### University at Albany, State University of New York

# **Scholars Archive**

Electronic Theses & Dissertations (2024 - present)

The Graduate School

Fall 2024

# Advancements in Forensic Analysis: Development of Mass Spectrometric and Chemometric Approaches for the Identification of Synthetic New Psychoactive Substances and Plant Materials

Mónica Ventura ventura.i.monica@gmail.com

The University at Albany community has made this article openly available. Please share how this access benefits you.

Follow this and additional works at: https://scholarsarchive.library.albany.edu/etd

Part of the Chemistry Commons

#### **Recommended Citation**

Ventura, Mónica, "Advancements in Forensic Analysis: Development of Mass Spectrometric and Chemometric Approaches for the Identification of Synthetic New Psychoactive Substances and Plant Materials" (2024). *Electronic Theses & Dissertations (2024 - present)*. 48. https://scholarsarchive.library.albany.edu/etd/48



This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.

This Dissertation is brought to you for free and open access by the The Graduate School at Scholars Archive. It has been accepted for inclusion in Electronic Theses & Dissertations (2024 - present) by an authorized administrator of Scholars Archive.

Please see Terms of Use. For more information, please contact scholarsarchive@albany.edu.

# ADVANCEMENTS IN FORENSIC ANALYSIS: DEVELOPMENT OF MASS SPECTROMETRIC AND CHEMOMETRIC APPROACHES FOR THE IDENTIFICATION OF SYNTHETIC NEW PSYCHOACTIVE SUBSTANCES AND PLANT MATERIALS

by

Mónica I. Ventura

A Dissertation

Submitted to the University at Albany, State University of New York In Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

College of Arts and Sciences Department of Chemistry May 2024

#### AKNOWLEDGMENTS

My journey through graduate school has been marked by the support of many incredible people, and it is difficult to know where to begin. First, and foremost, I would like to express my deepest gratitude to my thesis advisor and mentor, Professor Rabi Musah, for guiding me over the past six years. Your continued support for my interests and encouragement to pursue my passion for research have been invaluable. The lessons you have taught me will stay with me for the rest of my life. I would also like to thank all my family for their unwavering support, especially my mother Patricia Fayo. You have been my number one supporter since the beginning and are the person that gave me my positive outlook on life and work ethic.

I would also like to thank the members of my doctoral thesis committee: Dr. Michael Yeung, Dr. Mehmet Yigit, and Dr. Lori Ana Valentin. Your knowledge and support have been crucial throughout this journey. Additionally, I am thankful to Dr. Marlene Belfort for your support in graduate student activities. Without you, STEM NOW (Nourishing Opportunities for Women) would never have come to fruition. Many thanks are extended to Dr. Robert (Chip) Cody and Dr. John Dane at JEOL USA for their assistance over the years with our DART-HRMS instrument and related projects and for always providing good company and friendly faces at conferences. I would also like to thank Jenni Oyler, for making my beginning chemistry experience at Dutchess Community College so inviting. I would not have made it this far without you as my first mentor.

I would like to acknowledge all the previous members of the Musah Research Laboratory. Special thanks to Dr. Justine Giffen-Lemieux for training me on the entomology project during my rotation. I am also grateful to past Musah Lab members, Dr. Tianyu He, Dr. Kristen Fowble, Dr. Cameron Longo, Dr. Meghan Appley, Dr. Megan Chambers, and Dr. Amy Osborne: Thank you for the support, the advice you shared, and the laughs we had together. Amy, thank you for being my first friend in the Musah Lab. I am always going to cherish our time sitting next to each other in 229. In addition, thank you to the incredible postdocs I have had the pleasure to work with: Dr. Samira Beyramysoltan, Dr. Parandaman Arathala, Dr. Victor Deklerck, Dr. Allix Coon, and Dr. Oya Urucu. Samira and Victor, thank you for teaching me everything I know about statistical analysis and coding. I would also like to express my gratitude to the current Musah Lab members. Alexa Figueroa, thank you for being one of my closest friends at UAlbany. I am grateful to have someone who is as intelligent and bubbly to share a friendship with. Niara Nichols, I will never forget thinking that you were quiet and shy, only to realize you are just as lively as everyone else in 229. Benedetta Garosi, thank you for not only being a friend, but also for helping me analyze timber samples during your training. To the other members of the Musah Lab who I have had the pleasure to work with: Nana-Hawwa Abdul-Rahman, Mark Katz, and Jessica Hayes: I'm glad to have been a part of your undergraduate/graduate education experiences.

I must also share my appreciation for a few more amazing people. Dana Schroeder and Rosa de Jesus, thank you for welcoming me to the community with open arms. Karen Schupack, thank you for creating the Albany Art Room, a place where I can truly be myself. Jayne, thank you for always motivating me at the gym. Nazaree Newton, my first roommate in community college, you have always been like a sister to me. Dr. Mindy Hair, thank you for being my first friend at UAlbany and for your guidance throughout the years.

Finally, I would like to acknowledge the funding support from the National Institute of Justice (NIJ) [Award No. 2017-R2-CX-0020] and the United States Department of Agriculture (USDA) [Award No. 22-DG-11132762-196]. Although portions of the research presented here were funded by the NIJ, the opinions, findings, conclusions, and/or recommendations expressed

iii

here do not necessarily reflect those of the Department of Justice (DOJ). I also extend my gratitude to the University at Albany Initiatives for Women for their financial support of this research.

#### ABSTRACT

While forensic science is a well-established discipline, a number of federal agencies have highlighted challenges that continue to plague the field and the extent to which these challenges remain unaddressed. Examples are the illegal trade of wildlife timber and the drug epidemic. Characterization of these materials requires nuanced method development for compound determination, matrix material-specific protocols, and heavy use of expensive consumables. The application of a technique such as direct analysis in real time – high-resolution mass spectrometry (DART-HRMS) provides the opportunity to circumvent many of the challenges presented by conventional methods. In general, little to no sample preparation is required and a consistent sample analysis approach can be applied to most samples. This work explored the development and application of DART-HRMS through the investigation of the identification of New Psychoactive Substances (NPSs), psychoactive plants, and trade-regulated timber. The procedure for rapid structure determination of NPSs combines neutral loss mass spectral information from DART-HRMS data acquired at multiple voltages under collision-induced dissociation (CID) conditions, thereby resulting in varying levels of molecule fragmentation. This approach falls under the umbrella of "data fusion", which is a strategy that combines the output from multiple data sets in order to improve the accuracy of the results. A second focus on psychoactive substances is the development of the Database of Psychoactive Plants (DoPP). This tool is designed to be user-friendly and includes an architecture for identifying plant unknowns. The application is based on the observation that plants display specific chemical signatures that are detectable by DART-HRMS. The subsequent automated machine learning processing of libraries of these spectra enabled the rapid discrimination and identification of species, resulting in a chemical signature database containing 57 available plant species. Another focus of this work is the development of an analysis approach to be used in a wildlife forensics context. Depending on the species, trade in timber can be totally or heavily restricted. A current technique used by law enforcement to differentiate species of wood is DART-HRMS, coupled with multivariate statistical analysis. Although this method is useful in a laboratory setting, it is impractical in field applications (such as for the determination of timber species identity in shipping containers at ports). The added dimension of wood headspace analysis by solid phase microextraction (SPME) was used to generate data to complement that acquired using the conventional wood analysis technique to facilitate the development of "stand-off" approaches for the differentiation of wood species based on their volatiles profiles.

| AKNOWLEDGMENTSii                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------|
| ABSTRACTv                                                                                                                                    |
| TABLE OF FIGURES x                                                                                                                           |
| LIST OF TABLES                                                                                                                               |
| LIST OF SCHEMESxviii                                                                                                                         |
| COPYRIGHT PERMISSION                                                                                                                         |
| CHAPTER 1: METHODS FOR THE FORENSIC ANALYSIS OF SYNTHETIC NEW PSYCHOACTIVE SUBSTANCES AND PLANT MATERIALS                                    |
| 1.1. Introduction                                                                                                                            |
| 1.1.1. New Psychoactive Substances                                                                                                           |
| 1.1.2. Psychoactive Plants                                                                                                                   |
| 1.1.3. Timber                                                                                                                                |
| 1.2. Conventional Approaches for the Forensic Analysis of Complex Materials                                                                  |
| 1.2.1. Conventional Analysis—Drugs of Abuse7                                                                                                 |
| 1.2.2. Conventional Analysis—Timber10                                                                                                        |
| 1.3. Summary and Outlook 12                                                                                                                  |
| 1.3.1. DART-HRMS                                                                                                                             |
| 1.3.2. Solid-Phase Microextraction                                                                                                           |
| 1.3.3. Multivariate Statistical Analysis                                                                                                     |
| 1.3.4. Data Fusion                                                                                                                           |
| 1.4. Statement of the Problem                                                                                                                |
| CHAPTER 2: FUSED DART MASS SPECTRA AND CHEMOMETRICS FOR<br>CLASSIFICATION AND STRUCTURE ELUCIDATION OF TRYPTAMINE<br>PSYCHOACTIVE SUBSTANCES |
| 2.1. Introduction                                                                                                                            |
| 2.2. Methods                                                                                                                                 |
| 2.2.1. Materials                                                                                                                             |
| 2.2.2. Instrumentation                                                                                                                       |
| 2.2.3 Neutral Loss Spectra Generation                                                                                                        |
| 2.2.4. Multivariate Statistical Analysis                                                                                                     |
| 2.3. Results                                                                                                                                 |
| 2.3.1. Generation and Processing of DART Mass Spectra                                                                                        |

# TABLE OF CONTENTS

| 2.3.2. Determination of the Presence of Clustering of Tryptamine Spectra, Indicative of Common Structural Features                  |
|-------------------------------------------------------------------------------------------------------------------------------------|
| 2.3.3. Assessment of the Structural Basis of the Hierarchical Clustering Analysis-Revealed Groupings                                |
| 2.3.4. Creating a Structure Classification Model for Tryptamine Class Prediction                                                    |
| 2.3.5. Assessment of Markers Important for Discrimination Between Groups of Structures48                                            |
| 2.3.6. External validation of the PLS-DA Model Using Novel Compounds                                                                |
| 2.3.7. Structure Elucidation of a Tryptamine Unknown                                                                                |
| 2.3.8. Data Reproducibility                                                                                                         |
| 2.4. Conclusion                                                                                                                     |
| CHAPTER 3: CREATION OF A DATABASE OF PSYCHOACTIVE PLANTS (DOPP) FOR<br>RAPID SPECIES IDENTIFICATION OF PSYCHOACTIVE PLANT MATERIALS |
| 3.1. Introduction                                                                                                                   |
| 3.2. Methods                                                                                                                        |
| 3.2.1. Materials                                                                                                                    |
| 3.2.2. Instrumentation                                                                                                              |
| 3.2.3. Multivariate Data Analysis                                                                                                   |
| 3.3. Results                                                                                                                        |
| 3.3.1. Approach for the Identification of Sample Unknowns                                                                           |
| 3.3.2. Identification Tab                                                                                                           |
| 3.4. Conclusion                                                                                                                     |
| CHAPTER 4: SPECIES ATTRIBUTION OF <i>DALBERGIA</i> WOODS THROUGH HEADSPACE VOLATILES SIGNATURE ANALYSIS                             |
| 4.1 Introduction                                                                                                                    |
| 4.2. Methods                                                                                                                        |
| 4.2.1. Timber Samples                                                                                                               |
| 4.2.2. Headspace Sampling by Solid-Phase Microextraction                                                                            |
| 4.2.3. DART-HRMS Analysis                                                                                                           |
| 4.2.4 Headspace Sampling by Thermal Desorption Coupled with Gas Chromatography – Mass Spectrometry                                  |
| 4.2.5. Multivariate Statistical Analysis                                                                                            |
| 4.3. Results                                                                                                                        |
| 4.3.1. DART-MS Analysis                                                                                                             |
| 4.3.2. Creation of a Prediction Model                                                                                               |

| 4.3.3. Identification of Chemical Constituents in Dalbergia spp                                                        |          |
|------------------------------------------------------------------------------------------------------------------------|----------|
| 4.4. Conclusion                                                                                                        |          |
| CHAPTER 5: COMPREHENSIVE ANALYSIS OF CHEMICAL HEADSPACE SIG<br>IN <i>SWIETENIA</i> USING MASS SPECTROMETRIC TECHNIQUES | GNATURES |
| 5.1. Introduction                                                                                                      | 100      |
| 5.2. Methods                                                                                                           | 103      |
| 5.2.1. Timber Samples                                                                                                  | 103      |
| 5.2.2. Solid-Phase Microextraction                                                                                     |          |
| 5.2.3. Headspace Sampling                                                                                              |          |
| 5.2.4. DART-HRMS Analysis                                                                                              |          |
| 5.2.5. Multivariate Statistical Analysis                                                                               | 105      |
| 5.3. Results                                                                                                           |          |
| 5.3.1. DART-MS Analysis                                                                                                |          |
| 5.3.2. Creation of a Prediction Model                                                                                  |          |
| 5.3.3. Feature Importance Determination                                                                                |          |
| 5.4. Conclusion                                                                                                        |          |
| OVERARCHING CONCLUSIONS                                                                                                |          |
| REFERENCES                                                                                                             |          |
| APPENDIX                                                                                                               |          |

# **TABLE OF FIGURES**

| Figure 1.1  | Photographs of the psychoactive plant materials Piper5methysticum (left) and Mitragyna speciosa (right).5                                                                                                                                                                                                                                                                                                                     |    |  |  |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| Figure 1.2  | Core structure of kavalactone.                                                                                                                                                                                                                                                                                                                                                                                                |    |  |  |
| Figure 1.3  | EI mass spectra of the synthetic cathinones pentylone and<br>eutylone. The spectra share the base peak at of $m/z$ 86 and<br>are remarkably similar, with few diagnostic fragment ions<br>that can be used to distinguish between them.                                                                                                                                                                                       |    |  |  |
| Figure 1.4  | <i>Dalbergia nigra</i> (top) and <i>D. odorifera</i> (bottom), which are two endangered tree species that show visual similarities.                                                                                                                                                                                                                                                                                           | 11 |  |  |
| Figure 1.5  | View of the DART ion source and MS inlet, illustrating<br>the gas flow through several chambers. In the first<br>chamber, a glow discharge between the needle electrode<br>and the grounded electrode produces ions, electrons, and<br>excited-state (metastable) atoms. These metastable atoms<br>then pass through an optional heater and exit into the<br>sample open air gap between the DART ion source and<br>MS inlet. | 14 |  |  |
| Figure 1.6  | Equations illustrating formation of positive ions by proton transfer via DART, where S is the sample.                                                                                                                                                                                                                                                                                                                         | 14 |  |  |
| Figure 1.7  | Equations illustrating formation of negative ions by DART, where N is a neutal species, G is the atmospheric gases, and S is the sample.                                                                                                                                                                                                                                                                                      | 15 |  |  |
| Figure 1.8  | Capillary tube suspended between the DART ion source<br>and the MS inlet after being exposed to a powdered<br>sample.                                                                                                                                                                                                                                                                                                         | 16 |  |  |
| Figure 1.9  | SPME fiber suspended between the DART ion source and<br>the MS inlet (while being held using a SPME fiber holder.<br>Analytes adsorbed to the fiber are desorbed in the heated<br>DART gas stream and ionized before entering the MS<br>inlet.                                                                                                                                                                                | 17 |  |  |
| Figure 1.10 | Supervised and unsupervised statistical analysis techniques.                                                                                                                                                                                                                                                                                                                                                                  | 20 |  |  |
| Figure 2.1  | The structures, common names, and formal names of the tryptamines analyzed in this study.                                                                                                                                                                                                                                                                                                                                     | 33 |  |  |

| Figure 2.2 | Data collection and statistical analysis workflow approach<br>for the development of a model to enable prediction of new<br>tryptamine variants. (A): DART-HRMS data collected at<br>20 V, 60 V and 90 V; (B) Generation of neutral loss<br>spectra; and (C) Multivariate data analysis workflow: Step<br>1—Conversion of spectra to matrices following binning<br>and normalization; Step 2—HCA analysis of data to<br>define clusters; and Step 3—Creation of PLS-DA model<br>used to discriminate between tryptamine classes. | 36 |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure 2.3 | DART-HRMS spectra of 4-acetoxy DiPT analyzed at orifice 1 voltages of 20 V (top), 60 V (middle) and 90 V (bottom).                                                                                                                                                                                                                                                                                                                                                                                                               | 39 |
| Figure 2.4 | Neutral loss spectra of 4-acetoxy DiPT acquired by DART-HRMS analysis analyzed at orifice 1 voltages of 60 V (top) and 90 V (bottom).                                                                                                                                                                                                                                                                                                                                                                                            | 40 |
| Figure 2.5 | Correlation matrix showing the computed correlations<br>between molecules, plotted along both the x- and y-axes<br>and arranged by similarity (where yellow corresponds to<br>the highest similarity and blue corresponds to the lowest)<br>that were subjected to hierarchical clustering analysis<br>(HCA). The dendrogram resulting from HCA and the ten<br>groups that emerged are also shown (see full list of<br>compound structures, names and their corresponding<br>abbreviations in Figure 2.1).                       | 42 |
| Figure 2.6 | PLS-DA scores plot generated using DART-HRMS neutral loss data. Class distinctions are indicated with color coding.                                                                                                                                                                                                                                                                                                                                                                                                              | 45 |
| Figure 2.7 | Masses determined to be most impactful in enabling differentiation of groups, based on differences in the fragmentation patterns of the represented compounds under CID conditions. Panel A: variable importance in projection (VIP) scores >1 revealed by the one-vs-all PLS-DA models for data collected at 60 V and 90 V; Panel B: neutral loss data corresponding with the indicated $m/z$ values, averaged for each class and displayed as heatmaps for 60 V and 90 V spectral data                                         | 49 |
| Figure 2.8 | Skeletal frameworks for each of the 10 classes that emerged from PLS-DA.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 |

- Figure 2.9 Neutral loss spectra of the four tryptamines: 4-acetoxy MALT, 4-acetoxy MPT, 4-hydroxy MALT, and 4propanoyloxy DMT, that were used for the external validation at 60 V and 90 V. The red boxes show the m/zvalues in the neutral loss spectra that are markers for specific groups according to the PLS-DA results. Masses m/z 189.08 and 147.07 shown in the red boxes are markers of groups 10 and 7, respectively.
- Figure 2.10 Correlation matrix and dendrogram showing the placement of the four tryptamines used for external validation. The four tryptamine external validation sample "unknowns" were: 4-Hydroxy MALT, 4-acetoxy MALT, 4-propanoyloxy DMT, and 4-acetoxy MPT. These are highlighted in the yellow box to show their placement in the correlation matrix (indicated in pink). Their placement in the dendrogram is indicated with blue shading. 4-Hydroxy MALT was correctly placed into group 7; 4acetoxy MALT, 4-propanoyloxy DMT, and 4-acetoxy MPT were correctly placed into group 10.
- Figure 2.11 The 20 V soft ionization spectrum of 4-hydroxy MALT with the protonated precursor labeled at m/z 231.153.
- **Figure 2.12** The possible tryptamine structures of the "unknown". The third structure with the R group -CH<sub>2</sub>CH=CH<sub>2</sub> is the correct structure of 4-hydroxy MALT.
- Figure 2.13 Results of the analysis of variation between DART-HRMS-derived neutral loss spectra collected by different individuals on the same day and one individual on different days. A: PCA scores plot of the collected data; B: Correlation matrix, where the yellow color shows the highest inter-spectral correlation and blue shows the lowest.
- Figure 3.1 Representative 20 V soft ionization DART mass spectra 68 of: (A) dried herb; (B) powder; (C) seed; and (D) tincture of A. absinthium.

53

55

56

57

58

Figure 3.2 Normalized confusion matrix presenting the external validation results of the hierarchical classification tree. The color gradient extends from blue to white, where blue represents 0% and white presents 100% prediction rates. The x- and y-axes display the prediction and true values, respectively. Diagonal elements in the confusion matrix correspond to true positive rates and non-diagonal elements are indicative of false positive and false negative rates. Sp 1: A. baetica; Sp 2: A. belladonna; Sp 3: A. komarovii; Sp 4: B. arborea; Sp 5: B. aurea; Sp 6: B. sanguinea; Sp 7: B. suaveolens; Sp 8: B. versicolor; Sp 9: D. ceratocaula; Sp 10: D. discolor; Sp 11: D. ferox; Sp 12: D. innoxia; Sp 13: D. leichhardtii; Sp 14: D. metel; Sp 15: D. parajuli; Sp 16: D. quercifolia; Sp 17: D. stramonium; Sp 18: D. wrightii; Sp 19: H. albus; Sp 20: H. aureus; Sp 21: H. muticus; Sp 22: H. niger; Sp 23: H. pusillus; Sp 24: M. autumnalis; Sp 25: M. officinarum; Sp 26: A. absinthium; Sp 27: A. vulgaris; Sp 28: C. zacatechichi; Sp 29: L. virosa; Sp 30: P. nitida; Sp 31: V. africana; Sp 32: A. nervosa; Sp 33: C. tricolor; Sp 34: I. tricolor; Sp 35: A. peregrina; Sp 36: M. hostilis; Sp 37: B. caapi; Sp 38: D. cabrerana; Sp 39: L. leonurus; Sp 40: L. sibiricus; Sp 41: L. nepetifolia; Sp 42: S. divinorum; Sp 43: M. speciosa; Sp 44: C. johimbe; Sp 45: P. viridis; Sp 46: A. officinalis; Sp 47: T. populnea; Sp 48: P. betel; Sp 49: P. methysticum; Sp 50: E. lobata; Sp 51: C. sativa; Sp 52: S. tortuosum; Sp 53: P. harmala; Sp 54: A. racemosa; Sp 55: S. vulgaris; Sp 56: N. caerulea; Sp 57: T. diffusa. The confusion matrix reveals a prediction accuracy of 74.75%, 86.2% and 87.91% for Sp32, Sp42 and Sp52, respectively. These accuracies show that the model can still be considered to be well-fitted for Sp42 (dried herb, extract, powder and root) and Sp52 (leaf and extracts with different concentrations). However, it remains uncertain why the results are not as accurate for Sp32 (only in seed form).

- Figure 3.3 Illustration of the application of DoPP for the identification of a plant sample (M. speciosa) analyzed by DART-HRMS. As shown in Panel A, when the mass spectrum of the solid material is imported, the interface reveals the mass data table containing m/z values and the corresponding relative intensities, and the mass spectrum of the query sample. The results present: (1) the family, genus and the species of the query sample, along with the posterior probabilities from the fused classifier in the three levels of the hierarchical classification tree; (2) the identity and structure of any known psychoactive components; and (3) a bar plot showing the probabilities associated with the identification of the family, genus, and species by the embedded classifiers (i.e., SVM, RF, K-NN and a fused classifier comprised of all three) in the hierarchical classification tree. Three other bar plots (Panels B-D) display the probabilities for identification of the family, genus and species levels acquired using the fused classifier.
- Figure 3.4 Illustration of the "Psychoactive plant directory" tab of DoPP. (A) Information about the *Lactuca virosa* species that is observed after right clicking on the species tab in the "Sample Information" section. The information includes: a link to the Wikipedia page describing the species and a table containing its known psychoactive components (names and structures) under "Psychoactive Compound" section; and the mass spectra of the various products derived from the species under "Display Data" section; (B) Retrieved mass spectra for *L. virosa* representing flower, resin, leaf, seed, powder and tincture forms.
- **Figure 3.5** Representative 20 V soft ionization DART mass spectra of (A) *M. speciosa*, aka kratom and B. *D. innoxia*. The base peak at nominal m/z 399 in the kratom mass spectrum (A) corresponds to the protonated form of its psychoactive component mitragynine. Prominent peaks in the *D. innoxia* spectrum (B) correspond to the protonated forms of atropine (m/z 290) and scopolamine (m/z 304).

72

73

| Figure 3.6 | Representative 20 V soft ionization DART mass spectra<br>of (A) <i>D. wrightii</i> ; (B) <i>S. miltiorrhiza</i> ; (C) <i>R. communis</i> ;<br>and (D) plastic bag which contained <i>Cannabis sativa</i><br>powder.                                                                                                                                                                                          |     |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 3.7 | Pairwise inter-spectral similarities estimated using correlation coefficients. The plot illustrates the similarities between the DART-HR spectra of kratom (A), <i>D.innoxia</i> (B) and <i>D. wrightii</i> (C) analyzed in two different laboratories, with the brightest share of yellow representing the highest correlation (ie., 1) and the darkest share of blue representing the lowest (i.e., 0.82). | 75  |
| Figure 4.1 | Headspace sampling of timber (A) and DART-HRMS analysis of SPME fiber (B).                                                                                                                                                                                                                                                                                                                                   | 85  |
| Figure 4.2 | Representative DART mass spectra of the <i>Dalbergia spp</i> . analyzed in this study.                                                                                                                                                                                                                                                                                                                       | 89  |
| Figure 4.3 | Mass spectral data rendered in the form of a heatmap of<br>the 17 <i>Dalbergia spp</i> . The horizontal lines represent the<br>number of replicates, and the bands correspond to the $m/z$<br>values on the x-axis. The color intensity of the bands<br>reflects the peak relative intensity, with darker color<br>indicating a higher intensity.                                                            | 90  |
| Figure 4.4 | Confusion matrix created from the SVM model results, illustrating the prediction outcomes for 17 <i>Dalbergia</i> spp. obtained from the SPME-facilitated DART-HRMS analysis of 276 samples. The true species classes are represented along the left side, while the prediction outcomes are indicated across the top. The legend indicates the species to which each letter corresponds.                    | 93  |
| Figure 4.5 | Chromatogram of <i>D. cochinchinensis</i> analyzed by TD-GC-MS. Representative peaks are labeled in blue, indicating identified compounds.                                                                                                                                                                                                                                                                   | 96  |
| Figure 4.6 | Chromatogram of <i>D. nigra</i> analyzed by TD-GC-MS.<br>Representative peaks are labeled in blue, indicating identified compounds.                                                                                                                                                                                                                                                                          | 96  |
| Figure 5.1 | Headspace sampling of timber.                                                                                                                                                                                                                                                                                                                                                                                | 104 |
| Figure 5.2 | DART-HRMS analysis of SPME fiber.                                                                                                                                                                                                                                                                                                                                                                            | 104 |

| Figure 5.3 | Representative DART mass spectra of <i>S. humilis</i> (top row), <i>S. macrophylla</i> (middle row), and <i>S. mahagoni</i> (bottom row).                                                           | 106 |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure 5.4 | Mass spectra rendered as a correlation matrix of the forty-<br>five spectra representing the <i>Swietenia spp</i> .                                                                                 | 109 |
| Figure 5.5 | The 28 most important features (i.e., the $m/z$ values presented on the y-axis) for facilitating discrimination between species, arranged in order of decreasing F score (presented on the x-axis). | 112 |

# LIST OF TABLES

| Table 1.1 | Mind-altering species listed by the UNODC as "plants of concern".                                                                                                    | 5   |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table 2.1 | Confusion matrix resulting from the "leave-one-structure-out" validation of the PLS-DA model.                                                                        | 46  |
| Table 2.2 | Classification performance, sensitivity, specificity and precision of the "leave-one-structure-out" validation for tryptamine discrimination using the PLS-DA model. | 47  |
| Table 2.3 | Neutral loss masses $(m/z)$ associated with the compounds in Groups 1 - 10 that were identified in analysis of the 60 and 90 V virtual neutral loss spectra.         | 50  |
| Table 4.1 | <i>Dalbergia spp.</i> analyzed, showing the U.S. Fish and Wildlife-assigned identification number for each sample.                                                   | 84  |
| Table 4.2 | Prediction accuracies of the SVM model used for 17 <i>Dalbergia spp.</i>                                                                                             | 92  |
| Table 5.1 | <i>Swietenia spp.</i> analyzed, showing the U.S. Fish and Wildlife Laboratory-assigned identification number for the individual sample.                              | 103 |
| Table 5.2 | Confusion matrix showing the prediction results of the nine samples in the test set.                                                                                 | 110 |
| Table 5.3 | The precision, recall, F1 score, and accuracy of the Extreme Gradient Boosting model were 92%, 89%, 89%, and 89%, respectively.                                      | 111 |

# LIST OF SCHEMES

| Scheme 3.1 | Plant species represented in the DoPP platform and the taxonomical relationships between them | 63 |
|------------|-----------------------------------------------------------------------------------------------|----|
| Scheme 3.2 | An overview of the data analysis workflow for psychoactive plant materials.                   | 64 |

## **ABBREVIATIONS**

| ANOVA        | Analysis of Variance                                                |
|--------------|---------------------------------------------------------------------|
| ATR-FTIR     | Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy |
| CDA          | Canonical Discriminant Analysis                                     |
| CID          | Collision-Induced Dissociation                                      |
| CIS          | Cooling Inlet System                                                |
| CITES        | Convention On International Trade in Endangered Species             |
| CSV          | Comma-Separated Values                                              |
| DAPC         | Discriminant Analysis of Principal Components                       |
| DART         | Direct Analysis in Real-Time                                        |
| DART-HRMS    | Direct Analysis in Real-Time – High-Resolution Mass Spectrometry    |
| DOJ          | Department Of Justice                                               |
| DoPP         | Database of Psychoactive Plants                                     |
| DVB/CAR/PDMS | Divinylbenzene/Carboxen/(Polydimethylsiloxane-Coated)               |
| EI           | Electron Ionization                                                 |
| EI-MS        | Electron Ionization Mass Spectrometry                               |
| ETEC         | Emerging Technology and Entrepreneurship Complex                    |
| EUTR         | European Union Timber Regulation                                    |
| FDA          | Food and Drug Administration                                        |
| FTIR         | Fourier Transform Infrared                                          |
| GC-MS        | Gas Chromatography-Mass Spectrometry                                |
| HCA          | Hierarchical Clustering Analysis                                    |
| KDA          | Kernel Discriminant Analysis                                        |
| KNN          | K-Nearest Neighbor                                                  |
| LC           | Liquid Chromatography                                               |
| LDA          | Linear Discriminant Analysis                                        |
| LGSR         | Luminescent Gunshot Residue                                         |
| LIBS         | Laser-Induced Breakdown Spectroscopy                                |
| LOOCV        | Leave-One-Out Cross Validation                                      |

| MDMA      | 3,4-Methylenedioxymethamphetamine                                |
|-----------|------------------------------------------------------------------|
| MPS       | Multipurpose Sampler                                             |
| MSA       | Multivariate Statistical Analysis                                |
| MSA       | Mass Spectrometer                                                |
| NIJ       | National Institute of Justice                                    |
| NIR       | Near-Infrared                                                    |
| NMR       | Nuclear Magnetic Resonance                                       |
| NPS(s)    | New Psychoactive Substance(s)                                    |
| PCA       | Principal Component Analysis                                     |
| PLS-DA    | Partial Least Squares-Discriminant Analysis                      |
| QTOF      | Quadrupole Time-of-Flight                                        |
| RF        | Random Forest                                                    |
| RSD       | Relative Standard Deviation                                      |
| SPME      | Solid Phase Microextraction                                      |
| SVM       | Support Vector Machines                                          |
| SVM-SMOTE | Support Vector Machine-Synthetic Minority Oversampling Technique |
| TD-GC-MS  | Thermal Desorption-Gas Chromatography-Mass Spectrometry          |
| TDU       | Thermal Desorption Unit                                          |
| THC       | Tetrahydrocannabinol                                             |
| TLC       | Thin Layer Chromatography                                        |
| TOF-MS    | Time-of-Flight Mass Spectrometer                                 |
| UKTR      | United Kingdom Timber Regulation                                 |
| UNODC     | The United Nations Office on Drugs and Crime                     |
| UPGMA     | Unweighted Pair Group Method with Arithmetic Mean                |
| USDA      | United States Department of Agriculture                          |
| USFWL     | U.S. Fish and Wildlife Forensic Lab                              |
| VIP       | Variable Importance in Projection                                |
| WDXRF     | Wavelength-Dispersive X-Ray Fluorescence                         |

#### **COPYRIGHT PERMISSION**

A significant amount of the work presented in this dissertation has been published. Copyright permissions for inclusion of the published work appearing in Chapters 2 and 3 were obtained. The acquired permissions are reproduced below. The published content is included because it involves a significant portion of the research conducted for completion of the Ph.D. requirements.



# CHAPTER 1: METHODS FOR THE FORENSIC ANALYSIS OF SYNTHETIC NEW PSYCHOACTIVE SUBSTANCES AND PLANT MATERIALS

#### 1.1. Introduction

In an era marked by unprecedented levels in organized crime, forensic science finds itself at the forefront of combating a diverse array of emerging challenges. From the production and distribution of psychoactive plants and synthetic drugs to the environmental devastation caused by illegal logging, the landscape continues to rapidly evolve. In navigating this complex terrain, forensic scientists are tasked with developing innovative methodologies to rapidly detect, identify, and classify these materials, using various analytical techniques and data-driven approaches to address these pressing concerns. Historically, the chemical interrogation of the diversity of materials that are encountered in a forensic context has been conducted using nuanced method development approaches. This has resulted in a plethora of distinct protocols that are tailored to specific material types or compounds, the development of which is time-, cost-, and resourceintensive. Furthermore, it is not unusual for the developed methods to require several hours or even days to complete. There is also often the need for expensive consumables such as chromatography columns, solvents, and calibration and reference standards.

While the issues associated with the forensic analysis and identification of new synthetic drugs of abuse, plant-based psychoactive substances and wood materials suspected of being illegally trafficked may seem disparate, the analysis challenges that they present are remarkably similar. Accordingly, it is proposed that a unified approach can be developed that addresses the technical issues that routinely confront analysts as they seek to identify these materials. To appreciate the validity of this statement, it is helpful to consider the nature of the problem both from the perspective of the forensic importance of the materials themselves, and the manner in

which they are analyzed and identified currently.

#### 1.1.1. New Psychoactive Substances

The United Nations Office on Drugs and Crime (UNODC) has categorized mind-altering drugs that are not currently controlled under previous drug law conventions as "new psychoactive substances" (NPSs).<sup>1</sup> These substances, often referred to as "legal highs" because they are not yet outlawed, are readily accessible online and pose significant public health risks. NPSs include synthetic cathinones, cannabinoids, tryptamines, opioids, and their structural variants. These designer drugs are readily available for purchase on the internet and are often labelled as "not for human consumption", a designation which not only belies their intended purpose, but shields them from Food and Drug Administration (FDA) scrutiny. The emergence of NPSs has imposed unique challenges on crime labs, primarily because law enforcement agencies have been unable to keep abreast of the rapid influx of novel structural variants that appear on the market within days to weeks after earlier generations of synthetic structures have been scheduled.<sup>2-11</sup> Although the UNODC has the ability to schedule and ban newly discovered psychoactive materials, the process of presenting a compelling case for scheduling can be lengthy, lasting from months to years. A major contributor to this bottleneck is the necessity that the structure of the unknown NPS be identified. This has proven to be challenging due to the rapid emergence of structural variants and the significant time, equipment and human resources required for full structural characterization. Thus, manufacturers rapidly respond to the scheduling of specific synthetics by releasing novel structural variants, knowing that there will be few if any repercussions for the marketing of these substances.<sup>5,6,11</sup> In the case of synthetic cathinones, the National Drug Intelligence Center has noted that "no substantial law enforcement or regulatory action has significantly prevented synthetic cathinone products from reaching distributors or consumers".<sup>12</sup> Among the repercussions

of the use of these substances are their impacts on human health, as well as the criminal offenses committed by individuals while under their influence. Cathinones serve as a case in point. The devastating physiological effects of synthetic cathinones include hyperthermia, severe psychosis, increased body temperature, cardiac and neurological problems and death.<sup>2,13–21</sup> For example, negative medical impacts (including fatalities) have been attributed to 1-phenyl-2-(1-pyrrolidinyl)-1-propanone (α-pyrrolidinopropiophenone), 2-(methylamino)-1-(4-methylphenyl)-1-propanone (mephedrone), and 1-(1,3-benzodioxol-5-yl)-2-(1-pyrrolidinyl)-1-pentanone (3,4-methylenedioxy pyrovalerone), three compounds which possess significant structural differences, while having in common the core cathinone scaffold.<sup>15,17,18,20,21</sup> Synthetic tryptamines, such as 5-methoxy-*N*,*N*-di-2-propen-1-yl-1H-indole-3-ethanamine (5-methoxy-DALT) also cause severe agitation and cardiac problems, even in small doses.<sup>11,22</sup> It has also been observed that abusers often ingest multiple classes of drugs simultaneously, such as mixtures of tryptamines and synthetic cathinones.<sup>23</sup> Synthetic cannabinoids that have recently appeared on the drug market have resulted in hospitalizations due to alterations in mental status, tachycardia, loss of consciousness, and death.<sup>7,24–26</sup> Also attributed to synthetic cannabinoids was an outbreak in New York City where 33 individuals were simultaneously all under the influence of N-[[1-[(4-fluorophenyl)methyl]-1Hindazol-3-yl]carbonyl]-L-valine, methyl ester (AMB-FUBINACA), which caused them to behave as "zombies".<sup>25</sup> In this case, a comprehensive metabolic panel and analysis of the patients' urine revealed no abnormalities or presence of amphetamines, methadone, tetrahydrocannabinol (THC), barbiturates, benzodiazepines, tricyclic antidepressants, or serum ethanol.<sup>25</sup> Abuse of synthetic opioids has also been on the rise, leading to fatalities, especially when ingested in combination with heroin.<sup>10,27–29</sup>

#### 1.1.2. Psychoactive Plants

In addition to NPSs, the ease of access to psychoactive plants also presents various challenges. There are over 400 species of plants that are purported to be psychoactive.<sup>30</sup> Yet in most countries, less than 5% of these are scheduled. With the advent of internet commerce, these products are readily acquired from around the world and legally traded. Their regulation is difficult to accomplish in part because of the paucity of standardized protocols for detecting and characterizing their psychoactive constituents. These plants have diverse chemical compositions and visual resemblance to benign materials, complicating their identification. Furthermore, their chemical profiles can vary significantly depending on factors such as growing conditions and preparation methods. The broad range of these substances often requires nuanced method development for their definitive identification, projects which crime labs are often ill-equipped to undertake in terms of time and resources. This underscores the pressing need for innovative analytical strategies for the analysis of complex plant matrices.

Developing comprehensive techniques that can reliably identify the specific psychoactive constituents in these plants is crucial not only for regulatory compliance purposes, but also for ensuring public safety, and preventing the dangers that accompany the misuse of these substances. For instance, in the 2013 report "The Challenge of New Psychoactive Substances", the UNODC delineated a roster of twenty plants containing psychoactive constituents, attributing their inclusion on the list to escalating instances of recreational misuse and the potential for addiction.<sup>1</sup> The species as well as their common names are listed in Table 1.1. While the molecular constituents of some of these plants are not well-characterized, several are well-researched and have known psychoactive components. For example, *Piper methysticum* (Kava) (Figure 1.1) contains a group of structurally related compounds commonly known as kavalactones (Figure 1.2) including the psychoactive yangonin, in addition to major compounds such as, dihydrokawain, kawain, and

| Table 1.1 Mind-altering       | plant species listed by the |  |
|-------------------------------|-----------------------------|--|
| UNODC as "plants of concern". |                             |  |
| Species Name                  | Common Name                 |  |
| Argyreia nervosa              | Hawaiian Baby Woodrose      |  |
| Banisteriopsis caapi          | Ayahuasca                   |  |
| Calea zacatechichi            | Dream Herb                  |  |
| Catha edulis                  | Khat                        |  |
| Datura stramonium             | Datura                      |  |
| Ipomea spp.                   | Morning Glory               |  |
| Leonotis leonurus             | Lion's Tail/Wild Dagga      |  |
| Lophophora williamsii         | Peyote or Peyote cactus     |  |
| Mimosa hostilis               | Mimosa                      |  |
| Mitragyna speciosa            | Kratom                      |  |
| Nymphaea caerulea             | Blue Egyptian Water Lily    |  |
| Peganum harmala               | Syrian Rue                  |  |
| Picralima nitida              | Akuamma seed                |  |
| Piper methysticum             | Kava                        |  |
| Psychotria viridis            | Chacruna                    |  |
| Salvia divinorum              | Salvia                      |  |
| Sceletium tortuosum           | Kanna                       |  |
| Turnera diffusa               | Damiana                     |  |
| Voacanga africana             | Small-Fruit Wild Frangipani |  |
| Lactua virosa                 | Wild Lettuce                |  |

desmethoxyyangonin which are known to induce psychoactivity and/or have toxic liver effects. Similarly, *Mitragyna speciosa* (Kratom) (Figure 1.1) contains the psychoactive alkaloids mitragynine and 7-hydroxymitragynine. These plants are challenging to identify in a forensics context because of their visual resemblance to innocuous materials such as food and spices that do not exhibit psychoactive effects.<sup>1,31</sup>

Of the twenty plants identified by the UNODC, only *Catha edulis* (Khat) and *Lophophora williamsii* (Peyote or Peyote cactus) have attained controlled substance status at the federal level in the United States, leaving the remainder unregulated.<sup>32,33</sup> This is due in part to the absence of standardized protocols for the precise and efficient detection and characterization of the

psychoactive compounds that they contain, or the fact that in some cases, the psychoactive constituents remain unknown. This means that in the case of the latter, there are no known chemical constituents that can



**Figure 1.1** Photographs of the psychoactive plant materials *Piper methysticum* (left) and *Mitragyna speciosa* (right).



**Figure 1.2** Core structure of kavalactone.

serve as the basis for positive identification of the plant material. The identification of these psychoactive plants is further complicated by the range of forms in which they are encountered, including roots, seeds, and leaves, that may have undergone further processing to generate powders, capsules,

and tinctures. There is a pressing need for the development of

standardized analytical protocols and comprehensive databases that can accurately identify and characterize these plants along with their psychoactive constituents. This would facilitate more effective regulation, helping to mitigate the risks associated with their misuse.

#### 1.1.3. Timber

Another dimension to the forensic analysis of flora is the challenge of illegal logging. This leads to many global issues, including ecological and economic damage.<sup>34</sup> Many significant timber species around the world are economically important because of the rich beauty of their wood, in combination with favorable wood mechanical characteristics, which makes these species highly prized for furniture, musical instruments, decorative materials, and artisanal crafts.<sup>35</sup> Consequently, many high-value tree species are specifically targeted. Approximately 10-30% of timber is illicitly harvested worldwide, increasing to 50 to 90% when focusing on wood from tropical areas, and it is estimated to have a global cost of \$52 billion to \$117 billion per year.<sup>34</sup> Forests around the world continue to be the primary means by which to counteract climate change and support sustainable development. Deforestation is the cause of 17% of man-made emissions, which is 50% more than sea, air, and land transport combined because it releases stored carbon from trees into the atmosphere and reduces the capacity of forests to absorb CO<sub>2</sub>.<sup>36</sup> Moreover, globally, only approximately 10% of natural forests remain undisturbed. Without forests, there

would be loss of water supplies, biodiversity, pharmaceuticals, recycled nutrients for agriculture, and reduction of flood prevention, all of which are imperative for a sustainable economy.<sup>36</sup>

The Convention on International Trade in Endangered Species (CITES) was created to address the conservation of imperiled wildlife by controlling their trade. Regulation status is defined by appendices: CITES Appendix I species are threatened with extinction, and thus, all forms of trade are illegal; CITES Appendix II species are threatened in the wild and international trade is controlled to aid in their survival; and CITES Appendix III species are regulated by a particular nation.<sup>37</sup> Additional regulations, such as the US Lacy Act, the European Union Timber Regulation (EUTR), and the United Kingdom Timber Regulation (UKTR) have also been devised to aid in the survival of species. Consequently, trade is either completely prohibited or heavily restricted depending on the species. These national and international laws place the onus on the importer to carry out due diligence to ensure that the timber that they procure is legal to trade.

Illegal loggers are able to avoid prosecution by falsifying documents, harvesting out of season or outside of concession boundaries, and through customs fraud in order to deceive law enforcement. For this reason, law enforcement agencies and national authorities require practical mechanisms to keep up with the complexity of these challenges. Effective management of this problem will ultimately contribute to the preservation of the world's forests and the sustainability of biodiversity and the timber trade.

# **1.2.** Conventional Approaches for the Forensic Analysis of Complex Materials 1.2.1. Conventional Analysis—Drugs of Abuse

Conventional analysis methods, including chromatography, mass spectrometry, and various forms of spectroscopy, are essential tools in forensic laboratories, and each has specific advantages. However, for a variety of reasons, they are generally less than ideal for the

characterization of NPSs. A major issue is the difficulty of determining the structures of unknowns as they emerge, given not only the rapidity with which they flood the market, but also the time, analytical instrumentation, human resource expertise and financial investments required to accomplish this task. Crime laboratories that do undertake structure elucidation studies of suspected psychoactive unknown products rely on a variety of methods. These include colorimetric assays, thin layer chromatography (TLC), liquid chromatography (LC), gas chromatography-mass spectrometry (GC-MS), and Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectroscopies, among others.<sup>38–45</sup> The UNODC has created manuals of recommended methods to identify seized materials, including a guide for analysis of synthetic cathinones and synthetic cannabinoids that lists over 15 different approaches that can be employed for identification.<sup>38,46</sup> While these are useful, they still require optimization in terms of selecting the ideal analytical technique and conditions to be used. Other challenges associated with this effort include the amount of sample needed for analysis, and the nuanced attributes of various molecule classes when subjected to some of the most common techniques used for identification. For example, synthetic cathinones are well-known to fragment so extensively by electron ionization (EI) MS (the mainstay of most crime labs) that the data generated have limited usefulness.<sup>47,48</sup> Cathinones typically fragment by  $\alpha$ -cleavage resulting in the appearance of prominent peaks representing common iminium and acylium ions, while the molecular ion peak is often absent. The result is that cathinones of very different structure can have remarkably similar but uninformative EI mass spectra.<sup>47–49</sup> For example, 1-(1,3-benzodioxol-5-yl)-2-(methylamino)-1-pentanone (pentylone) and 1-(1,3-benzodioxol-5-yl)-2-(ethylamino)-1-butanone (eutylone) have remarkably similar EI mass spectra as illustrated in Figure 1.3. Both spectra display base peaks at m/z 86 and similar fragmentation with few diagnostic fragment ions. This high degree of similarity makes it



Figure 1.3 EI mass spectra of the synthetic cathinones pentylone and eutylone. The spectra share the base peak at of m/z 86 and are remarkably similar, with few diagnostic fragment ions that can be used to distinguish between them.

challenging to identify them based on MS fragmentation patterns. This is also true for other classes of molecules including synthetic cannabinoids. Even when MS is coupled with GC, the retention time information acquired is often of limited utility for novel compounds whose retention times have not been established. IR spectroscopy can alert the analyst to the presence of diagnostic structural features that imply the presence of a certain class of molecule, but it does not supply definitive structural information. Analysis by NMR spectroscopy, albeit a powerful structure elucidation technique, is uncommon at most crime labs because of a lack of equipment and requires relatively high concentrations of purified samples that are readily solubilized. This combination of factors remains a formidable barrier to the routine practice by crime labs of structure elucidation of NPS variants. The determination of the structure of 1-(4-fluorophenyl)-2-(pyrrolidin-1yl)octan-1-one (4-fluoro-PV9) from samples seized by police in southern Poland is instructive. Majchrzak et al. first conducted two mass spectrometry experiments using HPLC-MS and HPLC-MS-MS.<sup>50</sup> After performing these analyses, they made the working assumption that the compound was a synthetic cathinone based on the appearance of an  $[M+H^+ - H_2O]^+$  peak, citing this to be a "well-known characteristic of cathinone derivatives." Based on this information, GC-EI-MS was performed to piece together the structure of the new cathinone derivative. NMR was also required to determine the position of the fluorine atom on the aromatic ring.<sup>50</sup>

Further complicating matters is the fact that psychoactive plants and/or other psychoactive substances rarely appear on the market as purified compounds, but rather as complex plant matrices or mixtures comprised of cutting agents and diluents, among other components. To identify them, the mixture must not only be separated, but the unknown must then be structurally characterized and unequivocally identified. After receiving samples of evidence seized in criminal investigations, Shevyrin et al. determined the structures of five new derivatives of indole-3carboxylic acid from the results of a series of MS, IR, and NMR experiments.<sup>51</sup> Though all five had similar fragmentation patterns, it was not immediately apparent what modifications had been made to the core scaffold. Thus, 2D NMR experiments were performed on both of the unknown compounds, and related representative compounds for comparison.<sup>51</sup> In one such seized product, the new drug N,5-dimethyl-N-(1-oxo-1-(p-tolyl)butan-2-yl)-2-(3-(p-tolyl)ureido)benzamide was discovered. Unable to match its GC-MS characteristics to any known compounds, Uchiyama et al. had to determine the structure via a lengthy series of NMR and MS experiments.<sup>52</sup> By utilizing a combination of DART-TOF-MS, 1D <sup>1</sup>H and <sup>13</sup>C NMR, DQF-COSY, HMQC, and HMBC, they were finally able to determine the structure of this new variation of 4-methylbuphedrone.<sup>52</sup> This example illustrates how newer MS techniques such as DART-MS are making their mark in forensic drug characterization.

#### 1.2.2. Conventional Analysis—Timber

Various methods have been developed to address the challenge of species identification of wood samples. Among these, wood anatomical analysis stands out as the most prominent approach. A wood anatomist identifies species based on their distinctive macroscopic and microscopic features. While this method works quite well for differentiating between genera, distinguishing between species within the same genus can prove to be difficult due to similarities



**Figure 1.4** *Dalbergia nigra* (top) and *D. odorifera* (bottom), which are two endangered tree species that show visual similarities.

in their anatomical features. For example, Figure 1.4 shows an image of *Dalbergia nigra* (a CITES appendix I species) on the top and *D. odorifera* (a CITES appendix II species) on the bottom, which are too similar to visually distinguish. An alternative method is DNA analysis which, while promising, presents significant drawbacks including laborious procedures, time intensiveness, and high costs. Furthermore, the efficacy of DNA

analysis hinges on the successful extraction of intact DNA from wood, a process complicated by the tendency of DNA in felled wood to be extensively fragmented, rendering it unsuitable for DNA sequence-based identification.<sup>35,53,54</sup>

An alternative cost-effective and rapid method for species identification involves the use of Near-Infrared (NIR) spectroscopy. This technique enables non-destructive analysis of timber, leveraging the unique spectral features of the molecules in the wood which are then further differentiated with high accuracies using multivariate statistical analysis.<sup>55–57</sup> Despite the promising results reported in various studies, NIR spectroscopy has several limitations, including limited spot size, wavelength range, and resolution.<sup>55</sup> These constraints can prevent the capture of all the spectral details necessary for differentiation, resulting in significant challenges for comprehensive species identification across a broad range of species. Additionally, the development of a more comprehensive wood identification database is hindered by the small

sample sizes used in existing studies, the inherent variability among wood species and the need for extensive, high-quality data collection.

One current technique employed by law enforcement agencies involves direct analysis in real time – high-resolution mass spectrometry (DART-HRMS), complemented by multivariate statistical analysis. Despite the demonstrated utility of this approach, its inability to facilitate on-site timber analysis represents a significant drawback stemming from time-consuming sample collection and transportation to off-site laboratories. Conducting analyses on site and in real time is highly desirable and would offer optimal efficiency, as it would eliminate the need to transport timber from shipping ports to laboratories for analysis, and yield considerable savings in both time and resources.

#### 1.3. Summary and Outlook

An innovative strategy to address the aforementioned challenges involves developing a methodology that considers complex matrices and leverages the composite of a material's distinctive chemical attributes for identification, rather than relying solely on the presence of a single component, as currently practiced. The adoption of this approach has been slow due to the large volumes of complex data that would need to be produced and surveyed, and the perceived processing challenges. However, recent advances in big-data processing and the availability of the necessary computing power for developing machine learning models based on chemical profiles, offer a viable pathway to overcome these obstacles.

With regard to the type of chemical data that would lend itself to the adoption of such an approach, DART-MS provides a promising solution for the rapid screening and classification of NPSs, psychoactive plants, and wood materials. By revealing the molecular profiles of samples, DART-HRMS provides highly informative spectra. If similar substances exhibit chemically

specific molecular profiles that are distinguishable from those of other materials, then subjecting the chemical profile data to multivariate statistical analysis (MSA) can efficiently differentiate and identify these substances. This method leverages unique molecular signatures to provide a robust identification mechanism. Furthermore, applying multiple analytical techniques to the same sample can yield distinct but complementary datasets. By combining the data that is furnished by multiple methods (i.e., fusing) and subjecting it to MSA, significant enhancement of the accuracy of the developed prediction models can be achieved. This integrated approach maximizes the reliability of sample identification, and these methodologies are discussed in detail below.

