to recognize specific conserved sequences.  One of these sequences is found in 

stem loop 10, which allowed my colleagues to generate this initial hypothesis.  Since pgc 3’UTR 

mRNA is a unique and dynamic secondary structure it can allow binding of YT521B to occur at 

some time points of development (embryogenesis) and not during others (oogenesis).  

To investigate this hypothesis, fly mutants in which YT521B was depleted were created 

using a CRISPR-Cas method.  These flies were crossed with those who had stem loop 10 

deleted.  A western blot was completed in triplicate on the ovaries of these flies.  There was no 

significant difference during oogenesis in pgc protein level compared in YT521B mutants, as 

compared to the control flies.  A qRT-PCR was also completed.  No significant difference in 

EGFP mRNA expression during oogenesis was determined in the YT521B mutant flies, as 

compared to the control flies.  Finally, the results from the western blot and the qRT-PCR were 

normalized.  This normalization revealed that depletion of protein YT521B caused no significant 

change in translation regulation during oogenesis.  This was expected, as protein YT521B and 
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stem loop 10 were believed to be interacting, and deletion of stem loop 10 caused no 

significant change in translation regulation during oogenesis. 

Depletion of protein YT521B causes significant upregulation in embryogenesis 

 The same transgenic flies with depletion YT521B were once again used, except the 

embryos of these flies were used for experimentation.  As a deletion of stem loop 10 caused a 

loss of translation regulation during embryogenesis, and protein YT521B was believed to be 

interacting with stem loop 10, it was hypothesized that a depletion of YT521B would also cause 

a loss of translation regulation during embryogenesis.  A western blot was completed in 

triplicate. Quantification of these western blots showed a significant change in protein 

expression, as compared to the control.  A qRT-PCR was also completed.  Quantification of this 

experiment showed no significant change in the expression of EGFP mRNA.  These results were 

then normalized.  This normalization revealed that depletion of protein YT521B caused a loss of 

translation regulation, as was expected. 

Protein YT521B and stem loop 10 interact in embryogenesis 

 Finally, to conclusively state that protein YT521B and stem loop 10 were interacting 

during embryogenesis, an electrophoretic mobility shift (EMSA) was performed.   The YTH 

domain for YT521B protein was purified and tested.  The results of this experiment allow us to 

conclude, with confidence, that YT521B is binding to stem loop 10.  The bottom of the EMSA 

shows unbound RNA.  When the protein and stem loop 10 RNA are bound, they form the RNA 

protein complex, as indicated by the fainter band on the assay.  This supports the hypothesis, that 

stem loop 10 is a target for RNA binding protein YT521B, and this binding is required to control 

translation



34 

Conclusions & Future Directions  

 After analysis of multiple stem loops, it was determined that stem loop 6 does not control 

translation during oogenesis or embryogenesis.  Stem loop 1 controls translation regulation, as a 

deletion of this stem loop caused a 3-fold upregulation of the pgc gene during oogenesis and a 3-

fold upregulation of the pgc gene during embryogenesis.  Stem loop 10 controls translation 

regulation, but only during embryogenesis.  A deletion of stem loop 10 in oogenesis caused no 

phenotypic change, however a deletion of stem loop 10 in embryogenesis caused a significant 

upregulation of the pgc gene. A depletion RNA binding protein, YT521B, caused a loss of 

translation regulation during embryogenesis, but not oogenesis, as was hypothesized.  It was 

firmly concluded that protein YT521B and stem loop 10 are directly interacting with one another 

during embryogenesis. 

 In the future, point mutations may be made in the loop structure to test its role during pgc 

translation regulation.  Additionally, IP experiments could be carried out with YT521B antibody, 

to test if pgc RNA associates with YT521B in vivo.  This research allows important conclusions 

to be drawn regarding the importance of stem loop structures during conserved developmental 

processes.  The complete understanding of these processes in D. melanogaster can help 

researchers draw conclusions about developmental processes in other, more complex, organisms 
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