#### 1.3.1. DART-HRMS

First described in the literature in 2005,<sup>58</sup> DART-MS was one of the two methods that ushered in a new era for ambient ionization mass spectrometry. Prior to this development, most mass spectrometry was performed under vacuum conditions, which greatly restricted the diversity of analytes and sample matrices that could be analyzed. DART-MS introduced the capability to analyze samples in their native forms under ambient conditions (i.e., room temperature and pressure) and in open air. The "DART" refers to the ion source. This ion source can ionize materials under standard temperature and pressure conditions, significantly extending the range of sample types that can be interrogated, and eliminating the need for vacuum. Figure 1.5 provides an illustration of the DART ion source. It consists of a tube containing multiple chambers. The first has a glow discharge (i.e., a plasma) into which a gas (typically helium) is introduced. Within the tube are a cathode and an anode where an electrical potential initiates an electrical discharge, producing ions, electrons, and excited-state species (i.e., metastable helium states). The gas then flows into the second chamber where a second perforated electrode removes ions from the gas stream and the gas flow then passes through the third region that can be heated and directed toward



**Figure 1.5.** View of the DART ion source and MS inlet, illustrating the gas flow through several chambers. In the first chamber, a glow discharge between the needle electrode and the grounded electrode produces ions, electrons, and excited-state (metastable) atoms. These metastable atoms then pass through an optional heater and exit into the sample open air gap between the DART ion source and MS inlet.

the mass spectrometer sampling orifice. The metastable atoms in the gas flow that exit the ion source react with water molecules present in the atmosphere to form ionized water clusters that engage with analytes present in the sample, creating ions influenced by factors such gas composition, ion polarity, and the presence of dopants.<sup>58</sup>

Different ionization mechanisms can occur depending on the type of sample being analyzed and the polarity of the ions formed. In positive ion-mode, the primary mechanism involves proton transfer. The metastable helium atoms formed by the DART ion source react with atmospheric water to produce ionized water clusters. These clusters then transfer a proton to the analyte to form a protonated molecule (Figure 1.6). In negative ion mode, the primary ionization

$$\begin{aligned} &He(2^{3}S) + H_{2}O \rightarrow H_{2}O^{+\bullet} + He(1^{1}S) + e^{-} \\ &H_{2}O^{+\bullet} + H_{2}O \rightarrow H_{3}O^{+} + OH^{\bullet} \\ &H_{3}O^{+} + nH_{2}O \rightarrow [(H_{2}O)_{n+1}H]^{+} \\ &[(H_{2}O)_{n}H]^{+} + M \rightarrow MH^{+} + nH_{2}O \end{aligned}$$

**Figure 1.5** Equations illustrating formation of positive ions by proton transfer via DART, where S is the sample.

mechanism is deprotonation (see Figure 1.7). Metastable helium atoms interact with a neutral species (N) (i.e., the grid electrode) to generate electrons through Penning ionization. The resulting electrons are quickly thermalized through collisions with
$$M^{*} + N \rightarrow N^{+*} M + e^{-}$$

$$e^{-*} + G \rightarrow e^{-} + G^{*}$$

$$e^{-} + O_{2} \rightarrow O_{2}^{-*}$$

$$O_{2}^{-*} + S \rightarrow [S-H]^{-} + OOH^{*}$$

$$O_{2}^{-*} + S \rightarrow S^{-*} + O_{2}$$

$$O_{2}^{-*} + S \rightarrow [S + O_{2}]^{-**} + G \rightarrow [S + O_{2}]^{-*} + G^{*}$$

atmospheric gases (G) and subsequently react with gaseous oxygen to form oxygen anions. These anions then react with sample molecules (S) to generate analyte negative ions. The understanding of these different ionization mechanisms is crucial when determining which is

best to use for a specific analyte and interpreting the data. For example, in positive ion mode, only analytes with proton affinities greater than that of water will be ionized, while in negative ion mode, analytes must have relatively low proton affinities to undergo deprotonation.

The DART source is commonly integrated with various mass analyzers, with a highresolution time-of-flight mass spectrometer (TOF-MS) being a frequent choice to enhance selectivity and provide accurate elemental composition determination through exact mass measurements.<sup>58</sup> The difference in ionization mechanisms also means that the output from the mass spectrometer differs from that of electron ionization mass spectrometry (EI-MS). In EI-MS, ionization is typically achieved by electron collision at 70 eV, which results in formation of ion radicals, and significant fragmentation of the analyte. On the other hand, DART-MS tends to produce intact protonated or deprotonated precursor molecules due to the softer ionization process, allowing for analysis of the molecular profile of complex matrices. The output of a typical DART-MS analysis of a complex matrix is a comprehensive spectrum representing a wide range of molecules. This spectrum provides a chemical fingerprint signature of the matrix, revealing its diverse molecular components in a single experiment. Depending on the matrix, the spectrum can

**Figure 1.6** Equations illustrating formation of negative ions by DART, where N is a neutral species, G is the atmospheric gases, and S is the sample. is crucial when determining

include a variety of compounds, each contributing to the overall chemical profile. The detailed molecular information is essential for applications that require precise identification and characterization of complex matrices.

Several sampling methodologies are available for DART-HRMS analyses of various forms of matter, such as solids, liquids, and gases. If the appropriate mass analyzer is used, the instrument can achieve nanogram detection limits, making it highly efficient in instances where sample quantity is limited. Also, because the sampling takes place outside of the mass analyzer (as opposed to having to be transferred into the instrument, samples can be in a variety of forms. For solid irregularly-shaped samples, one approach entails introducing the material into the DART gas stream using a pair of tweezers. This is convenient for examination of bulk materials including



**Figure 1.7** Capillary tube suspended between the DART ion source and the MS inlet after being exposed to a powdered sample.

plant components part such as roots, seeds, and leaves. Conversely, an alternative technique involves the insertion of the closed end of a glass melting capillary tube into the sample and presenting the coated surface of the tube to the open-air sampling gap between the ion source and the MS inlet (Figure 1.8). This method is effective for the analysis of liquids, powders, and homogenized materials. For analytes that have been adsorbed onto sorbent materials such as is the case when concentrating headspace volatiles using solid-phase microextraction (SPME) fibers, the fibers can be sampled by



**Figure 1.8** SPME fiber suspended between the DART ion source and the MS inlet (while being held using a SPME fiber holder. Analytes adsorbed to the fiber are desorbed in the heated DART gas stream and ionized before entering the MS inlet.

introducing them directly into the heated DART gas stream, where the compounds are desorbed and ionized prior to entering the MS inlet (Figure 1.9).

There are numerous forensic applications of DART-MS, including its use as a screening tool for psychoactive materials.<sup>11,31,48,59–81</sup> Analysis is rapid (in less than one minute) and numerous sample types can be analyzed with little to no sample preparation.<sup>81</sup> Nie et al. demonstrated that DART-MS could be used as a rapid screening method for the 11 NPSs that they analyzed in their study, including four

cathinones, one phenethylamine, and six cannabinoids.<sup>80</sup> These NPSs were then also separated and detected using LC/QTOFMS for accurate structure determination by an independent method.<sup>80</sup> Gwak et al. used a DART ion source coupled to a quadrupole time-of-flight (QTOF) mass spectrometer to analyze 35 NPSs, which included a range of cannabinoids, cathinones, and one phenethylamine, with results suggesting that this method can be used for rapid screening and characterization of these types of compounds.<sup>81</sup> Included in the numerous forensic applications of DART-MS is its use as a screening tool for species identification based on metabolome profiles.<sup>53,54,61,82–87</sup> For instance, Deklerck et al. conducted direct analyses of slivers from various wood species and constructed a Random Forest classification model based on their chemical

distinctions, with an accuracy of 82%.<sup>54</sup> The U.S. Fish and Wildlife Forensic Lab has also embraced a similar methodology for practical use in casework scenarios, which involves screening of the DART mass spectra of seized wood samples against a comprehensive database of wood species, achieving accuracies exceeding 90%.<sup>88,89</sup>

#### 1.3.2. Solid-Phase Microextraction

While the preference for minimal sample preparation steps is of recognized importance in forensic analysis, certain procedures for sample collection and pretreatment are often considered to be essential. An illustrative instance is the utilization of solid-phase microextraction (SPME) fibers, which can play a critical role in concentrating volatiles for subsequent analysis using diverse instrumental techniques.<sup>90-92</sup> These fibers, coated with a sorbent material, concentrate headspace volatiles within a closed system via adsorption to the sorbent. Prior to analysis, the SPME fiber must undergo a crucial conditioning step, involving exposure to a stream of inert gas (e.g., nitrogen) at an elevated temperature (i.e., 250 °C) for thirty minutes, in order to desorb any chemicals present in the environment that are not directly associated with the analysis of the material of interest. This procedure ensures that the volatiles detected in the subsequent analysis originate solely from the target sample, effectively eliminating any potential interference from extraneous analytes to which the fiber may have been exposed prior to the concentration step.

The application of SPME fiber-assisted analysis has emerged as a significant tool in facilitating the detection of headspace volatiles associated with the presence of illicit substances such as 3,4-methylenedioxymethamphetamine (MDMA) and cocaine.<sup>93–96</sup> Moreover, the application of SPME fiber-assisted analysis has been extended to the identification of cannabis.<sup>97,98</sup> Beyond the domain of illicit substances, the concentration of headspace volatiles on SPME fibers, followed by subsequent mass spectrometric and/or spectroscopic analysis, has proven valuable in

the identification of innocuous non-psychoactive plant materials.<sup>99–102</sup> Additionally, empirical studies have demonstrated the discriminatory capacity of headspace volatiles in distinguishing natural aromas from the fragrances of many spices.<sup>99–101,103</sup> These collective findings underscore the potential utility of this approach for "stand-off" analysis, where materials can be analyzed from a safe distance. The development of such methods could serve as a tool for crime scene investigators to detect hazardous compounds in a safe manner by identifying characteristic volatile compound signatures, including those associated with legal high synthetic substances and plant products.

#### 1.3.3. Multivariate Statistical Analysis

Of key importance in the utilization of chemical data is its processing by multivariate statistical analysis (MSA), as it is a mechanism by which patterns in the data that can serve as the basis for making accurate class predictions can be accomplished. MSA is a powerful tool used to analyze complex datasets by examining multiple variables simultaneously. It facilitates the identification of patterns, relationships, and structures within the data that may not be evident when considering variables individually. MSA is essential in fields such as forensic chemistry, where data complexity and the need for accurate interpretation are of paramount importance. These techniques can be broadly categorized into two main types: unsupervised and supervised methods, as illustrated in Figure 1.10. Unsupervised methods are typically the first step in data analysis. These methods facilitate the exploration and detection of similarities and differences within data without using pre-assigned class labels. Principal Component Analysis (PCA) and Hierarchical Clustering Analysis are two examples of unsupervised methods. On the other hand, supervised methods are used for classification, where models are constructed based on labeled training data. Examples of supervised methods include Random Forest (RF), Support Vector Machines (SVM),



Figure 1.9 Supervised and unsupervised statistical analysis techniques.

and K-Nearest Neighbor (KNN). These methods are advantageous because they provide a systematic approach to analyzing and classifying data, making it possible to draw meaningful conclusions from complex datasets.

### 1.3.3.1. Forensic Applications of Multivariate Statistical Analysis Techniques

The utility of MSA for the processing of forensically relevant data has become more commonplace. It is inherently advantageous for the analysis of NPSs for characterization and classification purposes.<sup>11,48</sup> Setser et al. demonstrated this to be true by using MSA tools for analysis of synthetic phenethylamine and tryptamine GC-MS data.<sup>104</sup> It was shown that principal component analysis (PCA), an unsupervised exploratory technique that is applied to reduce the dimensionality of data, could be used as an objective method for variable selection (i.e. a method of choosing the subset of data points that can be relied upon to provide the highest prediction accuracy model). A classification model could then be created using these variables. In this case, linear discriminant analysis (LDA) was used to develop a classification model. LDA is a supervised technique, which means that the classes used in the model are assigned so that between-class variance is maximized, while within-class variance is minimized. The resulting model exhibited a prediction accuracy of 86% for the classification of phenethylamines and

tryptamines.<sup>104</sup> Another study applied MSA to the ion abundances observed in the electron ionization (EI) mass spectra of six phenethylamine isomers. In this case, the performance of PCA was followed by the application of the classification model "canonical discriminant analysis" (CDA), a supervised technique that determines how to separate and discriminate between groups in the most efficient way possible. Among the issues that arose in this study were that spectra created from lower concentration samples were irreproducible, and that the spectra of several of the compounds did not exhibit molecular ion peaks.<sup>105</sup> These challenges, which, depending on the compound class, can be quite common with EI mass spectra, can be circumvented by using alternative MS techniques like DART-MS, which can provide a more comprehensive dataset for multivariate statistical analysis. This is because DART-MS analysis is typically conducted under soft ionization conditions, and when fragmentation is induced, it can be made to occur at ionization energies well below the 70 eV used to generate conventional EI mass spectra. The molecular ion equivalent, which in the case of DART-MS (performed in positive ion mode), is usually the unfragmented protonated precursor molecule, is generally always observed. Furthermore, because samples can be analyzed directly in their native form, there is no need for them to be solubilized, and therefore the challenge of not detecting MS signals because the solution concentration of the analyte is too low, is avoided. Thus, the increased reproducibility of DART mass spectra, along with the observation of a greater number of prominent diagnostic peaks for a variety of classes of molecules, make the spectra themselves highly amenable to MSA if the purpose is sample identity prediction and pattern recognition.

There are a large number of MSA methods that have been applied to chemical data. One of the most common is partial least squares-discriminant analysis (PLS-DA), which is a machine learning classification technique that is being increasingly applied to forensic data. PLS-DA can

be viewed as a supervised version of PCA because of its dimensionality reduction attribute (but with defined class labels). In addition, it can also be used for feature selection (i.e., determination of which features in the data enable class distinctions and identity predictions to be made), and classification, unlike PCA. PLS-DA is an appropriate approach particularly when the number of features is much greater than the amount of samples.<sup>106</sup> As such, it yields favorable results when applied to mass spectral and spectrophotometric data, due to the high number of features (m/zvalues and wavelengths respectively). A report by Pereira et al. is illustrative.<sup>107</sup> The study described the classification of synthetic drugs found on seized blotter papers. When Nmethoxybenzyl (NBOMe); 2,5-dimethoxy-benzeneethanamine (2C-H); lysergic acid diethylamine (LSD); 2-(3,5-dimethoxy-4-((2-methylallyl)oxy)phenyl)ethanamine (MAL); and blank papers were analyzed by attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and discriminated using PLS-DA, the model was able to classify the samples with relatively high accuracy. The exception was LSD, which could not be accurately classified possibly due to its low concentration on the blotter papers.<sup>107</sup> Overall, their results indicate that PLS-DA can be an efficient MSA tool for the classification of NPSs.

## 1.3.3.2. Additional Techniques That Can Be Used to Analyze Chemical Data

The Random Forest (RF) algorithm is a valuable tool in classification, employing decision trees to organize data effectively. Decision trees, a common predictive modeling technique, use a flow-chart structure to correlate the presence of particular variables with the observation of accurate conclusions, aiding in precise classification.<sup>108</sup> In the context of mass spectral data, each variable corresponds to a specific m/z value, which assists in group assignments like species identity or drug class. Decision trees in mass spectral analysis rely on the presence or absence of certain m/z values to accurately determine the class assignment. These trees are constructed from

distinct sample sets using bagging or bootstrap aggregation, with variables chosen randomly, enabling the creation of numerous diverse trees. RF combines multiple decision trees into a "forest," leveraging the strengths of each tree independently, thereby reducing the impact of errors within individual trees.<sup>108</sup> This approach is particularly advantageous for analyzing large and complex datasets, such as those obtained by mass spectrometry.<sup>61,83,109</sup> The collective insights from multiple trees enhance the robustness of the model, ensuring reliable classification even in the presence of errors in individual trees.

Another supervised machine learning technique suitable for sample classification and identification is Support Vector Machines (SVM).<sup>110</sup> In this method, boundaries are established independent of the sample vector distribution within the dataset to delineate classes. When the data exhibit linear separability, SVM constructs optimal boundaries to effectively differentiate between classes. The optimal boundary, also known as the hyperplane, is determined as the furthest point from both sets of data points, ensuring maximal separation. Support vectors, representing data points closest to the hyperplane, play a pivotal role in identifying the optimal hyperplane position amid numerous possibilities. These support vectors, often challenging to classify, exert direct influence on determining the hyperplane's optimal location for effective class separation. Furthermore, SVM is adept at performing non-linear classifications, enhancing its versatility in handling complex datasets.<sup>110</sup>

Nearest neighbor supervised learning is also an important tool for classification. The fundamental principle of nearest neighbor methods revolves around identifying a set number of training samples closest in proximity to a new point and using these samples to predict the label.<sup>111</sup> This set number can either be a fixed, user-defined constant (known as k-nearest neighbor learning) or can vary based on the local density of points (referred to as radius-based neighbor learning).<sup>111</sup>

Typically, any measurable metric can be used as the distance metric, with the standard Euclidean distance being the most commonly chosen.<sup>111</sup> These methods are classified as non-generalizing machine learning techniques, as they essentially "remember" all training data, often facilitated by transformation into a rapid indexing structure.<sup>111</sup> This approach has been successful across a wide range of classification and regression problems, from handwritten digits to satellite image scenes.<sup>111</sup> As a non-parametric method, nearest neighbors tend to perform well in classification scenarios with highly irregular decision boundaries.<sup>111</sup>

#### 1.3.4. Data Fusion

While MSA provides powerful tools for analyzing and interpreting complex datasets, the integration of data from multiple sources further enhances the accuracy and reliability of classification models. "Data fusion" is a strategy that combines the data output from multiple complementary analytical techniques in order to improve the prediction accuracy of multivariate statistical analysis models that are designed to classify chemical data.<sup>11,112–115</sup> It can dramatically enhance the success for predicting the identity of unknowns when compared to reliance on a single technique.<sup>113</sup> This is due to the fact that the errors that appear when using separate techniques are usually independent of one another, which is why data from these integral approaches should be fused.<sup>114</sup> It has found utility in studies designed to improve classification models of forensically relevant data.<sup>11,112,114,115</sup> For example, in a study done to classify luminescent gunshot residue (LGSR), data from excitation and emission spectra were fused, resulting in the accuracy of the classification model improving to 100% when compared to the results using only the excitation or emission spectra alone.<sup>115</sup> In another study, the accuracy of a classification model for identification of human hair before and after cosmetic modification was enhanced through the use of data fusion with wavelength-dispersive X-ray fluorescence (WDXRF) and laser-induced breakdown

spectroscopy (LIBS) data.<sup>112</sup> Data fusion has also been shown to be useful for characterizing and comparing printing ink evidence with data collected from two complimentary methods, allowing for more thorough characterizations and more pronounced confidence distributions.<sup>114</sup>

#### 1.4. Statement of the Problem

In forensic science, the emergence of new psychoactive substances (NPSs), plant-based drugs of abuse, and timber-trafficking crimes present multifaceted challenges that are global in scope. The diverse categories of the materials involved impose unique analytical challenges due to their novel nature, structural complexity and in many cases, their physical heterogeneity. With NPSs, which include opioids, cannabinoids, cathinones, and tryptamines among other compound classes, standard operating protocols for analysis are often insufficient for structure determination, leading to significant delays in the identification and classification process. This absence of established methodologies exacerbates sample testing backlogs, particularly when structural variants that deviate from known chemical structures are encountered. The problem is further compounded by the limitations of conventional analytical techniques (e.g., gas chromatographymass spectrometry (GC-MS)), which may yield ambiguous or difficult to interpret results, such as occurs when multiple molecules exhibit seemingly identical spectra; when the molecular ion is absent from EI mass spectra; or when multiple analytes have retention time and EI-MS characteristics that are too similar to enable them to be differentiated. Moreover, the complex and resource-intensive nature of method development for GC-MS underscores the need for a more unified approach that streamlines analysis across multiple classes of materials. This is especially true for plant-based drugs, which introduce additional layers of complexity because of the high variability in plant composition, coupled with the presence of novel compounds. This necessitates the development of robust analytical techniques capable of analyzing complex matrices with high

precision and accuracy.

In parallel with the complexities surrounding analysis of NPSs and psychoactive plant materials, the forensic interrogation of timber and its derived products presents its own set of difficulties. Illegal logging and timber trafficking are pressing concerns in environmental conservation and law enforcement. The accurate identification of timber species is crucial for enforcing regulations and combating illegal logging practices. However, traditional wood identification methods often rely on subjective visual assessments or destructive sampling techniques, which are labor-intensive, time-consuming, and may yield inconclusive results for timber species identification.

Given these issues, there is a critical need for innovative analytical approaches that address the unique characteristics of NPSs, plant drugs, and timber analysis-related challenges. DART-HRMS holds promise for rapid, non-destructive interrogation of a wide range of materials due to its ability to ionize samples directly without the need for extensive sample preparation. This technique generates high-resolution mass spectra that can facilitate the efficient classification, identification, and structural elucidation of compounds. The application of multivariate statistical analysis to DART mass spectral data enables extraction of meaningful information from complex datasets, and ultimately, accurate classification. By harnessing the capabilities of advanced instrumentation and data analysis techniques, forensic scientists can overcome existing limitations and enhance their ability to address the ever-evolving landscape associated with emerging illicit substances and wildlife trafficking crimes. Moreover, the development of standardized protocols and reference databases tailored to the analysis of NPSs, plant drugs, and timber-related materials is essential for promoting consistency, precision and accuracy across forensic laboratories worldwide.

Presented in the upcoming chapters are the results of investigations into how DART-HRMS combined with multivariate statistical analysis can be applied to address challenges associated with analysis of forensically relevant materials, such as synthetic drugs, psychoactive plants, and endangered timber. Chapter 2 explores the rapid structure elucidation of unknown tryptamines, using an ambient ionization technique and high-resolution mass spectrometry to identify molecular structures of NPSs without the need for sample preparation, and highlighting the potential of the method for deployment in forensic analysis settings. Chapter 3 investigates methods to create a comprehensive database of psychoactive plants for species determination. This includes the identification of their psychoactive constituents, which could streamline the forensic identification process for plant-based substances. Chapters 4 and 5 focus on the chemical composition of endangered trees, including Dalbergia spp. (Chapter 4), in addition to Swietenia *spp.* (Chapter 5) for species identification. These chapters demonstrate the utility of this approach for species differentiation, which is crucial for the enforcement of regulations protecting endangered timber. In showcasing the results of the featured studies, this research demonstrates the versatility and applicability of chemometric processing of DART mass spectral data to resolve challenging concerns in forensic analysis of materials.

# CHAPTER 2: FUSED DART MASS SPECTRA AND CHEMOMETRICS FOR CLASSIFICATION AND STRUCTURE ELUCIDATION OF TRYPTAMINE PSYCHOACTIVE SUBSTANCES

#### 2.1. Introduction

Forensic laboratories across the United States continue to grapple with the challenges imposed by the unrelenting rise in the circulation of new psychoactive substances (NPSs), a term that refers to recreationally used, unscheduled products that exhibit psychoactivity.<sup>48,116</sup> Their unregulated status and ready accessibility make them prime targets for misuse.<sup>117,118</sup> Opioids in particular have received significant attention, partly because of the high toxicity of some of the compounds that fall under this category, such as fentanyl and its derivatives. However, the focus on opioids has masked the significant problems associated with the emergence of other subsets of NPSs. Tryptamines serve as a case in point. Many are structural derivatives of serotonin or *N*,*N*-dimethyltryptamine (DMT), and are subject to misuse because of their mind-altering effects.<sup>119–121</sup>

While several are scheduled compounds, there are numerous sites within their scaffolds to which structural modifications can be introduced, resulting in the continued emergence of novel variants that retain their psychoactivity.<sup>22,122,123</sup> There are several bottlenecks to the scheduling of these substances including: (1) the difficulty of rapidly detecting and structurally characterizing emerging compounds; and (2) development of protocols for their routine detection and identification. One obstacle encountered by crime labs that mainly use electron ionization (EI) mass spectral techniques for structure elucidation is that closely related structural variants can often exhibit nearly identical EI mass spectral fragmentation patterns, making it challenging to utilize this conventional approach for their definitive identification. Another is that some

tryptamines fragment so extensively that their EI fragmentation patterns are rendered minimally informative for identification purposes.<sup>117,122,124,125</sup> A number of studies that have sought to address these issues have been reported. Piorunska-Sedlak and Stypulkowska showed how attenuated total reflectance Fourier transform infrared spectroscopy (ATR-IR) can serve as a good screening method because it is rapid, there is no need for sample pre-treatment, and only a small amount of sample is needed.<sup>126</sup> Nevertheless, it was observed that depending on the solvent, some samples were observed to have polymorphic crystalline forms that differed from those of the reference sample, making comparisons challenging. Jones et al.<sup>127</sup> reported the creation of an IR and Raman spectroscopy database of NPSs, and Moorthy and Sisco<sup>70</sup> have created a library search algorithm for NPS identification using DART mass spectra. However, in these two cases, identification is based on matching of the spectrum of the unknown to representative spectra that are already present in the database.<sup>70,127</sup> Therefore, emerging compounds that are new to the database cannot be identified using these methods. In addition, while a combination of nuclear magnetic resonance (NMR) and DART-MS can be used for compound identification, as was conducted by Marino et al. for the structure determination of synthetic cannabinoids in herbal incense, fairly large amounts of sample that are soluble in a suitable solvent must be available.<sup>128</sup>

In principle, DART-HRMS neutral loss data can be used to circumvent the aforementioned challenges to the identification of NPSs. In previous work, DART-HRMS was used to generate highly informative mass spectra from the analysis of cathinones.<sup>48</sup> The observed peaks enabled the neutral loss or "dark matter" information that is essential to interpreting the spectrum, particularly in terms of elucidating the structures of new compounds, to be extracted. Here, this approach was extended to enable elucidation of new tryptamine structures. However, an added dimension was that neutral loss data derived from collision-induced dissociation (CID) spectra generated at 60 V

and 90 V, were fused to generate new virtual spectra which were then subjected to advanced statistical analysis processing.

One approach that has been found to have utility in increasing the prediction accuracy in terms of drawing inferences from chemical data is "data fusion", which improves results by combining the outputs of multiple analytical techniques.<sup>112–115</sup> This process was exploited in this study through the fusion of DART-HRMS 60 V and 90 V neutral loss data, which served to increase the number of mass spectral peaks that could be used for structure determination. Accordingly, using statistical analysis techniques described herein, tryptamines were clustered into groups according to the structural information embedded in their fused neutral loss data. This enabled the skeletal frameworks of the structures in each group to be revealed. The observed clusters were then used as the input for the creation of a supervised classification model that could identify unknown tryptamine structures. Thus, the developed method can be used to screen emerging tryptamines against the clusters in order to identify their skeletal frameworks and structures. This novel approach represents a significant advancement over current methodologies for the identification of novel structural variants of drugs through: (1) generation of alternative fragmentation patterns that enable retention of the protonated precursor typically not seen in their EI mass spectra; (2) utilization of data fusion which serves to provide greater amounts of interpretable information and increase the accuracy of the results; and (3) application of machine learning to fused neutral loss spectra to create a prediction model to aid in the structure elucidation of unknown NPSs with a statistical level of certainty.

# 2.2. Methods

## 2.2.1. Materials

The following fifty tryptamine standards were purchased from Cayman Chemical Company (Ann Arbor, Michigan, USA) for creating the training set for the statistical model: aethyl-4-methyl-1H-indole-3-ethanamine;  $\alpha$ -ethyl-5-methoxy-1H-indole-3-ethanamine; N-ethyl-*N*-methyl-1H-indole-3-ethanamine; α-ethyl-1H-indole-3-ethanamine; 5,7-dichloro-1H-indole-3ethanamine;  $\alpha$ -methyl-1H-indole-5-ethanamine; 5-methoxy- $\alpha$ -methyl-1H-indole-3-ethanamine; α-methyl-1H-indole-6-ethanamine; 7-fluoro-1H-indole-3-ethanamine; 5-(nonyloxy)-1H-indole-3ethanamine; 3-(2-aminoethyl)-1H-indol-5-ol;  $\alpha$ -methyl-1H-indole-3-ethanamine; 3-[2-(methylamino)ethyl]-1H-indol-5-ol; *N*-methyl-1H-indole-3-ethanamine; N,N-dipropyl-1Hindole-3-ethanamine; N,N-bis(1-methylethyl)-1H-indole-3-ethanamine; N,N-diethyl-1H-indole-3ethanamine; N,N-dimethyl-1H-indole-3-ethanamine; N-isopropyl-N-(2-(4-methoxy-1H-indol-3yl)ethyl)propan-2-amine; 5-methoxy-*N*,*N*-di-2-propen-1-yl-1H-indole-3-ethanamine; N.Ndibutyl-5-methoxy-1H-indole-3-ethanamine; N,N-diethyl-5-methoxy-1H-indole-3-ethanamine; 5methoxy-*N*,*N*-dimethyl-1H-indole-3-ethanamine; 5-methoxy-N,N-dipropyl-1H-indole-3ethanamine; *N*-isobutyl-*N*-(2-(5-methoxy-1H-indol-3-yl)ethyl)-2-methylpropan-1-amine; 5methoxy-N,N-bis(1-methylethyl)-1H-indole-3-ethanamine; N-ethyl-N-(2-(5-methoxy-1H-indol-3-yl)ethyl)propan-1-amine; N-ethyl-5-methoxy-N-(1-methylethyl)-1H-indole-3-ethanamine; 5methoxy-*N*-methyl-*N*-(1-methylethyl)-1H-indole-3-ethanamine; 6-methoxy-N,N-bis(1-N-isopropyl-N-(2-(7-methoxy-1H-indol-3methylethyl)-1H-indole-3-ethanamine; yl)ethyl)propan-2-amine; N-[2-(5-hydroxy-1H-indol-3-yl)ethyl]-acetamide; N-[2-(1H-indol-3-yl)ethyl]-acetamide; N-[2-(1H-indol-3-yl]ethyl]-acetamide; N-[2-(1H-indol-3-yl]ethyl]-acetamide; N-[2-(1H-indol-3-yl]ethyl] yl)ethyl]-acetamide; 3-[2-(diethylamino)ethyl]-1H-indol-4-ol; 3-[2-(dimethylamino)ethyl]-1Hindol-4-ol; 3-[2-(dipropylamino)ethyl]-1H-indol-4-ol; 3-[2-[bis(1-methylethyl)amino]ethyl]-1Hindol-4-ol; 3-[2-(ethylmethylamino)ethyl]-1H-indol-4-ol; 3-[2-(methylpropylamino)ethyl]-1Hindol-4-ol; 3-[2-[methyl(1-methylethyl)amino]ethyl]-1H-indol-4-ol; 3-[2-(dimethylamino)ethyl]-

1H-indol-4-ol 4-(dihydrogen phosphate); N,N-diethyl-6-fluoro-1H-indole-3-ethanamine; 3-[2-(dimethylamino)ethyl]-N-methyl-1H-indole-5-methanesulfonamide; 3-[2-(diethylamino)ethyl]-1H-indol-4-ol 4-acetate: 3-[2-(dimethylamino)ethyl]-1H-indol-4-ol 4-acetate: 3-[2-(dipropylamino)ethyl]-1H-indol-4-ol 4-acetate; 3-[2-[bis(1-methylethyl)amino]ethyl]-1H-indol-4-ol 4-acetate; 3-[2-(ethylmethylamino)ethyl]-1H-indol-4-ol 4-acetate; 3-[2-[methyl(1methylethyl)amino]ethyl]-1H-indol-4-ol 4-acetate; and 3-[2-(dimethylamino)ethyl]-1H-indol-5ol. The structures of these compounds, their assigned abbreviations and formal names are shown in Figure 2.1. To assess the prediction model's ability to identify tryptamine classes, the following four additional tryptamines were purchased from Cayman Chemical Company (Ann Arbor, Michigan, USA) for external validation: 3-(2-(allyl(methyl)amino)ethyl)-1H-indol-4-yl acetate; 3-[2-(methylpropylamino)ethyl]-1H-indol-4-ol 4-acetate; 3-(2-(allyl(methyl)amino)ethyl)-1Hindol-4-ol; and 3-[2-(dimethylamino)ethyl]-1H-indol-4-ol 4-propanoate.

#### 2.2.2. Instrumentation

A DART-SVP ion source (IonSense, Saugus, MA, USA) interfaced with a JEOL AccuTOF mass spectrometer (JEOL USA, Peabody, MA, USA) was used to collect mass spectral data in positive-ion mode. The optimized instrument parameter settings were as follows: helium gas flow rate, 2.0 L/ min; gas temperature, 350 °C; DART ion source grid voltage, 250 V; ring lens voltage, 5 V; orifice 1 voltage, 20 V, 60 V, and 90 V; orifice 2 voltage, 5 V; and peak voltage, 400 V (to detect m/z values  $\geq$ 40). The samples were analyzed by dipping the closed end of a melting point capillary tube into the sample and presenting the coated surface to the open-air space between the mass spectrometer inlet and ion source. Spectra were collected at a rate of one spectrum per second over the mass range m/z 40-1000. Each sample was analyzed by DART-HRMS three times, and the three spectra were averaged to generate a single representative spectrum. This was repeated ten



Figure 2.1 The structures, common names, and formal names of the tryptamines analyzed in this study.

times in order to produce ten replicates of each sample. PEG 600 (Sigma-Aldrich, St. Louis, MO, USA) was used as a mass calibrant. TSSPro 3 software (Shrader Analytical, Detroit, MI, USA) was used for data processing including averaging, background subtraction, and peak centroiding. The workflow for data collection by DART-HRMS is shown in Figure 2.2A. The soft ionization spectra (collected at 20 V) for the 50 tryptamines, along with their structures are presented in Figure A2.1 with their corresponding mass data tables deposited at https://rabimusah.squarespace.com/s/Tryptamine-20-V-mass-data-tables-corresponding-to-Figure-A1-massspectra.xlsx. The mass data tables for the soft ionization spectra collected at 60 and 90 V are deposited at https://rabi-musah.squarespace.com/s/Tryptamine-original-60-V-mass-tables-thatwere-used-to-create-the-neutral-loss-spectra-in-Figure-A2.xlsx and https://rabimusah.squarespace.com/s/Tryptamine-original-90-V-mass-tables-that-were-used-to-create-theneutral-loss-spectra-in-Figure-A3.xlsx, respectively. To assess the reproducibility of the results, DART-HRMS analyses were performed for 4-acetoxy MPT by three different individuals in one day and by one individual on two different days, one year apart.

#### 2.2.3 Neutral Loss Spectra Generation

Mass Mountaineer software (RBC Software, Portsmouth, NH, USA) was used to determine the masses lost during the fragmentation that was induced when the orifice 1 voltage was raised from 20 V to 60 V, and then to 90 V. For the spectra generated at each voltage, the m/z values above a 0.5% relative peak intensity were subtracted from the peak representing the protonated tryptamine (as illustrated in Figure 2.2B). This furnished "neutral loss" spectra in which the peaks observed represented the high-resolution masses lost during fragmentation, and whose relative intensities were equivalent to those of the peaks in the 60 V or 90 V spectra from which they were derived. Figures A2.2 and A2.3 (corresponding mass spectral data deposited at <u>https://rabi-</u> musah.squarespace.com/s/Tryptamine-60-V-neutral-loss-mass-data-tables-corresponding-to-

<u>Figure-A2.xlsx</u> and <u>https://rabi-musah.squarespace.com/s/Tryptamine-90-V-neutral-loss-mass-data-tables-corresponding-to-Figure-A3.xlsx</u>, respectively) display the neutral loss spectra representative of the 50 tryptamines at 60 V and 90 V, respectively.

#### 2.2.4. Multivariate Statistical Analysis

The neutral loss spectra in the form of text files were imported into MATLAB 9. 3. 0, R2019a software (The MathWorks, Inc., Natick, MA, USA). Each text file was comprised of two columns, with the first containing the m/z values and the second containing the corresponding peak intensities. In order to reveal patterns that could serve as the basis for classifying tryptamine structures, two procedures (shown in Figure 2.2C) were introduced. First, an unsupervised exploratory method was applied to assess whether patterns might be present, and second, a supervised method was conducted to create a model for discrimination.

According to Figure 2.2C—Step 1, following DART-HRMS analysis and generation of the corresponding neutral loss spectra, the neutral loss data were aligned in a matrix according to common m/z values with a bin width of 20 mmu and a relative intensity cut-off value of 0.5%. The optimal bin width and relative intensity cutoff were determined by iterative application of agglomerative hierarchical clustering analysis (HCA) using different bin widths and relative intensity cutoffs. This treatment resulted in two matrices with dimensions of  $500 \times 174$  and  $500 \times 368$  (i.e., number of samples × number of m/z values) for the neutral loss spectra collected at orifice 1 voltages of 60 V and 90 V, respectively. The 60 V and 90 V spectrum of each sample was normalized by the maximum intensity and converted to percentages. Since the neutral loss 60 V and 90 V matrices had the same number of samples, they could be fused row wise, meaning that the two matrices were fused together to make one matrix with the 60 V data on the left and the 90



**Figure 2.2** Data collection and statistical analysis workflow approach for the development of a model to enable prediction of new tryptamine variants. (A): DART-HRMS data collected at 20 V, 60 V and 90 V; (B) Generation of neutral loss spectra; and (C) Multivariate data analysis workflow: Step 1—Conversion of spectra to matrices following binning and normalization; Step 2—HCA analysis of data to define clusters; and Step 3—Creation of PLS-DA model used to discriminate between tryptamine classes.

V data on the right, in order to create a matrix with dimensions of  $500 \times 542$ , which could be subjected to further multivariate statistical analysis, including HCA and creation of a classification model. As shown in Figure 2.2C—Step 2, HCA, an unsupervised method, was applied to the resulting data matrix in order to reveal the presence of common patterns that might be used as a basis for classifying the data and predicting tryptamine unknowns. In this process, a correlation measure was used for assessing the proximity between objects in the dataset. Then, the objects were grouped into agglomerative hierarchal clusters using an unweighted pair group method with arithmetic mean (UPGMA). Clusters were defined by cutting branches off the dendrogram. A distance threshold of 70% of the maximum linkage was found to be optimum for the height cutoff value. If the height of a node was less than the cutoff value, all leaves at or below the node were grouped into a cluster. The optimum distance threshold and distance metrics were revealed by changing the threshold and metrics and evaluating the quality of the resulting clusters using a supervised model, which was trained by the fused matrix and the identified cluster labels. The supervised method examines how well the clusters were separated, and therefore, good clustering should result in good classification performance. Probabilistic partial least square-discriminant analysis (PLS-DA)<sup>129</sup> with 11 latent variables was used to create a supervised model for discrimination of tryptamines in accordance with the detected cluster labels. This is illustrated in Figure 2.2C—Step 3. The optimal latent variables for the PLS-DA model were computed using iterative application of different numbers of latent variables to see which led to higher accuracy during validation. Validation of the PLS-DA model was performed using the "leave-one-structureout" strategy (i.e., in each step of the validation, the replicates of one tryptamine structure were left out of the training process and then subsequently predicted using the trained model). To provide a measure of reliability of classification for each prediction, probability density function

and Bayesian decision theory were applied to calculate a vector of the posterior probabilities as output, in which each coordinate corresponded to one class. For assignment of samples to each class, a probability threshold was computed for each class using the prediction results of training samples and the *Bayesian* discrimination threshold.<sup>129,130</sup> The sample was assigned to a class if the PLS-DA prediction output demonstrated a probability higher than that of the class threshold. The optimized discrimination model was then used for prediction of external validation samples.

A specific advantage of PLS-DA is its ability to reveal the m/z values that are most significant for enabling discrimination between classes through the determination of variable importance in projection (VIP) scores. Ten distinct PLS-DA discrimination models were explored. Each was used to train a one-vs-all binary model (i.e., a particular class of tryptamines was assigned a label of 1 and all the other classes were assigned a label of 0 in the training process). As such, each PLS-DA model revealed the variables that were most important for discrimination of one class from the other classes. The final VIP scores ended up being the average of the VIP scores from the ten PLS-DA models. Masses with VIP scores higher than 1 were deemed important for enabling discrimination between classes.<sup>131</sup>

#### 2.3. Results

# 2.3.1. Generation and Processing of DART Mass Spectra

This study was conducted to develop a simple and rapid method to enable detection and identification of emerging tryptamine structures. Previous work has demonstrated the utility of extracting neutral loss information from DART mass spectra of synthetic cathinone unknowns in stitching together plausible candidate structures.<sup>48</sup> Here, this principle was extended to enable elucidation of new tryptamine structures. However, the approach differed from that in the cathinone work in that for cathinones, neutral loss spectra collected under CID conditions at 90 V

were utilized, while in this work, CID spectra generated at 60 V and 90 V were fused to generate new virtual spectra which were then subjected to advanced statistical analysis processing. The steps taken to achieve this are presented in Figure 2.2. For each of the tryptamines, spectra in replicates of 10 were collected at 20 V, 60 V and 90 V (Figure 2.2A). Analyzing the tryptamines at 20 V resulted in soft ionization spectra, meaning that by and large, only the protonated precursor peaks were observed and there was no fragmentation. 4-Acetoxy DiPT serves as a representative example. With the formula  $C_{18}H_{26}N_2O_2$ , its calculated monoisotopic mass is 302.1994. Its DART



**Figure 2.3** DART-HRMS spectra of 4-acetoxy DiPT analyzed at orifice 1 voltages of 20 V (top), 60 V (middle) and 90 V (bottom).

mass spectrum acquired at 20 V (top) in positive ion mode (see Figure 2.3) shows the unfragmented protonated precursor calculated to be at m/z 303.207 as a single peak (within 5 mmu). When the voltage was raised to 60 V and 90 V, fragments that appeared at the expense of the protonated precursor peak were detected (Figure 2.3). The higher the voltage, the greater the fragmentation and the lower the intensity of the protonated precursor. Therefore, the 90 V spectrum shows the greatest fragmentation, with a protonated precursor peak of lower intensity when compared to that in the 60 V spectrum. However, it is important to note that even at 90 V, the protonated precursor is still detected, which is generally not the case for EI mass

spectra (i.e. the molecular ion in these spectra is often missing). While the 60 V and 90 V spectra share several m/z values, there were other masses that were unique and appeared as a function of the voltage that was applied. For example, the mass spectra in Figure 2.3 show that there is a peak at nominal m/z 102 in the 60 V (middle) spectrum that is not present in the 90 V (bottom) spectrum. The spectra were then processed by subtracting the m/z values of each of the product ions from the protonated precursor to yield new neutral loss spectra. This step is summarized in Figure 2.2B, and the spectra that were generated are presented in Figures A2.2 and A2.3 for the 60 V and 90 V spectra, respectively. In these spectra, the peaks represent high-resolution masses of lost structural elements where the relative abundances are based on the fragment peaks from which they were derived. An example of the neutral loss spectra of 4-acetoxy DiPT at 60 V (top) and 90 V (bottom) is illustrated in the head-to-tail plot (Figure 2.4). They include shared masses including nominal m/z 114 and 160. On the other hand, the 60 V spectrum exclusively includes nominal m/z 129, which is absent in the 90 V spectrum. This demonstrates the importance of including both voltages



**Figure 2.4** Neutral loss spectra of 4-acetoxy DiPT acquired by DART-HRMS analysis analyzed at orifice 1 voltages of 60 V (top) and 90 V (bottom).

to provide complementary information, enabling a more thorough analysis of the fragmentation patterns.

# 2.3.2. Determination of the Presence of Clustering of Tryptamine Spectra, Indicative of Common Structural Features

To summarize the data and assess whether the fused spectral data might exhibit patterns that could serve as the basis for being able to classify "like" structures, potential similarities between the neutral loss spectral data were determined using the "correlation" metric. This resulted in the correlation matrix shown in Figure 2.5, which illustrates the computed correlations plotted along both the x- and y-axes, arranged by similarity. It shows the correlations (with values spanning the range (0-1) between the two neutral loss spectra using a color gradient. The color gradient extends from dark blue to yellow, where the darkest shade of blue corresponds to the least similarity (i.e., a value of zero) and the brightest shade of yellow corresponds to the highest similarity (i.e., a value of 1). From the matrix, 10 groups emerged that each contained neutral loss spectra that were similar enough that they were grouped together and distinguished from the others. These are labeled groups 1-10 (Figure 2.5) and color-coded as follows: aqua (group 1); brown (group 2); dark blue (group 3); dark green (group 4); chartreuse (group 5); purple (group 6); red (group 7); magenta (group 8); navy (group 9) and green (group 10). The matrix revealed that the neutral loss data of like tryptamines were highly correlated, based on the bright yellow colors appearing along the diagonal which showed that each sample always perfectly correlated with itself. Moderate correlations between spectra are also revealed. For example, reading the plot from left to right, the spectral data represented by the aqua color, are shown to be moderately correlated to the spectra represented by the brown color, based on the light blue shading in the off-diagonal area where the two intersect. Furthermore, some of the spectra represented in the aqua area are also



**Figure 2.5** Correlation matrix showing the computed correlations between molecules, plotted along both the x- and y-axes and arranged by similarity (where yellow corresponds to the highest similarity and blue corresponds to the lowest) that were subjected to hierarchical clustering analysis (HCA). The dendrogram resulting from HCA and the ten groups that emerged are also shown (see full list of compound structures, names and their corresponding abbreviations in Figure 2.1).

correlated to data represented in red on the x-axis.

Next, the data in the correlation matrix served as the input for hierarchical clustering analysis to reveal clustering that might be used as a basis for classifying the data and predicting the structures of tryptamine unknowns. The resulting dendrogram is also presented in Figure 2.5. The axial axis in the dendrogram represents the amount of dissimilarity between clusters, and each leaf node displays a replicate of a tryptamine compound. The membership of the ten distinct groups (see full list of compound structures, names and their corresponding abbreviations presented in Figure 2.1) and their assigned numbers and colors are similar to those in the correlation matrix and are as follows: Group 1 (aqua) includes 4-methyl- $\alpha$ -ethyl tryptamine, 5-methoxy- $\alpha$ ethyltryptamine, N-methyl-N-ethyl tryptamine, and  $\alpha$ -ethyltryptamine; Group 2 (brown) includes 5,7-dichloro tryptamine, 5-IT, 5-methoxy AMT, 6-IT, 7-fluoro tryptamine, nonyloxytryptamine, serotonin, and  $\alpha$ -methyl tryptamine; Group 3 (dark blue) includes 5-hydroxy-N-methyl tryptamine and N-methyl tryptamine; Group 4 (dark green) includes DPT, DiPT, N,N-DET, and N,N-DMT; Group 5 (chartreuse) includes 4-methoxy DiPT, 5-methoxy DALT, 5-methoxy DBT, 5-methoxy DET, 5-methoxy DMT, 5-methoxy DPT, 5-methoxy DiBT, 5-methoxy DiPT, 5-methoxy EPT, 5methoxy EiPT, 5-methoxy MiPT, 6-methoxy DiPT, and 7-methoxy DiPT; Group 6 (purple) includes N-acetyl serotonin and N-acetyl tryptamine; Group 7 (red) includes 4-hydroxy DET, 4hydroxy DMT, 4-hydroxy DPT, 4-hydroxy DiPT, 4-hydroxy MET, 4-hydroxy MPT, 4-hydroxy MiPT, 5-hydroxy DMT, and psilocybin; Group 8 (magenta) includes 6-fluoro DET; Group 9 (navy) includes sumatriptan; and Group 10 (green) includes 4-acetoxy DET, 4-acetoxy DMT, 4acetoxy DPT, 4-acetoxy DiPT, 4-acetoxy MET, and 4-acetoxy MiPT. The dendrogram shows that five groups (1, 2, 4, 5, and 10) are at approximately the same distance on the axial axis, indicating the similarity between them.

# 2.3.3. Assessment of the Structural Basis of the Hierarchical Clustering Analysis-Revealed Groupings

The groupings that emerged from the clustering results revealed that there are common structural features and fragmentation pathways that are shared by the members of each group which yield similar high-resolution m/z values in their neutral loss spectra, and which are thereby highly correlated. The results also revealed that there are several highly correlated structures whose similarity to one another was not intuitively apparent. For example, the three compounds Nmethyl-N-ethyltryptamine, N-methyl tryptamine and N,N-DET are all mono-substituted indoles in which the substituent at position 3 is comprised of a 2-carbon chain which has at its terminus a nitrogen atom with one or two alkyl groups (see Figure 2.1). Based on their highly similar structures, it might be surmised that they would have been grouped together. Yet, the clustering results show that these three compounds appeared in Groups 1, 3, and 4, respectively. Each of these compounds appears in its respective group based on the similarity of the m/z values in its neutral loss spectrum to the other members of the group. For example, Group 1 members all possess a nitrogen-containing three carbon unit (with m/z 59.07) that is lost as a neutral fragment from the indole-containing segment of the molecule. The members of Group 5, which contains the greatest diversity of structures, all possess two substituents: a methoxy moiety on the benzene ring (whose position varies), and an ethylamine substituent at position 3 of the indole ring with a range of N-alkyl attachments. While the structures are diverse, common fragmentation pathways result in neutral loss spectra that have m/z values at nominal 101, 116, 161, and 203, which were important in differentiating group 5 from the rest of the groups.

#### 2.3.4. Creating a Structure Classification Model for Tryptamine Class Prediction

Overall, the correlation matrix and clustering results showed that each of the groups exhibited common features which in principle could serve as a basis for structure classification. To accomplish this, the groupings resulting from HCA were used as the input for PLS-DA. The "leave-one-structure-out" validation strategy was performed to evaluate the PLS-DA model using varying numbers of latent variables. This treatment revealed that eleven latent variables resulted in the lowest error in prediction. The resulting 3D PLS-DA score plot for latent variables 1, 2, and 3 is shown in Figure 2.6. The score plot shows that each group was discriminated from the others. Table 2.1 shows the confusion matrix that describes the performance of the PLS-DA discrimination model. Each column of the matrix represents the samples in the predicted class, while each row presents the samples in the actual class. The values along the diagonal in green



Figure 2.6 PLS-DA scores plot generated using DART-HRMS neutral loss data. Class distinctions are indicated with color coding.

illustrate the number of samples for which the predicted label matched the true label, while the non-zero values on the off-diagonal shown in red represent those that were incorrectly classified or unclassified by the discrimination model. Using class assignment thresholds that were defined by the *Bayesian* discrimination threshold, the model resulted in accuracy, error, multi-label assignment, and not-assigned rates of 1.00, 0.00, 0.05 and 0.04, respectively, in the leave-one-structure-out validation. It should be noted that multi-label and not-assigned predictions were not considered in the accuracy and error calculations.

| mouer.            |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1fusion<br>1atrix | Predicted                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                        |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | G 1                                                                                                                                                                                | G 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G 3                                                                                                                                                                               | G 4                                                                                                                                                                                | G 5                                                                                                                                                                                | G 6                                                                                                    | G 7                                                                                                                                                                                                                                                                             | G 8                                                                                                                                                                                                                                                                                                                                                                                                          | G 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | G 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not<br>assigned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Multi-label<br>assignment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 1<br>(40)       | 24                                                                                                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                      | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 2<br>(80)       | 0                                                                                                                                                                                  | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                      | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 3<br>(20)       | 0                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 20                                                                                                                                                                                | 0                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                      | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 4<br>(40)       | 0                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                 | 40                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                      | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 5<br>(130)      | 0                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 130                                                                                                                                                                                | 0                                                                                                      | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 6<br>(20)       | 0                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                  | 20                                                                                                     | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 7<br>(90)       | 0                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                      | 80                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 8<br>(10)       | 0                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                      | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 9<br>(10)       | 0                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                      | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G 10<br>(60)      | 0                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                                 | 0                                                                                                                                                                                  | 0                                                                                                                                                                                  | 0                                                                                                      | 0                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                   | G 1<br>(40)<br>G 2<br>(80)<br>G 3<br>(20)<br>G 3<br>(20)<br>G 4<br>(40)<br>G 5<br>(130)<br>G 6<br>(20)<br>G 7<br>(90)<br>G 7<br>(90)<br>G 8<br>(10)<br>G 9<br>(10)<br>G 10<br>(60) | $\begin{array}{c c} \text{fusion} \\ \text{fusion} \\ \text{fatrix} \\ \hline \\ \hline \\ G 1 \\ \hline \\ G 1 \\ (40) \\ \hline \\ G 2 \\ (80) \\ \hline \\ G 2 \\ (80) \\ \hline \\ G 2 \\ (80) \\ \hline \\ G 3 \\ (20) \\ \hline \\ G 3 \\ (20) \\ \hline \\ G 3 \\ (20) \\ \hline \\ G 4 \\ (40) \\ \hline \\ G 5 \\ (130) \\ \hline \\ G 5 \\ (130) \\ \hline \\ G 5 \\ (130) \\ \hline \\ G 6 \\ (20) \\ \hline \\ G 6 \\ (20) \\ \hline \\ G 7 \\ (90) \\ \hline \\ G 7 \\ (90) \\ \hline \\ G 8 \\ (10) \\ \hline \\ G 9 \\ (10) \\ \hline \\ G 10 \\ (60) \\ \hline \\ \end{bmatrix} $ | Inorder.fusion<br>natrixG 1G 2G 1<br>(40)24G 2<br>(40)0G 2<br>(80)0G 3<br>(20)0G 4<br>(40)0G 5<br>(130)0G 6<br>(20)0G 7<br>(90)0G 7<br>(90)0G 8<br>(10)0G 9<br>(10)0G 10<br>(60)0 | Inorder.fusion<br>natrixG 1G 2G 3G 1<br>(40)2400G 2<br>(80)0800G 3<br>(20)0020G 4<br>(40)000G 5<br>(130)000G 6<br>(20)000G 7<br>(90)000G 8<br>(10)000G 9<br>(10)000G 10<br>(60)000 | Inorder.fusion<br>natrixG1G2G3G4G1<br>(40)24000G2<br>(80)08000G3<br>(20)00200G4<br>(40)00040G5<br>(130)0000G6<br>(20)0000G7<br>(90)0000G8<br>(10)0000G9<br>(10)0000G10<br>(60)0000 | Indeen.fusion<br>atrixG1G2G3G4G5 $G_1$<br>(40)240000 $G_2$<br>(80)080000 $G_3$<br>(20)002000 $G_4$<br> | Inoce infusion<br>atrixG 1G 2G 3G 4G 5G 6 $G 1$<br>(40)2400000 $G 2$<br>(80)0800000 $G 3$<br>(20)0020000 $G 4$<br>(40)0020000 $G 4$<br>(40)0004000 $G 5$<br>(130)00001300 $G 6$<br>(20)0000020 $G 7$<br>(90)000000 $G 8$<br>(10)000000 $G 9$<br>(10)000000 $G 10$<br>(60)000000 | Indeel.fusion<br>atrixG 1G 2G 3G 4G 5G 6G 7 $G 1$<br>(40)240000000 $G 2$<br>(80)080000000 $G 3$<br>(20)002000000 $G 3$<br>(20)002000000 $G 3$<br>(20)00040000 $G 3$<br>(20)00040000 $G 4$<br>(40)00013000 $G 4$<br>(40)000013000 $G 4$<br>(40)0000000 $G 4$<br>(40)0000000 $G 5$<br>(130)000013000 $G 6$<br>(20)0000000 $G 7$<br>(90)0000000 $G 8$<br>(10)0000000 $G 9$<br>(10)0000000 $G 10$<br>(60)0000000 | atrixitarixG 1G 2G 3G 1G 3G 3G 1G 3G 1G 2G 1G 2G 2G 2G 2G 2G 2G 2G 2G 2 <th columnat<="" td=""><td>Indect.Predictedfusion<br/>atrixG1G2G3G4G5G6G7G8G9<math>\begin{array}{c} G1\\(40) \end{array}</math>24000000000<math>\begin{array}{c} G2\\(80) \end{array}</math>080000000000<math>\begin{array}{c} G3\\(20) \end{array}</math>080000000000<math>\begin{array}{c} G3\\(20) \end{array}</math>000200000000<math>\begin{array}{c} G4\\(40) \end{array}</math>000040000000<math>\begin{array}{c} G5\\(130) \end{array}</math>0000013000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>000000000000<math>\begin{array}{c} G5\\(70) \end{array}</math>000000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000<th< td=""><td>Indect.fusion<br/>atrixG1G2G3G4G5G6G7G8G9G10<math>\begin{bmatrix} G1\\(40) \\ (40) \\ (40) \\ (24) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ </math></td><td>Inoceri.         Predicted           fusion<br/>atrix         G1         G2         G3         G4         G5         G6         G7         G8         G9         G10         Not<br/>assigned           G1         24         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         &lt;</td></th<></td></th> | <td>Indect.Predictedfusion<br/>atrixG1G2G3G4G5G6G7G8G9<math>\begin{array}{c} G1\\(40) \end{array}</math>24000000000<math>\begin{array}{c} G2\\(80) \end{array}</math>080000000000<math>\begin{array}{c} G3\\(20) \end{array}</math>080000000000<math>\begin{array}{c} G3\\(20) \end{array}</math>000200000000<math>\begin{array}{c} G4\\(40) \end{array}</math>000040000000<math>\begin{array}{c} G5\\(130) \end{array}</math>0000013000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>000000000000<math>\begin{array}{c} G5\\(70) \end{array}</math>000000000000<math>\begin{array}{c} G6\\(20) \end{array}</math>00000<th< td=""><td>Indect.fusion<br/>atrixG1G2G3G4G5G6G7G8G9G10<math>\begin{bmatrix} G1\\(40) \\ (40) \\ (40) \\ (24) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ </math></td><td>Inoceri.         Predicted           fusion<br/>atrix         G1         G2         G3         G4         G5         G6         G7         G8         G9         G10         Not<br/>assigned           G1         24         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         &lt;</td></th<></td> | Indect.Predictedfusion<br>atrixG1G2G3G4G5G6G7G8G9 $\begin{array}{c} G1\\(40) \end{array}$ 24000000000 $\begin{array}{c} G2\\(80) \end{array}$ 080000000000 $\begin{array}{c} G3\\(20) \end{array}$ 080000000000 $\begin{array}{c} G3\\(20) \end{array}$ 000200000000 $\begin{array}{c} G4\\(40) \end{array}$ 000040000000 $\begin{array}{c} G5\\(130) \end{array}$ 0000013000000 $\begin{array}{c} G6\\(20) \end{array}$ 00000000000 $\begin{array}{c} G6\\(20) \end{array}$ 00000000000 $\begin{array}{c} G6\\(20) \end{array}$ 00000000000 $\begin{array}{c} G6\\(20) \end{array}$ 00000000000 $\begin{array}{c} G6\\(20) \end{array}$ 000000000000 $\begin{array}{c} G5\\(70) \end{array}$ 000000000000 $\begin{array}{c} G6\\(20) \end{array}$ 00000 <th< td=""><td>Indect.fusion<br/>atrixG1G2G3G4G5G6G7G8G9G10<math>\begin{bmatrix} G1\\(40) \\ (40) \\ (40) \\ (24) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ </math></td><td>Inoceri.         Predicted           fusion<br/>atrix         G1         G2         G3         G4         G5         G6         G7         G8         G9         G10         Not<br/>assigned           G1         24         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         &lt;</td></th<> | Indect.fusion<br>atrixG1G2G3G4G5G6G7G8G9G10 $\begin{bmatrix} G1\\(40) \\ (40) \\ (40) \\ (24) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ (40) \\ $ | Inoceri.         Predicted           fusion<br>atrix         G1         G2         G3         G4         G5         G6         G7         G8         G9         G10         Not<br>assigned           G1         24         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         < |

 Table 2.1 Confusion matrix resulting from the "leave-one-structure-out" validation of the PLS 

 DA model

G 1: Group 1; G 2: Group 2; G 3: Group 3; G 4: Group 4; G 5: Group 5; G 6: Group 6; G 7: Group 7; G 8: Group 8; G 9: Group 9; G 10: Group 10

Table 2.2 shows the prediction, sensitivity, specificity, and precision of the discrimination model. Sensitivity and specificity are measures of the 1-false negative rate and 1-false positive rate, respectively. As shown in the confusion matrix (Table 2.1), the off-diagonal entries for predictions in G1-G7 and G10 are zero, which reflects higher correct prediction rates, and all three figures of merit (i.e. sensitivity, specificity, and precision) are 1.00 for those classes (Table 2.2). This indicates the model to be good for predicting the classes of emerging structures. Table A2.1 shows the resulting prediction probabilities of the assignments of tryptamine structures to the classes. Of the 50 tryptamines, all except five (i.e., 5-methoxy- $\alpha$ -ethyltryptamine, N-methyl-Nethyltryptamine, 6-fluoro DET, sumatriptan, and 4-hydroxy MET with their probabilities shown in red in Table A2.1) were correctly classified (i.e. probability of one). Using a significance level of 0.05 as the basis for class assignment, 5-methoxy- $\alpha$ -ethyltryptamine was assigned to both Group 1 and Group 2 with probabilities of 1.00 and 0.52, respectively. N-Methyl-N-ethyltryptamine was classified in Group 1 and Group 4 with an equal probability of 1.00 and 1.00, respectively. This is not surprising, since all of the compounds in Group 4 and N-methyl-N-ethyltryptamine have a fragment at nominal m/z 131 (Table A2.2-A2.3). 4-Hydroxy MET was placed into Group 1 and Group 7 with probabilities of 1.00 and 1.00, respectively. Given the close structural similarity between N-methyl-N-ethyltryptamine and 4-hydroxy MET, this dual classification was also not

| <b>Table 2.2</b> Classification performance, sensitivity, specificity and precision of the "leave-one-structure-out" validation for tryptamine discrimination using the PLS-DA model. |      |      |      |      |      |      |      |                 |                 |      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|-----------------|-----------------|------|
|                                                                                                                                                                                       | G 1  | G 2  | G 3  | G 4  | G 5  | G 6  | G 7  | G 8             | G 9             | G 10 |
| Sensitivity                                                                                                                                                                           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | Not<br>assigned | Not<br>assigned | 1.00 |
| Specificity                                                                                                                                                                           | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00            | 1.00            | 1.00 |
| Precision                                                                                                                                                                             | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | Not<br>assigned | Not<br>assigned | 1.00 |

surprising, since they both have the *N*-methyl-*N*-ethylamine moiety in their structures, resulting in a fragment at m/z 59. 6-Fluoro DET and sumatriptan had a probability of 0.00 for assignment to each cluster since these two compounds belonged to one member groups (i.e. Groups 8 and 9, respectively). This result was also unsurprising, since the structural characteristics of these compounds deviate quite significantly from the remaining compounds in the training set. Overall, the results confirm that the ability of the model to facilitate accurate prediction of tryptamine classes is dependent upon the similarities of the neutral losses observed from fragmentation of the molecule.

#### 2.3.5. Assessment of Markers Important for Discrimination Between Groups of Structures

A specific advantage of PLS-DA is that the m/z values that are most important for class discrimination can be determined through the evaluation of variable importance in projection (VIP) scores. The VIP score calculation results for the PLS-DA model are presented in Figure 2.7. The solid blue points in Figure 2.7-Panel A display the VIP scores (x-axis) for m/z values (y-axis) that have a score >1. The higher the VIP score, the greater the impact the corresponding m/z value has in enabling discrimination. For example, for both the 60 V and 90 V spectra, m/z 161.08 has the highest VIP score, indicating that it has the highest impact on discrimination. The heatmaps shown in Figure 2.7-Panel B represent the averaged relative abundances of the most impactful neutral loss m/z values in each group. The color gradient of the heatmap extends from dark blue to brick red, with the darkest shade of blue indicative of a relative abundance of 0 and the darkest shade of brick red representative of a relative abundance of 100 (on an arbitrary scale). The heatmaps facilitate visualization of how the indicated m/z values are associated in different groups, which can be helpful in detecting unique markers. For example, the heatmap results show that the m/z value with the highest VIP score for the 60 V data (i.e. m/z 161.08) has a high relative



**Figure 2.7** Masses determined to be most impactful in enabling differentiation of groups, based on differences in the fragmentation patterns of the represented compounds under CID conditions. Panel A: variable importance in projection (VIP) scores >1 revealed by the one-vs-all PLS-DA models for data collected at 60 V and 90 V; Panel B: neutral loss data corresponding with the indicated m/z values, averaged for each class and displayed as heatmaps for 60 V and 90 V spectral data.

abundance for Group 5 compounds and low relative abundances (around zero) for other groups. Therefore, m/z 161.08 is a unique marker that enables the model to distinguish Group 5 molecules from those in the other groups. A similar observation was made for the 90 V data, where m/z 161.08 remained a strong marker for Group 5. The relative intensities of the m/z values in the 60 V and 90 V neutral loss spectra that were found to be most highly ranked in enabling discrimination between classes are presented in Table A2.2 and Table A2.3, respectively. From the neutral loss data presented in the heatmap in Figure 2.7 and Tables A2-A3, a number of trends became apparent. First, there are neutral loss values that appear within a group that are observed for most but not all of the compounds that appear in that group. For example, for the 90 V data (Table A2.3), the neutral loss of m/z 90.08 appears for 6 of the 9 compounds in Group 7 (i.e. 4-hydroxy DET; 4-hydroxy DMT; 4-hydroxy MPT; 4-hydroxy MiPT; 5-hydroxy DMT and psilocybin), but not for

| <b>Table 2.3</b> Neutral loss masses $(m/z)$ associated with the |                       |                        |  |  |  |
|------------------------------------------------------------------|-----------------------|------------------------|--|--|--|
| compound                                                         | s in Groups 1 - 10 th | nat were identified in |  |  |  |
| analysis of the 60 and 90 V virtual neutral loss spectra.        |                       |                        |  |  |  |
| Group                                                            | Neutral loss at 60 V  | Neutral loss at 90 V   |  |  |  |
| Group 1                                                          | 59.07                 | 59.07                  |  |  |  |
| Group 2                                                          | 16.02 and 17.03       | 17.03 and 31.05        |  |  |  |
| Group 3                                                          | 30.04, 31.04, 43.04   | 31.05, 32.05, 43.05,   |  |  |  |
|                                                                  | and 45.06             | 44.05, 45.06 and       |  |  |  |
|                                                                  |                       | 58.07                  |  |  |  |
| Group 4                                                          | 131.07                | 131.08                 |  |  |  |
| Group 5                                                          | 161.08                | 161.08                 |  |  |  |
|                                                                  | 17.03, 43.04, 45.06,  | 17.03, 43.05, 58.03,   |  |  |  |
| Group 6                                                          | 58.03, 59.04 and      | 59.04, 60.05, 61.06,   |  |  |  |
| -                                                                | 60.04                 | 86.06 and 88.07        |  |  |  |
| Group 7                                                          | 147.07                | 147.07                 |  |  |  |
| Group 8                                                          | 72.00 140.07 and      | 87.11, 101.12,         |  |  |  |
|                                                                  | 75.09, 149.07 and     | 120.11, 149.07,        |  |  |  |
|                                                                  | 101.08                | 161.08 and 177.10      |  |  |  |
|                                                                  | 45.06.05.00 140.07    | 31.05, 59.07,          |  |  |  |
| Group 9                                                          | 43.00, 93.00, 149.07  | 138.05, 139.06 and     |  |  |  |
|                                                                  | anu 230.00            | 140.07                 |  |  |  |
| Group 10                                                         | 189.08                | 189.08                 |  |  |  |

the other three (4-hydroxy DPT; 4hydroxy DiPT and 4-hydroxy MET). Second, there are m/z values that are specific to several groups. For example, for the 60 V neutral loss data (Table A2.2), m/z 17.03 is found in groups 1, 2, and 6. Similarly, for the 90 V data (Table A2.3), m/z 59.07 appears in every group except Groups 6 and 9. Third, there were a subset of neutral losses that were observed for each
compound in a given group. These are listed in Table 2.3 for the 60 V and 90 V data. For example, m/z 59.07 was found in all of the compounds in Group 1 in the 60 V and 90 V data. Such masses were found to be important in enabling distinctions to be made between the groups. These results show that neutral loss spectra derived from DART-HRMS can enable facile classification of tryptamine structures. They also reveal the identities of the skeletal frameworks that were the basis of the ability of the model to distinguish between classes. These are presented in Figure 2.8 for Groups 1 through 10.

#### 2.3.6. External validation of the PLS-DA Model Using Novel Compounds

The usefulness of approaches such as those described here lies in part in their potential to correctly classify compounds that are new to the prediction model. Thus, to assess the model's prediction ability, an external validation was performed to determine if tryptamines that were not used in the creation of the model could be correctly classified. Four compounds were tested: 3-(2-(allyl(methyl)amino)ethyl)-1H-indol-4-yl (4-acetoxy MALT); 3-[2acetate (methylpropylamino)ethyl]-1H-indol-4-ol 4-acetate (4-acetoxy MPT); 3-(2-(allyl(methyl)amino)ethyl)-1H-indol-4-ol (4-hydroxy MALT); and 3-[2-(dimethylamino)ethyl]-1H-indol-4-ol 4-propanoate (4-propanoyloxy DMT). These compounds all contain an ethylamine substituent at the 3-position of the indole scaffold, and a substituent at position 4. They differ in terms of the substituents attached to the exocyclic ring nitrogen and the benzene ring. Each external validation tryptamine was analyzed by DART-HRMS in replicates of 10. Representative neutral loss spectra acquired at 60 V and 90 V for the tryptamines used for external validation are displayed in Figure 2.9. From the neutral loss spectra presented and the information on the diagnostic m/zvalues listed in Table 2.3, it can be seen that three of the tryptamine spectra contain m/z values in the neutral loss 90 V spectra that the PLS-DA model revealed are common in the spectra of



Figure 2.8 Skeletal frameworks for each of the 10 classes that emerged from PLS-DA.



**Figure 2.9** Neutral loss spectra of the four tryptamines: 4-acetoxy MALT, 4-acetoxy MPT, 4-hydroxy MALT, and 4-propanoyloxy DMT, that were used for the external validation at 60 V and 90 V. The red boxes show the m/z values in the neutral loss spectra that are markers for specific groups according to the PLS-DA results. Masses m/z 189.08 and 147.07 shown in the red boxes are markers of groups 10 and 7, respectively.

compounds in specific groups. 4-Acetoxy MALT and 4-acetoxy MPT exhibited a peak at m/z89.08, which is a common m/z value for class 10 members. According to Table A2.3, the m/z value 189.08 also appears in the 90 V spectra of some compounds in groups 5 and 7. The 4-hydroxy MALT neutral loss spectrum exhibited a peak at m/z 147.07, a class 7 marker. The results for the screening of the four tryptamines against the previously developed hierarchical clustering dendrogram and correlation matrix, along with their corresponding groups are presented in Figure 2.10. The probabilities of a compound being assigned to a given class are shown in Table A2.4. The positioning of the unknowns within the correlation matrix is shown in Figure 2.10 for the compounds highlighted in the yellow box. Also shown in Figure 2.10 is where these unknowns fell within the dendrogram, which is indicated with blue shading. 4-Hydroxy MALT fell within the red region of the dendrogram, which represents Group 7, while 4-acetoxy MALT, 4-acetoxy MPT, and 4-propanoyloxy DMT fell within the green region, which represents Group 10. Using a significance level of >0.05, the probabilities presented in Table A2.4 show that the model was able to correctly classify 35 of the 40 external validation sample replicates. The exceptions were two replicates of 4-acetoxy MALT and three replicates of 4-hydroxy MALT, which the model did not assign to any specific group. However, for all classified replicates, the assignments made were correct. The results show that the model has the ability to correctly predict detection of new tryptamine structures and reveal indications of their core scaffolds using DART-HRMS data. This enables extraction of their features so that their shared characteristics can be detected (as shown in Table 2.3). The fusion of the 60 V and 90 V data helped to broaden the range of the fragments that could be interpreted when compared to those detected at only one of the two voltages. This effectively enhanced the prediction capacity of the model for detection of new tryptamines.



**Figure 2.10.** Correlation matrix and dendrogram showing the placement of the four tryptamines used for external validation. The four tryptamine external validation sample "unknowns" were: 4-Hydroxy MALT, 4-acetoxy MALT, 4-propanoyloxy DMT, and 4-acetoxy MPT. These are highlighted in the yellow box to show their placement in the correlation matrix (indicated in pink). Their placement in the dendrogram is indicated with blue shading. 4-Hydroxy MALT was correctly placed into group 7; 4-acetoxy MALT, 4-propanoyloxy DMT, and 4-acetoxy MPT were correctly placed into group 10.

## 2.3.7. Structure Elucidation of a Tryptamine Unknown

To illustrate how this approach can be utilized to extract information about the core tryptamine scaffold of an unknown, 4-hydroxy MALT will be used as a case in point. As indicated earlier, this molecule was not used to build the PLS-DA prediction model and therefore it can be considered to be an unknown. From the spectrum generated from analysis of the compound at 20 V (Figure 2.11, with its corresponding mass data table shown in Table A2.5), its high-resolution monoisotopic mass (231.153) was found to correspond to the formula  $C_{14}H_{19}N_2O$  for the protonated molecule (and thus a formula of  $C_{14}H_{18}N_2O$  for the neutral compound). Collection and subsequent fusion of the 60 V and 90 V neutral loss data of this tryptamine and screening the resulting spectrum against the statistical model revealed it to fall into Group 7. This is mostly due to the presence of the marker m/z 147.071, with the core scaffold revealed to be a hydroxylated indole ring with an *N*-substituted ethylamine appendage (see Figure 2.9). The neutral loss fragment that represents this class 7 marker is illustrated in the red box in Figure 2.9 and accounts for nine carbons, nine hydrogens, one nitrogen, and one oxygen. When this is subtracted from the molecular formula of  $C_{14}H_{18}N_2O$ , a balance of five carbons, nine hydrogens, and one nitrogen remain (i.e.  $C_5H_9N$ ) and this combination of atoms contains one double bond equivalent. Figure 2.12 illustrates what the corresponding possibilities are for the substituents on the exocyclic



**Figure 2.11.** The 20 V soft ionization spectrum of 4-hydroxy MALT with the protonated precursor labeled at m/z 231.153.



Figure 2.12. The possible tryptamine structures of the "unknown". The third structure with the R group –  $CH_2CH=CH_2$  is the correct structure of 4-hydroxy MALT.

nitrogen, which include the nitrogen as part of a five membered ring; an ethyl and an ethylene substituent; a methyl substituent with various alkenyl substituents; and a hydrogen and a fourcarbon alkenyl substituent. In the absence of the predictive model, an analyst conducting a SciFinder search of structures with the molecular formula  $C_{14}H_{18}N_2O$  is confronted with a list of approximately 35,000 structures. The approach presented here decreases this number of possibilities by a thousand-fold and provides 7 plausible structures, one of which is correct.

#### 2.3.8. Data Reproducibility

In order to assess the impact that analysis by different individuals and analysis on different days have on intra-laboratory reproducibility of the prediction results, the DART-HRMS analysis of 4-acetoxy MPT was performed by three different analysts in one day and by a fourth analyst on two different days, but one year apart. The samples were analyzed by DART-HRMS in replicates of 10. The spectra were then subjected to principal component analysis (PCA), the results of which were then examined by Q residuals and Hotelling's T<sup>2</sup> statistic to detect the outliers. Figure 2.13A shows a representative PCA scores plot of auto-scaled data (after removing outliers) collected by different analysts on the same day and one analyst on different days. The results show that, except



**Figure 2.13** Results of the analysis of variation between DART-HRMS-derived neutral loss spectra collected by different individuals on the same day and one individual on different days. A: PCA scores plot of the collected data; B: Correlation matrix, where the yellow color shows the highest inter-spectral correlation and blue shows the lowest.

for several replicates acquired by analyst 2, the differences between multi-day versus multi- person analyses are small. Two approaches were used to quantify the variations: (1) the median of the relative standard deviation (RSD) which, according to Parsons et al.,<sup>132</sup> serves as a single summary statistic to reveal reproducibility in metabolomics data; and (2) the Pearson's r coefficient, which is a metric for evaluation of the reproducibility and stability of ambient ionization mass spectral data according to Zhvansky et al.<sup>133</sup>

Overall, the RSD values show greater reproducibility for peaks with higher intensities. The median RSD values for spectra collected for each individual analysis have variations in peak intensities between 10-28%, with a value of 24% for analyst-to-analyst variation and 13% for day-to-day variation. The correlation matrix (Figure 2.13B) shows the Pearson's r coefficient measure between DART-HRMS-derived neutral loss spectral replicates, revealing the variation between the spectra analyzed by analyst 2. No considerable variation between the chemical profiles that were analyzed by the four analysts on three different days was observed. The image also illustrates

the consistency of the results of the analyses, as there is high similarity between the data collected on two consecutive days, and that acquired one year before.

### 2.4. Conclusion

The prediction of the skeletal frameworks of NPS tryptamine structures can be accomplished by screening their neutral loss spectra acquired under CID conditions at 60 V and 90 V by DART-HRMS against a PLS-DA prediction model built using the neutral loss mass spectra of 50 tryptamines representing a range of structures. The model revealed 10 groups of tryptamines that were classified based on the similarities of the neutral losses observed when the molecules were fragmented under CID conditions during DART-HRMS analysis. The data generated at 60 V and 90 V were fused in order to expand the range of masses from which structural information could be extracted. "Leave-one-structure-out" validation and the screening of external validation samples (using four tryptamines that were new to the model) were used to assess the prediction capacity of the model. The results showed 100% accuracy, precision, sensitivity, and specificity for the prediction model, as well as 0% error, 5% multi-label assignment, and 4% notassigned rates. Data from multiple analysts shows that the results are reproducible. This method provides a rubric for how to facilitate more rapid assessment of the identity of NPS tryptamines when encountering unknowns for which little information on structural identity is initially available.

# CHAPTER 3: CREATION OF A <u>D</u>ATABASE <u>OF</u> <u>P</u>SYCHOACTIVE <u>P</u>LANTS (DOPP) FOR RAPID SPECIES IDENTIFICATION OF PSYCHOACTIVE PLANT MATERIALS

### 3.1. Introduction

One of the continuing challenges in analytical chemistry is the paucity of efficient approaches for the rapid identification of plant-derived complex matrices. This is of particular relevance in forensics where the ingestion of psychoactive plant materials can cause impairment that leads to the commission of crimes; the improper handling of machinery resulting in workplace accidents; impaired driving; agitation and disorientation leading to violence; and mental and physical health challenges that can result in death.<sup>134–136</sup> Because of its relevance to possible criminal activity or liability, it is essential that the species identity of the plant material that was ingested be known. While such determinations are relatively straightforward for the small number of mind-altering plants that have physical characteristics that are readily recognized by visual examination (e.g., observation of cystolithic hairs unique to Cannabis sativa), the vast majority of psychoactive plants and the materials derived from them (e.g., crumbled leaves and other aerial parts, seeds, tinctures and extracts, etc.) do not have distinguishing features that enable them to be readily differentiated from innocuous products such as foods and spices. Some psychoactive plants have served as sources of modern-day drugs that continue to be clinically relevant, such as atropine and scopolamine from Datura species plants.<sup>66,137</sup> However, the vast majority of known psychoactive plants are typically regarded as dangerous, with no generally accepted clinical use. It is for this reason that the active small-molecule components of many of these plants, when known, have been scheduled. Those shown to have addictive properties and no established medical use have been designated as Schedule I drugs, and those that are addictive but have clinical utility are categorized as Schedule II.<sup>138</sup> Examples of the former include ibogaine found in plants in the

Apocynaceae family, and N,N-dimethyltryptamine (DMT) found in multiple species such as *Mimosa hostilis (tenuiflora), Diplopterys cabrerana, and Psychotria viridis. Examples of the latter* include atropine and scopolamine which are found in many plants in the *Datura* genus. Ironically, while the purified forms of most of the known addictive small-molecule natural products are scheduled, the plants from which many of them are derived are not. For instance, atropine and scopolamine are Schedule II drugs, but the *Datura spp.* plants that contain them are not. For this reason, the plants are known as "legal highs", because unlike their purified active components, in most countries and U.S. states, they can be possessed and ingested without fear of prosecution.<sup>139,140</sup> The exponential rise in the abuse of these dangerous materials has raised alarm and caused the United Nations Office on Drugs and Crime (UNODC) to declare 20 species as "plants of concern", including *Mitragyna speciosa* and *Salvia divinorum*.<sup>1</sup> An important prerequisite to the legislation of the manufacture, sale, distribution and ingestion of these substances is the ability to identify them rapidly and definitively. However, a systematic way in which to routinely accomplish this for the ever-increasing range of plant materials and their evolving forms has proven elusive. This is because: (1) the plant materials themselves often do not possess distinguishing features, making them unrecognizable in a forensic context; (2) standard well-established analytical methods (such as GC-MS and LC-MS) that are useful in the identification of purified or semi-purified substances are time-consuming to perform on whole plant material, and/or have not been developed for analysis of whole plant products; (3) there is generally no statistical reporting of the level of certainty of a positive identification of a particular plant drug based on screening it against a bona fide database; and (4) unlike the case for purified compounds for which libraries of spectroscopic and mass spectrometric data are available that can serve to facilitate confirmation of the structures of unknowns, there is no available analogous

database with accompanying software to aid in the rapid detection of plant materials. Therefore, there is an urgent need for the development of a rapid analysis approach that circumvents some of the present challenges associated with identification of dangerous psychoactive plant-derived substances.

Previous studies have shown that direct analysis in real time-high-resolution mass spectrometry (DART-HRMS), with minimal if any sample preparation required, reveals within a single analysis of the bulk material a range of detected molecules extending across the dielectric constant range.<sup>11,48,60,69,84,141-144</sup> Furthermore, it has been shown that when analyzed by DART-HRMS, plants exhibit species-specific chemical signatures that can be utilized to predict the identities for species within a given genus, using advanced statistical analysis tools.<sup>61,65,66,84,87,145,146</sup> These findings imply the possibility that the application of machine learning tools to a library of DART-HRMS-derived species-specific chemical signatures might provide a mechanism by which to predict the species identity of plant material unknowns with a statistical level of certainty. In principle, it could provide a more universal approach for the identification of new psychoactive materials, rather than relying on current conventional methods which require nuanced method development that is also time- and resource-intensive. Importantly, the analysis can be conducted in less than one minute per sample.

Reported here for the first time is the accomplishment of two main aims: (1) development of a DART-HRMS chemical signatures database of available psychoactive plants; and (2) development of a user-friendly and intuitive data analysis tool for the rapid identification of unknown materials (termed Database of Psychoactive Plants (DoPP)). The application allows users to simply import the DART-HRMS data of the unknown into the platform, which then reveals species identity with a statistical level of certainty.

62

## 3.2. Methods

### 3.2.1. Materials

Plant materials representing 18 families, 34 genera and 57 species, and which included various plant parts (e.g., seeds, flowers, roots, leaves, bark, roots, stems) and processed products such as resins, powders, extracts, and capsules from different vendors were analyzed. Detailed information on the analyzed plants, including order, family, genus, and species, as well as the material type and vendor, are presented in Table A3.1. Scheme 3.1 illustrates taxonomical relationships between families, genera and species of the represented plants, with the families and genera highlighted in yellow and light green boxes, respectively.





### 3.2.2. Instrumentation

A DART-SVP ion source (IonSense Inc., Saugus, MA, USA) coupled with a JEOL AccuTOF high-resolution time-of-flight mass spectrometer (JEOL USA, Peabody, MA, USA) operating in positive-ion mode was used to collect spectra in the range m/z 40-1100 (as indicated in Scheme 3.2-Step 1). Mass spectrometer settings were as follows: gas heater temperature, 350 °C; orifice 1, 20 V; orifice 2, 5 V; ring lens, 5 V; peak voltage, 400 or 600 V; grid voltage, 50 V; and ion source helium flow rate, 2.0 L/min. For DART-HRMS analysis of seeds and bark, samples were divided into smaller segments using a razor blade, and each of the segments was suspended via tweezers directly within the path of the DART gas stream in the open-air space between the ion source and mass spectrometer inlet.

Liquids, powders, resins, extracts, crushed leaves and the pulverized content of the interiors of gelatin-based capsules were each sampled three times by suspending the closed end of a melting point capillary tube into the material and presenting the coated surface into the DART gas stream. For the seeds and bark, each of the generated DART mass spectra represented the average of the spectra of the segments, while for the liquid, powder, resin, extract, ground leaves and capsule samples, each spectrum was comprised of an average of three spectra. With each set of analyses for each product, polyethylene glycol 600, which served as a mass calibrant, was analyzed. TSSPro3 software (Schrader Software Solutions, Grosse Pointe, MI, USA) was used for processing of the mass spectra for background subtraction, mass calibration and peak centroiding. Test samples of *Mitragyna speciosa* (aka kratom) and five samples of *Datura* species were analyzed by independent laboratories using same experimental parameters. Kratom leaves were sampled by a different analyst at IonSense Inc. (Saugus, MA, USA) using a similar instrument to **Scheme 3.2.** An overview of the data analysis workflow for psychoactive plant materials.



that operated in our laboratory. Datura species were analyzed at the Emerging Technology and Entrepreneurship Complex (ETEC) at the University at Albany by the same analysts, using a DART Ion Source SVP coupled to a JEOL JMS-T100LP AccuTOF LC-plus 4G mass spectrometer. It was found that for this instrument, increasing the detector voltage to 2200 V and adjusting the sampling interval to 0.25 ns were critical to obtaining mass spectra that could be screened against the database for external validation purposes. It should also be noted that by altering the gas temperature and/or orifice 1 voltage, the data collected can deviate enough from that of the spectra within the database to lead to false positives or negatives. There are two reasons for this: (1) the relative abundance of the peaks changes as a function of temperature. The spectra at lower temperatures are dominated by peaks from more volatile compounds and at higher temperatures, higher boiling compound peak are more prominent; and (2) increases in the orifice 1 voltage (and to a much lesser extent increases in temperature), shift the analysis from one that is conducted under soft ionization conditions (i.e., 20 V), where there is minimal fragmentation, to one where there is collision induced dissociation. This can lead to spectra that will appear quite different from those that populate the database because the spectra will be dominated by fragment peaks that appear at the expense of the protonated precursor peaks from which they are derived. Therefore, it is essential that the instrument parameters are well replicated.

#### *3.2.3. Multivariate Data Analysis*

Described here is the psychoactive plant material identification workflow that was devised, and which was based on the machine learning processing of a database of the species-specific chemical fingerprints of psychoactive plants. The sample identification aspect of this workflow is comprised of mass spectral data pre-processing, application of advanced statistical analysis, and identification of plant material unknowns. To develop the approach, the processed DART mass

spectra (6691 spectra overall), which were collected from plant materials representing 18 families, 34 genera and 57 species, were imported as text files into Python 3.7 software (Python Software Foundation, DE, USA) in the form of two column tables of m/z values and their corresponding relative intensities. As indicated in Scheme 3.2-Step 2, the spectra were aligned in a matrix with an optimal bin width (10 millimass units (mmu)) and a relative abundance cut-off threshold of 1%. Due to the variability of sample numbers and availability, there was significant disparity between the numbers of samples of each species. This imbalance was addressed using the support vector machine-synthetic minority oversampling technique (SVM-SMOTE),<sup>147,148</sup> which served to increase the number of samples in minor classes through the generation of "synthetic data". The synthetic data were randomly created along the lines adjoining each minority class support vector with several of its nearest neighbors. Since the species share taxonomical relationships (as shown in Scheme 3.1), a supervised top-down hierarchical classification tree<sup>66,85</sup> was designed to simplify the complex 57 flat classification problem into 18 multi-classes (as illustrated in Scheme 3.2-Step 3). The classification tree had 18 classification nodes organized in 3 levels of discrimination (family, genus, and species) and ended at 57 leaf nodes representing the individual species. Thus, samples were first categorized into families at the first level of discrimination, and subsequently discriminated by genus and then to the corresponding species at the second and third levels, respectively. To increase the performance of the classification model,<sup>83,149,150</sup> the results of three machine learning methods were fused using posterior probabilities. Therefore, within the classification node of each tree, random forest (RF), k-nearest neighbors (KNN) and support vector machine (SVM) were trained, and each trained model assigned a probability value to each class label for the samples in each classification node. Prediction of the sample label is based on the average of the probabilities resulting from application of the SVM, KNN and RF models. For assignment of samples to each class in each node, a probability threshold was computed for each class using the prediction results of 100 X randomly selected test set (30 percent of data) and the precision-recall (sensitivity) curves.

## 3.3. Results

To develop a classification model for rapid identification of psychoactive plant-derived materials, hierarchical classification tree-based supervised methods were used. The overall approach, including data acquisition and statistical analysis, is summarized in Scheme 3.2. Assessment of mass spectra in both positive and negative ion modes revealed that much more chemical information (i.e., many more peaks) was contained in the positive-ion mode spectra. Given that the greater the number of peaks, the more refined a prediction model that can be built, we chose to use the spectra generated in positive-ion mode. Representative spectra (average of 10 DART-HRMS analysis replicates) for all 57 species are presented in Figure A3.1 for one of the forms of the material. Their corresponding mass tables are deposited at <a href="https://rabi-musah.squarespace.com/s/Psychoactive-Plant-mass-tables-corresponding-to-Figure-A4-and-">https://rabi-musah.squarespace.com/s/Psychoactive-Plant-mass-tables-corresponding-to-Figure-A4-and-</a>

Figure-35.xlsx. As an example, spectra of diverse forms of *Artemisia absinthium* are shown in Figure 3.1, with their corresponding mass data presented in Tables A3.2-A3.5. The figure displays the spectra of powders and seeds, as well as a processed form of the materials (an *A. absinthium* tincture). From the figure, similarities and differences between the spectra are noted. For example, some peaks are common to multiple sample forms (such as m/z 231.125). On the other hand, the seed was observed to exhibit the greatest number of peaks. The spectra of the different forms of each species were compared to remove the variables related to the plant matrix and not related to species. As indicated in Scheme 3.2—Step 2, the collected spectra were aligned along common m/z values using a relative abundance threshold cutoff of 1%, and binned (with a bin width of 10



**Figure 3.1.** Representative 20 V soft ionization DART mass spectra of: (A) dried herb; (B) powder; (C) seed; and (D) tincture of *A. absinthium*.

mmu). The bin width and relative abundance threshold cutoff values were determined by iterative evaluation of the goodness cutoffs. The resulting matrix with dimensions of 6691×2532 was subjected to the application of SVM-SMOTE to handle the class imbalances. Species discrimination was then achieved by adopting hierarchical classification tree-based supervised methods using scikit-learn<sup>151</sup> and its interfaces.<sup>152</sup> The spectra of 30% of the samples were randomly selected to serve as external validators for the testing of the trained models, and the hierarchical classification tree was trained against a fused classifier comprised of SVM, RF, and KNN methods. The trained model was then validated using 10-fold cross validation and external validation, yielding prediction accuracies of 98% and 99%, respectively. Figure 3.2 illustrates the corresponding normalized confusion matrix for the external validation of the fused classifier. The



Figure 3.2 Normalized confusion matrix presenting the external validation results of the hierarchical classification tree. The color gradient extends from blue to white, where blue represents 0% and white presents 100% prediction rates. The x- and y-axes display the prediction and true values, respectively. Diagonal elements in the confusion matrix correspond to true positive rates and non-diagonal elements are indicative of false positive and false negative rates. Sp 1: A. baetica; Sp 2: A. belladonna; Sp 3: A. komarovii; Sp 4: B. arborea; Sp 5: B. aurea; Sp 6: B. sanguinea; Sp 7: B. suaveolens; Sp 8: B. versicolor; Sp 9: D. ceratocaula; Sp 10: D. discolor; Sp 11: D. ferox; Sp 12: D. innoxia; Sp 13: D. leichhardtii; Sp 14: D. metel; Sp 15: D. parajuli; Sp 16: D. quercifolia; Sp 17: D. stramonium; Sp 18: D. wrightii; Sp 19: H. albus; Sp 20: H. aureus; Sp 21: H. muticus; Sp 22: H. niger; Sp 23: H. pusillus; Sp 24: M. autumnalis; Sp 25: M. officinarum; Sp 26: A. absinthium; Sp 27: A. vulgaris; Sp 28: C. zacatechichi; Sp 29: L. virosa; Sp 30: P. nitida; Sp 31: V. africana; Sp 32: A. nervosa; Sp 33: C. tricolor; Sp 34: I. tricolor; Sp 35: A. peregrina; Sp 36: M. hostilis; Sp 37: B. caapi; Sp 38: D. cabrerana; Sp 39: L. leonurus; Sp 40: L. sibiricus; Sp 41: L. nepetifolia; Sp 42: S. divinorum; Sp 43: M. speciosa; Sp 44: C. johimbe; Sp 45: P. viridis; Sp 46: A. officinalis; Sp 47: T. populnea; Sp 48: P. betel; Sp 49: P. methysticum; Sp 50: E. lobata; Sp 51: C. sativa; Sp 52: S. tortuosum; Sp 53: P. harmala; Sp 54: A. racemosa; Sp 55: S. vulgaris; Sp 56: N. caerulea; Sp 57: T. diffusa. The confusion matrix reveals a prediction accuracy of 74.75%, 86.2% and 87.91% for Sp32, Sp42 and Sp52, respectively. These accuracies show that the model can still be considered to be well-fitted for Sp42 (dried herb, extract, powder and root) and Sp52 (leaf and extracts with different concentrations). However, it remains uncertain why the results are not as accurate for Sp32 (only in seed form).

x- and y-axes display the predicted and expected values, respectively. The color gradient extends from blue to white, with blue representing a 0% prediction rate and white, a 100% prediction rate for identification. The diagonal values in the matrix correspond to true positive rates and the offdiagonal entries represent false negative and false positive rates. As illustrated in Figure 3.2, with the exception of the three species A. nervosa (Sp 32), S. divinorum (Sp 42), and S. tortuosum (Sp 52), for which the true positive rates fell between 70 and 90%, all other species were predicted with  $\ge 90\%$  accuracy. To facilitate the utilization of the fused classifier model as a tool for the screening and identification of psychoactive plant material unknowns, an intuitive and userfriendly graphical interface named Database of Psychoactive Plants (DoPP) was designed and developed as a stand-alone application in Windows (using the programming language Python). It is comprised of three parts termed "Identification", "Quantification" and "Psychoactive plant directory" which are accessible via tabs (see Figure 3.3). This chapter focuses on the content and development of the "Identification" and "Psychoactive plant directory" components. The *Identification* tab displays the species identity prediction that DoPP assigned to the DART mass spectrum of material that was screened. Using the Psychoactive plant directory tab, the user can access a repository of the mass spectra of different forms of the species in the database (e.g., from different areas of the plant such as the aerial parts, roots, seeds etc.), or processed forms such as extracts, in order to make comparisons and visualize the chemical structure(s) of the psychoactive component(s), among other features. Details for the plant species, such as molecule(s) of interest with their respective monoisotopic masses, chemical formulas, and structures, can be found in Table A3.6. The *Psychoactive plant directory* tab also serves as a resource of information about the plant species represented within DoPP. Clicking this tab opens the window shown in Figure 3.4A, where a list of each of the species that fall under the "Sample Information" section can be



**Figure 3.3.** Illustration of the application of DoPP for the identification of a plant sample (*M. speciosa*) analyzed by DART-HRMS. As shown in Panel A, when the mass spectrum of the solid material is imported, the interface reveals the mass data table containing m/z values and the corresponding relative intensities, and the mass spectrum of the query sample. The results present: (1) the family, genus and the species of the query sample, along with the posterior probabilities from the fused classifier in the three levels of the hierarchical classification tree; (2) the identity and structure of any known psychoactive components; and (3) a bar plot showing the probabilities associated with the identification of the family, genus, and species by the embedded classifiers (i.e., SVM, RF, K-NN and a fused classifier comprised of all three) in the hierarchical classification tree. Three other bar plots (Panels B-D) display the probabilities for identification of the family, genus and species levels acquired using the fused classifier.

found. If, for example, a search of *Lactuca virosa* is performed within this tab, mass spectra of different analyzed forms of this species appear in the "Display Data" section of the tab (as shown in Figure 3.4B). Also, a link to the Wikipedia page that describes the species and the structures of its known psychoactive components appears under the "Psychoactive Compound" tab. As DoPP contains DART mass spectra of powder, leaf, flower, resin, seed, and tincture forms of *L. virosa*, representative mass spectra of each can be viewed via the "Display Data" section, where the mass spectra of each form are shown in Figure 3.4B, with their corresponding mass data tables presented in Tables A3.7-A3.12



**Figure 3.4.** Illustration of the "Psychoactive plant directory" tab of DoPP. (A) Information about the *Lactuca virosa* species that is observed after right clicking on the species tab in the "Sample Information" section. The information includes: a link to the Wikipedia page describing the species and a table containing its known psychoactive components (names and structures) under "Psychoactive Compound" section; and the mass spectra of the various products derived from the species under "Display Data" section; (B) Retrieved mass spectra for *L. virosa* representing flower, resin, leaf, seed, powder and tincture forms.

#### 3.3.1. Approach for the Identification of Sample Unknowns

In order to illustrate the utilization of DoPP for the identification of plant matrices, the interrogation of materials comprised of *Mitragyna speciosa* commonly known as kratom (leaf), Datura innoxia (seed), Datura wrigthii (seed), Ricinus communis in castor oil form and Salvia *miltiorrhiza* in tablet form, and a plastic bag are described here. Kratom has been identified by the UNODC as a plant of concern because of its increased recreational use, potential to cause dependence, its various adverse health effects, and because it has been implicated in drug overdose deaths.<sup>153</sup> Its major psychoactive component is mitragynine, which has been shown to act on various opioid receptors including the mu, delta and kappa.<sup>153</sup> Datura species are legal highs containing atropine and scopolamine, which are controlled substances in many countries. For this study, kratom and Datura species were also analyzed by outside independent laboratories using experimental parameters identical to those described earlier (see Methods section). This enabled determination of the utility of DoPP using data generated from a different instrument and acquired by different analysts. Figure 3.5 displays the DART mass spectra of commercially available kratom (comprised of crumbled leaves (Figure 3.5A)), and D. innoxia seeds (Figure 3.5B). Their corresponding mass tables can be found at https://rabi-musah.squarespace.com/s/Psychoactive-



**Figure 3.5** Representative 20 V soft ionization DART mass spectra of (A) *M. speciosa*, aka kratom and B. *D. innoxia*. The base peak at nominal m/z 399 in the kratom mass spectrum (A) corresponds to the protonated form of its psychoactive component mitragynine. Prominent peaks in the *D. innoxia* spectrum (B) correspond to the protonated forms of atropine (m/z 290) and scopolamine (m/z 304).

Plant-mass-tables-corresponding-to-Figure-A4-and-Figure-35.xlsxXX. Mass spectra of other samples are shown in Figure 3.6. As indicated in Figure 3.5A, the base peak at nominal m/z 399 in the kratom mass spectrum corresponds to the protonated form of mitragynine ([C<sub>23</sub>H<sub>30</sub>N<sub>2</sub>O<sub>4</sub> + H]<sup>+</sup>; *measured:* 399.2252). Interestingly, despite the complexity of the kratom raw material, the spectrum is relatively simple, and is dominated by the mitragynine peak. Prominent peaks in Figure 3.5B (*D. innoxia* seed) correspond to the protonated forms of atropine ([C<sub>17</sub>H<sub>23</sub>NO<sub>3</sub> + H]<sup>+</sup>; *measured:* 290.175) and scopolamine ([C<sub>17</sub>H<sub>21</sub>NO<sub>4</sub> + H]<sup>+</sup>; *measured:* 304.155) with the scopolamine peak being dominant. Figure 3.7 illustrates the similarities and differences in correlation coefficient for ten kratom, five *D. innoxia*, and five *D. wrightii* samples that were analyzed independently in each of two different laboratories. The brightest shade of yellow



**Figure 3.6** Representative 20 V soft ionization DART mass spectra of (A) *D. wrightii*; (B) *S. miltiorrhiza*; (C) *R. communis*; and (D) plastic bag which contained *Cannabis sativa* powder.



**Figure 3.7** Pairwise inter-spectral similarities estimated using correlation coefficients. The plot illustrates the similarities between the DART-HR spectra of kratom (A), *D.innoxia* (B) and *D. wrightii* (C) analyzed in two different laboratories, with the brightest share of yellow representing the highest correlation (ie., 1) and the darkest share of blue representing the lowest (i.e., 0.82).

represents the highest correlation and the darkest shade of blue represents the lowest. To compare the inter-laboratory spectra for reproducibility, the inter-spectral correlation scores for the spectra were computed. Then the correlations for each spectrum were averaged. The average scores for the datasets from each laboratory for each species were examined to reveal whether they fell within the normal distribution.<sup>154</sup> Using the average scores of the correlation metrics along with the paired *t*-test, it was found that the spectra of the two species from the two independent laboratories were statistically the same at the 95% confidence level. It should be noted that the mass resolving power and mass accuracy can vary between different mass analyzers, and that different types of mass analyzers may influence not only reproducibility, but also DoPP results. Future studies will be devoted to assessment of the scope and limitations of DoPP as a function differences in mass analyzer type.

In conducting classification in real-world scenarios, a classifier not only must correctly group unknown samples into the classes that are defined in the model, but must also correctly reject: (1) samples that represent novel classes against which the model was not trained; and (2) other anonymous data such as background or poor quality data. *Ricinus communis* and *Salvia miltiorrhiza*, which are species not represented in the database, were used to investigate how the classifier would handle data from species that should not be recognizable. Also, the plastic bag containing *Cannabis sativa* material, and a poor quality mass spectrum of *D. wrightii* material (by virtue of its not having been properly processed for background correction) were screened against the database to test how the model would treat data that should not be recognized, and poor quality data respectively. Screening of the spectra using DoPP resulted in a correct identification of kratom in all tested cases, as revealed in the *Identification tab* section. The prediction outcomes for all of the other samples are presented in Figure A3.2-A3.9.

#### 3.3.2. Identification Tab

When the DART mass spectrum of unknown material is first imported into DoPP, the window that appears in the *Identification* tab is illustrated in Figure 3.3A. It displays the mass spectral data table and plot, showing m/z values and their corresponding relative intensities. After selecting the "*Compute identification*" tab, the material is first screened for outlier detection using principal component analysis (PCA) and Hotelling's T<sup>2</sup> statistic, and if it is identified as an outlier,

the result will be listed as "Not detected" in the "Identification Result" section. If it is deemed not to be an outliner, then in the "Display Result" section, a bar plot that reveals the prediction probabilities resulting from classification by the hierarchical classification tree based on SVM, RF, KNN and the fused classifiers for identification of the family, genus and species of the analyzed material is shown (Figure 3.3A). The four classifiers reveal the highest probability prediction results for the family, genus and species assignments. Three other bar plots (Figure 3.3B-D) display the identification results for the family, genus and species levels of the classification tree for the fused classifier. In the "Identification result" section, the maximum probability computed by the fused classifier for family, genus and species levels along with their corresponding class labels are shown by DoPP. When the computed probability is lower than the probability threshold for assigning a class label at each level, the background color of the cells changes to pink, indicating that these levels are not assigned. Additional information provided within this tab includes the name(s) and structure(s) of the dominant psychoactive component(s), as well as their molecular formula(s). Figure 3.3 illustrates the results for analyses performed at an independent laboratory (IonSense Inc.) for the identification of a kratom sample. Figure 3.3B shows that the probability for the assignment of the plant material to the Rubiaceae family is the highest of all the 18 families represented in the database. The material is further classified as being derived from a Mitragyna genus plant, and finally, as the M. speciosa species. These are all correct assignments. The prediction results for D. innoxia (Figure A3.2 and Figure A3.4) and D. wrigthii (Figure A3.3 and Figure A3.4) were similarly accurate for data collected in our lab and at ETEC. The screening results for *R. communis* and the plastic bag that contained the *C. sativa* sample are shown in Figures A3.6 and A3.7, respectively. Both are reported as outliers which is the expected and desired result, as the model should reject both on the grounds that they should not be recognizable. While S.

*miltiorrhiza* (Figure A3.8) and the poor-quality *D. wrigthii* spectrum (Figure A3.9) were not rejected in the outlier detection step, they were not assigned to any of the species in the database, as illustrated in the figures. The "Not-assigned" status of these samples is visually apparent from the pink background color which appears, and which signifies that the observed probability of 0.31 is lower than the threshold of 0.45 that was set for assignment of a *R. communis* sample to the Rubiaceae family, and that the observed probability of 0.26 is lower than the threshold of 0.45 for assignment of a *D. wrigthii* spectrum to the Asteraceae family. Thus, the results reveal that DoPP was successful not only in determining the identities of species contained within its database, but also in rejecting the samples that represent novel classes or poor matches with entities in the database. They further show that the hierarchical classification tree underlying the fused classifier is a well-fitted model for identification of psychoactive plant species using DART-HRMS database of psychoactive plant species.

In DoPP, the approach that was developed for differentiation of plants is based on only a probabilistic model, and species-specific ions as an alternative means to distinguish between species were not considered. However, using species specific ions can provide another source of information that may be helpful in reducing the false positive rate. Plans are underway to assess the extent to which inclusion of this consideration could further enhance the utility of the application, particularly as it relates to development of a peak-matching algorithm for unknown sample pre-screening.

## 3.4. Conclusion

Comprised of a graphical user interface coupled to a comprehensive database of highresolution DART mass spectra of psychoactive plant materials, DoPP enables their rapid species identification through screening of their DART mass spectra. Eighteen families, 34 genera and 57 species are represented, including multiple species designated by the United Nations Office on Drugs and Crime as "plants of concern" due to their increased recreational use and their potential to cause addiction and negative health impacts. For identification of plant material unknowns, DoPP employs a trained hierarchical classification tree constructed from the fusion of SVM, RF and KNN models. This trained fused model provides discrimination with accuracies of 98% and 99% for 10-fold cross validation and external validation assessments, respectively. The results show the successful application of DoPP for the identification of unknown psychoactive plant materials. These features, among several others, enable facile interrogation and identification of plant materials without prior knowledge of botany, and in the absence of distinguishing plant morphological features (such as is the case when the plant materials have undergone processing such as grinding or extraction), or the need for extensive sample pre-treatment prior to analysis. DoPP will be compiled as a stand-alone desktop application for windows and mac platforms so that the user will not need to set up any specific software. It also will allow the user to submit their own entries to the host library. Following pre-processing and confirmation of the data, the spectra will be added to the database and will be used to update the trained model.

# CHAPTER 4: SPECIES ATTRIBUTION OF *DALBERGIA* WOODS THROUGH HEADSPACE VOLATILES SIGNATURE ANALYSIS

#### 4.1 Introduction

Dalbergia species, often referred to as rosewoods, belong to the Fabaceae family and encompass a diverse range of plants with notable medicinal properties.<sup>155</sup> Among these, *Dalbergia* sissoo, commonly known as Sheesham, is endemic to South Asia, Africa, and the Americas, and is reported to have potent therapeutic benefits.<sup>155,156</sup> Its prominence lies in its use in traditional medicine as an antimicrobial, antiparasitic, antidiabetic, anti-inflammatory, analgesic, and anticancer agent.<sup>155–157</sup> Various plant parts are used, including the heartwood, bark, leaves, and flowers.<sup>155–157</sup> In traditional Chinese medicine, D. odorifera has been used to treat liver disease, gastrointestinal disorders, inflammation, and cancer, as well as for its purported cardiovascular protective effects.<sup>158,159</sup> The reported biological properties of *Dalbergia spp.* have sparked considerable interest in the extraction and isolation of bioactive compounds. Isolated compound classes include flavonoids, benzophenones, styrenes, alkaloids, polyphenols, tannins, saponins, cardiac glycosides, and terpenoids.<sup>155,156,159</sup> In addition to their established use in traditional medicine, Dalbergia spp. are highly prized for their wood which is fashioned into furniture and various artifacts. As the most highly trafficked product in the world,<sup>56,160,161</sup> Dalbergia spp. have been overharvested due to their economic value. This in turn has necessitated their inclusion in CITES appendices, where all are classified as Appendix II, except for D. nigra, which is an Appendix I species.<sup>37</sup> Despite these designations, a thriving illegal trade market exists, which not only undermines conservation efforts, but also threatens the livelihoods of local communities that are reliant on these resources.

The ability of law enforcement agencies to intercept and prosecute illegal trade of

Dalbergia spp. is heavily reliant on accurate species identification. Several methodologies have been devised for species differentiation, with wood anatomical examination representing a common approach. This technique can be highly accurate for genus identification. However, distinguishing between closely related species based solely on anatomical features is challenging due to their similarities.<sup>56</sup> While DNA analysis might be anticipated to provide a highly accurate species identification approach, its application is impeded by cost constraints, and technical difficulties concerning the extraction of suitable DNA sequences from trees, due to the rapid fragmentation of DNA that occurs in the wood once the tree has been felled.<sup>35,53,54</sup> This fragmentation can complicate the analysis, making it challenging to obtain the intact DNA sequences necessary for accurate species identification. Another technique, Near-Infrared (NIR) spectroscopy enables non-destructive timber analysis with accurate species identification.55-57 However, NIR spectroscopy has limitations, including limited spot size, wavelength range, and resolution, which hinder species identification through a comprehensive database with high quality data.<sup>55</sup> Given these challenges, there remains an urgent need for the development of alternative, rapid species identification methods, characterized by both accuracy and efficiency. A promising avenue in this regard is ambient ionization mass spectrometry, particularly direct analysis in realtime high-resolution mass spectrometry (DART-HRMS). This technique has demonstrated considerable potential in unveiling species-specific chemical fingerprints, which when subjected to multivariate statistical analysis, reveal species identity information. For example, Musah et al., reported on chemometric processing of DART-HRMS derived chemical fingerprints of wood to differentiate between various species, including two from the Dalbergia genus, with 98.98% accuracy.<sup>82</sup> The U.S. Fish and Wildlife Forensic Lab (USFWL) utilizes this strategy for casework applications, consistently achieving accuracies exceeding 90%.<sup>88,89</sup> Although this method yields

high accuracies, it necessitates the in-house analysis of bulk wood material using DART-HRMS. This requirement renders the technique impractical for the rapid analysis of stacked logs at ports, or other field settings. Consequently, a "stand-off" approach for species identification, which circumvents direct wood analysis in favor of utilizing headspace volatiles, presents a promising alternative. Previous work has shown that a range of psychoactive plants can be identified through chemometric processing of their species-specific headspace chemical profiles.<sup>62</sup> If *Dalbergia spp.* also exhibit species-specific volatiles profiles, then such a method could be developed for identifying their woods through headspace analysis, circumventing the need for direct interrogation of wood samples. In turn, such a breakthrough would lay the groundwork for the establishment of a stand-off approach for *Dalbergia spp.* identification.

Presented herein are the findings of a study examining the headspace chemical profiles of seventeen *Dalbergia spp*. Through the concentration of their volatiles using solid phase micro-extraction (SPME) followed by DART-HRMS analysis, both intraspecies similarities and interspecies differences were observed. Subsequent multivariate statistical analysis employing Support Vector Machine (SVM) effectively separated the species, yielding a prediction accuracy of 83.33% based solely on the headspace chemical signatures. The development of this approach holds immense potential for facilitating law enforcement efforts in curbing illegal logging by enabling screening and identification of timber shipments at ports of entry, border crossings, and other potential trafficking hotspots, rapidly, non-invasively, and in real-time. Ultimately, the implementation of this method could empower law enforcement agencies to combat illegal logging and trafficking activities more effectively, thereby contributing to the conservation and sustainable management of *Dalbergia spp*. and their habitats.

#### 4.2. Methods

#### 4.2.1. Timber Samples

All timber samples were provided by the U.S. Fish and Wildlife Laboratory (USFWL) (Ashland, OR, USA). Table 4.1 lists the species information along with the identification number assigned by the USFWL. In all, authenticated samples from each of the seventeen species *D. baronii*, *D. cearensis*, *D. oliveri*, *D. occulta*, *D. madagascariensis*, *D. latifolia*, *D. melanoxylon*, *D. normandii*, *D. purprascens*, *D. retusa*, *D. nigra*, *D. decipularis*, *D. stevensonii*, *D. tucurensis*, *D. spruceana*, *D. maritima*, and *D. cochinchinensis* were analyzed. At least three individuals of each species were analyzed three to five times, resulting in a comprehensive number of replicates (276).

#### 4.2.2. Headspace Sampling by Solid-Phase Microextraction

Divinylbenzene/Carboxen/Polydimethylsiloxane-coated (DVB/CAR/PDMS) 24 Ga 50/30  $\mu$ m solid-phase microextraction (SPME) fibers and SPME fiber holders for use with manual sampling were purchased from Supelco Inc. (Bellefonte, PA, USA). Fibers were conditioned for 30 min at 250 °C under a stream of helium gas before each headspace sampling. Wood samples for analysis were generated by depositing within a 20 mL scintillation vial 2 g of slivers that were produced by segmenting the bulk wood with wire cutter pliers. The mouths of the vials were covered tightly with aluminum foil, and a conditioned DVB/CAR/PDMS coated 24 Ga 50/30  $\mu$ m SPME fiber was exposed to the headspace of the sample for 30 min at room temperature (Figure 4.1A). This concentration step was performed in triplicate by concentrating headspace volatiles in a vial three times under ambient conditions at approximately 23 °C

#### 4.2.3. DART-HRMS Analysis

SPME fibers, to which headspace volatiles were adsorbed, were analyzed in positive-ion

| assigned identification number for each sample. |              |                          |              |                              |              |
|-------------------------------------------------|--------------|--------------------------|--------------|------------------------------|--------------|
| Species                                         | ID<br>Number | Species                  | ID<br>Number | Species                      | ID<br>Number |
| Dalbergia<br>baronii                            | 130012       | Dalbergia                | 130215       | Dalbergia                    | 130125       |
|                                                 | 130009       | latifolia                | 130212       | decipularis                  | 130124       |
|                                                 | 130001       | Dalbergia<br>melanoxylon | 130356       | Dalbergia<br>stevensonii     | 130225       |
|                                                 | 130010       |                          | 130352       |                              | 130222       |
|                                                 | 130011       |                          | 130348       |                              | 130221       |
|                                                 | 130007       |                          | 130218       |                              | 130231       |
|                                                 | 130005       |                          | 130353       |                              | 130223       |
|                                                 | 130006       | Dalbergia<br>normandii   | 171173       | Dalbergia<br>tucurensis      | 140515       |
|                                                 | 130008       |                          | 171172       |                              | 140520       |
| Dalbergia<br>cearensis                          | 130160       |                          | 150174       |                              | 140513       |
|                                                 | 130155       |                          | 150168       |                              | 140521       |
|                                                 | 130161       |                          | 150160       |                              | 140517       |
|                                                 | 130165       | Dalbergia<br>purprascens | 150557       | Dalbergia<br>spruceana       | 130121       |
|                                                 | 130158       |                          | 150034       |                              | 130116       |
| Dalbergia oliveri                               | 131025       |                          | 150035       |                              | 130119       |
|                                                 | 131024       | Dalbergia<br>retusa      | 130250       |                              | 130115       |
|                                                 | 131026       |                          | 130251       |                              | 130123       |
| Dalbergia<br>occulta                            | 150170       |                          | 130246       | Dalbergia<br>maritima        | 150208       |
|                                                 | 150192       |                          | 130248       |                              | 150227       |
|                                                 | 150198       |                          | 130244       |                              | 150221       |
| Dalbergia<br>madagascariensis                   | 130174       | Dalbergia<br>nigra       | 130037       |                              | 150228       |
|                                                 | 130173       |                          | 130713       |                              | 150222       |
|                                                 | 130179       |                          | 171582       |                              | 150175       |
|                                                 | 130172       |                          | 171584       | Dalbergia<br>cochinchinensis | 130620       |
|                                                 | 130180       |                          | 162037       |                              | 130672       |
| Dalbergia<br>latifolia                          | 130208       | Dalbergia<br>decipularis | 150523       |                              | 130666       |
|                                                 | 130210       |                          | 130129       |                              | 130667       |
|                                                 | 130214       |                          | 130126       |                              | 130671       |

**Table 4.1** Dalbergia spp. analyzed showing the U.S. Fish and Wildlife I aboratory.

mode using a direct analysis in real-time (DART)-SVP ion source (IonSense, Saugus, MA, USA) interfaced with a JEOL AccuTOF mass spectrometer (JEOL USA, Peabody, MA, USA) (Figure 4.1B). The instrument parameter settings were as follows: helium gas flow rate, 2.0 L/min; gas temperature, 250 °C; ring lens voltage, 5 V; orifice 1 voltage, 20 V; orifice 2 voltage, 5 V; and peak voltage, 400 V (to detect m/z values  $\geq$  40). The mass spectrometer used has a resolving power



Figure 4.1. Headspace sampling of timber (A) and DART-HRMS analysis of SPME fiber (B).

of 6000 full width at half maximum (fwhm). Spectra were collected at a rate of one spectrum per second over the mass range m/z 40–1000. PEG 600 (Sigma-Aldrich, St. Louis, MO, USA) was used as the mass calibrant and was sampled following the analysis of each individual fiber. TSSPro 3 software (Shrader Analytical, Detroit, MI, USA) was used for data processing including averaging, background subtraction, and peak centroiding. The DART mass spectra of conditioned SPME fibers that were exposed to the headspace of an empty vial served as blanks (controls) for the SPME analyses.

4.2.4 Headspace Sampling by Thermal Desorption Coupled with Gas Chromatography – Mass Spectrometry

Following the methodology described in Dr. Meghan Appley's thesis,<sup>162</sup> slivers of the wood samples were analyzed using a 7890A gas chromatogram and 5977B mass spectrometer

(MS) (Agilent, Santa Clara, CA) coupled with a GERSTEL Multipurpose Sampler (MPS) thermal desorption unit (TDU) and cooling inlet system (CIS) (GERSTEL Inc. USA, Linthicum, MD). Each individual was analyzed once. Samples were placed into microvials in TDU tubes, which were desorbed in the TDU operating in splitless mode. The initial temperature was 40 °C, followed by a temperature ramp of 100 °C/min to a final temperature of 175 °C and then held for 5 min. The analytes were cryogenically trapped in the CIS inlet at -120 °C using a liner packed with glass wool. Subsequent to desorption, the analytes were transferred to the GC column by heating the CIS at 12 °C/min to a final temperature of 275 °C. This was held for 3 min. The GC column (Agilent, Santa Clara, CA) with a helium flow rate of 0.6 mL/min. The GC oven was programmed with an initial temperature of 40 °C, followed by a ramp of 15 °C/min to a final temperature of 300 °C. This was for 2 min. The MS parameters were set to scan mode, targeting a mass range of m/z 30 to 600. Data analysis and visualization were conducted using MassHunter Unknowns Analysis Software (Agilent, Santa Clara, CA).

#### 4.2.5. Multivariate Statistical Analysis

The DART mass spectral data that were generated from SPME fiber analysis resulted in 2column text files (one column containing the m/z values and the second containing their corresponding ion counts). These were subjected to multivariate statistical analysis using the Mass Mountaineer software suite (Version 7.1.17.0). This was done by first categorizing the samples into classes consistent with their respective species identities. Next, an iterative process was conducted to determine the optimal relative abundance threshold cutoff and mmu tolerance for the prediction model. Threshold cutoffs ranging from 1% to 10% and tolerances from 0 to 20 mmu were iteratively assessed. This revealed that a 4% threshold and 10 mmu tolerance yielded the most accurate results. Subsequently, the text files were rendered as a heat map using the 4%
threshold and 10 mmu tolerance. Next, the 256 m/z values with the highest relative abundances were selected. This number was ~3 percent of the total number of m/z values. Redundant entries were purged, and for the remaining m/z values, vectors were constructed to encompass all the abundances for the identified m/z values. This was followed by Analysis of Variance (ANOVA) for each m/z value. Features exhibiting statistically non-significant differences with *p*-values greater than 0.5 were flagged and excluded, resulting in a subset of 112 significant m/z values, which were subjected to further analysis and classification.

To mitigate the impact of the variation in relative abundances within the spectra, the data were normalized. This step ensured that the disparities in abundances did not unduly influence classification outcomes. An iterative process was then employed to determine the most optimal classification model. Various classification models available in the Mass Mountaineer software suite, such as Partial Least Squares-Discriminant Analysis (PLS-DA), Discriminant Analysis of Principal Components (DAPC), Kernel Discriminant Analysis (KDA), and Support Vector Machine (SVM) were applied to the dataset. Among these, SVM demonstrated the highest accuracy in predicting *Dalbergia spp*. identities. Therefore, SVM, a supervised multivariate statistical analysis technique, was employed to delineate class boundaries within the dataset. SVM operates by transforming the data into higher-dimensional spaces, facilitating the identification of a hyperplane that optimally separates classes. This methodology offers flexibility through the utilization of different kernels (Chi Square, Linear, and Dynamic Time Warping). Notably, the Chi Square Kernel, which leverages the chi-square distribution, was used for this study since it consistently yielded better outcomes.

#### 4.3. Results

## 4.3.1. DART-MS Analysis

SPME-facilitated DART-HRMS analysis of the headspace volatiles of three to nine individuals (three to five replicates each) from each of the species D. baronii, D. cearensis, D. oliveri, D. occulta, D. madagascariensis, D. latifolia, D. melanoxylon, D. normandii, D. purprascens, D. retusa, D. nigra, D. decipularis, D. stevensonii, D. tucurensis, D. spruceana, D. maritima, and D. cochinchinensis furnished spectra, representative examples of which are shown in Figure 4.2 (with their corresponding mass spectral data tables reposited at https://rabimusah.squarespace.com/s/Dalbergia-species-mass-data-tables-corresponding-to-Figure-42.xlsx:). The mass spectral data were then rendered as a heat map (Figure 4.3), with the m/z values presented on the x axis and the sample number on the y-axis. Sample numbers 1-45, 46-66, 67-75, 76-84, 85-99, 100-114, 115-128, 129-144, 145-153, 154-168, 169-183, 184-198, 199-213, 214-228, 229-243, 244-261, and 262-276 (shown on the y-axis) are representative of the replicates of D. baronii, D. cearensis, D. oliveri, D. occulta, D. madagascariensis, D. latifolia, D. melanoxylon, D. normandii, D. purprascens, D. retusa, D. nigra, D. decipularis, D. stevensonii, D. tucurensis, D. spruceana, D. maritima, and D. cochinchinensis, respectively. The color intensity of the bands reflects the peak relative intensity, where the darker the red, the higher the abundance of its corresponding m/z value. Examination of the representative mass spectra of each species (Figure 4.2) and the mass spectra rendered as a heat map (Figure 4.3), revealed a number of trends. One was the observation of intraspecies similarities between different individuals representing the same species. For example, for D. Baronii there were peaks that were consistently observed across all individuals including those at nominal m/z 61, 83, 107, 133, 134, 149, 181, 203, 221, 222, 223, and 239. This intraspecies similarity trend was also observed for the remaining sixteen species.







Heat Map of 17 Dalbergia spp.

**Figure 4.3.** Mass spectral data rendered in the form of a heatmap of the 17 *Dalbergia spp*. The horizontal lines represent the number of replicates, and the bands correspond to the m/z values on the x-axis. The color intensity of the bands reflects the peak relative intensity, with darker color indicating a higher intensity.

For instance, peaks corresponding to nominal m/z 61, 89, 107, 133, and 177 are in the representative spectrum of *D. oliveri* shown in Figure 4.2, and these peaks are also detected in multiple individuals of this species, as illustrated in the heatmap. A second observed trend was the presence of m/z values that were common to individuals from different species. For example, a number of the m/z values characteristic of *D. oliveri* were also detected in other species, such as *D. occulta*. These included nominal m/z 61, 89, 107, and 177. Overall, the complexity of the spectra made species differentiation through visual assessment quite challenging and as such, multivariate

statistical analysis was explored as a means to discriminate between classes.

# 4.3.2. Creation of a Prediction Model

In order to determine whether there were subtle, non-visually apparent features in the DART-HRMS chemical profiles of the wood headspace that could be used to differentiate between the species, the mass spectral data were subjected to multivariate statistical analysis. The 256 most abundant masses identified from the heat map (at the  $\geq 4\%$  threshold cutoff) were used for the classification model. Analysis of Variance (ANOVA) revealed that 112 m/z values had p-values < 0.05, indicating statistical significance. Consequently, these 112 m/z values were designated as input into the model for classification. These 112 masses are listed in the first column of Table A4.1.

The data for all replicates of the individuals representing the seventeen timber species were processed as previously described (see Methods section) and subjected to Support Vector Machine (SVM) analysis. To evaluate the performance of the SVM model, internal validation was conducted using leave-one-out cross validation (LOOCV). In this approach, each spectrum in the dataset is systematically removed, treated as an unknown sample, and the model is retrained using the remaining spectra. Subsequently, the "unknown" spectrum is classified based on the retrained model, and its actual class assignment is compared to the predicted class. This iterative process is repeated until each spectrum has been assigned a class, and the accuracy of the model is assessed based on the number of correct assignments. The reported accuracy reflects the percentage of correctly classified spectra, providing insight into the model's prediction capability.

The LOOCV accuracy for this analysis was 83.33%, suggesting robust performance of the SVM classification model. Table 4.2 shows the accuracies for individual class predictions. These results demonstrate the model's effectiveness in classifying samples across different species of

Dalbergia using headspace molecular profiles. Notably, the accuracies for six of the species classes (i.e., D. cearensis, D. retusa, D. decipularis, D. stevensonii, D. spruceana, and D. cochinchinensis), were exceptionally high with values exceeding 90.00%. Conversely the D. oliveri and D. occulta classes had the lowest classification accuracies (55.56%) each). Furthermore, five species classes, including D. baronii, D. latifolia, D. melanoxylon, D. nigra, and D. maritima, had good prediction accuracies with values above 80%. Four classes, comprising D. madagascariensis, D. normandii, D. purprascens, and D. tucurensis, exhibited more modest accuracies between 73-78%.

| <b>Table 4.2</b> Prediction accuracies of the SVMmodel used for 17 Dalbergia spp. |          |  |  |  |
|-----------------------------------------------------------------------------------|----------|--|--|--|
| Species                                                                           | Accuracy |  |  |  |
| D. baronii                                                                        | 86.67%   |  |  |  |
| D. cearensis                                                                      | 90.48%   |  |  |  |
| D. oliveri                                                                        | 55.56%   |  |  |  |
| D. occulta                                                                        | 55.56%   |  |  |  |
| D. madagascariensis                                                               | 73.33%   |  |  |  |
| D. latifolia                                                                      | 80.00%   |  |  |  |
| D. melanoxylon                                                                    | 80.00%   |  |  |  |
| D. normandii                                                                      | 73.33%   |  |  |  |
| D. purprascens                                                                    | 77.78%   |  |  |  |
| D. retusa                                                                         | 93.33%   |  |  |  |
| D. nigra                                                                          | 80.00%   |  |  |  |
| D. decipularis                                                                    | 93.33%   |  |  |  |
| D. stevensonii                                                                    | 93.33%   |  |  |  |
| D. tucurensis                                                                     | 73.33%   |  |  |  |
| D. spruceana                                                                      | 93.33%   |  |  |  |
| D. maritima                                                                       | 88.89%   |  |  |  |
| D. cochinchinensis                                                                | 93.33%   |  |  |  |
| Total                                                                             | 83.33%   |  |  |  |

The classification performance was explored by considering the misclassification results for each species, which are revealed in the confusion matrix depicting the prediction capabilities of the SVM model from the LOOCV analysis (Figure 4.4). This tabular representation shows the performance of a classification model by comparing the prediction results to those of the true class labels. The numerical entries along the diagonal, highlighted in green, show the number of correctly predicted samples for the indicated species, while off-diagonal entries greater than zero (highlighted in orange), indicate misclassifications. Each of the represented species is indicated by

|   | Α  | В  | С | D | Ε  | F  | G  | Н  | I | J  | К  | L  | Μ  | Ν  | 0  | Ρ  | Q  |
|---|----|----|---|---|----|----|----|----|---|----|----|----|----|----|----|----|----|
| Α | 39 |    |   |   | 2  |    |    |    |   |    | 2  | 1  |    |    |    | 1  |    |
| В | 1  | 19 |   |   |    |    |    |    |   |    |    | 1  |    |    |    |    |    |
| С |    |    | 5 | 3 |    |    |    |    |   | 1  |    |    |    |    |    |    |    |
| D |    |    | 1 | 5 |    |    |    | 1  |   |    |    |    |    | 1  |    | 1  |    |
| Ε |    |    |   |   | 11 |    | 2  |    |   | 1  | 1  |    |    |    |    |    |    |
| F | 1  |    |   |   |    | 12 | 1  | 1  |   |    |    |    |    |    |    |    |    |
| G |    |    |   |   |    |    | 12 |    | 1 |    | 1  |    |    | 1  |    |    |    |
| Н | 1  |    |   | 1 |    |    | 1  | 11 |   |    |    |    |    |    |    | 1  |    |
|   |    |    |   |   |    |    | 2  |    | 7 |    |    |    |    |    |    |    |    |
| J |    |    |   |   |    |    | 1  |    |   | 14 |    |    |    |    |    |    |    |
| Κ | 1  |    |   |   | 1  |    |    |    |   |    | 12 |    |    | 1  |    |    |    |
| L |    |    |   |   |    |    | 1  |    |   |    |    | 14 |    |    |    |    |    |
| Μ |    |    | 1 |   |    |    |    |    |   |    |    |    | 14 |    |    |    |    |
| Ν |    |    |   |   | 1  |    |    |    |   |    | 2  |    |    | 11 |    | 1  |    |
| 0 |    |    |   |   |    |    |    | 1  |   |    |    |    |    |    | 14 |    |    |
| Ρ |    |    |   | 1 |    |    |    |    |   |    |    | 1  |    |    |    | 16 |    |
| Q |    |    |   |   |    |    |    |    |   |    |    |    |    | 1  |    |    | 14 |

(A) D. baronii
(B) D. cearensis
(C) D. oliveri
(D) D. occulta
(E) D. madagascariensis
(F) D. latifolia
(G) D. melanoxylon
(H) D. normandii
(I) D. purprascens
(J) D. retusa
(K) D. nigra
(L) D. decipularis
(M) D. stevensonii
(N) D. tucurensis
(O) D. spruceana
(P) D. maritima
(Q) D. cochinchinensis

**Figure 4.4** Confusion matrix created from the SVM model results, illustrating the prediction outcomes for 17 *Dalbergia* spp. obtained from the SPME-facilitated DART-HRMS analysis of 276 samples. The true species classes are represented along the left side, while the prediction outcomes are indicated across the top. The legend indicates the species to which each letter corresponds.

a letter. For example, the first class (A) corresponding to *D. baronii*, had 39 samples correctly classify as *D. baronii* (A), with two misclassified as *D. madagascariensis* (E), two as *D. nigra* (D), one as *D. decipularis* (L), and one as *D. maritima* (P). For the two species for which the prediction accuracies were poor (i.e., both at 55.56%), *D. oliveri* and *D. occulta*, it was observed that only

five samples were correctly classified as D. oliveri (C), with three misclassified as D. occulta (D) and one as *D. retusa* (J). Similarly, the confusion matrix also shows that *D. occulta* (D) was also only correctly classified for five samples, with the remaining four misclassified as D. oliveri (C), D. normandii (H), D. tucurensis (N), and D. maritima (P). The misidentifications of D. occulta and D. oliveri, resulting in them being most often classified as each other, clearly arises from similarities in their DART-HRMS-derived chemical profiles. This is visually apparent in the heatmap rendering of the mass spectra (Figure 4.3). Analysis numbers 67-75, and 76-84 correspond to replicates of *D. oliveri* (three individuals) and *D. occulta* (three individuals) respectively, and the mass spectral heat map patterns are not only similar by visual inspection alone, but are significantly different from the patterns exhibited by the other 15 represented species. The native occurrence of D. Oliveri is Myanmar, Thailand, Laos, Cambodia, and Vietnam, while D. occulta is endemic to Madagascar. It is not known whether their genetic profiles have been compared to determine the extent of their relatedness, but the results here reveal that their DART-HRMS-derived chemical signatures which were acquired from analysis of multiple individuals, are highly similar. This may indicate genetically relatedness, or perhaps that the samples are actually representatives of the same species. On the other hand, the observed misclassifications may have stemmed from the limited number of representative samples. If this is the case, the model's accuracy could potentially improve with a larger dataset. However, limited sample availability precluded the exploration of this hypothesis. Nevertheless, despite the low predication accuracies for *D. occulta* and *D. oliveri*, it is noteworthy that the remaining fifteen classes exhibited good to excellent accuracies for differentiating species within the Dalbergia genus, simply from analysis of headspace!

The model gave a classification accuracy for D. nigra of 80%, clearly indicating that there

were misclassifications. Of the 15 D. nigra individuals, 1 was misclassified as D. baronii, 1 as D. madagascariensis and 1 as D. tucurensis, all of which represent false negatives. Of greater concern however, are the false positive results, because D. nigra is CITES Appendix 1, while the classification for all the other species is CITES Appendix II. Six samples were misclassified as D. *nigra* and such a misclassifying could lead to unwarranted legal consequences. This emphasizes the need for additional confirmatory analysis to be conducted, such a sample be identified by this approach as being *D. nigra*. The SVM model used in this study was chosen for its effectiveness in handling complex classification tasks, but these results indicate the need for larger datasets to enhance its reliability. However, these results also indicate that within the species' headspace molecular signatures are the chemical attributes that enable them to be identified with an overall accuracy of 83.33%, using the SVM classification model. Although similar studies have achieved accuracies greater than 90%,<sup>86,163</sup> it is important to note that these prior investigations have only analyzed two to seven species and relied on bulk analysis methods, whereas this study shows a comprehensive approach utilizing headspace signatures across seventeen species. One additional step that could be taken in direct analysis of the bulk material by DART-HRMS, which is the current approach used by USFWL for casework.

## 4.3.3. Identification of Chemical Constituents in Dalbergia spp.

The SVM model utilized in this study relied on a total of 112 features, each representing measured masses obtained by DART-HRMS. In an attempt at chemical identification of these masses, the samples were analyzed by thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS). To illustrate the results, Figures 4.5 and 4.6 show representative TD-GC-MS chromatograms with labeled peaks corresponding to some of the identified compounds. Analysis of the gas chromatograms representing the 17 *Dalbergia* spp., revealed 28 peaks which had EI

mass spectral data consistent with those of 28 of the 112 masses utilized to generate the SVM prediction model. A list of the 112 DART-HRMS derived masses appears in the first column in Table A4.1. An entry in the second column indicates the formula corresponding to the high-resolution mass that appears in the first column, and also indicates that a mass consistent with this formula was detected by TD-GC-MS analysis of wood samples. The appearance of a "-" in the molecular formula column (i.e., column 2) indicates that a formula for the corresponding mass



**Figure 4.5** Chromatogram of *D. cochinchinensis* analyzed by TD-GC-MS. Representative peaks are labeled in blue, indicating identified compounds.



**Figure 4.6** Chromatogram of *D. nigra* analyzed by TD-GC-MS. Representative peaks are labeled in blue, indicating identified compounds.

could not be definitively established. When determined, the names of tentatively identified compounds (based on mass spectral fragmentation pattern matching using the NIST 20 database) appear in column 3 (i.e., the "Compound" column). A "-" in this column indicates that no tentative identification could be made. Lastly, the fourth column of the table lists the species in which the indicated compound was detected in at least one individual of the listed species. For instance, the measured mass 61.0636, corresponds to the molecular formula  $[C_3H_8O + H]^+$ , identified tentatively as isopropanol by TD-GC-MS using NIST 20 mass spectral database EI fragmentation pattern matching (Figure A4.1). This mass was detected in *D. cochinchinensis*, as shown by the peak at 2.98 min in its chromatogram (Figure 4.5). While isopropanol has been documented in various plant species including Asparagus officinalis,<sup>164</sup> Carica papaya,<sup>165</sup> Citrus aurontifolia,<sup>166</sup> C. grandis,<sup>166</sup> C. hystrix,<sup>166</sup> C. limon<sup>166</sup> and C. sinensis<sup>166</sup>, this is the first report of its presence in Dalbergia spp. Similarly, m/z 97.0289 was detected and tentatively identified as 3-furaldehyde  $([C_5H_4O_2 + H]^+)$  as shown in its matching EI spectra (FigureA4.2) This mass was detected in multiple species including D. baronii, D. cearensis, D. stevensonii, D. tucurensis, D. spruceana, D. maritima, D. cochinchinensis, D. oliveri, D. occulta, D. madagascariensis, D. latifolia, D. melanoxylon, D. normandii, D. purprascens, D. retusa, D. nigra (as shown in its chromatogram in Figure 4.6) and *D. decipularis*. This compound has also been reported in other plants, <sup>167,168</sup> but never in Dalbergia spp. Preliminary TD-GC-MS analysis of the headspace of the 17 Dalbergia spp. in this study revealed the presence of the following tentatively identified compounds: dimethyl ether; cyclobutene; acetone; azomethane; 1,2-dimethylhydrazine; isopropanol; 1,2dimethylhydrazine; 1-pentene; isobutyraldehyde; dimethylformamide; acetol; 1.4cyclohexadiene; (E,E)-2,4-hexadiene; butyric acid; toluene, 3-furaldehyde; pentanoic acid; benzaldehyde; maltol; (E)-cinnamaldehyde; 5-methylbenzimidazole; 3-methoxycatechol; trans-3Methyl-4-octanolide; nonanoic acid; geranylacetone;  $\beta$ -bisabolene; humulenol II; and hexadecane. Ongoing efforts aim to identify the remainder of the 112 masses revealed by DART-HRMS to further facilitate the identification and differentiation of the *Dalbergia spp*. While the headspace volatiles are compounds that have been detected in various plant species, the specific combination of masses holds diagnostic value for species differentiation. Current efforts are focused on determining which combination of molecules is diagnostic for each species.

#### 4.4. Conclusion

This study presents the findings of an analysis of the chemical headspace signatures of seventeen representative species of Dalbergia, namely: D. baronii, D. cearensis, D. oliveri, D. occulta, D. madagascariensis, D. latifolia, D. melanoxylon, D. normandii, D. purprascens, D. retusa, D. nigra, D. decipularis, D. stevensonii, D. tucurensis, D. spruceana, D. maritima, and D. cochinchinensis. Despite their DART mass spectra exhibiting visually apparent interspecies similarities, multivariate statistical analysis techniques unveiled subtle distinctions that enabled species differentiation. When their SPME-facilitated DART-HRMS-derived chemical signatures were subjected to SVM, species prediction with an overall accuracy of 83.33% was achieved. Notably, the results for certain species such as D. cearensis, D. retusa, and D. decipularis, exhibited exceptionally high accuracies exceeding 90%, indicating high discriminatory power. Conversely, the prediction accuracies for *D. oliveri* and *D. occulta* were poor (55.56%). Analysis of the confusion matrix derived from the SVM results provided valuable insights into misclassification patterns, and highlighting specific species prone to confusion. For instance, D. oliveri and D. occulta were often misclassified as one another. These challenges with classification may stem from interspecies similarities indicative of high genetic relatedness, or the fact that because of sample rarity, only a limited number of individuals could be analyzed. In the case of the latter issue, accuracies may increase with the analysis of more samples as they become available, in order to give the statistical model more power. The findings underscore the need for caution when interpreting classification results and suggest avenues for future research to address misclassification challenges and enhancement of prediction accuracy when using machine learning systems.

Despite these limitations, the classification model demonstrates promising potential for species identification within the *Dalbergia* genus. The ability to accurately differentiate between timber species via headspace analysis has important implications in various areas including forestry, conservation, and trade regulation. It can inform harvesting strategies tailored to different species, facilitate targeted measures for protecting endangered species and their habitats, and promote more robust enforcement of international agreements such as CITES. Furthermore, the analysis of chemical headspace signatures revealed insights into the underlying chemical compositions of the representative *Dalbergia spp*. Moving forward, efforts to expand sample sizes could further enhance the accuracy and applicability of the classification model. In the aggregate, the results provide a foundation for future research aimed at improving species identification using headspace chemical profiles, towards the development of efficient stand-off analysis approaches.

# CHAPTER 5: COMPREHENSIVE ANALYSIS OF CHEMICAL HEADSPACE SIGNATURES IN *SWIETENIA* USING MASS SPECTROMETRIC TECHNIQUES

## 5.1. Introduction

Mahogany is the common name used to refer to wood derived from the three species of the Swietenia genus (Meliaceae), namely S. humilis Zuccarini, S. macrophylla King, and S. mahagoni (Linnaeus) Jacquin.<sup>169</sup> These species have a rich history of use in ethnomedicine. S. humilis, endemic to Central America,<sup>170</sup> is commonly known as zopilote, cobano, gateado, caobilla, flor de venadillo, caoba and sopilocuahuilt.<sup>170–174</sup> Its seeds are used to treat numerous ailments including diabetes, dyslipidemia, amoebiasis, cough, cancer, diarrhea, hypertension, and intestinal worm parasitism.<sup>169,171–175</sup> Furthermore, extracts of the plant exhibit insecticidal activity.<sup>176</sup> Likewise, S. *mahagoni*, an economically important species native to the West Indies,<sup>177,178</sup> is traditionally used to treat a range of disorders, including malaria, eczema, diabetes, diarrhea, rheumatism, cold, anorexia, psoriasis, hypertension and as an antiseptic.<sup>177,179-187</sup> Similar to S. humilis, S. macrophylla, or "big-leaf mahogany"<sup>188–192</sup>, is endemic to Central America, in addition to South America.<sup>189–196</sup> It is also used in folk medicine for what are believed to be its antimicrobial, antiinflammatory, antioxidant, hypolipidemic, antifeedant, antimutagenic, antinociceptive, acaricidal, antiviral, antitumor, antidiarrheal, antifungal and antihyperglycemic effects.<sup>188–191,195</sup> Because of their biological properties, there has been significant interest in isolating bioactive molecules from these species. Accordingly, bioassay-guided fractionation studies have led to the discovery of flavonoids, alkaloids, phenolic compounds, terpenoids, and limonoids.<sup>169,171,173,174,180,181,188,195,197-</sup> <sup>201</sup> A number of fatty acids have also been isolated from the seed oil of these plants, including linoleic, elaidic, stearic, palmitic, ecosanoic, octadecanoic, oleic, arachidic, behenate, and linolenic acids 169,181,185,191,195

In addition to the utility of Mahogony in traditional medicine, the straight-grained and characteristic reddish-brown hue of *Swietenia* woods has made them economically important and highly prized for crafting furniture, musical instruments, decorative materials, and artisanal objects.<sup>35,202</sup> This has led to over-harvesting, which in turn has raised concerns that they may ultimately be threatened with extinction.<sup>54,203</sup> Thus, all *Swietenia spp.* are CITES regulated, where they are classified as Appendix II.<sup>37</sup> Accordingly, their trade is controlled. However, even though all their species are in the same appendix, meaning that they receive the same degree of protection, it is still imperative to discriminate between them because of differing country-specific regulations regarding trade.<sup>204</sup> Notably, the ability of law enforcement to intercept and curtail illegal logging and trade of *Swietenia spp.* depends on the availability of methods for determining the species identities of encountered timber that is suspected to be *Swietenia*.

Several approaches have been devised for the purpose of identifying wood species. The most prevalent is wood anatomical analysis, in which species attribution is made based on species-specific macroscopic and microscopic features of the wood. However, it can be challenging to distinguish between species within the same genus, such as *S. mahogani*, *S. humilis*, and *S. macrophylla* because of their anatomical similarities, and requires extensive expertise. Another species identification method is DNA analysis. However, in addition to being laborious, time-consuming, and costly, its utility is reliant on the successful extraction of DNA from the wood, which is notoriously difficult because of the tendency of the DNA extracted from felled wood to be extensively fragmentated.<sup>35,53,54</sup>

In light of these challenges, there remains a critical need for the development of alternative approaches for the rapid determination, in a forensic context, of the species identity of woods. Both accuracy and speed would be desirable features of such a method. In this regard, one of the

developed techniques that has been applied to species identification of wood is ambient ionization mass spectrometry. Specifically, direct analysis in real – time high-resolution mass spectrometry (DART-HRMS) has been shown to reveal species-specific chemical signatures of wood, which when subjected to multivariate statistical analysis, enables accurate species identity to be determined.<sup>53,54</sup> For example, Deklerck et al. directly analyzed the slivers of several species (E. angolense, E. candollei, E. cylindricum, E.utile, K. anthotheca, K. ivorensis, L. trichilioides, S. macrophylla, S. humilis, and S. mahagoni) and created a Random Forest classification model based on their chemical differences. This predictive model can be used to distinguish between the 10 species with an 82% accuracy.<sup>54</sup> A similar approach has been adopted by the U.S. Fish and Wildlife Forensic Lab for application to casework. It involves the analysis of small segments or slivers of wood, the mass spectra of which are screened against a database of wood species' chemical signatures. The method is robust and achieves accuracies of >90%.<sup>88,89</sup> Despite the success of this mode of analysis for species identification, there continues to be interest, depending on the species, in the development of a "stand-off" approach that might eliminate the requirement for direct analysis of wood slivers and segments. Proof of principle for such a method was recently reported for the identification of psychoactive plants from their headspace chemical signatures.<sup>62</sup> The success of this approach was also used successfully for the species identification of *Dalbergia* spp. as described in Chapter 4. the headspace of Swietenia genus plants exhibit species-specific chemical signatures, it may be possible to identify their woods from analysis of their headspace, rather than direct analysis of the wood itself. Such an accomplishment would pave the way for the development of a stand-off approach for Swietenia spp. identification.

Described here are the results of an investigation of the headspace chemical profiles of all three *Swietenia spp*. When the chemicals in their headspace were concentrated using solid phase

micro-extraction (SPME) and the fibers analyzed by DART-HRMS, intraspecies similarities and interspecies differences were observed. When the mass spectra were subjected to multivariate statistical analysis via Extreme Gradient Boosting, the species were well separated, resulting in a prediction accuracy of 89% based on the headspace chemical signatures alone.

## 5.2. Methods

## 5.2.1. Timber Samples

All timber samples were provided by the U.S. Fish and Wildlife Lab (USFWL) (Ashland, OR, USA). Table 5.1 lists the species information along with the identification number assigned by the USFWL. In all, authenticated samples of five unique individuals from each of the species *S. mahagoni*, *S. humilis*, and *S. macrophylla* were analyzed.

## 5.2.2. Solid-Phase Microextraction

Divinylbenzene/Carboxen/(Polydimethylsiloxane-coated (DVB/CAR/PDMS) 24 Ga 50/30 µm solid-phase microextraction (SPME) fibers and SPME fiber holders for use with manual sampling were purchased from Supelco Inc. (Bellefon

| Table  | e 5.1 S  | Swiete | enia spp. a | nalyzed,   | showing the  |  |
|--------|----------|--------|-------------|------------|--------------|--|
| U.S.   | Fish     | and    | Wildlife    | Laborate   | ory-assigned |  |
| identi | ificatio | on nui | nber for th | ne individ | lual sample. |  |

| Species               | Identification<br>Number |  |  |  |  |
|-----------------------|--------------------------|--|--|--|--|
| Swietenia humilis     | 150635                   |  |  |  |  |
| Swietenia humilis     | 130980                   |  |  |  |  |
| Swietenia humilis     | 130984                   |  |  |  |  |
| Swietenia humilis     | 130726                   |  |  |  |  |
| Swietenia humilis     | 130898                   |  |  |  |  |
| Swietenia mahagoni    | 130472                   |  |  |  |  |
| Swietenia mahagoni    | 130473                   |  |  |  |  |
| Swietenia mahagoni    | 130477                   |  |  |  |  |
| Swietenia mahagoni    | 130474                   |  |  |  |  |
| Swietenia mahagoni    | 130474                   |  |  |  |  |
| Swietenia macrophylla | 130748                   |  |  |  |  |
| Swietenia macrophylla | 130749                   |  |  |  |  |
| Swietenia macrophylla | 130744                   |  |  |  |  |
| Swietenia macrophylla | 130747                   |  |  |  |  |
| Swietenia macrophylla | 130751                   |  |  |  |  |

were purchased from Supelco Inc. (Bellefonte, PA, USA). Fibers were conditioned for 30 min at 250 °C under a stream of helium gas before each headspace sampling.

## 5.2.3. Headspace Sampling

Wood samples for analysis were generated by depositing within a 20 mL scintillation vial 2 g of slivers that were produced by segmenting the bulk wood with wire cutter pliers. The mouths of the vials were covered tightly with aluminum foil, and a conditioned DVB/CAR/PDMS coated 24 Ga 50/30  $\mu$ m SPME fiber was exposed to the headspace of the sample for 30 min at room temperature (Figure 5.1). This concentration step was performed in triplicate by concentrating headspace volatiles in a vial three times under ambient conditions at approximately 23 °C.



**Figure 5.1** Headspace sampling of timber.

## 5.2.4. DART-HRMS Analysis

SPME fibers, to which headspace volatiles were adsorbed, were analyzed in positive-ion mode (Figure 5.2) using a direct analysis in real-time (DART)-SVP ion source (IonSense, Saugus,



MA, USA) interfaced with a JEOL AccuTOF mass spectrometer (JEOL USA, Peabody, MA, USA). The instrument parameter settings were as follows: helium gas flow rate, 2.0 L/min; gas temperature, 250 °C; ring lens voltage, 5 V; orifice 1 voltage, 20 V; orifice 2 voltage, 5 V; and peak voltage, 400 V (to detect m/zvalues  $\geq$  40). The mass spectrometer used has a resolving power of 6000 full width at half maximum (fwhm). Spectra were collected at a rate of one spectrum per second over the mass range m/z 40–1000. PEG 600 (Sigma-Aldrich, St. Louis, MO, USA)

**Figure 5.2** DART-HRMS analysis of SPME fiber.

was used as the mass calibrant and was sampled following the analysis of each individual fiber. TSSPro 3 software (Shrader Analytical, Detroit, MI, USA) was used for data processing including averaging, background subtraction, and peak centroiding. The DART mass spectra of a conditioned SPME fiber that was exposed to the headspace of an empty scintillation vial served as a blank for the SPME analyses.

#### 5.2.5. Multivariate Statistical Analysis

SPME fiber-facilitated DART-HRMS was used to generate mass spectra in the form of text files with one column containing the m/z values and the second containing their corresponding ion counts. A third column representing the relative intensities was created. In all, the mass spectra of 45 samples representing 3 different species were aligned in a matrix with dimensions of 45 x 1134 with an optimal bin width of +20 mmu and relative intensity cutoff of 0.3%. A code from Deklerk et al.<sup>54</sup> was used to set the bin width and relative intensity cutoff value in R 4.2.3 (Posit, Boston, MA, USA), where a range of text files can be placed into a single matrix based on the selected bin width and relative intensity cutoff value. This matrix was imported into Python 3.9.12 (Python Software Foundation, Wilmington, DE, USA) as a comma-separated values (CSV) file to be subjected to multivariate statistical analysis. The optimal bin width and relative intensity cutoff was determined by varying these values from 0 to 20 mmu and 0.1 to 5%, respectively, and screening this data through a range of classification models, including Logistic Regression, Decision Tree, Random Forest, K-Nearest Neighbors, Support Vector Machines, and Extreme Gradient Boosting to see which gave the best accuracy. The matrix was standardized using the StandardScaling function in the sklearn library and split into a training and a test set, where 80% of the samples were randomly selected for the training set and 20% were randomly selected for the test set. A supervised method, Extreme Gradient Boosting, was applied using the XGBoost Python Package. The optimal hyperparameters were investigated through an iterative process, where several models were created based on varying hyperparameters to find which values

generated the highest accuracy. These were found to be: objective, multi:softmax; num\_class, 3; learning\_rate, 0.3; max\_depth, 1; min\_child\_weight, 2; n\_estimators, 100; early\_stopping\_rounds, 10; subsample, 0.5; eval\_metric, mlogloss; and scoring, accuracy. The accuracy of the prediction model was determined by screening the samples from the test set against the model to determine the percentage of correctly identified samples. Feature importance was extracted from the Extreme Gradient Boosting model by calculating their respective F scores. Features are deemed important depending on whether they are valuable when building a predictive model. In this case, the importance of a feature is represented by its F score, where the higher the score, the higher the relative importance.

#### 5.3. Results

#### 5.3.1. DART-MS Analysis

SPME-facilitated DART-HRMS analysis of the headspace volatiles of five individuals (three replicates each) from each of the species S. mahagoni, S. humilis, and S. macrophylla furnished spectra, representative examples of which are shown in Figure 5.3. where the top, middle, and bottom rows represent spectra from three individuals of S. humilis, S. macrophylla, and S. mahagoni, respectively. Their corresponding mass spectral data tables (with masses reported using 0.3% relative abundance threshold), reposited https://rabiа are at musah.squarespace.com/s/Swietenia-species-mass-data-tables-corresponding-to-Figure-53.xlsx), This analysis revealed that multiple individuals of the same species exhibited similar headspace volatiles profiles. For example, the headspace spectra of S. humilis all contained the m/z values (within bin width of 20 mmu) 75.0487 and 205. 1933. This was also observed for the other species. For example, S. macrophylla exhibited m/z 61.0925 and 135.0467 and S. mahagoni had m/z61.0925 and 167.1325 in their representative spectra within the bin width. However, the spectra





also showed interspecies similarities which can make it difficult to visually differentiate between them. For example, Figure 5.3 shows that both S. macrophylla and S. mahagoni contain the m/zvalue 61.0925. To investigate this further, a correlation matrix featuring the mass spectral data rendered as a heat map (Figure 5.4) was generated. This table shows the correlation coefficients between the forty-five samples, plotted against one another on the x- and y-axes. Sample numbers 0-14, 15-29, and 30-44 (shown in the blue boxes) are representative of the replicates of S. humilis, S. mahagoni, and S. macrophylla, respectively, where every set of three sample numbers represents the three replicates that were analyzed for one individual. The values are between 1 (light orange) and -0.6 (dark purple), with values close to 1 indicate a strong correlation, and those at the other end of the continuum indicating a weak correlation. A positive correlation indicates that the variables increased together, whereas a negative correlation indicates that one increases, while the other decreases. Figure 5.4 reveals that the samples, whether of the same or of different species, are highly similar. For example, there are many S. humilis samples (the first blue box) that have high positive correlations of 1 or close to 1 with the other two *Swietenia spp*. (outside the first blue box). This trend was consistent across all the species for most of the samples. This low variability between the chemical profiles was so extreme, which further demonstrates that any differences that might facilitate species differentiation were not readily apparent by visual examination of their mass spectra. Therefore, multivariate statistical analysis was applied to the data to reveal any possible subtle distinctions between the spectra representative of each species, which could be used to differentiate between them.

| 0   | 1 0.97 0.98 0.0580 14 0.0230 13 -0.05 0.47 0.03 04 0.380 007\$0.0540 03                                                                            | 0140 120 0050 0530 21 044                              | 0.12 0.11-0.028 <mark>0.32</mark> 0.17 0.14        | 0.23 0.35 0.79 0.17 0.37 0.014 | 0.14 0.83 0.11 0.17 0.13 0.74               | 0.13 0.660.096 <mark>0.94</mark> 0.0850.18   |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------|--------------------------------|---------------------------------------------|----------------------------------------------|
| -   | 097 1 099 017 021 0210028 049 055 <mark>0 16</mark> 028 017 004 015007                                                                             | 086 0 12 0 0750 15 0 24 0 082                          | 0 0130 022 0 13 0 16 0 19 0 23                     | 0.26 0.23 0.26 0 160 0840 071  | 0.0260 18 0.110.077 0.18 <mark>0.90</mark>  | 0.045 0.09 0.17 0.22 0.0340 12               |
| 2   | <mark>098 099 1 015 026 011 0096075 053</mark> 0.069026 021-0.0570 12 0.11                                                                         | 096031 0 17 0 22 0 22 0 18                             | 0.0360 0590 11 0 12 0 21 0 23                      | 04 039 095 017 02 004          | 0 11 075 0.1 0.150.096 <mark>0.55</mark>    | 0 11 0 37 0 14 <mark>0 88</mark> 0 088 065   |
| б   | 0580.17 0.15 1 0.03 0.99 0.91 0.52 0.37 0.96 0.29 0.22 0.38 0.67 0.55                                                                              | 0.45 0.41 <mark>0.79 0.88</mark> 0.62 0.56             | 0.92 0.92 0.9 0.95 0.96 0.44                       | 0.97 0.93 0.95 0.76 0.95 0.96  | 0.97 0.99 0.91 0.91 0.42 0.90               | 0.74 <mark>0.045</mark> 0.47 0.99 0.3 0.34   |
| 4   | 214 021 020 063 1 082 035 065 0.96 1 0.4 0.95 0.91 0.99 1                                                                                          | 05 0.96 0.41 0.91 0.52 0.78                            | 0.96 0.61 0.97 0.86 0.43 0.69                      | 0.99 1 0.91 0.99 1 0.66        | 0.99 0.36 0.42 0.97 0.97 0.96               | 6 0.93 002 0.81 0.35 0.35 0.39               |
| 10  | 0230 21 0 11 0 99 0 82 1 0 24 0 85 0 75 0 95 0 15 0 33 0 68 0 66 0 93                                                                              | 0 33 0 42 0 6 0.89 0 62 0.77                           | 0.79 0.67 0.8 0.76 0.33 0.83                       | 0.9 0.85 0.76 0.74 0.95 0.9    | 0.82 0 25 0 33 0.92 0.79 0.99               | 0.730.0570.74 0.13 0.16 0.17                 |
| 10  | 13 0 020 092 0 91 0 35 0 24 1 1 1 1 1 1 1 0 99 0 99                                                                                                | 199 1 099 033 087 0 34                                 | 1 1 1 077 1 099                                    | 1 0.99 0.9 0.99 0.99 0.99      | 1 1 1 029 049 1                             | 0.50 0.55 0.00 1 1 1 1                       |
| ĩ   | 1050190750520550551109610951095095091099099                                                                                                        | 195 095 093 00 071 097                                 | 095 093 097 079 1 099                              | 1 1 1 1 099.099                | 1 054 099 055 02 09                         | 0.00 0.20 0.00 0.004 0.97 0.54               |
|     |                                                                                                                                                    | 1 1 055 075 075                                        | 1 000 1 000 1 000                                  | 1 1 00 1 000 000               | 1 1 1 005 070 08                            |                                              |
| æ   |                                                                                                                                                    | 1 1 000 010 010 050                                    |                                                    | 1 000 001 1 1 000              | 1 1 1 000 000 1                             |                                              |
| 6   |                                                                                                                                                    |                                                        |                                                    | 1 000 00 1 000 000             |                                             |                                              |
| 10  |                                                                                                                                                    | 196 (199 044 031 088 -02                               | 1 1 1 0.79 1 0.99                                  | 1 0.99 0.9 1 0.99 0.99         | 1 1 1 0.89 0.89 1                           |                                              |
| 11  | 0.35 0.17 0.21 0.22 0.95 0.33 1 0.95 1 1 1 1 1 0.94 0.97                                                                                           | 1 1 0.53 023 013 0.26                                  | 1 1 1 0.99 1 0.99                                  | 1 0.99 0.9 1 1 0.99            | 1 1 1 0.89 0152 1                           | 057 083 057 1 1 1                            |
| 12  | 00750.040.0570.38 0.91 0.65 1 0.91 0.99 1 1 1 1 0.94 0.89                                                                                          | 1 1 0.85 0.7 0.68 0.02                                 | 0.99 1 0.99 0.95 1 0.94                            | 1 0.99 0.59 0.99 0.59 0.56     | 1 1 1 0.9 0.93 0.72                         | 2 0.65 0.76 0.86 1 1 1                       |
| 13  | 1051015 0.12 0.67 0.99 0.66 0.99 0.99 0.95 1 0.93 0.94 0.94 1 0.99                                                                                 | 0.96 0.95 0.97 0.9 0.77 0.7                            | 0.98 0.99 0.99 0.98 0.99 0.96                      | 1 0.99 0.91 0.95 1 0.99        | 0.99 0.99 0.95 0.91 0.51 1                  | 0.660034013 1 0.94 0.93                      |
| 14  | 030074011 055 1 093 099 099 094 1 097 097 089 099 1                                                                                                | 0.97 0.97 0.93 0.91 0.72 0.6                           | 0.94 0.91 0.95 0.98 0.99 0.99                      | 1 0.97 1 1 1 0.99              | 1 1 0.97 0.91 0.5 0.93                      | 0650.0490.54 1 0.97 0.97                     |
| 15  | 00140.0880.096.045 0.5 0.33 0.99 0.98 1 1 0.96 1 1 0.96 0.97                                                                                       | 1 0.99 0.68 0.97 0.86 0.63                             | 1 0.97 0.99 0.73 0.98 0.98                         | 1 0.99 0.53 1 0.97 0.99        | 1 0.97 0.98 0.88 0.55 1                     | 0.64 0.42 0.9 0.98 0.99 0.96                 |
| 16  | 0.12 0.12 0.31 0.41 0.96 0.42 1 0.98 1 1 0.99 1 1 0.95 0.97                                                                                        | 0.99 1 0.63 0.86 0.91 0.84                             | 1 0.99 1 0.79 0.99 1                               | 1 1 0.55 0.99 0.99 0.99        | 1 0.99 0.99 0.88 0.49 1                     | 0.03 0.51 0.71 1 1 0.99                      |
| 17  | 0.0059.0750.17 0.79 0.41 0.0 0.99 0.93 0.86 0.99 0.44 0.83 0.85 0.97 0.93                                                                          | 0.68 0.65 1 0.89 0.77 0.96                             | 0.99 0.54 0.89 0.87 0.59 0.62                      | 0.91 0.94 0.82 0.99 0.58 0.9   | 0.9 0.55 0.61 0.92 0.19 0.99                | 0.7 <mark>0.0240.46</mark> 0.68 0.83 0.48    |
| 18  | 20530.15 0.22 <mark>0.85 0.91 0.89</mark> 0.33 0.6 0.79 0.43 0.31 0.23 0.7 0.9 0.91                                                                | 0.97 0.86 0.89 1 0.79 0.9                              | 0.87 0.26 0.15 0.96 0.78 0.8                       | 05 078 09 085 029 072          | 0.660.00360.66 0.85 0.57 0.57               | 076 0.31 0.66 0.2 0.35 0.25                  |
| 19  | 021 024 022 052 052 052 062 <mark>087</mark> 071 075 038 066 056 068 077 072                                                                       | 0.56 0.91 0.77 0.79 1 0.58                             | 0.87 0.78 0.62 0.74 0.82 0.88                      | 0.85 0.89 0.67 0.73 0.91 0.83  | 0.9 0.55 0.88 0.8 0.71 0.89                 | 0.73 0.67 0.8 0.63 0.65 0.67                 |
| 8   | 044 0.0820 18 0.50 0.78 0.77 0.34 0.97 0.41 0.52 0.2 0.260 0.24 0.7 0.6                                                                            | 0.63 0.84 0.96 0.9 0.56 1                              | 025-02-007( <mark>097</mark> 004 <mark> 082</mark> | 0.52 0.74 0.98 147 0.02 0.35   | 0 35 -0 34 <mark>0 72</mark> 0 18 0 23 -0 3 | 8 <mark>0 160 031 0.42</mark> 0 34 0 54 0 35 |
| 21  | 012-0.0130.036 0.92 0.96 0.79 1 0.95 1 1 1 1 0.99 0.98 0.94                                                                                        | 1 1 0.99 0.87 0.87 0.25                                | 1 1 1 0.99 1 0.98                                  | 1 0.99 0.59 1 0.94 0.92        | 1 1 1 0.89 0.94 0.83                        | 3 <mark>061</mark> 0.94 0.95 1 1 1           |
| 8   | 0.11 0.0220.051 0.92 061 0.67 1 0.93 0.99 1 1 1 1 0.99 0.91                                                                                        | 0.97 0.99 <mark>0 54 0 26 0 78</mark> -0.2             | 1 1 0.99 0.65 1 0.95                               | 1 0.99 0.43 1 0.91 0.85        | 1 1 1 0.89 0.75 0.78                        | 8 061 0.95 0.8 1 1 1                         |
| 8   | 0.0280.13-0.11 0.9 0.97 0.8 1 0.97 1 1 1 1 0.99 0.99 0.95                                                                                          | 0.99 1 0.89 0.15 0.02 0.07                             | 1 0.99 1 0.75 1 0.98                               | 1 0.98 0.47 0.99 0.95 0.93     | 1 1 0.99 0.89 0.52 0.83                     | 0.0 0.68 0.49 1 1 1                          |
| 54  | 032 016 012 095 086 076 077 079 098 099 079 099 098 098 098                                                                                        | 373 079 087 096 074 097                                | 099 065 075 1 067 075                              | 0.78 0.84 0.92 0.99 0.99 0.72  | 076 0.77 0.7 0.94 0.71 0.98                 | 0.75 0.67 0.77 0.76 0.78 0.78                |
| 8   | 0.17 <sup>°</sup> 0.19 <sup>°</sup> 0.21 <sup>°</sup> 0.96 <sup>°</sup> 0.43 <sup>°</sup> 0.33 <sup>°</sup> 1 1 1 1 1 1 1 1 0.99 <sup>°</sup> 0.99 | 198 0.99 <mark>0.59</mark> 0.78 0.82 <mark>0.04</mark> | 1 1 1 0.67 1 0.99                                  | 1 0.99 0.46 1 0.99 0.99        | 1 1 1 09 0.78 1                             | 0.62 0.91 0.93 1 1 1                         |
| 8   | 0.14, 023, 023, 044, 089, 083, 0.99, 0.99, 0.98, 1, 0.99, 0.99, 0.94, 0.96, 0.99                                                                   | 0.98 1 0.62 0.8 0.85 0.82                              | 0.95 0.95 0.98 0.75 0.99 1                         | 1 1 0.50 0.99 0.99 0.98        | 1 0.99 0.99 0.9 0.69 0.94                   | 0.55 0.31 0.82 0.99 0.99 0.99                |
| 27  | 023 026 04 097 099 09 1 1 1 1 1 1 1 1 1                                                                                                            | 1 1 0.91 0.5 0.88 0.52                                 | 1 1 1 0.78 1 1                                     | 1 0.99 0.52 0.99 1 0.99        | 1 1 1 0.91 0.57 1                           | 0.63 0.99 0.66 1 1 1                         |
| 8   | 0.35 0.23 0.39 0.93 1 0.85 0.99 1 1 0.99 0.99 0.99 0.99 0.99 0.97                                                                                  | 0.99 1 0.94 0.78 0.89 0.74                             | 0.99 0.99 0.98 0.84 0.99 1                         | 0.99 1 0.62 0.99 1 0.99        | 0.99 0.99 0.99 0.9 0.68 1                   | 0.67 0.87 0.81 0.99 0.99 0.99                |
| 8   | 0.79 0.26 0.95 0.95 0.91 0.76 0.9 1 0.9 0.91 0.9 0.9 0.89 0.91 1                                                                                   | 53 0.55 0.82 0.9 0.57 0.98                             | 0.89 0.43 0.47 0.92 0.48 0.58                      | 0.52 0.62 1 0.89 0.99 0.51     | 046 0.96 0.54 0.86 0.31 0.95                | 5 0.66 0.41 0.45 0.96 0.89 0.89              |
| 8   | 0.17 0.16 0.17 0.76 0.99 0.74 0.99 1 1 1 1 1 0.99 0.95 1                                                                                           | 1 0.99 0.99 0.85 0.73 0.47                             | 1 1 0.99 0.99 1 0.99                               | 0.99 0.99 0.89 1 1 1           | 0.99 1 1 0.91 0.77 1                        | 068 0.88 0.87 1 1 0.99                       |
|     | 037 0054 02 095 1 095 099 099 094 1 099 1 0.59 1 1                                                                                                 | 0.97 0.99 0.58 0.29 0.91 0.02                          | 0.94 0.91 0.95 0.99 0.99 0.99                      | 1 1 0.99 1 1 1                 | 1 1 1 093 081 0.97                          | 0.68 0.92 1 1 0.99                           |
| 2   | 0 0140 0700 047 0 96 0 66 0.9 0.99 0.99 0.92 0.99 0.99 0.99 0.86 0.99 0.99                                                                         | 0.99 0.99 0.9 0.72 0.83 0.35                           | 0.92 0.88 0.93 0.72 0.99 0.98                      | 0.99 0.99 0.51 1 1 1           | 0.99 0.99 1 0.92 0.66 0.99                  | 0 69 001 0.86 0.99 0.99 0.99                 |
| 0   | 014 00260 11 0 97 0 99 0 82 1 1 1 1 1 1 1 0 99 1                                                                                                   | 1 1 09 066 09 035                                      | 1 1 1 076 1 1                                      | 1 0.99 046 0.99 1 0.99         | 1 1 1 09 084 1                              | 062 089 095 1 1 1                            |
| 7   | 083 018 075 099 035 025 1 084 1 1 1 1 1 099 1                                                                                                      | 0.97 0.99 0.559 003 0.55 0.34                          | 1 1 1 077 1 099                                    | 1 099 090 1 1 099              | 1 1 099 089 030 1                           | 061 084 052 1 1 1                            |
| 3   |                                                                                                                                                    | 098 099 0 0 066 088 072                                | 1 1 099 07 1 099                                   | 1 099 055 1 1 1                | 1 099 1 089 067 1                           | 067 081 085 099 1 1                          |
| 3   | 017 00770 15 091 097 092 089 089 089 089 089 089 089 089 089 081 081                                                                               | 085 085 092 085 08 011                                 | 0.89 0.89 0.89 0.94 0.9 0.9                        | 0.91 0.9 0.00 0.91 0.93 0.93   | 09 059 059 1 051 00                         | 091 071 081 089 09 080                       |
| × × |                                                                                                                                                    | 015 010 010 010 010 010                                | 004 075 052 074 07 09                              |                                |                                             | 087 076 093                                  |
| 33  | 074 076 072 079 079 079 079 079 079 079 079 059 059 059 059 059 059 059 059 059 05                                                                 | 0.000 0.00 0.000 0.000 0.000                           | 054 075 055 071 078 0.69                           | 000001077 081 066              | 004 005 007 081 1 09                        | 001 010 035 04 00 07                         |
| 8   | 0.74 0.96 0.97 0.96 0.97 1 0.95 0.83 1 1 1 0.72 1 0.97                                                                                             | 1 1 0.99 0.57 0.89 0.38                                | 083 078 083 098 1 094                              | 1 1 095 1 097 099              | 1 1 1 091 091 1                             | 077 036 1 1 1                                |
| 8   | 01300-5011 074 093 073 059 061 089 058 059 057 0.65 0.66 0.63                                                                                      | 004 0105 0.7 0.76 0.73 0.16                            | 061 061 06 075062 065                              | 0.67 0.66 0.68 0.68 0.69       | 062 001 067 091 057 06                      | 1 0/2 086 06 061 063                         |
| 40  | 0.02 0.09 0.370 046 0029 051 0.83 0 28 0.21 0.17 0.96 0.83 0.76 0 0.340 041                                                                        | 042 051-0.024031 0670.031                              | 0.94 0.95 0.65 0.67 0.91 0.31                      | 0.99 0.87 0.41 0.88 0.64 0.61  | 0.59 0.84 0.81 0.71 0.76 0.71               | 072 1 071 09 091 080                         |
| 41  | 0.0960.17 0.14 0.47 0.51 0.74 0.03 0.36 0.74 0.03 0.88 0.57 0.86 0.54                                                                              | 09 071 046 056 08 042                                  | 0.95 0.8 0.49 0.77 0.93 0.82                       | 0.66 0.81 0.45 0.87 0.92 0.86  | 0.95 0.52 0.85 0.81 0.93 0.86               | 0.86 0.71 1 0.49 0.71 0.74                   |
| 42  | 0.94 <mark>0.22</mark> 0.88 0.99 <mark>0.35 0.13</mark> 1 0.84 1 1 1 1 1 1 1                                                                       | 098 1 068 02 0.5 0.34                                  | 1 1 1 0.76 1 0.99                                  | 1 0.99 0.96 1 1 0.99           | 1 1 0.99 0.89 0.4 1                         | 0.6 0.9 0.49 1 1 1                           |
| 43  | 0.0850.0340.085.03.035.016 1 0.97 1 1 1 1 1 0.94 0.97                                                                                              | 0.99 1 0.83 0.38 0.65 0.54                             | 1 1 1 0.78 1 0.99                                  | 1 0.99 0.89 1 1 0.99           | 1 1 1 0.9 0.6 1                             | 061 0.91 0.71 1 1 1                          |
| 44  | 0.18 0.120.005 0.34 0.39 0.17 1 0.84 1 1 1 1 1 0.93 0.97                                                                                           | 0.96 0.99 0.48 0.25 0.67 0.35                          | 1 1 1 0.78 1 0.99                                  | 1 0.99 0.89 0.99 0.99 0.99     | 1 1 1 0.89 0.7 1                            | 0.63 0.89 0.74 1 1 1                         |
|     | 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14                                                                                                                 | 15 16 17 18 19 20                                      | 21 22 23 24 25 26                                  | 27 28 29 30 31 32              | 33 34 35 36 37 38                           | 39 40 41 42 43 44                            |
|     |                                                                                                                                                    |                                                        |                                                    |                                |                                             |                                              |
|     |                                                                                                                                                    |                                                        |                                                    |                                |                                             |                                              |
|     | -0.4                                                                                                                                               | 00                                                     | 02                                                 | -0.4                           | -0.6                                        | - 10                                         |
|     | 100 m 100                                                                                                                                          |                                                        |                                                    |                                |                                             |                                              |

Figure 5.4 Mass spectra rendered as a correlation matrix of the forty-five spectra representing the *Swietenia spp.* 

## 5.3.2. Creation of a Prediction Model

In order to determine whether there were subtle, non-visually apparent features in the DART-HRMS headspace chemical profiles that could be used to differentiate between the species, the mass spectral data were subjected to multivariate statistical analysis. The data for all replicates for the five individuals representing all three timber species were aligned along common m/zvalues using a relative abundance cutoff of 0.3% and a bin width of +20 mmu, and imported into Python to develop an Extreme Gradient Boosting classification model for the identification of Swietenia spp. The data were standardized by removing the mean from the relative intensities and scaling to unit variance. The data were then separated into a training and a test set. The training set was comprised of 80% of the data and was subjected to Extreme Gradient Boosting using the XGBoost scikit-learn library to create the prediction model. The remaining 20% of the data were used to test how well the model performed in discriminating between classes. Extreme Gradient Boosting is a supervised machine learning technique that creates decision tree model ensembles, where trees are added one at a time with each subsequent tree learning from the past model's errors, in order to determine the best node split for higher accuracy. The hyperparameters (presented in the methods section) were tuned to find the optimum parameter values that enabled the building of an accurate model. A confusion matrix illustrating the prediction capabilities of the resulting model for the test set samples is shown in Table 5.2. The numerical entries along the diagonal represent correct species predictions, while off diagonal entries greater than zero show

| <b>Table 5.2</b> Confusion matrix showing the prediction results ofthe nine samples in the test set. |                                       |   |   |  |  |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------------------|---|---|--|--|--|--|
| Species                                                                                              | S. macrophylla S. mahogoni S. humilis |   |   |  |  |  |  |
| S. macrophylla                                                                                       | 3                                     | 0 | 0 |  |  |  |  |
| S. mahagoni                                                                                          | 0                                     | 3 | 0 |  |  |  |  |
| S. humilis                                                                                           | 1 0 2                                 |   |   |  |  |  |  |

misclassifications. The results show that all three of the *S*. *macrophylla* samples, as well as all three of the *S*. *mahagoni*  **Table 5.3** The precision, recall, F1score, and accuracy of the ExtremeGradient Boosting model were 92%,89%, 89%, and 89%, respectively.

| <b>Classification Merits</b> |     |  |  |  |  |
|------------------------------|-----|--|--|--|--|
| Precision                    | 92% |  |  |  |  |
| Recall                       | 89% |  |  |  |  |
| F1 Score                     | 89% |  |  |  |  |
| Accuracy                     | 89% |  |  |  |  |

samples were correctly classified, and two of the *S*. *humilis* samples were correctly classified. However, one *S*. *humilis* sample was misclassified as *S*. *macrophylla*. The classification merits of the model are displayed in Table 5.3. They show the precision, recall, F1 score, and accuracy to be 92%, 89%, 89%, and 89%, respectively. The results indicate that within the headspace molecular

signatures of *Swietenia spp.* are the chemical attributes that enable the species to be identified with an accuracy of 89%, using an Extreme Gradient Boosting Model. This approach yields results that improved upon those reported by Deklerck et al.<sup>54</sup> using a random forest model (82% accuracy) when differentiating between multiple species, including those of the *Swietenia* genus. Moreover, the method described here is distinguished from earlier reported approaches in that it utilizes headspace instead of direct analysis of the wood samples themselves.

#### 5.3.3. Feature Importance Determination

An implication of the finding that the DART-HRMS-derived headspace chemical profiles of *Swietenia spp*. exhibit chemical distinctions that enabled the Extreme Gradient Boosting model to predict their identities, is that there may be chemical compounds, the presence or absence of which enable the model to accomplish species discrimination. Thus, a feature importance investigation was conducted to ascertain which masses were most impactful in enabling the model to differentiate the species from one another. The importance of a given feature (i.e., m/z value) in the development of a prediction model was determined, in this case, by its F score. The F score is a measurement of the discriminative power of each feature. The equation used is F = F1/F2, where F1 is the variability between groups and F2 is the variability within each group. This equation enables determination of relative feature importance because the higher the F score of a given feature, the more important that feature is for discriminating between groups. The top twenty-eight most important features (i.e., m/z values) are listed in Figure 5.5 where each feature is shown on the y-axis, and its corresponding F score is shown on the x-axis. For example, the m/z value 61.0925 is the most important feature with an F score of 18.0, while m/z 61.1330, 113.1200, 117.2080, 128.1405, 146.1173, and 294.2385 all with an F score of 1.0, were the least heavily weighted of the top twenty-eight m/z values. Efforts are ongoing to determine what these significant features might represent, utilizing techniques such as GC- and LC-MS, as revelation of the identities of these masses will facilitate determination of whether any of them may serve as markers for *Swietenia* spp.



Figure 5.5 The 28 most important features (i.e., the m/z values presented on the y-axis) for facilitating discrimination between species, arranged in order of decreasing F score (presented on the x-axis).

#### 5.4. Conclusion

This study presents the findings of an analysis of the chemical headspace signatures of the three representative species of *Swietenia*, namely: *S. humilis*, *S. mahagoni*, and *S. macrophylla*.

When the chemicals in their headspace were concentrated using SPME, analyzed by DART-HRMS, and the resulting data subjected to multivariate statistical analysis, interspecies similarities and intraspecies differences were observed. These were exploited using Extreme Gradient Boosting to generate a species prediction model that seemingly exhibited an accuracy of 89%, based on headspace chemical profiles alone. As these results are preliminary, future work will further assess the validity of the results by examining what features (i.e., m/z values) are in the data that contribute to species differentiation, and whether their chemical identities can be determined.

#### **OVERARCHING CONCLUSIONS**

In the ever-evolving landscape of global crime, forensic science plays a crucial role in combating emerging challenges, ranging from the production and distribution of psychoactive substances to the environmental devastation caused by illegal logging. The work presented here shows the development of innovative methodologies aimed at rapidly detecting, identifying, and classifying these substances, thus ensuring timely intervention and the development of robust regulatory measures to safeguard public health and environmental sustainability.

The emergence of new psychoactive substances (NPS) presents a formidable challenge to forensic laboratories worldwide. These chemically diverse compounds, marketed as "legal highs," evade regulation and pose significant public health risks. Additionally, psychoactive plants, such as Kava and Kratom, further complicate forensic analysis due to their diverse chemical compositions and visual resemblance to benign materials. The lack of standardized protocols for detecting and characterizing their psychoactive constituents underscores the need for innovative analytical strategies. Furthermore, illegal logging poses significant environmental and economic challenges worldwide. Robust analytical techniques are needed to accurately classify timber species, aiding in the enforcement of forestry regulations.

Through the integration of analytical techniques such as direct analysis in real-time highresolution mass spectrometry (DART-HRMS) and multivariate statistical analysis, this research: (1) addresses the complexities of NPS identification and classification, facilitating more efficient regulatory enforcement; (2) demonstrates the development of a database capable of reliably identifying plants and their psychoactive constituents, thus ensuring public safety and regulatory compliance; and (3) enhances the capabilities of forensic laboratories in combating illegal logging activities, ultimately contributing to the preservation of global forests and the sustainability of the timber trade. Therefore, this dissertation highlights the imperative of addressing the multifaceted challenges posed by NPSs, psychoactive plants, and environmental crimes. By leveraging DART-HRMS and advanced statistical methods, forensic science practitioners can adapt to the dynamic nature of organized crime, ensuring a safer and more sustainable future for society.

## REFERENCES

- 1. United Nations Office on Drugs and Crime. *The Challenge of New Psychoactive Substances*.
- 2. Nelson, M. E.; Bryant, S. M.; Aks, S. E. Emerging Drugs of Abuse. *Emergency Medicine Clinics of North America* **2014**, *32* (1), 1–28.
- Baumann, M. H.; Solis, E.; Watterson, L. R.; Marusich, J. A.; Fantegrossi, W. E.; Wiley, J. L. Baths Salts, Spice, and Related Designer Drugs: The Science Behind the Headlines. *The Journal of Neuroscience* 2014, *34* (46), 15150–15158.
- 4. Rosenbaum, C. D.; Carreiro, S. P.; Babu, K. M. Here Today, Gone Tomorrow...and Back Again? A Review of Herbal Marijuana Alternatives (K2, Spice), Synthetic Cathinones (Bath Salts), Kratom, Salvia Divinorum, Methoxetamine, and Piperazines. *Journal of Medical Toxicology* **2012**, *8* (1), 15–32.
- Seely, K. A.; Patton, A. L.; Moran, C. L.; Womack, M. L.; Prather, P. L.; Fantegrossi, W. E.; Radominska-Pandya, A.; Endres, G. W.; Channell, K. B.; Smith, N. H.; McCain, K. R.; James, L. P.; Moran, J. H. Forensic Investigation of K2, Spice, and "Bath Salt" Commercial Preparations: A Three-Year Study of New Designer Drug Products Containing Synthetic Cannabinoid, Stimulant, and Hallucinogenic Compounds. *Forensic Science International* 2013, *233* (1–3), 416–422.
- Shanks, K. G.; Dahn, T.; Behonick, G.; Terrell, A. Analysis of First and Second Generation Legal Highs for Synthetic Cannabinoids and Synthetic Stimulants by Ultra-Performance Liquid Chromatography and Time of Flight Mass Spectrometry. *Journal of Analytical Toxicology* 2012, *36* (6), 360–371.
- Barceló, B.; Pichini, S.; López-Corominas, V.; Gomila, I.; Yates, C.; Busardò, F. P.; Pellegrini, M. Acute Intoxication Caused by Synthetic Cannabinoids 5F-ADB and MMB-2201: A Case Series. *Forensic Science International* 2017, 273, e10–e14.
- 8. Dresen, S.; Ferreirós, N.; Pütz, M.; Westphal, F.; Zimmermann, R.; Auwärter, V. Monitoring of Herbal Mixtures Potentially Containing Synthetic Cannabinoids as Psychoactive Compounds. *Journal of Mass Spectrometry* **2010**, *45* (10), 1186–1194.
- 9. Vardakou, I.; Pistos, C.; Spiliopoulou, Ch. Spice Drugs as a New Trend: Mode of Action, Identification and Legislation. *Toxicology Letters* **2010**, *197* (3), 157–162.
- Schneir, A.; Metushi, I. G.; Sloane, C.; Benaron, D. J.; Fitzgerald, R. L. Near Death from a Novel Synthetic Opioid Labeled U-47700: Emergence of a New Opioid Class. *Clinical Toxicology* 2017, 55 (1), 51–54.
- 11. Ventura, M. I.; Beyramysoltan, S.; Musah, R. A. Revealing the Presence of Tryptamine New Psychoactive Substances Using Fused "Neutral Loss" Spectra Derived from DART High-Resolution Mass Spectra. *Talanta* **2022**, *246*, 123417.

- 12. U.S. Department of Justice. Synthetic Cathinones (Bath Salts): An Emerging Domestic Threat. **2011**.
- 13. Lee, D.; Chronister, C. W.; Hoyer, J.; Goldberger, B. A. Ethylone-Related Deaths: Toxicological Findings. *Journal of Analytical Toxicology* **2015**, *39* (7), 567–571.
- 14. Prosser, J. M.; Nelson, L. S. The Toxicology of Bath Salts: A Review of Synthetic Cathinones. *Journal of Medical Toxicology* **2012**, *8* (1), 33–42.
- 15. White, C. M. Mephedrone and 3,4-Methylenedioxypyrovalerone (MDPV): Synthetic Cathinones With Serious Health Implications. *The Journal of Clinical Pharmacology* **2016**, *56* (11), 1319–1325.
- 16. Wojcieszak, J.; Andrzejczak, D.; Woldan-Tambor, A.; Zawilska, J. B. Cytotoxic Activity of Pyrovalerone Derivatives, an Emerging Group of Psychostimulant Designer Cathinones. *Neurotoxicity Research* **2016**, *30* (2), 239–250.
- Woloshchuk, C. J.; Nelson, K. H.; Rice, K. C.; Riley, A. L. Effects of 3,4-Methylenedioxypyrovalerone (MDPV) Pre-Exposure on the Aversive Effects of MDPV, Cocaine and Lithium Chloride: Implications for Abuse Vulnerability. *Drug and Alcohol Dependence* 2016, 167, 121–127.
- 18. Wright, T. H.; Harris, C. Twenty-One Cases Involving Alpha-Pyrrolidinovalerophenone (α-PVP). *Journal of Analytical Toxicology* **2016**, *40* (5), 396–402.
- Lusthof, K. J.; Oosting, R.; Maes, A.; Verschraagen, M.; Dijkhuizen, A.; Sprong, A. G. A. A Case of Extreme Agitation and Death after the Use of Mephedrone in The Netherlands. *Forensic Science International* 2011, 206 (1–3), e93–e95.
- 20. Poyatos, L.; Torres, A.; Papaseit, E.; Pérez-Mañá, C.; Hladun, O.; Núñez-Montero, M.; de la Rosa, G.; Torrens, M.; Fuster, D.; Muga, R.; Farré, M. Abuse Potential of Cathinones in Humans: A Systematic Review. *Journal of Clinical Medicine* **2022**, *11* (4), 1004.
- 21. Baumann, M. H.; Walters, H. M.; Niello, M.; Sitte, H. H. Neuropharmacology of Synthetic Cathinones; 2018; pp 113–142.
- 22. Jovel, A.; Felthous, A.; Bhattacharyya, A. Delirium Due to Intoxication from the Novel Synthetic Tryptamine 5-MeO- DALT. *Journal of Forensic Sciences* **2014**, *59* (3), 844–846.
- 23. Shimizu, E.; Watanabe, H.; Kojima, T.; Hagiwara, H.; Fujisaki, M.; Miyatake, R.; Hashimoto, K.; Iyo, M. Combined Intoxication with Methylone and 5-MeO-MIPT. *Progress in Neuro-Psychopharmacology and Biological Psychiatry* **2007**, *31* (1), 288–291.
- Sasaki, C.; Saito, T.; Shinozuka, T.; Irie, W.; Murakami, C.; Maeda, K.; Nakamaru, N.; Oishi, M.; Nakamura, S.; Kurihara, K. A Case of Death Caused by Abuse of a Synthetic Cannabinoid N-1-Naphthalenyl-1-Pentyl-1H-Indole-3-Carboxamide. *Forensic Toxicology* 2015, 33 (1), 165–169.

- 25. Adams, A. J.; Banister, S. D.; Irizarry, L.; Trecki, J.; Schwartz, M.; Gerona, R. "Zombie" Outbreak Caused by the Synthetic Cannabinoid AMB-FUBINACA in New York. *New England Journal of Medicine* **2017**, *376* (3), 235–242.
- 26. Alhassan, A.; Prahad, S. R.; Burk, B. G.; Fargason, R. E.; Birur, B. New-Onset Prolonged Psychosis Following Synthetic Cannabinoid Use in an Older Patient: A Case Report. *Psychopharmacology Bulletin* **2024**, *54* (1), 33–39.
- 27. Mohr, A. L. A.; Friscia, M.; Papsun, D.; Kacinko, S. L.; Buzby, D.; Logan, B. K. Analysis of Novel Synthetic Opioids U-47700, U-50488 and Furanyl Fentanyl by LC–MS/MS in Postmortem Casework. *Journal of Analytical Toxicology* **2016**.
- 28. Schuller, J. L.; Krantz, M. J. Synthetic Opioids and Arrhythmia Risk: A New Paradigm? *Expert Opinion on Pharmacotherapy* **2012**, *13* (13), 1825–1827.
- Taoussi, O.; Berardinelli, D.; Zaami, S.; Tavoletta, F.; Basile, G.; Kronstrand, R.; Auwärter, V.; Busardò, F. P.; Carlier, J. Human Metabolism of Four Synthetic Benzimidazole Opioids: Isotonitazene, Metonitazene, Etodesnitazene, and Metodesnitazene. *Archives of Toxicology* 2024.
- 30. Christian Rätsch. The Encyclopedia of Psychoactive Plants: Ethnopharmacology and Its Applications; Simon and Schuster, 2005.
- Beyramysoltan, S.; Chambers, M. I.; Osborne, A. M.; Ventura, M. I.; Musah, R. A. Introducing "DoPP": A Graphical User-Friendly Application for the Rapid Species Identification of Psychoactive Plant Materials and Quantification of Psychoactive Small Molecules Using DART-MS Data. *Analytical Chemistry* 2022, 94 (48), 16570–16578.
- 32. U.S. Department of Justice. KHAT Factsheet. **1992**.
- 33. U.S. Department of Justice. List of Controlled Substances. 2022.
- 34. Deklerck, V. Timber Origin Verification Using Mass Spectrometry: Challenges, Opportunities, and Way Forward. *Forensic Science International: Animals and Environments* **2023**, *3*, 100057.
- 35. He, T.; Marco, J.; Soares, R.; Yin, Y.; Wiedenhoeft, A. C. Machine Learning Models with Quantitative Wood Anatomy Data Can Discriminate between *Swietenia macrophylla* and *Swietenia mahagoni*. *Forests* **2020**, *11* (1).
- 36. Nellemann, C.; UNEP. Green Carbon, Black Trade: Illegal Logging, Tax Fraud and Laundering in the World's Tropical Forests. A Rapid Response Assessment.
- 37. Convention on International Trade in Endangered Species of Wild Fauna and Flora Appendices I, II and III. https://cites.org/eng/app/appendices.php.
- 38. United Nations Office on Drugs and Crime. *Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Material.*
- 39. Yuan, C.; Chen, D.; Wang, S. Drug Confirmation by Mass Spectrometry: Identification Criteria and Complicating Factors. *Clinica Chimica Acta* **2015**, *438*, 119–125.

- Bijlsma, L.; Miserez, B.; Ibáñez, M.; Vicent, C.; Guillamón, E.; Ramsey, J.; Hernández, F. Identification and Characterization of a Novel Cathinone Derivative 1-(2,3-Dihydro-1H-Inden-5-Yl)-2-Phenyl-2-(Pyrrolidin-1-Yl)-Ethanone Seized by Customs in Jersey. *Forensic Toxicology* 2016, 34 (1), 144–150.
- Jankovics, P.; Váradi, A.; Tölgyesi, L.; Lohner, S.; Németh-Palotás, J.; Kőszegi-Szalai, H. Identification and Characterization of the New Designer Drug 4'-Methylethcathinone (4-MEC) and Elaboration of a Novel Liquid Chromatography–Tandem Mass Spectrometry (LC–MS/MS) Screening Method for Seven Different Methcathinone Analogs. *Forensic Science International* 2011, 210 (1–3), 213–220.
- 42. Namera, A.; Kawamura, M.; Nakamoto, A.; Saito, T.; Nagao, M. Comprehensive Review of the Detection Methods for Synthetic Cannabinoids and Cathinones. *Forensic Toxicology* **2015**, *33* (2), 175–194.
- 43. Westphal, F.; Junge, T.; Klein, B.; Fritschi, G.; Girreser, U. Spectroscopic Characterization of 3,4-Methylenedioxypyrrolidinobutyrophenone: A New Designer Drug with α-Pyrrolidinophenone Structure. *Forensic Science International* **2011**, *209* (1–3), 126–132.
- Westphal, F.; Junge, T.; Rösner, P.; Fritschi, G.; Klein, B.; Girreser, U. Mass Spectral and NMR Spectral Data of Two New Designer Drugs with an α-Aminophenone Structure: 4'- Methyl-α-Pyrrolidinohexanophenone and 4'-Methyl-α-Pyrrolidinobutyrophenone. *Forensic Science International* 2007, *169* (1), 32–42.
- Fakayode, S. O.; Brady, P. N.; Grant, C.; Fernand Narcisse, V.; Rosado Flores, P.; Lisse, C. H.; Bwambok, D. K. Electrochemical Sensors, Biosensors, and Optical Sensors for the Detection of Opioids and Their Analogs: Pharmaceutical, Clinical, and Forensic Applications. *Chemosensors* 2024, *12* (4), 58.
- 46. United Nations Office on Drugs and Crime. Recommended Methods for the Identification and Analysis of Synthetic Cannabinoid Receptor Agonists in Seized Materials. **2013**.
- 47. Kerrigan, S.; Savage, M.; Cavazos, C.; Bella, P. Thermal Degradation of Synthetic Cathinones: Implications for Forensic Toxicology. *Journal of Analytical Toxicology* **2015**, bkv099.
- Fowble, K. L.; Shepard, J. R. E.; Musah, R. A. Identification and Classification of Cathinone Unknowns by Statistical Analysis Processing of Direct Analysis in Real Time-High Resolution Mass Spectrometry-Derived "Neutral Loss" Spectra. *Talanta* 2018, *179*, 546–553.
- 49. U.S. Department of Justice. Improved Detection of Synthetic Cathinones in Forensic Toxicology Samples: Thermal Degradation and Analytical Considerations. **2015**.
- 50. Majchrzak, M.; Rojkiewicz, M.; Celiński, R.; Kuś, P.; Sajewicz, M. Identification and Characterization of New Designer Drug 4-Fluoro-PV9 and α-PHP in the Seized Materials. *Forensic Toxicology* **2016**, *34* (1), 115–124.

- 51. Shevyrin, V.; Melkozerov, V.; Nevero, A.; Eltsov, O.; Shafran, Y. Analytical Characterization of Some Synthetic Cannabinoids, Derivatives of Indole-3-Carboxylic Acid. *Forensic Science International* **2013**, *232* (1–3), 1–10.
- 52. Uchiyama, N.; Kawamura, M.; Kikura-Hanajiri, R.; Goda, Y. URB-754: A New Class of Designer Drug and 12 Synthetic Cannabinoids Detected in Illegal Products. *Forensic Science International* **2013**, 227 (1–3), 21–32.
- 53. Park, G.; Lee, Y. G.; Yoon, Y. S.; Ahn, J. Y.; Lee, J. W.; Jang, Y. P. Machine Learning-Based Species Classification Methods Using DART-TOF-MS Data for Five Coniferous Wood Species. *Forests* **2022**, *13* (10).
- 54. Deklerck, V.; Mortier, T.; Goeders, N.; Cody, R. B.; Waegeman, W.; Espinoza, E.; Van Acker, J.; Van den Bulcke, J.; Beeckman, H. A Protocol for Automated Timber Species Identification Using Metabolome Profiling. *Wood Science and Technology* **2019**, *53* (4), 953–965.
- 55. Pan, X.; Qiu, J.; Yang, Z. Identification of Five Similar Cinnamomum Wood Species Using Portable Near-Infrared Spectroscopy. *Spectroscopy* **2022**, 16-23,49.
- 56. Chen, Z.; Xue, X.; Wu, H.; Gao, H.; Wang, G.; Ni, G.; Cao, T. Visible/near-Infrared Hyperspectral Imaging Combined with Machine Learning for Identification of Ten *Dalbergia* species. *Frontiers in Plant Science* **2024**, *15*.
- 57. Pan, X.; Li, K.; Chen, Z.; Yang, Z. Identifying Wood Based on Near-Infrared Spectra and Four Gray-Level Co-Occurrence Matrix Texture Features. *Forests* **2021**, *12* (11), 1527.
- Cody, R. B.; Laramée, J. A.; Durst, H. D. Versatile New Ion Source for the Analysis of Materials in Open Air under Ambient Conditions. *Analytical Chemistry* 2005, 77 (8), 2297– 2302.
- 59. Longo, C. M.; Musah, R. A. An Efficient Ambient Ionization Mass Spectrometric Approach to Detection and Quantification of the Mescaline Content of Commonly Abused Cacti from the *Echinopsis* Genus. *Journal of Forensic Sciences* **2020**, *65* (1), 61–66.
- 60. Chambers, M. I.; Garosi, B.; Musah, R. A. DART-MS Facilitated Quantification of Cannabinoids in Complex Edible Matrices—Focus on Chocolates and Gelatin-Based Fruit Candies. *ACS Omega* **2023**, 8 (16), 14459–14469.
- 61. Appley, M. G.; Beyramysoltan, S.; Musah, R. A. Random Forest Processing of Direct Analysis in Real-Time Mass Spectrometric Data Enables Species Identification of Psychoactive Plants from Their Headspace Chemical Signatures. *ACS Omega* **2019**, *4* (13), 15636–15644.
- 62. Appley, M. G.; Beyramysoltan, S.; Musah, R. A. Random Forest Processing of Direct Analysis in Real-Time Mass Spectrometric Data Enables Species Identification of Psychoactive Plants from Their Headspace Chemical Signatures. *ACS Omega* **2019**, *4* (13), 15636–15644.

- 63. Chambers, M. I.; Osborne, A. M.; Musah, R. A. Rapid Detection and Validated Quantification of Psychoactive Compounds in Complex Plant Matrices by Direct Analysis in Real Time-high Resolution Mass Spectrometry Application to "Kava" Psychoactive Pepper Products. *Rapid Communications in Mass Spectrometry* **2019**, *33* (24), 1915–1925.
- 64. Appley, M. G.; Chambers, M. I.; Musah, R. A. Quantification of Hordenine in a Complex Plant Matrix by Direct Analysis in Real Time–High-resolution Mass Spectrometry: Application to the "Plant of Concern" *Sceletium Tortuosum*. *Drug Testing and Analysis* **2022**, *14* (4), 604–612.
- Lesiak, A. D.; Cody, R. B.; Ubukata, M.; Musah, R. A. Direct Analysis in Real Time High Resolution Mass Spectrometry as a Tool for Rapid Characterization of Mind-Altering Plant Materials and Revelation of Supplement Adulteration – The Case of Kanna. *Forensic Science International* 2016, 260, 66–73.
- 66. Beyramysoltan, S.; Abdul-Rahman, N.-H.; Musah, R. A. Call It a "Nightshade"—A Hierarchical Classification Approach to Identification of Hallucinogenic *Solanaceae spp.* Using DART-HRMS-Derived Chemical Signatures. *Talanta* **2019**, *204*, 739–746.
- 67. Chambers, M. I.; Appley, M. G.; Longo, C. M.; Musah, R. A. Detection and Quantification of Psychoactive *N* , *N* -Dimethyltryptamine in Ayahuasca Brews by Ambient Ionization High-Resolution Mass Spectrometry. *ACS Omega* **2020**, *5* (44), 28547–28554.
- 68. Lesiak, A. D.; Musah, R. A.; Cody, R. B.; Domin, M. A.; Dane, A. J.; Shepard, J. R. Direct Analysis in Real Time Mass Spectrometry (DART-MS) of "Bath Salt" Cathinone Drug Mixtures. *Analyst* **2013**, *138* (12), 3424–3432.
- 69. Sisco, E.; Forbes, T. P. Forensic Applications of DART-MS: A Review of Recent Literature. *Forensic Chemistry* **2021**, *22*, 100294.
- 70. Moorthy, A. S.; Sisco, E. A New Library-Search Algorithm for Mixture Analysis Using DART-MS. *Journal of the American Society for Mass Spectrometry* **2021**, *32* (7), 1725–1734.
- 71. Sisco, E.; Appley, M. G.; Tennyson, S. S.; Moorthy, A. S. Qualitative Analysis of Real Drug Evidence Using DART-MS and the Inverted Library Search Algorithm. *Journal of the American Society for Mass Spectrometry* **2022**, *33* (9), 1784–1793.
- 72. Sisco, E.; Burns, A.; Schneider, E.; Miller, C. R.; Bobka, L. Comparing Two Seized Drug Workflows for the Analysis of Synthetic Cannabinoids, Cathinones, and Opioids. *Journal of Forensic Sciences* **2022**, *67* (2), 471–482.
- 73. Musah, R. A.; Cody, R. B.; Domin, M. A.; Lesiak, A. D.; Dane, A. J.; Shepard, J. R. E. DART–MS in-Source Collision Induced Dissociation and High Mass Accuracy for New Psychoactive Substance Determinations. *Forensic Science International* **2014**, *244*, 42–49.
- 74. Sisco, E.; Verkouteren, J.; Staymates, J.; Lawrence, J. Rapid Detection of Fentanyl, Fentanyl Analogues, and Opioids for on-Site or Laboratory Based Drug Seizure Screening

Using Thermal Desorption DART-MS and Ion Mobility Spectrometry. *Forensic Chemistry* **2017**, *4*, 108–115.

- 75. Lesiak, A. D.; Musah, R. A.; Cody, R. B.; Domin, M. A.; Dane, A. J.; Shepard, J. R. E. Direct Analysis in Real Time Mass Spectrometry (DART-MS) of "Bath Salt" Cathinone Drug Mixtures. *The Analyst* **2013**, *138* (12), 3424.
- 76. Abe, H.; Takei, C.; Sakakura, M.; Yajima, D.; Iwase, H. Comprehensive Drug Screening by Thermal Desorption and Pyrolysis Combined with Direct Analysis in Real Time-Mass Spectrometry (TDP/DART-MS); 2018; pp 115–124.
- 77. Lesiak, A. D.; Shepard, J. R. Recent Advances in Forensic Drug Analysis by DART-MS. *Bioanalysis* **2014**, *6* (6), 819–842.
- Peace, M. R.; Krakowiak, R. I.; Wolf, C. E.; Poklis, A.; Poklis, J. L. Identification of MDMB-FUBINACA in Commercially Available e-Liquid Formulations Sold for Use in Electronic Cigarettes. *Forensic Science International* 2017, 271, 92–97.
- Lesiak, A. D.; Cody, R. B.; Dane, A. J.; Musah, R. A. Rapid Detection by Direct Analysis in Real Time-Mass Spectrometry (DART-MS) of Psychoactive Plant Drugs of Abuse: The Case of *Mitragyna speciosa* Aka "Kratom." *Forensic Science International* 2014, 242, 210– 218.
- Nie, H.; Li, X.; Hua, Z.; Pan, W.; Bai, Y.; Fu, X. Rapid Screening and Determination of 11 New Psychoactive Substances by Direct Analysis in Real Time Mass Spectrometry and Liquid Chromatography/Quadrupole Time-of-flight Mass Spectrometry. *Rapid Communications in Mass Spectrometry* 2016, 30, 141–146.
- Gwak, S.; Almirall, J. R. Rapid Screening of 35 New Psychoactive Substances by Ion Mobility Spectrometry (IMS) and Direct Analysis in Real Time (DART) Coupled to Quadrupole Time-of-flight Mass Spectrometry (QTOF-MS). *Drug Testing and Analysis* 2015, 7 (10), 884–893.
- Musah, R. A.; Espinoza, E. O.; Cody, R. B.; Lesiak, A. D.; Christensen, E. D.; Moore, H. E.; Maleknia, S.; Drijfhout, F. P. A High Throughput Ambient Mass Spectrometric Approach to Species Identification and Classification from Chemical Fingerprint Signatures. *Scientific Reports* 2015, 5 (1), 11520.
- Deklerck, V.; Finch, K.; Gasson, P.; Van den Bulcke, J.; Van Acker, J.; Beeckman, H.; Espinoza, E. Comparison of Species Classification Models of Mass Spectrometry Data: Kernel Discriminant Analysis vs Random Forest; A Case Study of Afrormosia (*Pericopsis elata* (Harms) Meeuwen). *Rapid Communications in Mass Spectrometry* 2017, 31 (19), 1582–1588.
- Beyramysoltan, S.; Giffen, J. E.; Rosati, J. Y.; Musah, R. A. Direct Analysis in Real Time-Mass Spectrometry and Kohonen Artificial Neural Networks for Species Identification of Larva, Pupa and Adult Life Stages of Carrion Insects. *Analytical Chemistry* 2018, 90 (15), 9206–9217.
- 85. Beyramysoltan, S.; Ventura, M. I.; Rosati, J. Y.; Giffen-Lemieux, J. E.; Musah, R. A. Identification of the Species Constituents of Maggot Populations Feeding on Decomposing Remains—Facilitation of the Determination of Post Mortem Interval and Time Since Tissue Infestation through Application of Machine Learning and Direct Analysis in Real Time-Mass Spectrometry. *Analytical Chemistry* 2020, 92 (7), 5439–5446.
- 86. Lancaster, C.; Espinoza, E. Analysis of Select *Dalbergia* and Trade Timber Using Direct Analysis in Real Time and Time-of-flight Mass Spectrometry for CITES Enforcement. *Rapid Communications in Mass Spectrometry* **2012**, *26* (9), 1147–1156.
- 87. Lesiak, A. D.; Cody, R. B.; Dane, A. J.; Musah, R. A. Plant Seed Species Identification from Chemical Fingerprints: A High-Throughput Application of Direct Analysis in Real Time Mass Spectrometry. *Analytical Chemistry* **2015**, *87* (17), 8748–8757.
- 88. Lancaster, C.; Espinoza, E. Analysis of Select *Dalbergia* and Trade Timber Using Direct Analysis in Real Time and Time-of-Flight Mass Spectrometry for CITES Enforcement. *Rapid Communications in Mass Spectrometry* **2012**, *26* (9), 1147–1156.
- 89. McClure, P. J.; Chavarria, G. D.; Espinoza, E. Metabolic Chemotypes of CITES Protected *Dalbergia* Timbers from Africa, Madagascar, and Asia. *Rapid Communications in Mass Spectrometry* **2015**, *29* (9), 783–788.
- 90. Guerra-Diaz, P.; Gura, S.; Almirall, J. R. Dynamic Planar Solid Phase Microextraction–Ion Mobility Spectrometry for Rapid Field Air Sampling and Analysis of Illicit Drugs and Explosives. *Analytical Chemistry* **2010**, *82* (7), 2826–2835.
- 91. Custers, D.; Canfyn, M.; Courselle, P.; De Beer, J. O.; Apers, S.; Deconinck, E. Headspace– Gas Chromatographic Fingerprints to Discriminate and Classify Counterfeit Medicines. *Talanta* **2014**, *123*, 78–88.
- 92. de Fátima Alpendurada, M. Solid-Phase Microextraction: A Promising Technique for Sample Preparation in Environmental Analysis. *Journal of Chromatography A* **2000**, 889 (1–2), 3–14.
- 93. Gura, S.; Guerra-Diaz, P.; Lai, H.; Almirall, J. R. Enhancement in Sample Collection for the Detection of MDMA Using a Novel Planar SPME (PSPME) Device Coupled to Ion Mobility Spectrometry (IMS). *Drug Testing and Analysis* **2009**, *1* (7), 355–362.
- 94. Viana, M.; Postigo, C.; Querol, X.; Alastuey, A.; López de Alda, M. J.; Barceló, D.; Artíñano, B.; López-Mahia, P.; García Gacio, D.; Cots, N. Cocaine and Other Illicit Drugs in Airborne Particulates in Urban Environments: A Reflection of Social Conduct and Population Size. *Environmental Pollution* 2011, 159 (5), 1241–1247.
- 95. Cecinato, A.; Balducci, C.; Budetta, V.; Pasini, A. Illicit Psychotropic Substance Contents in the Air of Italy. *Atmospheric Environment* **2010**, *44* (19), 2358–2363.
- 96. Cecinato, A.; Balducci, C.; Nervegna, G. Occurrence of Cocaine in the Air of the World's Cities. *Science of The Total Environment* **2009**, *407* (5), 1683–1690.

- 97. Balducci, C.; Nervegna, G.; Cecinato, A. Evaluation of Principal Cannabinoids in Airborne Particulates. *Analytica Chimica Acta* **2009**, *641* (1–2), 89–94.
- 98. Cicaloni, V.; Salvini, L.; Vitalini, S.; Garzoli, S. Chemical Profiling and Characterization of Different Cultivars of *Cannabis sativa L*. Inflorescences by SPME-GC-MS and UPLC-MS. *Separations* **2022**, *9* (4), 90.
- Díaz-Maroto, M. C.; Pérez-Coello, M. S.; Cabezudo, M. D. Headspace Solid-Phase Microextraction Analysis of Volatile Components of Spices. *Chromatographia* 2002, 55 (11–12), 723–728.
- 100. Asadollahi-Baboli, M.; Aghakhani, A. Headspace Adsorptive Microextraction Analysis of Oregano Fragrance Using Polyaniline-Nylon-6 Nanocomposite, GC-MS, and Multivariate Curve Resolution. *International Journal of Food Properties* 2015, 18 (7), 1613–1623.
- 101. Gao, B.; Qin, F.; Ding, T.; Chen, Y.; Lu, W.; Yu, L. (Lucy). Differentiating Organically and Conventionally Grown Oregano Using Ultraperformance Liquid Chromatography Mass Spectrometry (UPLC-MS), Headspace Gas Chromatography with Flame Ionization Detection (Headspace-GC-FID), and Flow Injection Mass Spectrum (FIMS) Fingerprints Combined with Multivariate Data Analysis. *Journal of Agricultural and Food Chemistry* 2014, 62 (32), 8075–8084.
- 102. Lo, M.-M.; Benfodda, Z.; Bénimélis, D.; Fontaine, J.-X.; Molinié, R.; Meffre, P. Extraction and Identification of Volatile Organic Compounds Emitted by Fragrant Flowers of Three Tillandsia Species by HS-SPME/GC-MS. *Metabolites* 2021, *11* (9), 594.
- Reale, S.; Biancolillo, A.; Gasparrini, C.; Di Martino, L.; Di Cecco, V.; Manzi, A.; Di Santo, M.; D'Archivio, A. A. Geographical Discrimination of Bell Pepper (*Capsicum annuum*) Spices by (HS)-SPME/GC-MS Aroma Profiling and Chemometrics. *Molecules* 2021, 26 (20), 6177.
- Setser, A. L.; Smith, R. W. Comparison of Variable Selection Methods Prior to Linear Discriminant Analysis Classification of Synthetic Phenethylamines and Tryptamines. *Forensic Chemistry* 2018, 11, 77–86.
- 105. Davidson, J. T.; Jackson, G. P. The Differentiation of 2, 5-Dimethoxy-N-(N-Methoxybenzyl) Phenethylamine (NBOMe) Isomers Using GC Retention Indices and Multivariate Analysis of Ion Abundances in Electron Ionization Mass Spectra. *Forensic Chemistry* 2019, 14, 100160.
- 106. Ruiz-Perez, D.; Guan, H.; Madhivanan, P.; Mathee, K.; Narasimhan, G. So You Think You Can PLS-DA? *BMC Bioinformatics* **2020**, *21* (1), 1–10.
- 107. Pereira, L. S. A.; Lisboa, F. L. C.; Neto, J. C.; Valladão, F. N.; Sena, M. M. Direct Classification of New Psychoactive Substances in Seized Blotter Papers by ATR-FTIR and Multivariate Discriminant Analysis. *Microchemical Journal* 2017, *133*, 96–103.
- 108. Machine Learning: A Brief Introduction to Random Forest. Einstein Med.

- 109. Finch, K.; Espinoza, E.; Jones, F. A.; Cronn, R. Source Identification of Western Oregon Douglas-Fir Wood Cores Using Mass Spectrometry and Random Forest Classification. *Applications in Plant Sciences* 2017, 5 (5).
- 110. 1.4 Support Vector Machines. scikit-learn.
- 111. 1.6. Nearest Neighbors. scikit-learn.
- 112. Santos, M.; Pereira, F. Direct Analysis of Human Hair Before and After Cosmetic Modification Using a Recent Data Fusion Method. *Journal of the Brazilian Chemical Society* **2020**.
- 113. Nunes, K. M.; Andrade, M. V. O.; Santos Filho, A. M. P.; Lasmar, M. C.; Sena, M. M. Detection and Characterisation of Frauds in Bovine Meat in Natura by Non-Meat Ingredient Additions Using Data Fusion of Chemical Parameters and ATR-FTIR Spectroscopy. *Food Chemistry* 2016, 205, 14–22.
- 114. Trejos, T.; Torrione, P.; Corzo, R.; Raeva, A.; Subedi, K.; Williamson, R.; Yoo, J.; Almirall, J. A Novel Forensic Tool for the Characterization and Comparison of Printing Ink Evidence: Development and Evaluation of a Searchable Database Using Data Fusion of Spectrochemical Methods. *Journal of Forensic Sciences* 2016, *61* (3), 715–724.
- Carneiro, C. R.; Silva, C. S.; de Carvalho, M. A.; Pimentel, M. F.; Talhavini, M.; Weber, I. T. Identification of Luminescent Markers for Gunshot Residues: Fluorescence, Raman Spectroscopy, and Chemometrics. *Analytical Chemistry* 2019, *91* (19), 12444–12452.
- 116. Fabregat-Safont, D.; Barneo-Muñoz, M.; Martinez-Garcia, F.; Sancho, J. V.; Hernández, F.; Ibáñez, M. Proposal of 5-Methoxy- N -Methyl- N -Isopropyltryptamine Consumption Biomarkers through Identification of in Vivo Metabolites from Mice. *Journal of Chromatography A* 2017, *1508*, 95–105.
- 117. Wohlfarth, A.; Weinmann, W.; Dresen, S. LC-MS/MS Screening Method for Designer Amphetamines, Tryptamines, and Piperazines in Serum. *Analytical and Bioanalytical Chemistry* **2010**, *396* (7), 2403–2414.
- 118. Meyer, M. R.; Caspar, A.; Brandt, S. D.; Maurer, H. H. A Qualitative/Quantitative Approach for the Detection of 37 Tryptamine-Derived Designer Drugs, 5 β-Carbolines, Ibogaine, and Yohimbine in Human Urine and Plasma Using Standard Urine Screening and Multi-Analyte Approaches. *Analytical and Bioanalytical Chemistry* **2014**, 406 (1), 225– 237.
- 119. Katagi, M.; Kamata, T.; Zaitsu, K.; Shima, N.; Kamata, H.; Nakanishi, K.; Nishioka, H.; Miki, A.; Tsuchihashi, H. Metabolism and Toxicologic Analysis of Tryptamine-Derived Drugs of Abuse. *Therapeutic Drug Monitoring* **2010**, *32* (3), 328–331.
- Kamata, T.; Katagi, M.; Tsuchihashi, H. Metabolism and Toxicological Analyses of Hallucinogenic Tryptamine Analogues Being Abused in Japan. *Forensic Toxicology* 2010, 28 (1), 1–8.

- 121. Nakazono, Y.; Tsujikawa, K.; Kuwayama, K.; Kanamori, T.; Iwata, Y. T.; Miyamoto, K.; Kasuya, F.; Inoue, H. Simultaneous Determination of Tryptamine Analogues in Designer Drugs Using Gas Chromatography–Mass Spectrometry and Liquid Chromatography– Tandem Mass Spectrometry. *Forensic Toxicology* **2014**, *32* (1), 154–161.
- 122. S. E. Rodriguez-Cruz. Analysis and Characterization of Designer Tryptamines Using Electrospray Ionization Mass Spectrometry (ESI-MS). *Microgram Journal* 2005, 107–112.
- 123. Kikura-Hanajiri, R.; Hayashi, M.; Saisho, K.; Goda, Y. Simultaneous Determination of Nineteen Hallucinogenic Tryptamines/β-Calbolines and Phenethylamines Using Gas Chromatography–Mass Spectrometry and Liquid Chromatography–Electrospray Ionisation-Mass Spectrometry. *Journal of Chromatography B* 2005, 825 (1), 29–37.
- 124. Huhn, C.; Pütz, M.; Martin, N.; Dahlenburg, R.; Pyell, U. Determination of Tryptamine Derivatives in Illicit Synthetic Drugs by Capillary Electrophoresis and Ultraviolet Laser-Induced Fluorescence Detection. *Electrophoresis* **2005**, *26* (12), 2391–2401.
- 125. Brandt, S. D.; Tearavarich, R.; Dempster, N.; Cozzi, N. V.; Daley, P. F. Synthesis and Characterization of 5-methoxy-2-methyl-*N*, *N*-dialkylated Tryptamines. *Drug Testing and Analysis* **2012**, *4* (1), 24–32.
- 126. Piorunska-Sedlak, K.; Stypulkowska, K. Strategy for Identification of New Psychoactive Substances in Illicit Samples Using Attenuated Total Reflectance Infrared Spectroscopy. *Forensic Science International* 2020, 312, 110262.
- 127. Jones, L. E.; Stewart, A.; Peters, K. L.; McNaul, M.; Speers, S. J.; Fletcher, N. C.; Bell, S. E. J. Infrared and Raman Screening of Seized Novel Psychoactive Substances: A Large Scale Study of >200 Samples. *The Analyst* 2016, *141* (3), 902–909.
- 128. Marino, M. A.; Voyer, B.; Cody, R. B.; Dane, A. J.; Veltri, M.; Huang, L. Rapid Identification of Synthetic Cannabinoids in Herbal Incenses with DART-MS and NMR. *Journal of Forensic Sciences* **2016**, *61* (S1).
- 129. Ballabio, D.; Consonni, V. Classification Tools in Chemistry. Part 1: Linear Models. PLS-DA. *Analytical Methods* **2013**, *5* (16), 3790.
- 130. Pérez, N. F.; Ferré, J.; Boqué, R. Calculation of the Reliability of Classification in Discriminant Partial Least-Squares Binary Classification. *Chemometrics and Intelligent Laboratory Systems* **2009**, *95* (2), 122–128.
- 131. Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection; 2018; pp 265–299.
- 132. Parsons, H. M.; Ekman, D. R.; Collette, T. W.; Viant, M. R. Spectral Relative Standard Deviation: A Practical Benchmark in Metabolomics. *The Analyst* **2009**, *134* (3), 478–485.
- 133. Zhvansky, E. S.; Pekov, S. I.; Sorokin, A. A.; Shurkhay, V. A.; Eliferov, V. A.; Potapov, A. A.; Nikolaev, E. N.; Popov, I. A. Metrics for Evaluating the Stability and Reproducibility of Mass Spectra. *Scientific Reports* **2019**, *9* (1), 914.

- 134. Dasgupta, A. Drugs of Abuse: An Overview. In Alcohol, Drugs, Genes and the Clinical Laboratory; Academic Press, 2017.
- 135. Cunningham, N. Hallucinogenic Plants of Abuse. *Emergency Medicine Australasia* 2008, 20 (2), 167–174.
- 136. Lo Faro, A. F.; Di Trana, A.; La Maida, N.; Tagliabracci, A.; Giorgetti, R.; Busardò, F. P. Biomedical Analysis of New Psychoactive Substances (NPS) of Natural Origin. *Journal of Pharmaceutical and Biomedical Analysis* 2020, 179, 112945.
- 137. Gurib-Fakim, A. Medicinal Plants: Traditions of Yesterday and Drugs of Tomorrow. *Molecular Aspects of Medicine* **2006**, *27* (1), 1–93.
- 138. U.S. Department of Justice. In Drugs of Abuse: A DEA Resource Guide.
- 139. Arunotayanun, W.; Gibbons, S. Natural Product 'Legal Highs.' *Natural Product Reports* 2012, 29 (11), 1304.
- 140. Caffrey, C.; Lank, P. When Good Times Go Bad: Managing Legal High; Complications in the Emergency Department. *Open Access Emergency Medicine* **2017**, *Volume 10*, 9–23.
- 141. Coon, A. M.; Beyramysoltan, S.; Musah, R. A. A Chemometric Strategy for Forensic Analysis of Condom Residues: Identification and Marker Profiling of Condom Brands from Direct Analysis in Real Time-High Resolution Mass Spectrometric Chemical Signatures. *Talanta* 2019, 194, 563–575.
- 142. Hayes, J. M.; Abdul-Rahman, N.-H.; Gerdes, M. J.; Musah, R. A. Coral Genus Differentiation Based on Direct Analysis in Real Time-High Resolution Mass Spectrometry-Derived Chemical Fingerprints. *Analytical Chemistry* 2021, 93 (46), 15306– 15314.
- 143. Puype, F.; Ackerman, L. K.; Samsonek, J. Evaluation of Direct Analysis in Real Time High Resolution Mass Spectrometry (DART-HRMS) for WEEE Specific Substance Determination in Polymeric Samples. *Chemosphere* 2019, 232, 481–488.
- 144. Cody, R. B.; Dane, A. J. Direct Analysis in Real Time (DART®). *Ambient Ionization Mass Spectrometry*; The Royal Society of Chemistry, **2014**; 23–57.
- 145. Angelis, E. De; Pilolli, R.; Bejjani, A.; Guagnano, R.; Garino, C.; Arlorio, M.; Monaci, L. Optimization of an Untargeted DART-HRMS Method Envisaging Identification of Potential Markers for Saffron Authenticity Assessment. *Foods* **2021**, *10* (6), 1238.
- 146. Osborne, A. M.; Beyramysoltan, S.; Musah, R. A. Distinguishing Infested Flour from Uninfested Flour through Chemometric Processing of DART-HRMS Data—Revealing the Presence of *Tribolium castaneum*, the Red Flour Beetle. *Journal of Agricultural and Food Chemistry* 2023, 71 (22), 8613–8621.
- 147. Akbani, R.; Kwek, S.; Japkowicz, N. Applying Support Vector Machines to Imbalanced Datasets. *Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science)* **2004**, *3201*, 39–50.

- 148. Lema<sup>î</sup>treLema<sup>î</sup>tre, G.; Nogueira, F.; Aridas char, C. K. Imbalanced-Learn: A Python Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. *Journal of Machine Learning Research* **2017**, *18*, 1–5.
- 149. KIM, H.-C.; Ghahramani, Z. Bayesian Classifier Combination. *Proceedings of the Fifteenth International Conference on Artificial Intelligence and Statistics* **2012**, 22, 619–627.
- 150. Ruta, D.; Gabrys, B. An Overview of Classifier Fusion Methods. *Computing and Information Systems* **2000**, *7*, 1–10.
- 151. Pedregosa, F.; Michel, V.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Vanderplas, J.; Cournapeau, D.; Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Thirion, B.; Grisel, O.; Dubourg, V.; Passos, A.; Brucher, M.; Perrot and Édouardand, M.; Duchesnay, andÉdouard; Duchesnay, Fré. Scikit-Learn: Machine Learning in Python Gaël Varoquaux Bertrand Thirion Vincent Dubourg Alexandre Passos, Varoquaux, Gramfort et al. Matthieu Perrot. *Journal of Machine Learning Research* 2011, *12*, 2825–2830.
- 152. GitHub Repository. *Sklearn-Hierarchical-Classification: Version* = "1.3.2." https://github.com/globality-corp/sklearn-hierarchical-classification.
- 153. Michael White, C. Pharmacologic and Clinical Assessment of Kratom. *American Journal* of *Health-System Pharmacy* **2018**, 75 (5), 261–267.
- 154. Sheen, D. A.; Rocha, W. F. C.; Lippa, K. A.; Bearden, D. W. A Scoring Metric for Multivariate Data for Reproducibility Analysis Using Chemometric Methods. *Chemometrics and Intelligent Laboratory Systems* **2017**, *162*, 10–20.
- 155. Naik, H. N.; Kanjariya, D.; Parveen, S.; Ahmed, I.; Meena, A.; Patel, H.; Meena, R.; Jauhari, S. LC–MS Profiling, in Vitro and in Silico C-ABL Kinase Inhibitory Approach to Identify Potential Anticancer Agents from *Dalbergia sissoo* Leaves. *Scientific Reports* 2024, *14* (1), 73.
- 156. Thakkar, A. B.; Subramanian, Ramalingam. B.; Thakkar, V. R.; Thakor, P. Hydromethanolic Leaves Extract of *Dalbergia sissoo* Roxb. Ex DC. Induces Apoptosis in Lung Adenocarcinoma Cells. *Process Biochemistry* **2023**, *134*, 250–261.
- 157. Thakkar, A. B.; Subramanian, R. B.; Thakkar, V. R.; Bhatt, S. V.; Chaki, S.; Vaidya, Y. H.; Patel, V.; Thakor, P. Apoptosis Induction Capability of Silver Nanoparticles Capped with Acorus Calamus L. and *Dalbergia sissoo* Roxb. Ex DC. against Lung Carcinoma Cells. *Heliyon* 2024, 10 (2), e24400.
- 158. Sun, K.; Li, Z.; Li, W.; Chi, C.; Wang, M.; Xu, R.; Gao, Y.; Li, B.; Sun, Y.; Liu, R. Investigating the Anti-Atherosclerotic Effects and Potential Mechanism of *Dalbergia odorifera* in ApoE-Deficient Mice Using Network Pharmacology Combined with Metabolomics. *Journal of Pharmaceutical and Biomedical Analysis* **2024**, *242*, 116017.
- 159. Wang, C.; Gong, B.; Wu, Y.; Bai, C.; Yang, M.; Zhao, X.; Wei, J. Pharmacokinetics and Molecular Docking of the Cardioprotective Flavonoids in *Dalbergia odorifera*. *Journal of Separation Science* **2024**, *47* (1).

- 160. Soudier, P.; Rodriguez Pinzon, D.; Reif-Trauttmansdorff, T.; Hijazi, H.; Cherrière, M.; Goncalves Pereira, C.; Blaise, D.; Pispisa, M.; Saint-Julien, A.; Hamlet, W.; Nguevo, M.; Gomes, E.; Belkhelfa, S.; Niarakis, A.; Kushwaha, M.; Grigoras, I. Toehold Switch Based Biosensors for Sensing the Highly Trafficked Rosewood *Dalbergia maritima*. *Synthetic and Systems Biotechnology* **2022**, *7* (2), 791–801.
- 161. The World Wildlife Seizures (World WISE) Database 2016, 27–32.
- 162. Appley, M. Mass Spectral and Chemometric Analysis for The Detection and Identification of Forensically Relevant Materials, Ph.D. Thesis **2021**.
- 163. McClure, P. J.; Chavarria, G. D.; Espinoza, E. Metabolic Chemotypes of CITES Protected *Dalbergia* Timbers from Africa, Madagascar, and Asia. *Rapid Communications in Mass Spectrometry* **2015**, *29* (9), 783–788.
- 164. Creydt, M.; Arndt, M.; Hudzik, D.; Fischer, M. Plant Metabolomics: Evaluation of Different Extraction Parameters for Nontargeted UPLC-ESI-QTOF-Mass Spectrometry at the Example of White Asparagus officinalis. Journal of Agricultural and Food Chemistry 2018, 66 (48), 12876–12887.
- 165. Aldrich Library of FT-IR Spectra, 1st ed. 1985.
- 166. Jabalpurwala, F. A.; Smoot, J. M.; Rouseff, R. L. A Comparison of Citrus Blossom Volatiles. *Phytochemistry* **2009**, *70* (11–12), 1428–1434.
- 167. Arias, M. E.; Rodríguez, J.; Pérez, M. I.; Hernández, M.; Polvillo, O.; González-Pérez, J. A.; González-Vila, F. J. Analysis of Chemical Changes in *Picea abies* Wood Decayed by Different Streptomyces Strains Showing Evidence for Biopulping Procedures. *Wood Science and Technology* 2010, 44 (2), 179–188.
- 168. Zhang, X. H.; da Silva, J. A. T.; Jia, Y. X.; Zhao, J. T.; Ma, G. H. Chemical Composition of Volatile Oils from the Pericarps of Indian Sandalwood (*Santalum album*) by Different Extraction Methods. *Natural Product Communications* **2012**, *7* (1), 1934578X1200700.
- 169. Asmara, A. P.; Nuzlia, C.; Hernawan; Maryana, R. Physicochemical, Fatty Acid Profile and Antioxidant Properties of Mahogany (*Swietenia humilis* Zucc.) Seeds Oil. In *AIP Conference Proceedings*; American Institute of Physics Inc., **2023**; Vol. 2583.
- Jimenez, A.; Mata, R.; Pereda-Miranda, R.; Calderon, J.; Isman, M. B.; Nicol, R.; Arnason, J. T. Insecticidal Liminoids from *Swietenia humilis* and *Cedrela salvadorensis*; 1997; Vol. 23.
- Ovalle-Magallanes, B.; Navarrete, A.; Haddad, P. S.; Tovar, A. R.; Noriega, L. G.; Tovar-Palacio, C.; Mata, R. Multi-Target Antidiabetic Mechanisms of Mexicanolides from *Swietenia humilis. Phytomedicine* 2019, 58.
- 172. Ovalle-Magallanes, B.; Medina-Campos, O. N.; Pedraza-Chaverri, J.; Mata, R. Hypoglycemic and Antihyperglycemic Effects of Phytopreparations and Limonoids from *Swietenia humilis. Phytochemistry* **2015**, *110*, 111–119.

- 173. Mata, R.; Rivero-Cruz, J.-F.; Chávez, D. Bioactive Secondary Metabolites from Selected Mexican Medicinal Plants: Recent Progress.
- 174. Segura-Correa, R.; Mata, R.; Anaya, A. L.; Hernandez-Bautista, B.; Villena, R.; Soriano-Garcia, M.; Bye, R.; Linares, E. New Tetranortriterpenoids from *Swietenia humilis*. *Journal of Natural Products* **1993**, *56* (9), 1567–1574.
- 175. Ovalle-Magallanes, B.; Déciga-Campos, M.; Mata, R. Antihyperalgesic Activity of a Mexicanolide Isolated from *Swietenia humilis* Extract in Nicotinamide-Streptozotocin Hyperglycemic Mice. *Biomedicine and Pharmacotherapy* 2017, 92, 324–330.
- 176. Veni, A.; Lokeswari, T. S.; Krishna Kumari, G. N.; Gayathri, D.; Sudandiradoss, C. Bioactivity of Melianone against Salmonella and in Silico Prediction of a Membrane Protein Target. 3 Biotech 2020, 10 (10).
- 177. Yang, H.; Choi, M.; Lee, D. Y.; Sung, S. H. Anti-Differentiation Effect of B, D-Seco Limonoids of *Swietenia mahogani*. *Pharmacognosy Magazine* **2017**, *13* (50), 293–299.
- 178. Mohan, M. R.; Jala, R. C. R.; Kaki, S. S.; Prasad, R. B. N.; Rao, B. V. S. K. Swietenia mahogani Seed Oil: A New Source for Biodiesel Production. Industrial Crops and Products 2016, 90, 28–31.
- 179. Nugraha, A. S.; Purnomo, Y. D.; Widhi Pratama, A. N.; Triatmoko, B.; Hendra, R.; Wongso, H.; Avery, V. M.; Keller, P. A. Isolation of Antimalarial Agents From Indonesian Medicinal Plants: *Swietenia mahogani* and *Pluchea indica. Natural Product Communications* 2022, 17 (1).
- 180. Syame, S. M.; Mohamed, S. M.; Elgabry, E. A.; Darwish, Y. A. A.; Mansour, A. S. Chemical Characterization, Antimicrobial, Antioxidant, and Cytotoxic Potentials of *Swietenia mahogani*. *AMB Express* **2022**, *12* (1).
- 181. Sukardiman; Ervina, M. The Recent Use of Swietenia Mahagoni (L.) Jacq. as Antidiabetes Type 2 Phytomedicine: A Systematic Review. *Heliyon*. Elsevier Ltd March 1, 2020.
- 182. Shi, Z.; An, L.; Yang, X.; Xi, Y.; Zhang, C.; Shuo, Y.; Zhang, J.; Jin, D. Q.; Ohizumi, Y.; Lee, D.; Xu, J.; Guo, Y. Nitric Oxide Inhibitory Limonoids as Potential Anti-Neuroinflammatory Agents from *Swietenia mahogani*. *Bioorganic Chemistry* 2019, 84, 177–185.
- 183. Zhang, W. M.; Liu, J. Q.; Deng, Y. Y.; Xia, J. J.; Zhang, Z. R.; Li, Z. R.; Qiu, M. H. Diterpenoids and Limonoids from the Leaves and Twigs of *Swietenia mahogani*. *Natural Products and Bioprospecting* **2014**, *4* (1), 53–57.
- 184. Abdelgaleil, S. A. M.; Doe, M.; Nakatani, M. Rings B,D-Seco Limonoid Antifeedants from *Swietenia mahogani*. *Phytochemistry* **2013**, *96*, 312–317.
- 185. Mostafa, M.; Jahan, I. A.; Riaz, M.; Hossain, H.; Nimmi, I.; Miah, A. S.; Chowdhury, J. U. Comprehensive Analysis of the Composition of Seed Cake and Its Fatty Oil from *Swietenia mahogani* Jacq. Growing in Bangladesh.

- 186. Rahman, A. K. M. S.; Chowdhury, A. K. A.; Ali, H. A.; Raihan, S. Z.; Ali, M. S.; Nahar, L.; Sarker, S. D. Antibacterial Activity of Two Limonoids from *Swietenia mahogani* against Multiple-Drug-Resistant (MDR) Bacterial Strains. *Journal of Natural Medicines* 2009, 63 (1), 41–45.
- 187. Lin, B. D.; Yuan, T.; Zhang, C. R.; Dong, L.; Zhang, B.; Wu, Y.; Yue, J. M. Structurally Diverse Limonoids from the Fruits of *Swietenia mahogani*. *Journal of Natural Products* 2009, 72 (12), 2084–2090.
- 188. Pamplona, S. G. S. R.; Arruda, M. S. P.; Castro, K. C. F.; Silva, C. Y. Y.; Ferreira, A. G.; Da Silva, M. F. G. F.; Ohashi, O. S.; Da Silva, M. N. Phragmalin Limonoids from *Swietenia macrophylla* and Their Antifeedant Assay against Mahogany Predator. *Journal of the Brazilian Chemical Society* 2018, 29 (8), 1621–1629.
- 189. Ma, Y. Q.; Jiang, K.; Deng, Y.; Guo, L.; Wan, Y. Q.; Tan, C. H. Mexicanolide-Type Limonoids from the Seeds of Swietenia macrophylla. Journal of Asian Natural Products Research 2018, 20 (4), 299–305.
- 190. Cheng, Y. Bin; Chien, Y. T.; Lee, J. C.; Tseng, C. K.; Wang, H. C.; Lo, I. W.; Wu, Y. H.; Wang, S. Y.; Wu, Y. C.; Chang, F. R. Limonoids from the Seeds of *Swietenia macrophylla* with Inhibitory Activity against Dengue Virus 2. *Journal of Natural Products* **2014**, 77 (11), 2367–2374.
- 191. Suliman, B. Fatty Acid Composition and Antibacterial Activity of *Swietenia macrophylla* King Seed Oil. *African Journal of Plant Science* **2013**, 7 (7), 300–303.
- 192. Tan, S. K.; Osman, H.; Wong, K. C.; Boey, P. L. New Phragmalin-Type Limonoids from *Swietenia macrophylla* King. *Food Chemistry* **2009**, *115* (4), 1279–1285.
- 193. Sun, Y. P.; Zhu, L. L.; Liu, J. song; Yu, Y.; Zhou, Z. yu; Wang, G.; Wang, G. K. Limonoids and Triterpenoid from Fruit of *Swietenia macrophylla*. *Fitoterapia* **2018**, *125*, 141–146.
- 194. Chen, L. C.; Liao, H. R.; Chen, P. Y.; Kuo, W. L.; Chang, T. H.; Sung, P. J.; Wen, Z. H.; Chen, J. J. Limonoids from the Seeds of *Swietenia macrophylla* and Their Anti-Inflammatory Activities. *Molecules* **2015**, *20* (10), 18551–18564.
- 195. Mustafa Masoud Eid, A.; Elmarzugi, A.; Ali El-Enshasy, H. A Review on The Phytopharmacological Effect of *Swietenia macrophylla*.
- 196. Chen, J. J.; Huang, S. S.; Liao, C. H.; Wei, D. C.; Sung, P. J.; Wang, T. C.; Cheng, M. J. A New Phragmalin-Type Limonoid and Anti-Inflammatory Constituents from the Fruits of *Swietenia macrophylla. Food Chemistry* **2010**, *120* (2), 379–384.
- 197. Fowles, R. G.; Mootoo, B. S.; Ramsewak, R.; Reynolds, W.; Lough, A. J. 3,6-Di-O-Acetylswietenolide 0.25-Hydrate. *Acta Crystallographica Section E: Structure Reports Online* **2007**, *63* (2).
- 198. Wakabayashi, N.; Spencer, S. L.; Waters, R. M.; Lusby, W. R. A Polyacetylene from Honduras Mahogany, *Swietenia macrophylla. Journal of Natural Products* **1991**, *54* (5), 1419–1421.

- 199. Omar, S.; Marcotte, M.; Fields, P.; Sanchez, P. E.; Poveda, L.; Mata, R.; Jimenez, A.; Durst, T.; Zhang, J.; MacKinnon, S.; Leaman, D.; Arnason, J. T.; Philogène, B. J. R. Antifeedant Activities of Terpenoids Isolated from Tropical Rutales. *Journal of Stored Products Research* 2007, 43 (1), 92–96.
- 200. Jimenez, A.; Villarreal, C.; Toscano, R. A.; Cook, M.; Arnason, J. T.; Byell, R.; Mata, R. Liminoids from *Swietenia humis* and *Guarear grandiflora* (Meliaceae); 1998; Vol. 49.
- 201. Masendra; Purba, B. A. V.; Lukmandaru, G. Antioxidant Activity of *Swietenia macrophylla* King Bark Extracts. *Wood Research* **2021**, *66* (1), 57–69.
- 202. Cordeiro, J. R.; Li, R. W. C.; Takahashi, É. S.; Rehder, G. P.; Ceccantini, G.; Gruber, J. Wood Identification by a Portable Low-Cost Polymer-Based Electronic Nose. *RSC Advances* 2016, 6 (111), 109945–109949.
- 203. Kometter, R. F.; Martinez, M.; Blundell, A. G.; Gullison, R. E.; Steininger, M. K.; Kometter, R. F.; Martinez, M.; Blundell, A. G.; Gullison, R. E.; Steininger, M. K.; Rice, R. E. Impacts of Unsustainable Mahogany Logging in Bolivia and Peru; 2004.
- 204. Grogan, J.; Barreto, P. Big-Leaf Mahogany on CITES Appendix II: Big Challenge, Big Opportunity. *Conservation Biology* **2005**, *19* (3), 973–976.

## APPENDIX

## **TABLE OF CONTENTS**

| Figure A2.1 | The 20 V DART-HRMS soft ionization spectra and structures for the 50 tryptamines analyzed in this study.                                                                                                                                                                                                                                                             | 137 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Figure A2.2 | The 60 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.                                                                                                                                                                                                                                                                               | 142 |
| Figure A2.3 | The 90 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.                                                                                                                                                                                                                                                                               | 147 |
| Table A2.1  | Probability prediction assignments of the PLD-DA model for the "leave-one structure out" validation when screened against the ten groups that were identified in the cluster analysis. The correctly classified tryptamines with a probability of one are shown in blue, whereas the red numbers show the probabilities for tryptamines with multilabel assignments. | 152 |
| Table A2.2  | The relative intensities for the $m/z$ values in the tryptamine 60 V neutral loss spectra ranked most important in discrimination of the ten tryptamine clusters, from the average of ten replicates.                                                                                                                                                                | 153 |
| Table A2.3  | The relative intensities for the $m/z$ values in the tryptamine 90 V neutral loss spectra ranked most important in discrimination of the ten tryptamine clusters, from the average of ten replicates.                                                                                                                                                                | 154 |
| Table A2.4  | Probabilities of the external validation tryptamines being assigned to each group.                                                                                                                                                                                                                                                                                   | 157 |
| Table A2.5  | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of 4-hydroxy MALT.* The corresponding spectrum appears in Figure 2.11                                                                                                                                                                                                            | 158 |
| Table A3.1  | Plant materials analyzed and related taxonomical information including order, family, genus, and species, and the matrix of each.                                                                                                                                                                                                                                    | 159 |
| Figure A3.1 | Representative DART high-resolution mass spectra of <i>A. absinthium</i> ; <i>A. vulgaris</i> ; <i>C. zacatechichi</i> ; <i>L. virosa</i> ; <i>S. tortuosum</i> ; <i>E. lobata</i> ; <i>A. peregrina</i> ; <i>M. hostilis</i> ; <i>P. nitida</i> ; and <i>V. africana</i> .                                                                                          | 165 |
| Table A3.2  | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of <i>A. absinthium</i> dried herb. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.1                                                                                                                                            | 171 |
| Table A3.3  | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of <i>A. absinthium</i> powder. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.1                                                                                                                                                | 181 |

| Table A3.4  | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of <i>A. absinthium</i> seed. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 191 |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Table A3.5  | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of A. <i>absinthium tincture</i> . Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 201 |
| Table A3.6  | Known molecules of interest in the indicated species.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 212 |
| Table A3.7  | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of <i>L. virosa</i> flower. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.4B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 235 |
| Table A3.8  | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of <i>L. virosa</i> resin. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.4B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 246 |
| Table A3.9  | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of <i>L. virosa</i> leaf. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.4B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 253 |
| Table A3.10 | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of <i>L. virosa</i> seed. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.4B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 260 |
| Table A3.11 | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of <i>L. virosa</i> powder. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.4B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 268 |
| Table A3.12 | Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS analysis of <i>L. virosa</i> tincture. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.4B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 275 |
| Figure A3.2 | Identification result for <i>D. innoxia</i> seed analyzed by DART-<br>HRMS in our laboratory. Panels A-C present three bar plots<br>displaying the probabilities for identification of the family, genus<br>and species levels acquired using the fused classifier; (D) Bar<br>plot showing the probabilities associated with the identification<br>of the family, genus, and species by the embedded classifiers<br>(i.e., SVM, RF, K-NN and the fused classifier) in the hierarchical<br>classification tree. DoPP identified the material as Solanceae,<br><i>Datura</i> , and <i>innoxia</i> with probabilities of 0.88, 0.72, and 0.65 for<br>the averaged spectra of three DART-HRMS replicates. | 283 |

**Figure A3.3** Identification result for *D. wrightii* seed analyzed by DART-HRMS in our laboratory. Panels A-C present three bar plots displaying the probabilities for identification of the family, genus and species levels respectively, acquired using the fused classifier; (D) Bar plot showing the probabilities associated with the identification of the family, genus, and species by the embedded classifiers (i.e., SVM, RF, K-NN and the fused classifier) in the hierarchical classification tree. DoPP identified the material as Solanceae, *Datura*, and *wrightii* with probabilities of 0.80, 0.82, and 0.48 for the averaged spectra of three DART-HRMS replicates.

283

- **Figure A3.4** Identification result for *D. innoxia* seed analyzed by DART-HRMS in the ETEC laboratory. Panels A-C present three bar plots displaying the probabilities for identification of the family, genus and species levels acquired using the fused classifier; (D) Bar plot showing the probabilities associated with the identification of the family, genus, and species by the embedded classifiers (i.e., SVM, RF, K-NN and fused classifier) in the hierarchical classification tree. DoPP identified the material as Solanceae, *Datura*, and *innoxia* with probabilities of 0.86, 0.86, and 0.69 for the averaged spectra of three replicates.
- **Figure A3.5** Identification result for *D. wrightii* seed analyzed by DART-HRMS in the ETEC laboratory. Panels A-C present three bar plots displaying the probabilities for identification of the family, genus and species levels acquired using the fused classifier; (D) Bar plot showing the probabilities associated with the identification of the family, genus, and species by the embedded classifiers (i.e., SVM, RF, K-NN and fused classifier) in the hierarchical classification tree. DoPP identified the material as Solanceae, *Datura*, and *wrightii* with probabilities of 0.68, 0.79, and 0.48 for the averaged spectra of three replicates.
- **Figure A3.6** Identification result for *R. communis* castor oil (a species that is not represented in the database) analyzed by DART-HRMS. DoPP detected the material as an outlier and the sample is classified as "Not Detected".
- **Figure A3.7** Identification result for plastic bag sample analyzed by DART-HRMS. DoPP detected the material as an outlier and presented the result as "Not Detected".

135

- **Figure A3.8** Identification result for a *Salvia miltiorrhiza* tablet (a species that is not represented in the database) analyzed by DART-HRMS. Panels B-D present three bar plots displaying the probabilities for identification of the family, genus and species levels acquired using the fused classifier. While DoPP shows a computed result in each level, the material is suggested to be non-assigned based on the appearance of the pink background color, since the family probability is 0.31, which is lower than the computed threshold (0.45) for Rubiaceae class.
- **Figure A3.9** (A) Identification result for a *D. wrightii* spectrum that was not corrected for background following analysis by DART-HRMS. Panels B-D present three bar plots displaying the probabilities for identification of the family, genus and species levels acquired using the fused classifier. While DoPP shows a computed result at each level, it nevertheless suggests that the sample is unclassified, which is indicated by the appearance of the pink background color. This is because the probability for the family classification is lower than the threshold of 0.45 for the Asteraceae class (with a value of 0.26).
- Table A4.1 Compounds detected via TD-GC-MS analysis of the Dalbergia 289 spp. analyzed in this study. The first column presents the DART-HRMS measured masses of the 112 features utilized for SVM model creation. The "Molecular Formula" column lists the formula derived from the corresponding high-resolution mass shown in column 1. In the "Compound" column, the tentatively identified compound name (based on mass spectral fragmentation pattern matching using the NIST EI-MS database) is listed. The species listed in the fourth column represent those in which the indicated mass was detected in at least one individual in the listed species.
- Figure A4.1Head-to-tail plots showing the comparison of the EI mass295spectral fragmentation pattern of isopropanol (bottom) from the<br/>NIST mass spectral library to that of the EI mass spectrum from<br/>D. cochinchinensis (top).295
- **Figure A4.2** Head-to-tail plots showing the comparison of the EI mass 295 spectral fragmentation pattern of 3-Furaldehydel (bottom) from the NIST mass spectral library to that of the EI mass spectrum from *D. nigra* (top).

136



Figure A2.1 The 20 V DART-HRMS soft ionization spectra and structures for the 50 tryptamines analyzed in this study.



Figure A2.1 (continued). The 20 V DART-HRMS soft ionization spectra and structures for the 50 tryptamines analyzed in this study.



Figure A2.1 (continued). The 20 V DART-HRMS soft ionization spectra and structures for the 50 tryptamines analyzed in this study.



Figure A2.1 (continued). The 20 V DART-HRMS soft ionization spectra and structures for the 50 tryptamines analyzed in this study.



Figure A2.1 (continued). The 20 V DART-HRMS soft ionization spectra and structures for the 50 tryptamines analyzed in this study.



Figure A2.2 The 60 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.







116.072

150

m/z

200

100

17.024

45.058

50

Relative Intensity (%)

50

0

5-hydroxy-N-methyl tryptamine rep 1 60 V Neutral Loss

m/z

200

250

300

150







Figure A2.2 (continued). The 60 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.

## 4-hydroxy MiPT rep 1 60 V Neutral Loss

147.066

150

m/z

161.083

150

m/z

200

203.132

200

250

300

350

350

250

300

350



Figure A2.2 (continued). The 60 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.



Figure A2.2 (continued). The 60 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.



Figure A2.2 (continued). The 60 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.



Figure A2.3 The 90 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.



Figure A2.3 (continued). The 90 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.



Figure A2.3 (continued). The 90 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.



6-fluoro DET rep 1 90 V Neutral Loss



Figure A2.3 (continued). The 90 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.



Figure A2.3 (continued). The 90 V DART-HRMS neutral loss spectra for the 50 tryptamines analyzed in this study.

**Table A2.1** Probability prediction assignments of the PLD-DA model for the "leave-one structure out" validation when screened against the ten groups that were identified in the cluster analysis. The correctly classified tryptamines with a probability of one are shown in blue, whereas the red numbers show the probabilities for tryptamines with multilabel assignments.

| Compound                                    | <b>G</b> 1 | G 2  | <b>G</b> 3 | <b>G</b> 4 | G 5  | <b>G</b> 6 | <b>G</b> 7 | <b>G 8</b> | <b>G9</b> | G 10 |
|---------------------------------------------|------------|------|------------|------------|------|------------|------------|------------|-----------|------|
| 4-Methyl-α-ethyl tryptamine                 | 1.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy- <i>a</i> -ethyl tryptamine       | 1.00       | 0.52 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| <i>N</i> -Methyl- <i>N</i> -ethyltryptamine | 1.00       | 0.00 | 0.00       | 1.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| <i>a</i> -Ethyltryptamine                   | 1.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5.7-Dichloro tryptamine                     | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-IT                                        | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy AMT                               | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 6-IT                                        | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 7-Fluoro tryptamine                         | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| Nonyloxytryptamine                          | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| Serotonin                                   | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| α-Methyl tryptamine                         | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Hydroxy- <i>N</i> -methyl tryptamine      | 0.00       | 0.00 | 1.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| N-Methyl tryptamine                         | 0.00       | 0.00 | 1.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| DPT                                         | 0.00       | 0.00 | 0.00       | 1.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| DiPT                                        | 0.00       | 0.00 | 0.00       | 1.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| N, N-DET                                    | 0.00       | 0.00 | 0.00       | 1.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| N, N-DMT                                    | 0.00       | 0.00 | 0.00       | 1.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 4-Methoxy DiPT                              | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy DALT                              | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy DBT                               | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy DET                               | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy DMT                               | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy DPT                               | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy DiBT                              | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy DiPT                              | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy EPT                               | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy EiPT                              | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 5-Methoxy MiPT                              | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 6-Methoxy DiPT                              | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 7-Methoxy DiPT                              | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| N-Acetyl serotonin                          | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 1.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| N-Acetyl tryptamine                         | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 1.00       | 0.00       | 0.00       | 0.00      | 0.00 |
| 4-Hydroxy DET                               | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 1.00       | 0.00       | 0.00      | 0.00 |
| 4-Hydroxy DM1                               | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 1.00       | 0.00       | 0.00      | 0.00 |
| 4-Hydroxy DP1<br>4 Hydroxy D:DT             | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 1.00       | 0.00       | 0.00      | 0.00 |
| 4-Hydroxy DIP1                              | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 1.00       | 0.00       | 0.00      | 0.00 |
| 4-Hydroxy MET                               | 1.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 1.00       | 0.00       | 0.00      | 0.00 |
| 4-Hydroxy MiPT                              | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 1.00       | 0.00       | 0.00      | 0.00 |
| 5 Hydroxy DMT                               | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 1.00       | 0.00       | 0.00      | 0.00 |
| Dellowhin                                   | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 1.00       | 0.00       | 0.00      | 0.00 |
| F SHOCYDHI<br>6-Fluoro DET                  | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 1.00       | 0.00       | 0.00      | 0.00 |
| Sumatrintan                                 | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 0.00 |
|                                             | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 1.00 |
| 4-Acetoxy DMT                               | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 1.00 |
| 4. A cetoxy DPT                             | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 1.00 |
| 4-Acetoxy DiPT                              | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 1.00 |
| 4-Acetoxy MET                               | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 1.00 |
| 4-Acetoxy MiPT                              | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 | 0.00       | 0.00       | 0.00       | 0.00      | 1.00 |

|       |                         | Neutra | 1 loss 60 |       | •     |       |       |       |       |       |       |       |       |        |        |        |        |        |        |        |
|-------|-------------------------|--------|-----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|--------|
| Group | Compound                | 16.02  | 17.03     | 30.04 | 31.04 | 43.04 | 45.06 | 58.03 | 59.04 | 59.07 | 60.04 | 73.09 | 95.00 | 101.12 | 131.07 | 147.07 | 149.07 | 161.08 | 189.08 | 238.07 |
| Group | 4-Methyl-a-ethyl        | 13.3   | 80.6      | 0.0   | 0.0   | 0.0   | 0.8   | 0.0   | 0.0   | 100.0 | 0.0   | 0.1   | 0.0   | 0.0    | 0.1    | 0.0    | 0.0    | 0.0    |        |        |
|       | tryptamine              | 10.0   | 00.0      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.0 | 0.0   | 0.1   | 0.0   | 0.0    | 0.1    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 5-Methoxy-α-ethyl       | 14.8   | 98.2      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 83.6  | 0.0   | 6.8   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 2.7    | 0.0    | 0.0    |
| G 1   | tryptamine              |        |           |       |       |       |       |       |       |       |       |       |       |        |        |        |        |        | 0.0    | 0.0    |
|       | N-Methyl-N-             | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 48 7  | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | ethyltryptamine         | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 100.0 | 0.0   | 0.0   | 0.0   | 0.0    | 10010  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | a-Ethyltryptamine       | 3.5    | 27.4      | 0.0   | 0.0   | 0.0   | 0.8   | 0.0   | 0.0   | 100.0 | 0.0   | 0.0   | 0.0   | 0.0    | 5.7    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 5,7-Dichloro tryptamine | 11.2   | 100.0     | 4.4   | 4.6   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 5-IT                    | 10.8   | 100.0     | 0.0   | 0.0   | 0.0   | 53.7  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 5-Methoxy AMT           | 16.4   | 100.0     | 0.0   | 1.2   | 67    | 82    | 0.0   | 0.0   | 3.9   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 6-IT                    | 15.5   | 100.0     | 0.0   | 0.0   | 0.1   | 43.7  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 2   | 7-Fluoro tryptamine     | 12.3   | 100.0     | 6.0   | 10.3  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | N                       | 20.0   | 100.0     | 1.2   | 2.5   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | Nonyloxytryptamine      | 20.0   | 100.0     | 1.5   | 5.5   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | Serotonin               | 15.5   | 100.0     | 0.0   | 5.2   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 1.5   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | α -Methyl tryptamine    | 16.3   | 100.0     | 0.0   | 3.7   | 10.0  | 51.5  | 1.6   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 5-Hydroxy-N-methyl      | 0.0    | 0.0       | 11.2  | 100.0 | 32.8  | 9.1   | 0.0   | 5.7   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 3   | tryptamine              | 0.2    | 0.0       | 12.1  | 100.0 | 42.2  | 7.1   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | N-Metnyi tryptamine     | 0.5    | 0.0       | 13.1  | 100.0 | 42.3  | /.1   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 20.0   | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | DFT                     | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 29.9   | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 4   | N.N-DET                 | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 37.5  | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | N.N-DMT                 | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 63.2  | 0.0   | 0.0   | 2.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 4-Methoxy DiPT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 44.4   | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 5-Methoxy DALT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 5-Methoxy DBT           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 5-Methoxy DET           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 46.7  | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 5-Methoxy DMT           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 48.2  | 0.0   | 0.0   | 1.2   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.5    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 5-Methoxy DPT           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 38.0   | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
| G 5   | 5-Methoxy DiBT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 5-Methoxy DiPT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 59.3   | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 5-Methoxy EP1           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 5-Methoxy EiPT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.5    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 5-Methoxy MiPT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 48.8  | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 6-Methoxy DiPT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 5.4    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
|       | 7-Methoxy DiPT          | 0.1    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 75.7   | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    |
| G 6   | N-Acetylserotomii       | 0.0    | 3.5       | 0.0   | 0.0   | 4.0   | 0.1   | 11.0  | 100.0 | 0.0   | 20.5  | 0.0   | 0.0   | 0.0    | 0.0    | 0.4    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | A Hadaaaa DET           | 0.0    | 4.5       | 0.0   | 0.0   | 2.3   | 1.1   | 11.8  | 100.0 | 0.0   | 19.5  | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 4-Hydroxy DE1           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 57.1  | 0.0   | 0.0   | 0.0   | 0.0   | 50.5  | 0.0   | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 4-Hydroxy DPT           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 24.8   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 4-Hydroxy DiPT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 46.6   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
| G 7   | 4-Hydroxy MET           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 25.5  | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 4-Hydroxy MPT           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 25.7  | 0.0   | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 4-Hydroxy MiPT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 28.8  | 0.0   | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
|       | 5-Hydroxy DMT           | 0.0    | 0.0       | 0.0   | 4.7   | 0.0   | 82.8  | 0.0   | 0.0   | 0.2   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
|       | Psilocybin              | 0.0    | 0.0       | 0.0   | 0.1   | 0.0   | 53.4  | 0.0   | 0.0   | 1.3   | 0.0   | 0.0   | 0.0   | 0.0    | 0.1    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
| G 8   | 6-Fluoro DET            | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 17.6  | 0.0   | 0.0    | 0.0    | 0.0    | 100.0  | 2.1    | 0.0    | 0.0    |
| G 9   | Sumatriptan             | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 18.0  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 10.2  | 0.0    | 0.0    | 0.0    | 0.3    | 0.0    | 0.0    | 100.0  |
|       | 4-Acetoxy DE1           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 20.8  | 0.0   | 0.0   | 0.0   | 0.0   | 23.2  | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    |
|       | 4-Acetoxy DPT           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 20.8  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 18.7   | 0.0    | 0.0    | 0.0    | 0.0    | 90.0   | 0.0    |
| G 10  | 4-Acetoxy DiPT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 31.2   | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    |
|       | 4-Acetoxy MET           | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 18.0  | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    |
|       | 4-Acetoxy MiPT          | 0.0    | 0.0       | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 22.3  | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    |
| _     |                         |        | •         | •     | •     | •     | •     | •     | •     | •     |       | •     | •     | •      | •      |        |        |        |        | •      |

**Table A2.2** The relative intensities for the m/z values in the tryptamine 60 V neutral loss spectra ranked most important in discrimination of the ten tryptamine clusters, from the average of ten replicates.

**Table A2.3** The relative intensities for the m/z values in the tryptamine 90 V neutral loss spectra ranked most important in discrimination of the ten tryptamine clusters, from the average of ten replicates.

|            |                               | Neutral | loss 90 |       |       |       |       |       |       |       |       |       |       |       |       |       |
|------------|-------------------------------|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| Group      | Compound                      | 17.03   | 31.05   | 32.05 | 43.05 | 44.05 | 45.06 | 58.03 | 58.07 | 59.04 | 59.07 | 60.05 | 60.08 | 61.06 | 72.08 | 73.09 |
|            | 4-Methyl-α-ethyl tryptamine   | 7.0     | 0.0     | 0.2   | 0.0   | 0.8   | 1.1   | 0.0   | 17.6  | 0.0   | 100.0 | 0.0   | 6.5   | 0.0   | 6.3   | 5.0   |
|            | 5-Methoxy-a-ethyl tryptamine  | 7.5     | 0.0     | 0.0   | 0.0   | 0.0   | 0.5   | 0.0   | 13.6  | 0.0   | 100.0 | 0.0   | 0.0   | 0.0   | 8.3   | 4.7   |
| G 1        | N-Methyl-N-                   | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 12.7  | 0.0   | 100.0 | 0.0   | 32.1  | 0.0   | 0.0   | 1.1   |
|            | ethyltryptamine               | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 12.7  | 0.0   | 100.0 | 0.0   | 52.1  | 0.0   | 0.0   | 1.1   |
|            | α-Ethyltryptamine             | 1.4     | 0.0     | 0.0   | 0.0   | 0.0   | 0.4   | 0.0   | 11.7  | 0.0   | 100.0 | 0.0   | 0.0   | 0.0   | 3.0   | 0.0   |
|            | 5,7-Dichloro tryptamine       | 25.1    | 6.8     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 5-IT                          | 45.9    | 2.8     | 17.8  | 1.0   | 14.8  | 50.0  | 0.0   | 63.9  | 0.0   | 0.5   | 0.0   | 1.1   | 0.0   | 5.2   | 0.0   |
|            | 5-Methoxy AM1                 | 20.7    | 11.2    | 72.5  | /.0   | 5.9   | 20.5  | 0.0   | 100.0 | 0.0   | 13.4  | 25.0  | 0.0   | 15.7  | 2.2   | 48.8  |
| G 2        | 0-11                          | 20.7    | 2.5     | 21.9  | 1.1   | 12.1  | 30.0  | 0.0   | 03.8  | 0.0   | 1.7   | 0.0   | 1.9   | 0.0   | 3.4   | 0.0   |
| 02         | 7-Fluoro tryptamine           | 91.6    | 29.0    | 0.0   | 6.1   | 29.4  | 1.8   | 0.0   | 0.1   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | Nonyloxytryptamine            | 98.6    | 2.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | Serotonin                     | 99.8    | 29.7    | 1.8   | 5.5   | 15.7  | 0.0   | 0.2   | 0.0   | 10.7  | 0.0   | 54.0  | 0.0   | 11.8  | 0.0   | 0.0   |
|            | α-Methyl tryptamine           | 2.4     | 13.5    | 98.0  | 5.3   | 12.6  | 49.3  | 0.0   | 67.1  | 0.9   | 8.5   | 1.1   | 11.6  | 0.0   | 10.7  | 0.0   |
| <b>C</b> 2 | 5-Hydroxy-N-methyl tryptamine | 0.0     | 97.6    | 22.7  | 22.2  | 5.7   | 17.1  | 0.0   | 38.3  | 44.6  | 0.0   | 13.5  | 0.0   | 21.6  | 0.0   | 0.0   |
| 63         | N-Methyl tryptamine           | 0.3     | 100.0   | 35.2  | 25.7  | 4.2   | 10.3  | 0.0   | 53.1  | 0.0   | 6.5   | 0.0   | 29.2  | 0.0   | 6.6   | 0.0   |
|            | DPT                           | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| G 4        | DiPT                          | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 0.         | N,N-DET                       | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 11.7  | 100.0 |
|            | N,N-DMT                       | 0.0     | 0.0     | 0.0   | 0.2   | 10.7  | 47.1  | 0.0   | 0.0   | 0.0   | 5.2   | 0.0   | 0.6   | 0.0   | 34.3  | 5.9   |
|            | 4-Methoxy DiPT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 5-Methoxy DALT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 5-Methoxy DBT                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 5-Methoxy DET                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 8.0   | 66.9  |
|            | 5-Methoxy DMT                 | 0.0     | 0.0     | 0.0   | 0.0   | 4.4   | 17.5  | 0.0   | 0.0   | 0.0   | 6.0   | 0.0   | 41.7  | 0.0   | 3.9   | 0.4   |
|            | 5-Methoxy DPT                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| G 5        | 5-Methoxy DiBT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 5-Methoxy DiPT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 5-Methoxy EPT                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 5-Methoxy EiPT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 5-Methoxy MiPT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 10.6  | 95.7  |
|            | 6-Methoxy DiPT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 7-Methoxy DiPT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | N-Acetylserotonin             | 0.6     | 0.0     | 0.0   | 5.4   | 1.5   | 0.1   | 10.4  | 0.0   | 100.0 | 0.0   | 19.4  | 0.0   | 7.6   | 0.0   | 0.0   |
| G 6        | N-A cetyl tryptamine          | 0.1     | 0.0     | 0.0   | 23    | 0.0   | 0.0   | 12.4  | 0.0   | 100.0 | 0.0   | 22.5  | 0.0   | 5.9   | 0.0   | 0.0   |
|            | 4-Hydroxy DET                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 6.6   | 62.3  |
|            | 4 Hydroxy DMT                 | 0.0     | 0.0     | 0.0   | 0.0   | 5.6   | 26.2  | 0.0   | 0.0   | 0.0   | 2.6   | 0.0   | 0.0   | 0.0   | 0.0   | 02.5  |
|            |                               | 0.0     | 0.0     | 0.0   | 0.0   | 5.0   | 30.3  | 0.0   | 0.0   | 0.0   | 2.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 4-Hydroxy DPT                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| 67         | 4-Hydroxy DIP1                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 54.4  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| G /        | 4-Hydroxy MPT                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 2.5   | 0.0   | 7.6   | 78.0  |
|            | 4 Hudrow MDT                  | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 7.0   | 92.0  |
|            | 4-Hydroxy MIF1                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 8.9   | 85.0  |
|            | 5-Hydroxy DMT                 | 0.0     | 7.6     | 0.0   | 0.0   | 8.1   | 38.0  | 0.0   | 0.2   | 0.0   | 4.2   | 0.0   | 0.0   | 0.8   | 9.2   | 0.0   |
| C P        | rshocydin<br>6 Elwara DET     | 0.0     | 0.1     | 0.0   | 0.0   | 3.9   | 29.1  | 0.0   | 0.1   | 0.0   | 4.6   | 0.0   | 0.0   | 0.0   | 2.8   | 0.0   |
| Gð         | 0-FILLOFO DE I                | 0.0     | 2.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.1   | 0.0   | 0.0   | 0.0   | 5./   | 20.9  |
| 69         | 4. Acetoxy DET                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.1   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 3.9   |
|            | 4-Acetoxy DMT                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.5   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 4-Acetoxy DPT                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
| G 10       | 4-Acetoxy DiPT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 4-Acetoxy MET                 | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 2.2   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|            | 4-Acetoxy MiPT                | 0.0     | 0.0     | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 3.8   |

| GroupCompanyFieldFieldSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSintSint <th></th> <th></th> <th colspan="12">Neutral loss 90</th> <th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |                                 | Neutral loss 90 |       |       |       |       |       |       |       |       |        |        |        |        |        |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|--------|--------|--------|--------|--------|--------|
| 4-Mathyl-s-shyli 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Group      | Compound                        | 74.06           | 76.07 | 86.06 | 87.04 | 87.07 | 87.11 | 88.07 | 88.11 | 90.08 | 101.09 | 101.12 | 102.06 | 104.06 | 115.10 | 116.15 |
| G1 5 <sup>3</sup> Methody-entity<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Methyl-N:<br>Meth |            | 4-Methyl-α-ethyl<br>tryptamine  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 2.5   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| N:Methyl.rytanine 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G 1        | 5-Methoxy-a-ethyl<br>tryptamine | 0.0             | 0.0   | 0.0   | 0.0   | 0.1   | 3.1   | 1.7   | 0.0   | 0.0   | 8.0    | 0.0    | 0.0    | 0.0    | 0.1    | 0.0    |
| activity:pumine 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 01         | N-Methyl-N-<br>ethyltryptamine  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 4.3   | 0.0   | 19.6  | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 57-Dicklifer tryptanine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | α-Ethyltryptamine               | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 5-HC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>5,7-Dichloro tryptamine</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 5,7-Dichloro tryptamine         | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 5-Methagy ANT 5.2 2.7 3.3 0.0 21.8 0.0 1.86 0.0 0.1 9.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 5-IT                            | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 6-IT<br>P-Fluore trystamine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>5-Methoxy AMT</td> <td>5.2</td> <td>2.7</td> <td>3.3</td> <td>0.0</td> <td>21.8</td> <td>0.0</td> <td>13.6</td> <td>0.0</td> <td>0.1</td> <td>9.9</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 5-Methoxy AMT                   | 5.2             | 2.7   | 3.3   | 0.0   | 21.8  | 0.0   | 13.6  | 0.0   | 0.1   | 9.9    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G62 7-Fluore tryptamine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 6-IT                            | 0.4             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| Nonjeographamie 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | G 2        | 7-Fluoro tryptamine             | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.2   | 0.0    | 0.0    | 0.2    | 0.0    | 0.0    | 0.0    |
| Seriotain 7.8 0.0 8.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | Nonyloxytryptamine              | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| e-Methy trypamine 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | Serotonin                       | 7.8             | 0.0   | 8.0   | 0.0   | 1.0   | 0.0   | 1.1   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 3 E-Hydroxy-methyl<br>rypamine 60.3 89.4 26.0 0.0 6.3 0.0 32.6 0.0 1.1 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | α-Methyl tryptamine             | 0.0             | 0.0   | 0.1   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 3 Irypiamic 00.3 8.94 2.00 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 5-Hydroxy-N-methyl              | (0.2            | 80.4  | 26.0  | 0.0   | (2)   | 0.0   | 22.6  | 0.0   | 1.1   | 0.5    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| N-Methy tryptamine 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | G 3        | tryptamine                      | 60.5            | 89.4  | 26.0  | 0.0   | 0.5   | 0.0   | 32.0  | 0.0   | 1.1   | 0.5    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G4 DFT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | N-Methyl tryptamine             | 0.1             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G4 Diff 00 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | DPT                             | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.1    |
| N.V.DET 0.0 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G 4        | DIPT                            | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
| Avelowi Diff 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | N,N-DET                         | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 1.2   | 0.0   | 0.0   | 0.0   | 0.0    | 2.8    | 0.0    | 0.0    | 0.0    | 0.0    |
| 4-Methoxy Dh7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | N,N-DMT                         | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 5-Methoxy DALT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 4-Methoxy DiPT                  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 42.9   |
| 5-Methoxy DBT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 5-Methoxy DALT                  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| S-Methoxy DET 0.0 0.0 0.0 0.0 6.5 0.0 5.0 0.1 0.0 0.0 0.0 3.0 0.0   S-Methoxy DPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 5-Methoxy DBT                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| S-Methoxy DMT 0.1 20.2 0.0 0.0 3.4 0.0 30.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 5-Methoxy DET                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 6.5   | 0.0   | 50.8  | 0.0   | 0.1    | 0.0    | 0.0    | 0.0    | 3.0    | 0.0    |
| G 5 E-Methoxy DPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 5-Methoxy DMT                   | 0.1             | 20.2  | 0.0   | 0.0   | 3.4   | 0.0   | 30.3  | 0.0   | 0.0   | 1.2    | 0.0    | 0.0    | 0.0    | 0.8    | 0.0    |
| G 5 5-Methoxy DIPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | a -        | 5-Methoxy DP1                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 52.0   |
| G 40 E-Methoxy BPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65         | 5 Methoxy DIB1                  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 50.0   |
| S-Methoxy EPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.4 1.8 0.0 0.0 0.0 0.0   S-Methoxy MiPT 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | 5-Methowy DIF 1                 | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 30.0   |
| S-Methoxy EIP1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 5-Methoxy EPT                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 67.6  | 0.0   | 0.0   | 0.0   | 0.0    | 5.4    | 1.8    | 0.0    | 0.0    | 0.0    |
| 5-Methoxy MiPT 0.1 0.0 0.0 0.4 0.0 0.4 0.8 0.4 1.2 6.8 0.0   6-Methoxy DiPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 5-Methoxy EIP1                  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 100.0 | 0.0   | 0.4   | 0.0   | 0.0    | /.1    | 0.0    | 0.0    | 0.0    | 0.0    |
| 6-Methoxy DiPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 10.5 0.0 0.0 0.0 10.5   7-Methoxy DiPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>5-Methoxy MiPT</td> <td>0.1</td> <td>0.0</td> <td>0.0</td> <td>0.4</td> <td>0.0</td> <td>12.2</td> <td>0.0</td> <td>97.9</td> <td>0.0</td> <td>0.4</td> <td>0.8</td> <td>0.4</td> <td>1.2</td> <td>6.8</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 5-Methoxy MiPT                  | 0.1             | 0.0   | 0.0   | 0.4   | 0.0   | 12.2  | 0.0   | 97.9  | 0.0   | 0.4    | 0.8    | 0.4    | 1.2    | 6.8    | 0.0    |
| G 6 <i>N</i> -Acctylserotonin 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 6-Methoxy DiPT                  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.3   | 0.0   | 0.0   | 0.0   | 0.0    | 41.5   | 0.0    | 0.0    | 0.0    | 19.5   |
| G 6 //-Active brownin 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 7-Methoxy DIP1                  | 0.0             | 0.0   | 0.0   | 22.6  | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 10.0   | 21.4   | 0.0    | 51.1   |
| G 10 H-Hydroxy DET 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | G 6        | N-Acetyl tryptamine             | 0.0             | 2.6   | 21.6  | 23.0  | 5.1   | 0.0   | 17.8  | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 4-Hydrox DMT 0.1 0.0 0.0 3.5 0.0 17.5 0.0 75.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 4-Hydroxy DET                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 1.5   | 17.7   | 0.0    | 0.0    | 0.0    | 1.1    | 0.0    |
| 4-Hydroxy DPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 4-Hydroxy DMT                   | 0.1             | 0.0   | 0.0   | 0.0   | 3.5   | 0.0   | 17.5  | 0.0   | 75.9  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 4-Hydroxy DiPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 4-Hydroxy DPT                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 87.3   | 0.0    | 0.0    | 0.0    | 0.0    |
| G7 4-Hydroxy MET 0.0 1.4 2.0 0.0 16.5 0.0 1.3 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 4-Hydroxy DiPT                  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    |
| 4-Hydroxy MPT 0.0 0.0 0.0 0.0 0.0 0.0 1.6 21.2 0.0 0.0 0.0 1.2 0.0   4-Hydroxy MIPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 21.2 0.0 0.0 0.0 1.2 0.0   5-Hydroxy MIPT 0.0 0.0 0.0 0.2 0.0 0.0 1.4 19.3 0.0 0.0 0.0 0.0   5-Hydroxy DMT 5.1 0.2 0.0 0.0 4.5 0.0 35.8 0.0 58.5 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G 7        | 4-Hydroxy MET                   | 0.0             | 1.4   | 2.0   | 0.0   | 16.5  | 0.0   | 1.3   | 0.0   | 0.0   | 1.2    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 4-Hydroxy MPT 0.0 0.0 0.0 0.0 0.2 0.0 0.0 1.4 19.3 0.0 0.0 0.0 1.3 0.0   5-Hydroxy DMT 5.1 0.2 0.0 0.0 35.8 0.0 58.5 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <td></td> <td>4-Hydroxy MPT</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.6</td> <td>21.2</td> <td>0.0</td> <td>0.0</td> <td>0.0</td> <td>1.2</td> <td>0.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            | 4-Hydroxy MPT                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 1.6   | 21.2   | 0.0    | 0.0    | 0.0    | 1.2    | 0.0    |
| S-Hydroxy DMT 5.1 0.2 0.0 0.0 4.5 0.0 35.8 0.0 58.5 1.7 0.0 0.0 0.0 0.0 0.0   Psilocybin 2.5 0.1 0.0 0.0 7.5 0.0 20.5 0.0 87.2 1.1 0.0 0.0 0.0 0.0 0.0   G 8 6-Fluor DET 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 4-Hydroxy MiPT                  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.2   | 0.0   | 0.0   | 1.4   | 19.3   | 0.0    | 0.0    | 0.0    | 1.3    | 0.0    |
| Psilocybin 2.5 0.1 0.0 0.0 7.5 0.0 20.5 0.0 87.2 1.1 0.0 0.0 0.0 0.0 0.0   G 8 6-Fluoro DET 0.0 0.0 0.0 0.0 20.5 0.0 87.2 1.1 0.0 0.0 0.0 0.0 0.0   G 9 Sumatriptan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 5-Hydroxy DMT                   | 5.1             | 0.2   | 0.0   | 0.0   | 4.5   | 0.0   | 35.8  | 0.0   | 58.5  | 1.7    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 0 0-Filoro DE1 0.0 0.0 0.0 0.0 2.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 <t< td=""><td><b>C</b> 8</td><td>Psilocybin<br/>(Flavor DET</td><td>2.5</td><td>0.1</td><td>0.0</td><td>0.0</td><td>7.5</td><td>0.0</td><td>20.5</td><td>0.0</td><td>87.2</td><td>1.1</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>C</b> 8 | Psilocybin<br>(Flavor DET       | 2.5             | 0.1   | 0.0   | 0.0   | 7.5   | 0.0   | 20.5  | 0.0   | 87.2  | 1.1    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 10 Sumarpan 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 68         | 0-Fluoro DET                    | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 2.6   | 0.0   | 0.0   | 0.0   | 0.0    | 0.1    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 10<br>+Acetoxy DPT<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                      | 69         | A Agotowy DET                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 10 4.Acetoxy DPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 4-Acetoxy DE1                   | 0.0             | 0.0   | 9.6   | 0.0   | 84.6  | 0.0   | 1.6   | 0.0   | 0.0   | 1.3    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 10 4-Acetoxy DiPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 4-Acetoxy DPT                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 5.5    | 0.0    | 0.0    | 0.0    | 0.0    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | G 10       | 4-Acetoxy DiPT                  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 5.2    | 0.0    | 0.0    | 0.0    | 0.0    |
| <b>4-Acetoxy MET</b> 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 82.6 0.0 0.0 0.0 0.3 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 4-Acetoxy MET                   | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 82.6   | 0.0    | 0.0    | 0.0    | 0.3    | 0.0    |
| 4-Acetoxy MiPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.4 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | 4-Acetoxy MiPT                  | 0.0             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0    | 0.0    | 0.0    | 0.0    | 99.4   | 0.0    |

**Table A2.3 (continued).** The relative intensities for the m/z values in the tryptamine 90 V neutral loss spectra ranked most important in discrimination of the ten tryptamine clusters, from the average of ten replicates.

|            |                                   | Neutral le | oss 90 |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|------------|-----------------------------------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| Group      | Compound                          | 118.12     | 120.11 | 129.15 | 131.08 | 138.05 | 139.06 | 140.07 | 143.13 | 147.07 | 149.07 | 161.08 | 177.10 | 189.08 | 189.12 | 203.13 | 238.08 |
|            | 4-Methyl-α-ethyl tryptamine       | 0.0        | 0.1    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 5-Methoxy-a-ethyl                 |            |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|            | tryptamine                        | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 1.5    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 1        | N-Methyl-N-                       |            |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |
|            | ethyltryptamine                   | 0.0        | 0.8    | 0.0    | 75.1   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | a-Ethyltryptamine                 | 0.0        | 0.0    | 0.0    | 0.7    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 5.7-Dichloro tryptamine           | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 5-IT                              | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 5-Methoxy AMT                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 6-IT                              | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 2        | 7-Fluoro tryptamine               | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | Nonvloxytryptamine                | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | Sorotonin                         | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | a Mathal turntamina               | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 5 Hydrowy M mothyl                | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| <b>C</b> 2 | 5-Hydroxy-/v-methyl<br>tryptamine | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 63         | V Mothyl tymtomino                | 0.0        | 0.0    | 0.0    | 0.1    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | N-Methyl tryptannie               | 0.0        | 0.0    | 0.0    | 0.1    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | DF1                               | 0.0        | 0.0    | 0.3    | 09.3   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 4        | DIP1                              | 0.0        | 0.0    | 1.2    | 16.5   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | N,N-DET                           | 0.0        | 0.0    | 0.0    | 67.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | N,N-DM1                           | 0.0        | 0.0    | 0.0    | 93.2   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 4-Methoxy DIP1                    | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.2    | 0.0    | 0.0    | 67.8   | 0.0    | 0.0    | 0.0    | 33.0   | 0.0    |
|            | 5-Methoxy DAL1                    | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 58.6   | 0.0    | 0.0    | 1.5    | 7.0    | 0.0    |
|            | 5-Methoxy DBT                     | 0.0        | 0.0    | 94.3   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 80.6   | 0.0    | 0.0    | 0.0    | 98.7   | 0.0    |
|            | 5-Methoxy DET                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 1.2    | 23.9   | 0.0    | 0.0    |
|            | 5-Methoxy DM1                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.6    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 5        | 5-Methoxy DPT                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 2.2    | 0.0    | 0.0    | 90.3   | 0.0    | 2.9    | 45.5   | 21.3   | 0.0    |
|            | 5-Methoxy DiBT                    | 0.0        | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 81.1   | 0.0    | 0.0    | 0.0    | 20.0   | 0.0    |
|            | 5-Methoxy DiP1                    | 0.0        | 0.0    | 0.1    | 0.0    | 0.0    | 0.0    | 0.0    | 2.3    | 0.0    | 0.0    | 37.2   | 0.0    | 0.0    | 0.0    | 26.3   | 0.0    |
|            | 5-Methoxy EP1                     | 13.1       | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.8    | 34.0   | 27.6   | 0.0    |
|            | 5-Methoxy EiPT                    | 21.9       | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.8    | 0.3    | 0.0    | 67.4   | 0.0    | 0.0    | 0.0    | 66.7   | 0.0    |
|            | 5-Methoxy MiPT                    | 0.1        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 1.6    | 0.0    | 0.0    | 33.9   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 6-Methoxy DiPT                    | 0.0        | 0.0    | 0.1    | 0.0    | 0.0    | 0.0    | 0.0    | 2.9    | 0.0    | 0.0    | 91.4   | 0.0    | 0.0    | 0.0    | 91.3   | 0.0    |
|            | 7-Methoxy DiPT                    | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 2.4    | 0.0    | 0.0    | 34.1   | 0.0    | 0.0    | 0.0    | 21.1   | 0.0    |
|            | N-A cetylserotonin                | 0.0        | 0.0    | 0.0    | 0.0    | 0.8    | 0.3    | 2.0    | 0.0    | 0.2    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 6        | N A setal tamatania               | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.5    | 2.0    | 0.0    | 0.2    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | N-Acetyl tryptainine              | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 4-Hydroxy DE1                     | 37.7       | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 4-Hydroxy DMT                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.9    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 4-Hydroxy DPT                     | 0.7        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.7    | 94.1   | 0.0    | 0.0    | 0.0    | 0.0    | 16.5   | 2.2    | 0.0    |
|            | 4-Hydroxy DiPT                    | 0.1        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.1    | 53.7   | 0.0    | 0.0    | 0.0    | 1.7    | 25.3   | 0.0    | 0.0    |
| G 7        | 4-Hydroxy MET                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | 4-Hydroxy MPT                     | 42.1       | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 99.3   | 0.0    | 0.0    | 0.0    | 0.0    | 2.2    | 0.0    | 0.0    |
|            | 4-Hydroxy MiPT                    | 35.0       | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 87.7   | 0.0    | 0.0    | 0.0    | 0.0    | 17     | 0.0    | 0.0    |
|            | 5 Hydroxy DMT                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 00.7   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
|            | Psilocybin                        | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 95.7   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| G 8        | 6-Fluoro DET                      | 0.0        | 17.8   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 1.7    | 29.4   | 0.0    | 0.0    | 0.0    | 0.0    |
| 60         | Sumatrintan                       | 0.0        | 0.0    | 0.0    | 0.0    | 12.5   | 43.0   | 12.0   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  |
| 67         | A-Acetovy DFT                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 43.7   | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 96.5   | 0.0    | 0.0    | 0.0    |
|            | 4-Acetoxy DMT                     | 0.0        | 0.0    | 0.0    | 1.4    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    |
|            | A-Acetovy DPT                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 01.3   | 0.0    | 0.0    | 0.0    | 0.0    | 80.1   | 0.0    | 0.0    | 0.0    |
| G 10       | 4-Acetoxy Di T                    | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    | 0.0    | 37.8   | 0.0    | 0.0    | 0.0    |
| 0.10       | 4-Acetoxy MET                     | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 100.0  | 0.0    | 0.0    | 0.0    |
|            | 4 A actory MDT                    | 0.0        | 0.0    | 0.0    | 0.5    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 74.0   | 0.0    | 0.0    | 0.0    |
|            | 4-Acet0Xy MIP1                    | 0.0        | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | /4.0   | 0.0    | 0.0    | 0.0    |

**Table A2.3 (continued).** The relative intensities for the m/z values in the tryptamine 90 V neutral loss spectra ranked most important in discrimination of the ten tryptamine clusters, from the average of ten replicates.

| <b>Table A2.4</b> Probabilities of the external validation tryptamines being assigned to each group. |      |      |      |            |      |            |      |            |            |      |  |  |
|------------------------------------------------------------------------------------------------------|------|------|------|------------|------|------------|------|------------|------------|------|--|--|
|                                                                                                      | G 1  | G 2  | G 3  | <b>G 4</b> | G 5  | <b>G 6</b> | G 7  | <b>G 8</b> | <b>G 9</b> | G 10 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Acetoxy MPT                                                                                        | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Hydroxy MALT                                                                                       | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 1.00 | 0.00       | 0.00       | 0.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |
| 4-Propanoyloxy DMT                                                                                   | 0.00 | 0.00 | 0.00 | 0.00       | 0.00 | 0.00       | 0.00 | 0.00       | 0.00       | 1.00 |  |  |

| analysis of 4-hydroxy MALT.* The corresponding spectrum appears in Figure 2.11 |                                                                        |         |                |         |                |         |                |  |  |  |  |  |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------|---------|----------------|---------|----------------|---------|----------------|--|--|--|--|--|
|                                                                                |                                                                        |         | 4-Hydro        | xy MALT |                |         |                |  |  |  |  |  |
| m/z                                                                            | Rel. Int.<br>%                                                         | m/z     | Rel. Int.<br>% | m/z     | Rel. Int.<br>% | m/z     | Rel. Int.<br>% |  |  |  |  |  |
| 84.085                                                                         | 9.8335                                                                 | 231.487 | 0.2341         | 232.704 | 0.1431         | 248.283 | 0.2601         |  |  |  |  |  |
| 84.136                                                                         | 0.7674                                                                 | 231.524 | 0.2992         | 232.902 | 0.2081         | 248.320 | 0.2341         |  |  |  |  |  |
| 84.157                                                                         | 0.5333                                                                 | 231.560 | 0.2211         | 232.953 | 0.3122         | 249.168 | 0.1561         |  |  |  |  |  |
| 84.174                                                                         | 0.4032                                                                 | 231.767 | 0.1691         | 233.024 | 0.2862         | 263.154 | 0.4553         |  |  |  |  |  |
| 84.195                                                                         | 0.2992                                                                 | 231.807 | 0.2601         | 233.070 | 0.2341         | 291.188 | 0.4292         |  |  |  |  |  |
| 84.217                                                                         | 0.2732                                                                 | 231.873 | 0.4162         | 233.106 | 0.2081         | 299.082 | 0.0390         |  |  |  |  |  |
| 85.086                                                                         | 0.4943                                                                 | 231.946 | 0.3642         | 233.161 | 0.9755         | 314.239 | 0.4943         |  |  |  |  |  |
| 135.107                                                                        | 0.2081                                                                 | 232.012 | 0.2341         | 233.307 | 0.1561         | 373.115 | 0.3382         |  |  |  |  |  |
| 139.116                                                                        | 0.2732                                                                 | 232.053 | 0.2601         | 233.522 | 0.1691         | 457.295 | 0.2211         |  |  |  |  |  |
| 160.077                                                                        | 0.2081                                                                 | 232.088 | 0.2862         | 233.597 | 0.1951         | 458.289 | 0.2992         |  |  |  |  |  |
| 228.129                                                                        | 0.3122                                                                 | 232.155 | 14.2560        | 245.128 | 0.2992         | 473.292 | 0.8325         |  |  |  |  |  |
| 229.142                                                                        | 0.6764                                                                 | 232.373 | 0.6634         | 246.143 | 2.0812         | 473.603 | 0.1431         |  |  |  |  |  |
| 230.145                                                                        | 23.5822                                                                | 232.453 | 0.3772         | 246.268 | 0.3382         | 474.306 | 0.1431         |  |  |  |  |  |
| 230.370                                                                        | 0.5723                                                                 | 232.499 | 0.3122         | 246.341 | 0.1561         | 474.424 | 0.0520         |  |  |  |  |  |
| 231.153                                                                        | 100.0000                                                               | 232.578 | 0.3122         | 247.147 | 13.7357        | 475.294 | 0.3902         |  |  |  |  |  |
| 231.433                                                                        | 0.4292                                                                 | 232.614 | 0.2992         | 248.154 | 1.4958         | 475.438 | 0.1691         |  |  |  |  |  |
| *The full                                                                      | *The full name and structure are presented in Figure 2.1 in Chapter 2. |         |                |         |                |         |                |  |  |  |  |  |

**Table A2.5** Mass data (m/z values and their relative intensities) for the DART-HRMS analysis of 4-hydroxy MALT.\* The corresponding spectrum appears in Figure 2.11
| Table A | <b>3.1</b> Plant materials | analyzed and rel | ated taxonomica | l information incl | uding order, fa | amily, genus, and species, |
|---------|----------------------------|------------------|-----------------|--------------------|-----------------|----------------------------|
| and the | matrix of each.            | -                |                 |                    | •               |                            |
| Index   | Order                      | Family           | Genus           | Species            | Matrix          | Vendor                     |
|         |                            |                  |                 |                    | Dried harb      | Brewer's Best              |
|         |                            |                  |                 |                    | Dried herb      | Salem                      |
| 1       | Astorolog                  | Astorococo       | Antomisia       | absinthium         | Powder          | Penn Herb Co. Ltd.         |
| 1       | Asterales                  | Asteraceae       | Artemisia       | absininium         | Seed            | Strictly Medicinal Seeds   |
|         |                            |                  |                 |                    | Tincture        | Herb Pharm                 |
|         |                            |                  |                 |                    | Thicture        | Starwest Botanicals        |
| 2       | Asterales                  | Asteraceae       | Artemisia       | vulgaris           | Seed            | World Seed Supply          |
|         |                            | Asteraceae       |                 | zacatechichi       | Leaf            | World Seed Supply          |
|         |                            |                  | Calea           |                    | Seed pod        | World Seed Supply          |
| 3       | Asterales                  |                  |                 |                    | Seed            | World Seed Supply          |
|         |                            |                  |                 |                    | Syrup           | Hawaii Pharm               |
|         |                            |                  |                 |                    | Tincture        | Hawaii Pharm               |
|         |                            |                  |                 |                    | Capsule         | Swanson                    |
|         |                            |                  |                 |                    |                 | Mr. Botanicals             |
|         |                            |                  |                 |                    |                 | Schmerbals Herbals         |
|         |                            |                  |                 |                    | Leaf            | World Seed Supply          |
| 4       | Asterales                  | Asteraceae       | Lactuca         | virosa             |                 | Mr. Botanicals             |
|         |                            |                  |                 |                    | Powder          | Schmerbals Herbal          |
|         |                            |                  |                 |                    |                 | World Seed Supply          |
|         |                            |                  |                 |                    | Resin           | World Seed Supply          |
|         |                            |                  |                 |                    | Sood            | Schmerbals Herbal          |
|         |                            |                  |                 |                    | Seeu            | World Seed Supply          |
|         |                            |                  |                 |                    | Tincture        | Schmerbals Herbal          |

| Table A  | Table A3.1 (continued). Plant materials analyzed and related taxonomical information including order, family, genus, and |               |               |           |            |                      |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------|------------|----------------------|--|--|--|--|
| species, | and the matrix of e                                                                                                      | each.         | 1             |           |            |                      |  |  |  |  |
| Index    | Order                                                                                                                    | Family        | Genus         | Species   | Matrix     | Vendor               |  |  |  |  |
|          |                                                                                                                          |               |               |           |            | eBay                 |  |  |  |  |
|          |                                                                                                                          |               |               |           | Dried harb | Herb Stomp           |  |  |  |  |
|          |                                                                                                                          |               |               |           | Dried hero | Schmerbals Herbal    |  |  |  |  |
| 5        | Corronbullalaa                                                                                                           | Aizoaaaa      | Saalatium     | tontuosum |            | World Seed Supply    |  |  |  |  |
| 5        | Caryophynales                                                                                                            | Alzoaceae     | Scelellum     | ionuosum  | Extract    | World Seed Supply    |  |  |  |  |
|          |                                                                                                                          |               |               |           | Dowdor     | Herb Stomp           |  |  |  |  |
|          |                                                                                                                          |               |               |           | Powder     | World Seed Supply    |  |  |  |  |
|          |                                                                                                                          |               |               |           | Root       | eBay                 |  |  |  |  |
| 6        | Cucurbitales                                                                                                             | Cucurbitaceae | Echinocystis  | lobata    | Seed       | Prairie Moon Nursery |  |  |  |  |
| 7        | <b>F11</b>                                                                                                               | <b>F</b> 1    |               |           | G 1        | Herbal Flame         |  |  |  |  |
| /        | Fabales                                                                                                                  | Fabaceae      | Anadenaninera | peregrina | Seed       | World Seed Supply    |  |  |  |  |
|          | Fabales                                                                                                                  |               |               |           | Dorl       | Mr. Botanicals       |  |  |  |  |
|          |                                                                                                                          |               |               |           | Dalk       | Waking Herbs         |  |  |  |  |
| 8        |                                                                                                                          | Fabaceae      | Mimosa        | hostilis  | Powder     | Heavenly Products    |  |  |  |  |
|          |                                                                                                                          |               |               |           | Root       | Unknown              |  |  |  |  |
|          |                                                                                                                          |               |               |           | Seed       | Heavenly Products    |  |  |  |  |
| 0        | Contignalas                                                                                                              | Anogymagaaa   | Dioralima     | nitida    | Powder     | World Seed Supply    |  |  |  |  |
| 9        | Gentialiales                                                                                                             | Apocynaceae   | Гістанта      | пшаа      | Seed       | World Seed Supply    |  |  |  |  |
|          |                                                                                                                          |               |               |           | Bark       | World Seed Supply    |  |  |  |  |
| 10       | Continualos                                                                                                              | Anogymagaaa   | Vogognag      | africana  | Dowdor     | Amazon               |  |  |  |  |
| 10       | Gentialiales                                                                                                             | Apocynaceae   | voucungu      | ијпсипи   | rowuei     | Om-Chi               |  |  |  |  |
|          |                                                                                                                          |               |               |           | Seed       | World Seed Supply    |  |  |  |  |
|          |                                                                                                                          |               |               |           | Capsule    | Kratom Crazy         |  |  |  |  |
| 11       | Gentianales                                                                                                              | Rubiaceae     | Mitragyna     | speciosa  | Leaf       | Kratom King          |  |  |  |  |
| 11       | Generaliales                                                                                                             | inuulaceae    | μπαξγπα       | speciosa  |            | Authentic Kratom     |  |  |  |  |
|          |                                                                                                                          |               |               |           | Powder     | Herbal Flame         |  |  |  |  |
|          |                                                                                                                          |               |               |           |            | Kratom Underground   |  |  |  |  |

| Table A  | Table A3.1 (continued).       Plant materials analyzed and related taxonomical information including order, family, genus, and |                |                |             |          |                          |  |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|-------------|----------|--------------------------|--|--|--|--|
| species, | and the matrix of                                                                                                              | each.          |                |             |          |                          |  |  |  |  |
| Index    | Order                                                                                                                          | Family         | Genus          | Species     | Matrix   | Vendor                   |  |  |  |  |
| 12       | Gentianales                                                                                                                    | Rubiaceae      | Corynanthe     | johimbe     | Bark     | Bouncing Bear Botanicals |  |  |  |  |
|          |                                                                                                                                |                |                |             | Leaf     | Mr. Botanicals           |  |  |  |  |
| 13       | Gentianales                                                                                                                    | Rubiaceae      | Psychotria     | viridis     | Powder   | USA Botanicals           |  |  |  |  |
|          |                                                                                                                                |                |                |             | Seed     | World Seed Supply        |  |  |  |  |
|          |                                                                                                                                |                |                |             | Extract  | Schmerbals Herbals       |  |  |  |  |
| 14       | Lamiales                                                                                                                       | Lamiaceae      | Leonotis       | leonurus    | Flower   | World Seed Supply        |  |  |  |  |
| 1        |                                                                                                                                | Lumaccuc       | Leonons        |             | Leaf     | Herbal Fire Botanicals   |  |  |  |  |
|          |                                                                                                                                |                |                |             | Powder   | Herbal Fire Botanicals   |  |  |  |  |
| 15       | Lamiales                                                                                                                       | Lamiaceae      | Leonotis       | nepetifolia | Flower   | Schmerbals Herbals       |  |  |  |  |
| 16       | Lamiales                                                                                                                       | Lamiaceae      | Leonurus       | sibiricus   | Extract  | Mr. Botanicals           |  |  |  |  |
| 17       | Lamialas                                                                                                                       | Lamiacaaa      | Sahija         | divinorum   | Loof     | Arena Ethnobotanicals    |  |  |  |  |
| 17       | Laimales                                                                                                                       | Lannaceae      | Saivia         | aivinorum   | Leai     | Salvia Dragon            |  |  |  |  |
| 18       | Lamiales                                                                                                                       | Oleaceae       | Syringa        | vulgaris    | Leaf     | Unknown                  |  |  |  |  |
|          |                                                                                                                                | Malnishiaaaaa  | Banisteriopsis | caapi       | Leaf     | World Seed Supply        |  |  |  |  |
| 10       | Malpighialag                                                                                                                   |                |                |             | Powder   | World Seed Supply        |  |  |  |  |
| 19       | Maipigiliales                                                                                                                  | Maipigiliaceae |                |             | Rootbark | World Seed Supply        |  |  |  |  |
|          |                                                                                                                                |                |                |             | Seed     | World Seed Supply        |  |  |  |  |
| 20       | Malnighialag                                                                                                                   | Malnighiagaaa  | Diploptoms     | aghnanga    | Leaf     | Herbal Flame             |  |  |  |  |
| 20       | Maipigiliales                                                                                                                  | Maipigiliaceae | Dipiopierys    | cabrerana   | Powder   | USA Botanicals           |  |  |  |  |
|          |                                                                                                                                |                |                |             | Capsule  | Penn Herb Co. Ltd.       |  |  |  |  |
|          |                                                                                                                                |                |                |             | Extract  | Strictly Medicinal Seeds |  |  |  |  |
| 21       | Malpighiales                                                                                                                   | Passifloraceae | Turnera        | diffusa     | Loof     | Bouncing Bear Botanicals |  |  |  |  |
|          |                                                                                                                                |                |                |             | Leai     | Monterey Bay Spice Co.   |  |  |  |  |
|          |                                                                                                                                |                |                |             | Powder   | Monterey Bay Spice Co.   |  |  |  |  |
| 22       | Malvalas                                                                                                                       | Maluaaaa       | Althana        | officinalis | Loof     | Bouncing Bear Botanicals |  |  |  |  |
|          | wiaivales                                                                                                                      | waivaceae      | Allnued        | ojjičinalis |          | World Seed Supply        |  |  |  |  |
| 23       | Malvales                                                                                                                       | Malvaceae      | Thespesia      | populnea    | Seeds    | Amazon                   |  |  |  |  |

| and speci | and species, and the matrix of each. |                |             |             |               |                           |  |  |  |  |
|-----------|--------------------------------------|----------------|-------------|-------------|---------------|---------------------------|--|--|--|--|
| Index     | Order                                | Family         | Genus       | Species     | Matrix        | Vendor                    |  |  |  |  |
|           |                                      |                |             |             | Extract       | Unknown                   |  |  |  |  |
|           |                                      |                |             |             | Flower        | Schmerbals Herbals        |  |  |  |  |
|           |                                      |                |             |             | Leaves        | World Seed Supply         |  |  |  |  |
| 24        | Nymphaaalas                          | Nymphaaacaaa   | Nymphaoa    | caerulea    | Dowder        | Herb Stomp                |  |  |  |  |
| 24        | Tymphaeales                          | Tymphaeaceae   | Nymphaea    | cuernieu    | TOwder        | Lotus Extracts            |  |  |  |  |
|           |                                      |                |             |             | Resin         | Etsy (Schmerbals Herbals) |  |  |  |  |
|           |                                      |                |             |             | Seed          | World Seed Supply         |  |  |  |  |
|           |                                      |                |             |             | Tincture      | World Seed Supply         |  |  |  |  |
| 25        | Diporalas                            | Diportococo    | Dinar       | batal       | Leaf          | Live Plant                |  |  |  |  |
| 23        | Tiperates                            | Tiperaceae     | Tiper       | Delei       | Essential Oil | Healing Solutions         |  |  |  |  |
|           |                                      | Piperaceae     | Piper       |             | Capsule       | Starwest Botanicals       |  |  |  |  |
|           |                                      |                |             |             | Dowder        | Bouncing Bear Botanicals  |  |  |  |  |
|           |                                      |                |             |             | TOwder        | World Seed Supply         |  |  |  |  |
| 26        | Piperales                            |                |             | methysticum | Root          | Bouncing Bear Botanicals  |  |  |  |  |
|           |                                      |                |             |             | Tincture      | Herbal Island             |  |  |  |  |
|           |                                      |                |             |             |               | Root of Happiness         |  |  |  |  |
|           |                                      |                |             |             |               | Happy Kava Brand          |  |  |  |  |
| 27        | Ranunculales                         | Ranunculaceae  | Actaea      | racemosa    | Root          | Bouncing Bear Botanicals  |  |  |  |  |
|           |                                      |                |             |             |               | Berkshire CBD             |  |  |  |  |
| 28        | Rosales                              | Cannabaceae    | Cannahis    | sativa      | Flower        | Plain Jane                |  |  |  |  |
| 20        | Rosaies                              | Cannabaccae    | Cunnabis    | Sallva      | Tiower        | Stewart Rose Farms        |  |  |  |  |
|           |                                      |                |             |             | Capsule       | Herb Stomp                |  |  |  |  |
| 29        | Sapindales                           | Nitrariaceae   | Peganum     | harmala     | Seed          | World Seed Supply         |  |  |  |  |
|           |                                      |                |             |             | Powder        | Waking Herbs              |  |  |  |  |
| 30        | Solanales                            | Convolvulaceae | Argyreia    | nervosa     | Seed          | World Seed Supply         |  |  |  |  |
| 31        | Solanales                            | Convolvulaceae | Convolvulus | tricolor    | Seed          | World Seed Supply         |  |  |  |  |
| 32        | Solanales                            | Convolvulaceae | Іротоеа     | tricolor    | Seed          | World Seed Supply         |  |  |  |  |

**Table A3.1 (continued).** Plant materials analyzed and related taxonomical information including order, family, genus, and species, and the matrix of each.

| and speci | and species, and the matrix of each. |             |            |              |         |                          |  |  |  |  |  |
|-----------|--------------------------------------|-------------|------------|--------------|---------|--------------------------|--|--|--|--|--|
| Index     | Order                                | Family      | Genus      | Species      | Matrix  | Vendor                   |  |  |  |  |  |
| 33        | Solanales                            | Solanaceae  | Atropa     | baetica      | Seed    | eBay                     |  |  |  |  |  |
| 24        | Solonolog                            | Solonococo  | Atropa     | halladonna   | Seed    | World Seed Supply        |  |  |  |  |  |
| 54        | Solaliales                           | Solallaceae | Апори      | Denuaonna    | Extract | Hawaii Pharm             |  |  |  |  |  |
| 35        | Solanales                            | Solanaceae  | Atropa     | komarovii    | Seed    | Strictly Medicinal Seeds |  |  |  |  |  |
| 36        | Solanales                            | Solanaceae  | Brugmansia | arborea      | Seed    | Georgia Vines            |  |  |  |  |  |
| 37        | Solanales                            | Solanaceae  | Brugmansia | aurea        | Seed    | Seedman's                |  |  |  |  |  |
| 38        | Solanales                            | Solanaceae  | Brugmansia | sanguinea    | Seed    | Seedman's                |  |  |  |  |  |
| 39        | Solanales                            | Solanaceae  | Brugmansia | suaveolens   | Seed    | Seedman's                |  |  |  |  |  |
| 40        | Solanales                            | Solanaceae  | Brugmansia | versicolor   | Seed    | Seedman's                |  |  |  |  |  |
|           |                                      |             |            |              |         | World Seed Supply        |  |  |  |  |  |
| 41        | Solanales                            | Solanaceae  | Datura     | ceratocaula  | Seed    | Georgia Vines            |  |  |  |  |  |
|           |                                      |             |            |              |         | Hudson                   |  |  |  |  |  |
| 12        | Solanales                            | Solanaceae  | Datura     | discolor     | Seed    | World Seed Supply        |  |  |  |  |  |
| 42        | Solaliales                           | Solallaceac | Dalara     | uiscoioi     | Seeu    | Hudson                   |  |  |  |  |  |
| 13        | Solanales                            | Solanaceae  | Datura     | faror        | Seed    | World Seed Supply        |  |  |  |  |  |
| 45        | Solaliales                           | Solaliaceae | Datara     | Jerox        | Seeu    | Georgia Vines            |  |  |  |  |  |
|           |                                      |             |            |              |         | World Seed Supply        |  |  |  |  |  |
| 44        | Solanales                            | Solanaceae  | Datura     | innoxia      | Seed    | Georgia Vines            |  |  |  |  |  |
|           |                                      |             |            |              |         | Horizon Herbs            |  |  |  |  |  |
| 45        | Solanales                            | Solanaceae  | Datura     | leichhardtii | Seed    | Hudson                   |  |  |  |  |  |
| 46        | Solanales                            | Solanaceae  | Datura     | metel        | Seed    | Georgia Vines            |  |  |  |  |  |
| 47        | Solanales                            | Solanaceae  | Datura     | parajuli     | Seed    | Georgia Vines            |  |  |  |  |  |
| 48        | Solanales                            | Solanaceae  | Datura     | quercifolia  | Seed    | Hirts Gardens            |  |  |  |  |  |

**Table A3.1 (continued).** Plant materials analyzed and related taxonomical information including order, family, genus, and species, and the matrix of each.

**Table A3.1 (continued).** Plant materials analyzed and related taxonomical information including order, family, genus, and species, and the matrix of each.

| Index        | Order      | Family      | Genus             | Species     | Matrix        | Vendor                   |
|--------------|------------|-------------|-------------------|-------------|---------------|--------------------------|
|              |            |             |                   |             |               | World Seed Supply        |
|              |            |             |                   | stramonium  | Saad          | Hudson                   |
| 49           | Solanales  | Solanaceae  | Datura            |             | Seed          | Horizon Herbs            |
|              |            |             |                   |             |               | Georgia Vines            |
|              |            |             |                   |             | Powder        | Amazon Shopping Universe |
| 50 Solanales | Solanaceae | Datura      | i a la ti i       | Sood        | Georgia Vines |                          |
|              | Solaliales | Solallaceae | Daiura            | wrigniii    | Seeu          | Hudson                   |
| 51           | Solanales  | Solanaceae  | Hyocyamus         | albus       | Seed          | eBay                     |
| 52           | Solanales  | Solanaceae  | Hyocyamus         | aureus      | Seed          | eBay                     |
| 53           | Solanales  | Solanaceae  | Hyocyamus         | muticus     | Seed          | eBay                     |
| 54           | Solonolog  | Solonoooo   | <i>U</i> no mamus | nicon       | Sood          | Horizon Herbs            |
| 54           | Solaliales | Solallaceae | пуосуатиз         | niger       | Seeu          | Amazon                   |
| 55           | Solanales  | Solanaceae  | Hyocyamus         | pusillus    | Seed          | eBay                     |
| 56           | Solanales  | Solanaceae  | Mandragora        | autumnalis  | Seed          | Amazon                   |
| 57           | Solanales  | Solanaceae  | Mandragora        | officinarum | Seed          | eBay                     |



Figure A3.1 Representative DART high-resolution mass spectra of A. absinthium; A. vulgaris; C. zacatechichi; L. virosa; S. tortuosum; E. lobata; A. peregrina; M. hostilis; P. nitida; and V. africana.



**Figure A3.1 (continued).** Representative DART high-resolution mass spectra of *M. speciosa, C. johimbe; P. viridis; L. leonurus;* L. *nepetifolia; L. sibiricus; S. divinorum; S. vulgaris; B. caapi* and *D. cabrerana.* 





**Figure A3.1 (continued).** Representative DART high-resolution mass spectra of *T. diffusa*; *A. officinalis*; *T. populnea*; *N. caerulea*; *P. betel*; *P. methysticum*; *A. racemosa*; *C. sativa*; *P. harmala* and *A. nervosa*.





**Figure A3.1 (continued).** Representative DART high-resolution mass spectra of *C. tricolor*; *I. tricolor*; *A. baetica*; *A. belladonna*; *A. Komarovii*; *B. arborea*; *B. aurea*; *B. sanguinea*; *B. suaveolens* and *B. versicolor*.



**Figure A3.1 (continued).** Representative DART high-resolution mass spectra of *D. ceratocaula*; *D. discolor*; *D. ferox*; *D. innoxia*; *D. leichhardtii*; *D. metel*; *D. parajuli*; *D. quercifolia*; *D. stramonium* and *D. wrightii*.



**Figure A3.1 (continued).** Representative DART high-resolution mass spectra of *H. albus*; *H. aureus*; *H. muticus*; *H. niger*; *H. pusillus*; *M. autumnalis*; and *M. officinarum*.

| A. Absinthium dried herb |                 |          |                |             |                 |          |                 |  |  |  |  |
|--------------------------|-----------------|----------|----------------|-------------|-----------------|----------|-----------------|--|--|--|--|
|                          | <b>Dol Int</b>  | 11.      | Rol Int        | · uncu net) | Pol Int         |          | Rol Int         |  |  |  |  |
| m/z                      | Kel. IIIt.<br>% | m/z      | Kei. Int.<br>% | m/z         | Kel. IIIt.<br>% | m/z      | Kel. IIIt.<br>% |  |  |  |  |
| 61.0339                  | 0.0103          | 97.0941  | 0.2767         | 122.0742    | 0.0095          | 143.0943 | 0.3191          |  |  |  |  |
| 61.1041                  | 0.0107          | 97.2241  | 0.0263         | 123.0942    | 0.3783          | 144.0843 | 0.4655          |  |  |  |  |
| 65.0541                  | 0.0438          | 97.2841  | 0.0065         | 124.0642    | 0.2421          | 144.2443 | 0.0084          |  |  |  |  |
| 67.0540                  | 0.0014          | 98.0841  | 0.0098         | 124.1844    | 0.0044          | 145.0543 | 0.7781          |  |  |  |  |
| 69.0440                  | 0.0534          | 99.0541  | 0.3235         | 125.0942    | 0.3040          | 145.1243 | 0.8671          |  |  |  |  |
| 69.1440                  | 0.0014          | 100.0041 | 0.0032         | 125.2144    | 0.0106          | 145.2243 | 0.0725          |  |  |  |  |
| 70.0640                  | 1.1975          | 101.0641 | 0.3775         | 126.0642    | 0.1355          | 146.0843 | 0.3291          |  |  |  |  |
| 71.0640                  | 0.0891          | 101.1841 | 0.0154         | 126.1542    | 0.0597          | 147.0743 | 0.6616          |  |  |  |  |
| 72.0840                  | 0.7674          | 103.0541 | 0.1255         | 127.0442    | 1.4916          | 148.0745 | 0.0945          |  |  |  |  |
| 73.0640                  | 0.6615          | 103.1443 | 0.0076         | 127.1142    | 0.3728          | 148.1544 | 0.0112          |  |  |  |  |
| 75.0440                  | 0.1119          | 104.0741 | 0.9407         | 127.2342    | 0.0452          | 149.1142 | 0.3053          |  |  |  |  |
| 76.0640                  | 0.0463          | 104.1443 | 0.0242         | 129.0641    | 0.1430          | 149.9942 | 0.0414          |  |  |  |  |
| 77.0440                  | 0.0330          | 104.2343 | 0.0181         | 130.0643    | 2.5421          | 150.0942 | 0.6467          |  |  |  |  |
| 78.0440                  | 0.0058          | 105.0641 | 0.0328         | 131.0643    | 0.3623          | 150.2342 | 0.0023          |  |  |  |  |
| 79.0440                  | 0.0983          | 106.0641 | 0.0333         | 131.2243    | 0.0687          | 150.3142 | 0.0084          |  |  |  |  |
| 80.0540                  | 0.0216          | 107.0841 | 0.4690         | 132.1041    | 0.7577          | 151.1042 | 0.7084          |  |  |  |  |
| 81.0540                  | 0.1701          | 109.0340 | 0.2143         | 133.0643    | 1.0672          | 152.1144 | 0.2459          |  |  |  |  |
| 82.0642                  | 0.0089          | 109.0942 | 0.3018         | 133.2543    | 0.0238          | 152.2444 | 0.0029          |  |  |  |  |
| 82.9442                  | 0.0504          | 110.0742 | 0.1489         | 134.0843    | 0.1029          | 153.0844 | 1.2883          |  |  |  |  |
| 83.0840                  | 0.1984          | 112.0742 | 0.2875         | 134.2543    | 0.0046          | 154.0844 | 0.2562          |  |  |  |  |
| 84.0640                  | 0.3370          | 112.1542 | 0.0108         | 135.1043    | 2.7948          | 154.1544 | 0.1397          |  |  |  |  |
| 84.9540                  | 0.0434          | 113.0542 | 0.2253         | 135.2443    | 0.0045          | 155.0100 | 0.0098          |  |  |  |  |
| 85.0342                  | 0.3426          | 115.0542 | 0.4653         | 136.0643    | 1.2452          | 155.1044 | 0.2440          |  |  |  |  |
| 85.0942                  | 0.2451          | 115.1040 | 0.0043         | 136.1343    | 0.0522          | 156.1042 | 0.6189          |  |  |  |  |
| 86.0740                  | 0.0897          | 115.2442 | 0.0051         | 136.2843    | 0.0019          | 156.2744 | 0.0050          |  |  |  |  |
| 87.0539                  | 0.4205          | 116.0742 | 13.8110        | 137.0743    | 0.1261          | 157.1242 | 3.1300          |  |  |  |  |
| 89.0641                  | 3.6116          | 116.2242 | 0.1842         | 137.1243    | 1.3893          | 157.2644 | 0.0926          |  |  |  |  |
| 89.2541                  | 0.0134          | 117.0642 | 0.8002         | 137.2843    | 0.0285          | 158.1044 | 0.5273          |  |  |  |  |
| 90.0641                  | 0.4745          | 117.2442 | 0.0169         | 138.0843    | 0.0897          | 159.0544 | 0.0175          |  |  |  |  |
| 90.1641                  | 0.0234          | 118.0842 | 0.7446         | 138.1643    | 0.1461          | 159.1244 | 1.0228          |  |  |  |  |
| 91.0541                  | 0.2234          | 118.2042 | 0.0160         | 139.1043    | 0.1135          | 160.0944 | 0.1695          |  |  |  |  |
| 92.0641                  | 0.0010          | 119.0042 | 0.0022         | 139.2643    | 0.0077          | 162.0844 | 0.0447          |  |  |  |  |
| 93.0641                  | 0.5762          | 119.0842 | 1.1245         | 140.0843    | 0.1230          | 162.2244 | 0.0120          |  |  |  |  |
| 93.1341                  | 0.0331          | 120.0742 | 0.1923         | 141.1043    | 0.4994          | 164.0844 | 0.0880          |  |  |  |  |
| 95.0841                  | 0.0498          | 120.2042 | 0.0169         | 142.1043    | 0.2821          | 165.0844 | 0.1794          |  |  |  |  |
| 96.0541                  | 0.0574          | 121.0842 | 0.2530         | 142.1843    | 0.0708          | 165.1794 | 0.1468          |  |  |  |  |

| A. Absinthium dried herb |                |          |                |          |                |          |                |  |  |  |  |
|--------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z                      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |
| 165.2744                 | 0.0382         | 191.0678 | 0.9779         | 212.1045 | 6.6367         | 230.1047 | 6.6597         |  |  |  |  |
| 166.0944                 | 0.4472         | 191.1644 | 0.5446         | 212.3345 | 0.1007         | 230.3547 | 0.1483         |  |  |  |  |
| 166.1944                 | 0.0225         | 191.3244 | 0.0710         | 213.1145 | 1.0094         | 231.1247 | 96.4495        |  |  |  |  |
| 167.0944                 | 0.4670         | 192.1044 | 0.1558         | 213.3445 | 0.0028         | 231.3247 | 0.5285         |  |  |  |  |
| 167.2544                 | 0.0224         | 192.1644 | 0.1367         | 213.7345 | 0.0059         | 232.0389 | 0.2011         |  |  |  |  |
| 168.0944                 | 0.5062         | 193.0844 | 0.5299         | 214.1245 | 0.2000         | 232.1346 | 15.9118        |  |  |  |  |
| 168.1744                 | 0.0028         | 193.1544 | 0.0839         | 214.2545 | 0.0669         | 233.1346 | 6.6581         |  |  |  |  |
| 168.9844                 | 0.0152         | 194.0944 | 0.0978         | 215.1145 | 1.1508         | 234.1346 | 1.2035         |  |  |  |  |
| 169.1144                 | 0.1279         | 195.0946 | 1.1067         | 215.1895 | 0.0345         | 234.3546 | 0.1180         |  |  |  |  |
| 170.0943                 | 0.1279         | 196.0946 | 0.4054         | 215.3545 | 0.0732         | 235.1746 | 5.6539         |  |  |  |  |
| 170.3143                 | 0.0017         | 196.2794 | 0.0035         | 216.1245 | 0.7341         | 236.1746 | 0.9743         |  |  |  |  |
| 171.3143                 | 0.0122         | 197.1144 | 0.4790         | 216.3345 | 0.0046         | 237.1846 | 2.5558         |  |  |  |  |
| 173.1143                 | 2.1475         | 197.3344 | 0.0299         | 217.0770 | 1.2351         | 238.1946 | 0.4351         |  |  |  |  |
| 174.1143                 | 0.2684         | 198.1044 | 0.8119         | 217.1745 | 2.4711         | 238.3846 | 0.0381         |  |  |  |  |
| 174.2843                 | 0.0047         | 199.1044 | 0.4638         | 217.3645 | 0.0084         | 239.2346 | 0.7183         |  |  |  |  |
| 175.1245                 | 0.6912         | 199.1744 | 0.1831         | 218.1345 | 0.8625         | 240.2146 | 0.1565         |  |  |  |  |
| 176.0945                 | 0.1618         | 200.1244 | 0.4351         | 219.1045 | 0.4969         | 240.3046 | 0.0020         |  |  |  |  |
| 177.1443                 | 0.1193         | 201.1444 | 2.6985         | 219.1845 | 1.1242         | 241.1846 | 0.1742         |  |  |  |  |
| 178.0945                 | 0.0611         | 202.1244 | 0.5626         | 220.1145 | 0.1135         | 242.1846 | 0.0594         |  |  |  |  |
| 178.2443                 | 0.0028         | 202.2846 | 0.0224         | 220.1745 | 0.2415         | 243.1046 | 1.1888         |  |  |  |  |
| 179.0845                 | 0.3001         | 203.1746 | 3.4862         | 220.3347 | 0.0304         | 243.4048 | 0.0245         |  |  |  |  |
| 180.0845                 | 0.9556         | 203.3346 | 0.0804         | 221.1845 | 1.5384         | 244.1148 | 1.1306         |  |  |  |  |
| 181.1045                 | 0.7530         | 204.0244 | 0.0201         | 222.1245 | 0.0279         | 245.1246 | 10.8140        |  |  |  |  |
| 182.1045                 | 0.3731         | 204.1844 | 0.5458         | 222.2045 | 0.1876         | 246.1148 | 2.4493         |  |  |  |  |
| 183.0945                 | 1.3478         | 205.1046 | 0.6295         | 223.1247 | 0.7173         | 247.1246 | 28.5924        |  |  |  |  |
| 184.1145                 | 0.3584         | 205.1946 | 0.7580         | 224.1147 | 0.1773         | 248.1346 | 6.0560         |  |  |  |  |
| 185.1145                 | 2.8489         | 205.4046 | 0.0077         | 224.2545 | 0.0076         | 248.3297 | 0.1660         |  |  |  |  |
| 185.3245                 | 0.0452         | 206.1146 | 0.3616         | 225.1447 | 0.4686         | 248.4046 | 0.0170         |  |  |  |  |
| 186.1145                 | 1.1025         | 207.1546 | 0.5920         | 226.1247 | 0.0910         | 249.1646 | 14.9570        |  |  |  |  |
| 187.1245                 | 3.6293         | 208.1146 | 0.2473         | 226.2547 | 0.0173         | 250.0646 | 0.0367         |  |  |  |  |
| 188.0945                 | 0.0541         | 208.2096 | 0.1076         | 227.1347 | 1.3462         | 250.1548 | 2.5904         |  |  |  |  |
| 188.1645                 | 0.5228         | 209.1346 | 0.5293         | 227.4147 | 0.0055         | 251.1648 | 6.9254         |  |  |  |  |
| 188.2445                 | 0.0251         | 210.1046 | 0.2059         | 228.1247 | 0.3376         | 252.1847 | 1.1082         |  |  |  |  |
| 189.1345                 | 0.4723         | 210.3596 | 0.0035         | 228.1947 | 0.0074         | 253.1847 | 1.8786         |  |  |  |  |
| 189.2345                 | 0.0260         | 211.1345 | 0.4213         | 229.1047 | 21.5507        | 254.1847 | 0.3533         |  |  |  |  |
| 190.1244                 | 0.1646         | 211.3145 | 0.0032         | 230.0147 | 0.0432         | 255.2247 | 0.2778         |  |  |  |  |

| 1        | A. Absinthium dried herb |          |           |          |           |          |           |  |  |  |  |  |
|----------|--------------------------|----------|-----------|----------|-----------|----------|-----------|--|--|--|--|--|
|          | Rel. Int.                |          | Rel. Int. |          | Rel. Int. |          | Rel. Int. |  |  |  |  |  |
| m/z,     | %                        | m/z,     | %         | m/z,     | %         | m/z,     | %         |  |  |  |  |  |
| 256.1447 | 0.0979                   | 277.1146 | 0.5629    | 293.2148 | 0.3523    | 309.2849 | 0.0765    |  |  |  |  |  |
| 256.2447 | 0.0013                   | 277.2148 | 0.9249    | 294.2147 | 0.1845    | 309.3549 | 0.0096    |  |  |  |  |  |
| 257.2447 | 0.2926                   | 277.4548 | 0.0137    | 294.2949 | 0.0122    | 310.2449 | 0.1432    |  |  |  |  |  |
| 258.1647 | 0.0056                   | 277.5248 | 0.0367    | 295.1547 | 0.2914    | 311.2349 | 0.2122    |  |  |  |  |  |
| 258.2547 | 0.0382                   | 278.1248 | 0.5250    | 295.2347 | 0.9490    | 311.2749 | 0.0122    |  |  |  |  |  |
| 258.4347 | 0.0120                   | 278.2148 | 0.0442    | 296.1649 | 0.6648    | 312.1649 | 0.1864    |  |  |  |  |  |
| 259.1047 | 0.1386                   | 279.1546 | 2.9828    | 296.2549 | 0.3916    | 313.2149 | 0.1947    |  |  |  |  |  |
| 259.1947 | 0.1312                   | 279.2348 | 1.4216    | 296.4747 | 0.0346    | 314.1548 | 0.4680    |  |  |  |  |  |
| 260.1147 | 0.6115                   | 279.4048 | 0.0518    | 296.5247 | 0.0414    | 315.2248 | 0.5284    |  |  |  |  |  |
| 260.2547 | 0.0740                   | 280.1448 | 1.1641    | 297.1847 | 0.4220    | 315.4448 | 0.0045    |  |  |  |  |  |
| 261.1147 | 2.7603                   | 280.2446 | 0.0515    | 297.2449 | 0.0293    | 316.2250 | 0.7279    |  |  |  |  |  |
| 261.4647 | 0.0334                   | 281.1448 | 3.5252    | 298.1649 | 2.0457    | 317.2348 | 0.9132    |  |  |  |  |  |
| 262.1847 | 1.8883                   | 281.2448 | 0.9167    | 298.2749 | 0.3801    | 318.2248 | 0.3985    |  |  |  |  |  |
| 263.1347 | 11.7712                  | 282.1548 | 2.5584    | 298.4049 | 0.0497    | 319.2348 | 0.8498    |  |  |  |  |  |
| 263.3147 | 0.1482                   | 282.5246 | 0.0514    | 298.5049 | 0.0844    | 320.2350 | 0.4359    |  |  |  |  |  |
| 263.3849 | 0.2582                   | 283.1848 | 0.8467    | 299.1949 | 0.6079    | 321.2350 | 0.3583    |  |  |  |  |  |
| 264.1249 | 2.2729                   | 283.2648 | 0.7140    | 299.2749 | 0.6170    | 322.2450 | 0.2283    |  |  |  |  |  |
| 265.1547 | 6.4006                   | 284.1548 | 1.6367    | 300.1949 | 2.1376    | 323.2548 | 0.1833    |  |  |  |  |  |
| 266.1447 | 2.2691                   | 285.2748 | 1.8634    | 300.3749 | 0.0190    | 324.1750 | 0.0441    |  |  |  |  |  |
| 267.1547 | 1.8474                   | 286.0281 | 0.0019    | 300.4249 | 0.1467    | 324.2650 | 0.0835    |  |  |  |  |  |
| 268.2047 | 3.4775                   | 286.2148 | 0.4580    | 301.0949 | 0.3497    | 325.1950 | 0.0139    |  |  |  |  |  |
| 269.2147 | 1.1767                   | 287.0648 | 0.0194    | 301.2049 | 1.0255    | 325.2850 | 0.1409    |  |  |  |  |  |
| 270.2049 | 0.3680                   | 287.3048 | 0.8782    | 301.2949 | 1.2389    | 326.1850 | 0.1078    |  |  |  |  |  |
| 270.3849 | 0.0184                   | 287.4748 | 0.0223    | 302.2149 | 0.4476    | 326.2950 | 0.0448    |  |  |  |  |  |
| 271.2347 | 0.4174                   | 288.2448 | 0.2709    | 302.3049 | 0.5182    | 327.1950 | 0.1663    |  |  |  |  |  |
| 272.2547 | 0.1377                   | 289.1748 | 0.0683    | 303.1249 | 0.0374    | 327.2850 | 0.1140    |  |  |  |  |  |
| 272.4649 | 0.0017                   | 289.2348 | 0.2041    | 303.2249 | 0.3298    | 328.2250 | 0.1651    |  |  |  |  |  |
| 273.2446 | 0.1538                   | 289.4048 | 0.0107    | 303.3049 | 0.2373    | 328.3248 | 0.0867    |  |  |  |  |  |
| 274.1548 | 0.0199                   | 289.4748 | 0.0039    | 304.2349 | 0.2258    | 329.2350 | 0.2939    |  |  |  |  |  |
| 274.2648 | 0.0858                   | 290.1748 | 0.1165    | 305.2349 | 0.2478    | 329.3150 | 0.0432    |  |  |  |  |  |
| 274.4148 | 0.0129                   | 290.2748 | 0.0114    | 306.2749 | 0.0442    | 330.1650 | 0.1539    |  |  |  |  |  |
| 275.1046 | 0.0288                   | 290.4048 | 0.0030    | 307.1949 | 0.2504    | 330.2350 | 0.0960    |  |  |  |  |  |
| 275.2046 | 0.0707                   | 291.1948 | 0.3319    | 307.3449 | 0.0110    | 330.3350 | 0.0795    |  |  |  |  |  |
| 275.2648 | 0.0243                   | 291.4148 | 0.0381    | 308.2349 | 0.0703    | 331.0950 | 0.1289    |  |  |  |  |  |
| 276.1648 | 0.0641                   | 292.1148 | 0.0264    | 308.3315 | 0.0049    | 331.2250 | 0.3449    |  |  |  |  |  |
| 276.2748 | 0.0127                   | 292.1948 | 0.1285    | 309.2149 | 0.2255    | 332.2150 | 0.3682    |  |  |  |  |  |

| <b>1</b> | A. Absinthium dried herb |          |           |          |           |          |           |  |  |  |  |  |
|----------|--------------------------|----------|-----------|----------|-----------|----------|-----------|--|--|--|--|--|
| ,        | Rel. Int.                | ,        | Rel. Int. | ,        | Rel. Int. | ,        | Rel. Int. |  |  |  |  |  |
| m/z      | %                        | m/z      | %         | m/z      | %         | m/z      | %         |  |  |  |  |  |
| 332.2950 | 0.0110                   | 348.1851 | 0.2357    | 368.2652 | 0.3758    | 378.2651 | 0.0457    |  |  |  |  |  |
| 332.3550 | 0.0364                   | 348.2949 | 0.0281    | 369.2150 | 0.3846    | 379.2651 | 0.2284    |  |  |  |  |  |
| 333.2350 | 0.2885                   | 349.2151 | 0.4591    | 369.3452 | 0.0392    | 379.3451 | 0.1396    |  |  |  |  |  |
| 334.2350 | 0.3477                   | 349.3351 | 0.0143    | 369.4852 | 0.0070    | 380.2051 | 0.5685    |  |  |  |  |  |
| 334.3350 | 0.0225                   | 350.2351 | 0.3193    | 369.5650 | 0.0686    | 381.1951 | 0.4738    |  |  |  |  |  |
| 335.2049 | 0.4132                   | 350.3751 | 0.0092    | 370.2150 | 0.3129    | 382.1951 | 0.5930    |  |  |  |  |  |
| 336.1849 | 0.4307                   | 351.2451 | 0.2690    | 370.4337 | 0.0035    | 383.1951 | 0.2501    |  |  |  |  |  |
| 336.2549 | 0.0254                   | 352.2451 | 0.3985    | 371.1052 | 0.5709    | 383.2951 | 0.2392    |  |  |  |  |  |
| 336.4749 | 0.0798                   | 352.3251 | 0.0859    | 371.2250 | 0.1134    | 384.2051 | 0.2527    |  |  |  |  |  |
| 337.2049 | 0.2418                   | 353.2651 | 0.3502    | 371.3152 | 1.4951    | 384.2751 | 0.0191    |  |  |  |  |  |
| 337.2651 | 0.1562                   | 354.2651 | 0.3666    | 371.5852 | 0.0589    | 385.2151 | 0.6009    |  |  |  |  |  |
| 337.3451 | 0.0828                   | 354.3351 | 0.0189    | 371.6750 | 0.0400    | 385.4851 | 0.0196    |  |  |  |  |  |
| 338.1951 | 0.2772                   | 355.1950 | 0.0804    | 371.7551 | 0.0037    | 386.2153 | 0.2895    |  |  |  |  |  |
| 338.2649 | 0.0640                   | 355.2950 | 0.1886    | 371.8352 | 0.0089    | 387.1053 | 0.2876    |  |  |  |  |  |
| 338.3449 | 0.3800                   | 355.3550 | 0.0259    | 372.1152 | 0.2470    | 387.2253 | 0.2203    |  |  |  |  |  |
| 338.4849 | 0.0066                   | 356.2850 | 0.2995    | 372.2352 | 0.1564    | 387.6051 | 0.0300    |  |  |  |  |  |
| 338.6049 | 0.0801                   | 357.2050 | 0.3576    | 372.3152 | 0.4610    | 388.1351 | 2.5599    |  |  |  |  |  |
| 339.1849 | 0.2712                   | 357.2950 | 0.0231    | 372.4152 | 0.0166    | 388.3451 | 0.3120    |  |  |  |  |  |
| 339.3251 | 0.0190                   | 358.2152 | 0.2209    | 372.6450 | 0.0120    | 388.4351 | 0.0286    |  |  |  |  |  |
| 340.2651 | 0.0084                   | 358.3650 | 0.0124    | 372.8352 | 0.0141    | 388.5351 | 0.1446    |  |  |  |  |  |
| 340.3449 | 0.0957                   | 359.1350 | 0.6659    | 372.9152 | 0.0019    | 389.1553 | 93.3380   |  |  |  |  |  |
| 341.2149 | 0.1291                   | 359.2250 | 0.2333    | 373.1052 | 0.0392    | 390.1353 | 20.6033   |  |  |  |  |  |
| 341.3149 | 0.0533                   | 359.3850 | 0.0101    | 373.1752 | 0.2512    | 390.3351 | 0.0436    |  |  |  |  |  |
| 342.2151 | 0.1249                   | 359.5150 | 0.0493    | 373.3152 | 0.0525    | 391.1753 | 3.6669    |  |  |  |  |  |
| 343.1649 | 0.1543                   | 359.5850 | 0.0160    | 374.0952 | 0.1657    | 391.2951 | 0.5194    |  |  |  |  |  |
| 343.2351 | 0.0928                   | 360.1550 | 0.0648    | 374.1652 | 0.0156    | 391.3901 | 0.1086    |  |  |  |  |  |
| 343.3351 | 0.0886                   | 360.2252 | 0.2186    | 374.2652 | 0.2068    | 391.4851 | 0.2805    |  |  |  |  |  |
| 344.1751 | 0.1629                   | 361.1550 | 0.2831    | 375.1052 | 6.9154    | 392.1851 | 0.5212    |  |  |  |  |  |
| 344.2651 | 0.0050                   | 361.2352 | 0.2504    | 376.1451 | 1.2958    | 392.2853 | 0.0291    |  |  |  |  |  |
| 344.3951 | 0.0078                   | 362.1652 | 0.3070    | 376.2551 | 0.0211    | 393.1853 | 0.1063    |  |  |  |  |  |
| 345.1051 | 0.1814                   | 362.3750 | 0.0746    | 376.5751 | 0.0389    | 393.2652 | 0.1124    |  |  |  |  |  |
| 345.1849 | 0.4813                   | 363.2452 | 0.2324    | 377.1851 | 0.2867    | 393.3451 | 0.2478    |  |  |  |  |  |
| 346.1751 | 0.3813                   | 364.1952 | 0.6589    | 377.2551 | 0.0368    | 393.4453 | 0.1019    |  |  |  |  |  |
| 347.0851 | 0.0423                   | 365.2750 | 0.4684    | 377.4251 | 0.0849    | 394.1853 | 0.2769    |  |  |  |  |  |
| 347.1649 | 0.3560                   | 366.2652 | 0.5683    | 377.5251 | 0.0647    | 394.3353 | 0.1177    |  |  |  |  |  |
| 348.1149 | 0.0071                   | 367.2750 | 0.5611    | 378.1851 | 0.2822    | 395.0553 | 0.0170    |  |  |  |  |  |

|          |                | <i>A</i> . | Absinthiun     | n dried her | b              |          |                |  |  |  |  |
|----------|----------------|------------|----------------|-------------|----------------|----------|----------------|--|--|--|--|
| m/z      | Rel. Int.<br>% | m/z        | Rel. Int.<br>% | m/z         | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |
| 395.1953 | 0.3058         | 411.1952   | 0.1651         | 427.2253    | 0.1631         | 445.2154 | 1.9096         |  |  |  |  |
| 395.3653 | 0.2034         | 411.3852   | 0.4576         | 427.3953    | 0.3220         | 446.2254 | 0.6708         |  |  |  |  |
| 396.2053 | 0.6152         | 411.6254   | 0.0456         | 428.2353    | 0.2297         | 446.3854 | 0.0722         |  |  |  |  |
| 396.3753 | 0.0989         | 411.6954   | 0.0477         | 428.3955    | 0.1740         | 447.2254 | 0.5873         |  |  |  |  |
| 397.2152 | 0.3793         | 412.2052   | 0.3122         | 428.4953    | 0.0429         | 448.2054 | 0.3466         |  |  |  |  |
| 397.3852 | 0.4830         | 412.3852   | 0.1887         | 429.1653    | 1.3950         | 449.3254 | 0.4519         |  |  |  |  |
| 398.2152 | 0.7900         | 413.2152   | 0.5100         | 429.3853    | 0.5338         | 449.5154 | 0.0107         |  |  |  |  |
| 398.3950 | 0.1526         | 413.3754   | 0.0159         | 430.3853    | 0.1562         | 450.3454 | 0.2298         |  |  |  |  |
| 398.5452 | 0.0489         | 414.2154   | 0.2606         | 430.5553    | 0.0631         | 450.5154 | 0.0288         |  |  |  |  |
| 399.2252 | 0.5552         | 414.3854   | 0.1629         | 431.2253    | 0.5304         | 451.3454 | 0.1927         |  |  |  |  |
| 400.2352 | 0.2904         | 414.6152   | 0.0353         | 431.3853    | 0.0218         | 452.4854 | 0.0131         |  |  |  |  |
| 400.3552 | 0.0881         | 415.2254   | 0.4860         | 432.1853    | 0.2289         | 453.3554 | 0.1499         |  |  |  |  |
| 400.4452 | 0.0122         | 416.2354   | 0.2882         | 432.3153    | 0.0230         | 453.4654 | 0.0085         |  |  |  |  |
| 401.2252 | 0.3337         | 416.4452   | 0.0020         | 432.3955    | 0.0094         | 454.3454 | 0.0270         |  |  |  |  |
| 401.4652 | 0.0063         | 417.2553   | 0.2711         | 433.2555    | 0.5095         | 454.4956 | 0.0271         |  |  |  |  |
| 402.2252 | 0.1852         | 417.4553   | 0.0120         | 434.2653    | 0.1552         | 455.3556 | 0.2042         |  |  |  |  |
| 402.3352 | 0.0420         | 418.2253   | 0.2267         | 435.2253    | 0.2454         | 456.2854 | 0.0835         |  |  |  |  |
| 403.1952 | 0.0642         | 418.2953   | 0.0167         | 435.4655    | 0.0811         | 456.3754 | 0.0367         |  |  |  |  |
| 403.2952 | 0.1352         | 418.4553   | 0.0442         | 436.3353    | 0.1328         | 456.5156 | 0.0276         |  |  |  |  |
| 404.1552 | 0.1457         | 419.3253   | 0.2074         | 437.2753    | 0.1264         | 457.2256 | 0.2287         |  |  |  |  |
| 404.2952 | 0.0149         | 420.2553   | 0.0937         | 437.3455    | 0.0967         | 457.3054 | 0.0371         |  |  |  |  |
| 405.1952 | 0.0323         | 421.2753   | 0.1794         | 437.4755    | 0.0042         | 457.3754 | 0.1494         |  |  |  |  |
| 405.2752 | 0.2884         | 421.3453   | 0.0797         | 438.3552    | 0.1148         | 458.2354 | 0.0350         |  |  |  |  |
| 405.3752 | 0.1242         | 421.4653   | 0.0062         | 438.4852    | 0.0063         | 458.3853 | 0.0358         |  |  |  |  |
| 405.4552 | 0.0080         | 422.2053   | 0.0682         | 439.2903    | 0.1402         | 459.3053 | 0.6503         |  |  |  |  |
| 406.1952 | 0.1319         | 422.3453   | 0.1130         | 439.3652    | 0.2023         | 460.3053 | 0.2405         |  |  |  |  |
| 406.2852 | 0.1172         | 423.2753   | 0.1499         | 440.3654    | 0.0950         | 460.4955 | 0.0054         |  |  |  |  |
| 406.3854 | 0.0691         | 423.3753   | 0.5305         | 441.2154    | 0.0826         | 461.2053 | 0.2104         |  |  |  |  |
| 407.2652 | 0.1649         | 424.2653   | 0.0121         | 441.3754    | 0.2339         | 461.3055 | 0.3219         |  |  |  |  |
| 407.3652 | 0.1579         | 424.3753   | 0.3146         | 442.3054    | 0.1229         | 462.2055 | 0.2915         |  |  |  |  |
| 407.4652 | 0.0097         | 425.2053   | 0.0182         | 442.3854    | 0.1442         | 463.2155 | 0.3591         |  |  |  |  |
| 408.3752 | 0.0106         | 425.2853   | 0.1306         | 443.2954    | 0.1172         | 463.3153 | 0.1073         |  |  |  |  |
| 409.2052 | 0.1282         | 425.3753   | 0.8201         | 443.3854    | 0.2198         | 463.3855 | 0.0460         |  |  |  |  |
| 409.3852 | 0.5986         | 426.2253   | 0.0171         | 444.2354    | 0.1639         | 464.2255 | 0.3276         |  |  |  |  |
| 410.2252 | 0.2495         | 426.3153   | 0.1626         | 444.2954    | 0.0288         | 465.3255 | 0.2974         |  |  |  |  |
| 410.3854 | 0.1680         | 426.3853   | 0.0762         | 444.4054    | 0.0235         | 465.3955 | 0.0165         |  |  |  |  |

| A. Absinthium dried herb |                |          |                |          |                |          |                |  |  |  |  |
|--------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z.                     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |
| 465.4855                 | 0.0101         | 484.3956 | 0.0091         | 507.2155 | 0.3584         | 526.5658 | 0.0060         |  |  |  |  |
| 466.2355                 | 0.2080         | 484.5456 | 0.0495         | 507.5155 | 0.0248         | 527.2156 | 0.4552         |  |  |  |  |
| 466.5055                 | 0.0139         | 485.3354 | 0.1531         | 508.2355 | 0.2107         | 527.3456 | 0.0568         |  |  |  |  |
| 467.3255                 | 0.1847         | 485.4056 | 0.0319         | 508.3557 | 0.0648         | 527.5256 | 0.1740         |  |  |  |  |
| 467.3955                 | 0.1999         | 486.3254 | 0.1032         | 509.2255 | 0.9064         | 528.3458 | 0.3157         |  |  |  |  |
| 468.3955                 | 0.0060         | 486.3854 | 0.1006         | 509.5257 | 0.0790         | 529.2658 | 0.2265         |  |  |  |  |
| 468.4955                 | 0.0123         | 487.3156 | 0.0639         | 510.2257 | 0.2398         | 529.3256 | 0.2280         |  |  |  |  |
| 469.3353                 | 0.1448         | 487.3854 | 0.0395         | 510.4157 | 0.0195         | 531.3158 | 0.2573         |  |  |  |  |
| 470.3455                 | 0.0528         | 488.4656 | 0.0149         | 511.2557 | 0.9316         | 532.3358 | 0.2041         |  |  |  |  |
| 470.4155                 | 0.0419         | 488.5456 | 0.0203         | 511.3257 | 0.2488         | 533.3556 | 0.0962         |  |  |  |  |
| 470.5055                 | 0.0340         | 489.1956 | 0.1489         | 512.5757 | 0.0652         | 533.4407 | 0.0130         |  |  |  |  |
| 471.2455                 | 0.0834         | 489.3056 | 0.1039         | 513.3357 | 0.8361         | 533.5258 | 0.0618         |  |  |  |  |
| 471.3255                 | 0.1393         | 489.3756 | 0.0631         | 514.3357 | 0.8057         | 534.3656 | 0.1201         |  |  |  |  |
| 471.3855                 | 0.0120         | 490.2156 | 0.0195         | 515.3257 | 0.2751         | 535.3656 | 0.1193         |  |  |  |  |
| 471.4955                 | 0.0578         | 490.3254 | 0.1421         | 515.4257 | 0.0264         | 535.5358 | 0.0177         |  |  |  |  |
| 472.2555                 | 0.0151         | 491.2156 | 0.8755         | 516.3457 | 0.1715         | 536.3158 | 0.0514         |  |  |  |  |
| 472.3455                 | 0.1317         | 492.2256 | 0.2975         | 516.4257 | 0.0115         | 536.3858 | 0.0027         |  |  |  |  |
| 473.2255                 | 0.3139         | 493.2456 | 1.6431         | 517.3257 | 0.1648         | 536.5358 | 0.0179         |  |  |  |  |
| 473.3755                 | 0.0371         | 495.2656 | 3.4204         | 517.4457 | 0.0222         | 536.6058 | 0.0104         |  |  |  |  |
| 474.2857                 | 0.1962         | 496.3256 | 1.0950         | 518.3457 | 0.0859         | 537.3958 | 0.0687         |  |  |  |  |
| 474.3855                 | 0.1687         | 497.3256 | 1.5815         | 518.4357 | 0.0060         | 537.5058 | 0.0536         |  |  |  |  |
| 475.3055                 | 0.9827         | 498.3256 | 0.6004         | 518.5157 | 0.0272         | 537.6158 | 0.0079         |  |  |  |  |
| 475.3855                 | 0.0141         | 499.3256 | 0.2394         | 519.3457 | 0.0192         | 538.3158 | 0.0101         |  |  |  |  |
| 477.2955                 | 1.7277         | 499.4256 | 0.1228         | 519.4057 | 0.0990         | 538.3858 | 0.0895         |  |  |  |  |
| 477.5455                 | 0.0938         | 500.3455 | 0.1679         | 519.4957 | 0.0114         | 538.5058 | 0.0153         |  |  |  |  |
| 478.2455                 | 0.5623         | 501.3255 | 0.1301         | 520.3356 | 0.0998         | 539.3658 | 0.1100         |  |  |  |  |
| 478.5455                 | 0.0812         | 501.3957 | 0.0087         | 521.2156 | 0.0284         | 539.4958 | 0.0434         |  |  |  |  |
| 479.2956                 | 1.8615         | 501.4755 | 0.0067         | 521.3356 | 0.0900         | 540.4358 | 0.0521         |  |  |  |  |
| 480.3254                 | 0.5116         | 502.3355 | 0.0947         | 521.4056 | 0.0090         | 541.3457 | 0.1567         |  |  |  |  |
| 480.4954                 | 0.0179         | 503.3255 | 0.2145         | 521.5256 | 0.0644         | 541.5057 | 0.0040         |  |  |  |  |
| 481.3254                 | 0.3928         | 504.2857 | 0.0217         | 523.2456 | 0.2069         | 542.3357 | 0.1818         |  |  |  |  |
| 482.3354                 | 0.1169         | 504.4555 | 0.0241         | 523.3256 | 0.0066         | 542.4157 | 0.0038         |  |  |  |  |
| 482.4756                 | 0.0436         | 505.3255 | 0.1380         | 523.4056 | 0.0035         | 543.2857 | 0.1501         |  |  |  |  |
| 482.5256                 | 0.0059         | 505.3955 | 0.1009         | 524.2756 | 0.0918         | 543.4957 | 0.0323         |  |  |  |  |
| 483.3156                 | 0.1864         | 505.5755 | 0.0044         | 525.3358 | 0.0268         | 544.3057 | 0.1801         |  |  |  |  |
| 483.3856                 | 0.0390         | 506.2555 | 0.1546         | 525.4256 | 0.0187         | 544.3857 | 0.0129         |  |  |  |  |

| A. Absinthium dried herb |         |          |         |          |         |          |         |  |  |  |
|--------------------------|---------|----------|---------|----------|---------|----------|---------|--|--|--|
|                          | Rel Int |          | Rel Int |          | Rel Int |          | Rel Int |  |  |  |
| m/z                      | %       | m/z      | %       | m/z      | %       | m/z      | %       |  |  |  |
| 544.5257                 | 0.0296  | 560.4159 | 0.0171  | 572.5658 | 0.0334  | 589.4759 | 0.0030  |  |  |  |
| 545.3257                 | 0.2080  | 560.4959 | 0.0101  | 572.6658 | 0.0086  | 589.5959 | 0.0070  |  |  |  |
| 545.4757                 | 0.0067  | 561.3359 | 0.0977  | 573.2958 | 0.0157  | 590.3959 | 0.1011  |  |  |  |
| 545.7257                 | 0.0389  | 561.4159 | 0.0725  | 573.3758 | 0.0276  | 590.4859 | 0.0114  |  |  |  |
| 546.3157                 | 0.2550  | 561.4957 | 0.0552  | 573.4558 | 0.0241  | 591.3559 | 0.0449  |  |  |  |
| 547.3357                 | 0.1253  | 561.5658 | 0.0233  | 573.5758 | 0.0243  | 591.4359 | 0.0239  |  |  |  |
| 547.4657                 | 0.0688  | 562.3458 | 0.1852  | 574.4460 | 0.0259  | 591.4961 | 0.0303  |  |  |  |
| 548.3459                 | 0.1774  | 562.4358 | 0.0063  | 575.4260 | 0.0714  | 591.5859 | 0.0190  |  |  |  |
| 549.2757                 | 0.0356  | 562.5158 | 0.0057  | 576.3458 | 0.1214  | 592.3059 | 0.0164  |  |  |  |
| 549.3559                 | 0.0791  | 563.3558 | 0.1332  | 576.5158 | 0.0242  | 592.3759 | 0.0603  |  |  |  |
| 549.4959                 | 0.0598  | 563.5358 | 0.0028  | 577.3458 | 0.0781  | 592.4959 | 0.0280  |  |  |  |
| 550.3757                 | 0.0816  | 563.6158 | 0.0075  | 577.5258 | 0.0653  | 592.5759 | 0.0291  |  |  |  |
| 550.4459                 | 0.0082  | 564.3558 | 0.1663  | 578.3660 | 0.0552  | 592.6759 | 0.0160  |  |  |  |
| 550.5657                 | 0.0284  | 564.4358 | 0.0167  | 578.5260 | 0.0723  | 593.3859 | 0.0547  |  |  |  |
| 551.3759                 | 0.0795  | 564.5458 | 0.0034  | 579.3460 | 0.0599  | 593.5159 | 0.0451  |  |  |  |
| 552.3859                 | 0.1057  | 564.6358 | 0.0178  | 579.4160 | 0.0205  | 593.6659 | 0.0172  |  |  |  |
| 552.4959                 | 0.0586  | 565.3658 | 0.0477  | 579.5260 | 0.0509  | 594.3759 | 0.1329  |  |  |  |
| 552.5857                 | 0.0102  | 565.5258 | 0.0258  | 581.3658 | 0.1203  | 594.5159 | 0.0767  |  |  |  |
| 553.3157                 | 0.0664  | 566.3758 | 0.1896  | 581.4460 | 0.0132  | 595.3559 | 0.1050  |  |  |  |
| 553.3957                 | 0.0030  | 566.4458 | 0.0989  | 581.5358 | 0.0127  | 595.5259 | 0.0598  |  |  |  |
| 553.4957                 | 0.0483  | 566.5358 | 0.0636  | 582.3759 | 0.1352  | 596.5261 | 0.0469  |  |  |  |
| 554.4057                 | 0.0641  | 567.3858 | 0.1242  | 582.5159 | 0.0069  | 597.3661 | 0.0813  |  |  |  |
| 554.4957                 | 0.0570  | 567.5358 | 0.0073  | 583.3759 | 0.0710  | 597.4460 | 0.0516  |  |  |  |
| 554.5659                 | 0.0052  | 568.3858 | 0.3997  | 583.5259 | 0.0074  | 597.5259 | 0.0174  |  |  |  |
| 555.3859                 | 0.0815  | 568.5258 | 0.0108  | 583.5859 | 0.0180  | 598.3859 | 0.1063  |  |  |  |
| 555.5357                 | 0.0070  | 569.3858 | 0.1460  | 584.3959 | 0.1673  | 598.4561 | 0.0233  |  |  |  |
| 556.3659                 | 0.1294  | 569.4958 | 0.0073  | 585.3859 | 0.2081  | 598.5959 | 0.0097  |  |  |  |
| 556.4359                 | 0.0019  | 569.5660 | 0.0385  | 586.3959 | 0.1405  | 599.3761 | 0.0979  |  |  |  |
| 557.3357                 | 0.0700  | 569.6358 | 0.0328  | 586.4857 | 0.0039  | 599.5061 | 0.0479  |  |  |  |
| 557.4459                 | 0.0032  | 570.4058 | 0.0858  | 586.5559 | 0.0602  | 600.3861 | 0.3349  |  |  |  |
| 557.5359                 | 0.0280  | 570.5458 | 0.0727  | 587.3959 | 0.0074  | 600.5959 | 0.0027  |  |  |  |
| 558.3759                 | 0.0846  | 571.3958 | 0.0718  | 587.4909 | 0.0525  | 601.3761 | 0.1720  |  |  |  |
| 558.4457                 | 0.0208  | 571.4458 | 0.0036  | 587.5859 | 0.0357  | 601.5259 | 0.0187  |  |  |  |
| 559.3359                 | 0.0989  | 571.5558 | 0.0082  | 588.4059 | 0.0615  | 601.5961 | 0.0028  |  |  |  |
| 559.5459                 | 0.0124  | 572.3758 | 0.1099  | 588.5059 | 0.0614  | 601.8059 | 0.0033  |  |  |  |
| 560.3459                 | 0.1645  | 572.4458 | 0.0066  | 589.3959 | 0.0609  | 602.3861 | 0.0840  |  |  |  |

| 1        | 01             | 11       | 0              |             |                |          |                |
|----------|----------------|----------|----------------|-------------|----------------|----------|----------------|
|          |                | A.       | Absinthiun     | n dried her | b              |          |                |
| m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z         | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |
| 602.5261 | 0.0099         | 617.6460 | 0.0084         | 633.5961    | 0.0193         | 650.6060 | 0.0366         |
| 602.6261 | 0.0199         | 618.3960 | 0.0858         | 633.6961    | 0.0236         | 650.6862 | 0.0101         |
| 603.3060 | 0.0040         | 618.5260 | 0.0045         | 634.4661    | 0.0051         | 651.4160 | 0.0520         |
| 603.3958 | 0.0289         | 618.6762 | 0.0187         | 634.5461    | 0.0098         | 651.5462 | 0.0194         |
| 603.5360 | 0.0302         | 619.3860 | 0.0756         | 635.3161    | 0.0080         | 652.4062 | 0.0757         |
| 603.6260 | 0.0081         | 619.4560 | 0.0053         | 635.3861    | 0.0556         | 652.5462 | 0.0236         |
| 604.4058 | 0.0470         | 619.5360 | 0.0256         | 635.4661    | 0.0300         | 653.4162 | 0.0606         |
| 604.4660 | 0.0073         | 619.6660 | 0.0119         | 635.5461    | 0.0142         | 653.4962 | 0.0221         |
| 604.5458 | 0.0294         | 619.7560 | 0.0137         | 635.6161    | 0.0258         | 653.5660 | 0.0030         |
| 604.6560 | 0.0066         | 620.3260 | 0.0876         | 635.7061    | 0.0152         | 654.5662 | 0.0390         |
| 605.4060 | 0.0154         | 620.4560 | 0.0275         | 636.3961    | 0.0706         | 656.4962 | 0.0338         |
| 605.4660 | 0.0527         | 620.5360 | 0.0413         | 636.5661    | 0.0436         | 657.5062 | 0.0330         |
| 605.5460 | 0.0050         | 620.6660 | 0.0208         | 637.4061    | 0.0578         | 658.5062 | 0.0119         |
| 605.6360 | 0.0111         | 621.4060 | 0.0429         | 637.4761    | 0.0203         | 659.3862 | 0.0623         |
| 606.4060 | 0.1099         | 621.5460 | 0.0234         | 637.5661    | 0.0325         | 659.5262 | 0.0471         |
| 606.5360 | 0.0290         | 621.6660 | 0.0298         | 638.5761    | 0.0554         | 659.6162 | 0.0129         |
| 606.6260 | 0.0277         | 622.4062 | 0.0891         | 639.4661    | 0.0366         | 660.3962 | 0.0954         |
| 607.5060 | 0.0495         | 622.5460 | 0.0664         | 639.5661    | 0.0399         | 660.5362 | 0.0289         |
| 607.5760 | 0.0406         | 623.5659 | 0.0532         | 640.4761    | 0.0133         | 661.3962 | 0.0608         |
| 608.3760 | 0.2083         | 624.4759 | 0.0439         | 641.5661    | 0.0053         | 661.4762 | 0.0115         |
| 608.5260 | 0.0528         | 625.3961 | 0.0965         | 642.4863    | 0.0025         | 661.5562 | 0.0063         |
| 609.3160 | 0.0021         | 625.4861 | 0.0044         | 644.4960    | 0.0022         | 661.6517 | 0.0086         |
| 609.3860 | 0.0916         | 626.3359 | 0.4107         | 645.4862    | 0.0046         | 662.5662 | 0.0055         |
| 609.5160 | 0.0526         | 626.4061 | 0.0664         | 646.4160    | 0.0696         | 663.3862 | 0.0731         |
| 610.5460 | 0.0402         | 627.3361 | 0.2093         | 646.6162    | 0.0262         | 663.5562 | 0.0067         |
| 611.5360 | 0.0015         | 627.5061 | 0.0016         | 647.4060    | 0.0350         | 663.6262 | 0.0140         |
| 612.3560 | 2.7385         | 627.5861 | 0.0036         | 647.4762    | 0.0116         | 664.3862 | 0.0885         |
| 613.3660 | 1.0378         | 629.5059 | 0.0021         | 647.6360    | 0.0300         | 664.5662 | 0.0267         |
| 614.4160 | 0.0936         | 630.4161 | 0.1144         | 648.5160    | 0.0194         | 665.4161 | 0.0781         |
| 615.3860 | 0.0698         | 630.4961 | 0.0088         | 648.6360    | 0.0329         | 665.5161 | 0.0084         |
| 615.5060 | 0.0477         | 631.3959 | 0.0590         | 649.4160    | 0.0450         | 665.5961 | 0.0169         |
| 615.6460 | 0.0214         | 631.5059 | 0.0368         | 649.5160    | 0.0163         | 666.4161 | 0.0779         |
| 616.5160 | 0.0272         | 632.4161 | 0.1105         | 649.5960    | 0.0036         | 666.5561 | 0.0115         |
| 617.3860 | 0.0656         | 632.5361 | 0.0109         | 649.6760    | 0.0346         | 666.6461 | 0.0134         |
| 617.4460 | 0.0022         | 633.3961 | 0.0991         | 650.4160    | 0.0630         | 666.7161 | 0.0195         |
| 617.5160 | 0.0635         | 633.5161 | 0.0373         | 650.5460    | 0.0069         | 667.4561 | 0.0122         |

| A. Absinthium dried herb |                 |          |                 |             |                 |          |                |  |  |  |
|--------------------------|-----------------|----------|-----------------|-------------|-----------------|----------|----------------|--|--|--|
|                          | Dol Int         |          | Dol Int         | i uncu ner, | Dol Int         |          | Dol Int        |  |  |  |
| m/z                      | Kel. IIIt.<br>% | m/z      | Kel. IIIt.<br>% | m/z         | Kel. IIIt.<br>% | m/z      | кеі. III.<br>% |  |  |  |
| 667.5861                 | 0.0055          | 689.6462 | 0.0201          | 709.5963    | 0.0096          | 733.7864 | 0.0035         |  |  |  |
| 667.7161                 | 0.0071          | 690.4762 | 0.0073          | 710.4263    | 0.0309          | 734.3964 | 0.0071         |  |  |  |
| 668.4806                 | 0.0115          | 690.6564 | 0.0204          | 710.6063    | 0.0075          | 734.4964 | 0.0068         |  |  |  |
| 669.4961                 | 0.0010          | 691.4062 | 0.0369          | 711.6063    | 0.0046          | 734.6864 | 0.0034         |  |  |  |
| 669.5863                 | 0.0019          | 691.4962 | 0.0185          | 712.6063    | 0.0060          | 735.4064 | 0.0038         |  |  |  |
| 670.5161                 | 0.0077          | 691.6662 | 0.0283          | 713.5865    | 0.0086          | 735.4864 | 0.0035         |  |  |  |
| 671.3561                 | 0.0036          | 692.4764 | 0.0287          | 714.5863    | 0.0042          | 735.6764 | 0.0015         |  |  |  |
| 672.3661                 | 0.0216          | 692.5564 | 0.0157          | 715.6063    | 0.0022          | 736.4066 | 0.0130         |  |  |  |
| 673.6463                 | 0.0040          | 692.6462 | 0.0260          | 716.5963    | 0.0067          | 736.5164 | 0.0068         |  |  |  |
| 675.4063                 | 0.0493          | 693.6164 | 0.0166          | 717.5965    | 0.0061          | 737.4164 | 0.0190         |  |  |  |
| 675.5063                 | 0.0294          | 694.3962 | 0.0331          | 718.6763    | 0.0013          | 737.5064 | 0.0087         |  |  |  |
| 675.6761                 | 0.0336          | 694.4762 | 0.0075          | 719.3963    | 0.0053          | 737.6364 | 0.0015         |  |  |  |
| 675.7963                 | 0.0047          | 694.6064 | 0.0249          | 719.6565    | 0.0019          | 738.4264 | 0.0222         |  |  |  |
| 676.3663                 | 0.0357          | 694.7462 | 0.0227          | 719.7265    | 0.0020          | 738.6364 | 0.0050         |  |  |  |
| 676.4462                 | 0.0355          | 695.6264 | 0.0191          | 720.4563    | 0.0240          | 739.6464 | 0.0095         |  |  |  |
| 676.5261                 | 0.0567          | 695.7464 | 0.0074          | 720.5265    | 0.0042          | 740.4664 | 0.0583         |  |  |  |
| 676.6763                 | 0.0166          | 696.4462 | 0.0288          | 720.6665    | 0.0017          | 740.5366 | 0.0038         |  |  |  |
| 677.5463                 | 0.0355          | 696.5964 | 0.0252          | 720.7365    | 0.0014          | 740.6364 | 0.0212         |  |  |  |
| 677.6263                 | 0.0186          | 697.3964 | 0.0113          | 721.5363    | 0.0183          | 741.3664 | 0.0490         |  |  |  |
| 677.7063                 | 0.0372          | 697.4664 | 0.0156          | 721.6263    | 0.0037          | 741.4664 | 0.0328         |  |  |  |
| 678.5961                 | 0.0313          | 697.6262 | 0.0099          | 722.6365    | 0.0016          | 741.6266 | 0.0201         |  |  |  |
| 678.7263                 | 0.0299          | 699.4762 | 0.0150          | 722.7963    | 0.0071          | 742.3564 | 0.0046         |  |  |  |
| 679.4163                 | 0.0487          | 700.5264 | 0.0069          | 723.4365    | 0.0351          | 742.6164 | 0.0120         |  |  |  |
| 679.5963                 | 0.0288          | 703.6464 | 0.0027          | 723.6465    | 0.0038          | 743.6164 | 0.0315         |  |  |  |
| 680.4013                 | 0.0553          | 704.4064 | 0.0126          | 724.4465    | 0.0292          | 744.6166 | 0.0260         |  |  |  |
| 680.5963                 | 0.0331          | 704.6564 | 0.0012          | 724.6665    | 0.0019          | 745.6266 | 0.0213         |  |  |  |
| 681.4563                 | 0.0470          | 705.3964 | 0.0161          | 725.4565    | 0.0378          | 746.5464 | 0.0156         |  |  |  |
| 681.5963                 | 0.0233          | 705.6664 | 0.0086          | 725.6065    | 0.0140          | 746.6264 | 0.0061         |  |  |  |
| 682.4563                 | 0.0427          | 705.7564 | 0.0128          | 725.6665    | 0.0036          | 747.6265 | 0.0034         |  |  |  |
| 682.5563                 | 0.0182          | 706.3963 | 0.0176          | 727.5744    | 0.0218          | 748.6463 | 0.0082         |  |  |  |
| 683.4163                 | 0.0453          | 706.5863 | 0.0070          | 728.5964    | 0.0135          | 749.6365 | 0.0015         |  |  |  |
| 683.4863                 | 0.0220          | 706.6563 | 0.0045          | 729.5964    | 0.0162          | 750.6863 | 0.0040         |  |  |  |
| 684.5063                 | 0.0367          | 707.4063 | 0.0310          | 730.5464    | 0.0077          | 750.8165 | 0.0073         |  |  |  |
| 685.4962                 | 0.0311          | 707.6463 | 0.0061          | 732.6864    | 0.0039          | 751.4665 | 0.0042         |  |  |  |
| 688.5764                 | 0.0200          | 708.4363 | 0.0368          | 733.3964    | 0.0035          | 751.6863 | 0.0014         |  |  |  |
| 689.4062                 | 0.0325          | 708.6463 | 0.0091          | 733.4764    | 0.0035          | 752.6765 | 0.0015         |  |  |  |

| the corresponding spectrum appears in Figure 3.1. |                |          |                |          |                |          |                |  |  |  |
|---------------------------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| A. Absinthium dried herb                          |                |          |                |          |                |          |                |  |  |  |
| m/z                                               | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |  |
| 753.4165                                          | 0.0061         | 768.4866 | 0.0141         | 777.6866 | 0.0055         | 793.6067 | 0.0086         |  |  |  |
| 753.6165                                          | 0.0043         | 769.4166 | 0.0019         | 778.6266 | 0.0060         | 794.6167 | 0.0167         |  |  |  |
| 754.6465                                          | 0.0108         | 770.6064 | 0.0044         | 778.6966 | 0.0172         | 795.6267 | 0.0032         |  |  |  |
| 755.6265                                          | 0.0031         | 771.6364 | 0.0043         | 779.6366 | 0.0090         | 796.6267 | 0.0089         |  |  |  |
| 756.5165                                          | 0.0098         | 772.6366 | 0.0112         | 779.7066 | 0.0012         | 796.7067 | 0.0053         |  |  |  |
| 756.6265                                          | 0.0182         | 773.6364 | 0.0080         | 780.7066 | 0.0043         | 797.3567 | 0.0026         |  |  |  |
| 757.6265                                          | 0.0138         | 775.6164 | 0.0151         | 781.6166 | 0.0015         | 797.4367 | 0.0185         |  |  |  |
| 761.3767                                          | 0.0340         | 776.4566 | 0.0418         | 787.4366 | 0.0029         | 798.4367 | 0.0230         |  |  |  |
| 762.4767                                          | 0.0049         | 776.6166 | 0.0123         | 789.3865 | 0.0159         | 806.4467 | 0.0100         |  |  |  |
| 763.4765                                          | 0.0117         | 776.6866 | 0.0099         | 790.6167 | 0.0028         | 812.6366 | 0.0062         |  |  |  |
| 767.4765                                          | 0.0096         | 777.6166 | 0.0091         | 792.6067 | 0.0077         | 885.7771 | 0.0077         |  |  |  |

| A. Absinthium powder |                |          |                |          |                |          |                |  |  |  |
|----------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z                  | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |  |
| 61.0339              | 0.0017         | 88.0741  | 0.1003         | 111.0540 | 0.0217         | 130.1543 | 0.3889         |  |  |  |
| 62.0639              | 0.0060         | 88.2041  | 0.0067         | 111.1140 | 0.3157         | 130.2343 | 0.0592         |  |  |  |
| 65.0541              | 0.0418         | 89.0641  | 4.9308         | 111.2342 | 0.0341         | 131.0643 | 1.1208         |  |  |  |
| 67.0540              | 0.0300         | 89.2541  | 0.0803         | 112.0742 | 0.5919         | 131.2243 | 0.1679         |  |  |  |
| 68.0538              | 0.0182         | 90.0641  | 2.2307         | 113.0542 | 0.9095         | 132.1041 | 3.0695         |  |  |  |
| 68.9640              | 0.0436         | 90.1641  | 0.0613         | 114.0842 | 0.2834         | 133.0643 | 2.5699         |  |  |  |
| 69.0440              | 0.8062         | 91.0541  | 0.5715         | 114.2242 | 0.0121         | 133.2543 | 0.0313         |  |  |  |
| 70.0640              | 4.6129         | 92.0641  | 0.0297         | 115.0542 | 1.6189         | 134.0843 | 0.3265         |  |  |  |
| 70.1340              | 0.0484         | 93.0641  | 1.3884         | 115.1040 | 0.1999         | 134.1943 | 0.0017         |  |  |  |
| 71.0640              | 0.5466         | 94.0641  | 0.0578         | 115.2442 | 0.0635         | 134.2543 | 0.0430         |  |  |  |
| 72.0840              | 5.3919         | 94.1741  | 0.0050         | 116.0742 | 54.7874        | 135.1043 | 5.9879         |  |  |  |
| 72.2040              | 0.0759         | 95.0841  | 0.6408         | 116.2242 | 0.6204         | 135.2443 | 0.0027         |  |  |  |
| 72.9940              | 0.0322         | 96.0541  | 0.7428         | 117.0642 | 3.6290         | 135.9943 | 0.0093         |  |  |  |
| 73.0640              | 1.3401         | 97.0341  | 1.3293         | 117.2442 | 0.1142         | 136.0643 | 2.7938         |  |  |  |
| 74.0640              | 0.2253         | 97.0941  | 0.8667         | 118.0842 | 3.2803         | 136.1343 | 0.5150         |  |  |  |
| 74.1640              | 0.0071         | 97.2841  | 0.0315         | 118.2042 | 0.1606         | 136.2843 | 0.0091         |  |  |  |
| 75.0440              | 0.9216         | 98.0841  | 0.6196         | 119.0842 | 4.1093         | 136.4043 | 0.0291         |  |  |  |
| 76.0640              | 0.3093         | 99.0541  | 2.3777         | 120.0742 | 0.7624         | 137.0743 | 0.6507         |  |  |  |
| 77.0440              | 0.1141         | 100.0841 | 0.1198         | 120.2042 | 0.0573         | 137.1243 | 2.6931         |  |  |  |
| 78.0440              | 0.0033         | 100.2341 | 0.0221         | 121.0842 | 0.8966         | 137.2143 | 0.0301         |  |  |  |
| 79.0440              | 0.2757         | 101.0641 | 1.2435         | 122.0742 | 0.0992         | 137.2843 | 0.1377         |  |  |  |
| 79.1242              | 0.0056         | 101.1841 | 0.0785         | 123.0942 | 1.5863         | 138.0843 | 0.3310         |  |  |  |
| 80.0540              | 0.1091         | 102.0741 | 0.0981         | 124.0642 | 0.5116         | 138.1643 | 0.3375         |  |  |  |
| 81.0540              | 1.2838         | 103.0541 | 1.0706         | 124.1844 | 0.0220         | 139.1043 | 0.7014         |  |  |  |
| 81.1442              | 0.0095         | 104.0741 | 5.4601         | 125.0942 | 1.3765         | 139.2243 | 0.0318         |  |  |  |
| 82.0642              | 0.0739         | 104.2343 | 0.0720         | 125.2144 | 0.0409         | 139.2643 | 0.0515         |  |  |  |
| 82.9442              | 0.0506         | 105.0641 | 0.6238         | 126.0642 | 1.6122         | 140.0843 | 0.5596         |  |  |  |
| 83.0840              | 0.6394         | 105.1843 | 0.0449         | 126.1542 | 0.1369         | 140.3143 | 0.0255         |  |  |  |
| 84.0640              | 1.1107         | 106.0641 | 0.1854         | 127.0442 | 11.1922        | 141.1043 | 1.6087         |  |  |  |
| 84.9540              | 0.0557         | 107.0841 | 1.2515         | 127.1142 | 1.6663         | 142.1043 | 1.9899         |  |  |  |
| 85.0342              | 6.4045         | 108.0640 | 0.1446         | 127.2342 | 0.0241         | 142.1843 | 0.2560         |  |  |  |
| 85.0942              | 0.3430         | 109.0340 | 4.4457         | 128.0844 | 0.8781         | 143.0343 | 0.0281         |  |  |  |
| 86.0740              | 1.2786         | 109.0942 | 1.6283         | 128.1843 | 0.0766         | 143.0943 | 1.4383         |  |  |  |
| 86.1742              | 0.0037         | 109.2042 | 0.0089         | 129.0641 | 0.8430         | 144.0843 | 1.8458         |  |  |  |
| 87.0539              | 1.4816         | 110.0742 | 1.0415         | 129.2141 | 0.0053         | 144.1743 | 0.0043         |  |  |  |
| 87.1641              | 0.0543         | 110.2142 | 0.0987         | 130.0643 | 9.0599         | 144.2443 | 0.0150         |  |  |  |

|          | sinding spec                                            | a uni uppedi | A. Absinthi    | <i>um</i> powder | A Absinthium nowder |          |                |  |  |  |  |  |  |  |  |
|----------|---------------------------------------------------------|--------------|----------------|------------------|---------------------|----------|----------------|--|--|--|--|--|--|--|--|
|          | Rel Int         Rel Int         Dol Int         Dol Int |              |                |                  |                     |          |                |  |  |  |  |  |  |  |  |
| m/z      | Kel. Int.<br>%                                          | m/z          | Kel. Int.<br>% | m/z              | Kel. Int.<br>%      | m/z      | Kel. Int.<br>% |  |  |  |  |  |  |  |  |
| 145.0543 | 10.2977                                                 | 163.0644     | 6.8475         | 183.0945         | 2.1110              | 204.1146 | 0.0597         |  |  |  |  |  |  |  |  |
| 145.1243 | 1.0410                                                  | 163.1344     | 1.5404         | 184.1145         | 1.1476              | 204.1844 | 1.1315         |  |  |  |  |  |  |  |  |
| 145.2243 | 0.1806                                                  | 164.0844     | 0.6281         | 185.1145         | 2.5841              | 205.0044 | 0.0026         |  |  |  |  |  |  |  |  |
| 145.9868 | 0.0033                                                  | 164.1644     | 0.0951         | 185.3245         | 0.0106              | 205.1046 | 1.2828         |  |  |  |  |  |  |  |  |
| 146.0843 | 1.7296                                                  | 165.0844     | 0.9747         | 186.1145         | 1.0852              | 205.1946 | 2.9907         |  |  |  |  |  |  |  |  |
| 147.0743 | 1.4222                                                  | 165.1794     | 0.6582         | 187.1245         | 2.1322              | 205.4046 | 0.0154         |  |  |  |  |  |  |  |  |
| 147.2345 | 0.0032                                                  | 165.2744     | 0.0920         | 188.0945         | 0.2066              | 206.1146 | 0.6438         |  |  |  |  |  |  |  |  |
| 148.0745 | 0.3261                                                  | 166.0944     | 1.2721         | 188.1645         | 0.8306              | 206.2044 | 0.3082         |  |  |  |  |  |  |  |  |
| 149.1142 | 1.0160                                                  | 166.1944     | 0.1374         | 189.1345         | 1.0700              | 207.1546 | 1.0468         |  |  |  |  |  |  |  |  |
| 149.9942 | 0.0477                                                  | 167.0944     | 2.0030         | 189.4045         | 0.0078              | 208.1146 | 0.4653         |  |  |  |  |  |  |  |  |
| 150.0942 | 1.1647                                                  | 167.2544     | 0.1195         | 190.1244         | 0.4931              | 208.2096 | 0.1325         |  |  |  |  |  |  |  |  |
| 150.1542 | 0.1218                                                  | 168.0944     | 1.4610         | 191.0678         | 0.9317              | 209.1346 | 1.2652         |  |  |  |  |  |  |  |  |
| 150.2342 | 0.0065                                                  | 168.1744     | 0.0472         | 191.1644         | 0.8660              | 209.2746 | 0.0244         |  |  |  |  |  |  |  |  |
| 150.3142 | 0.0438                                                  | 168.9844     | 0.0305         | 191.3244         | 0.1436              | 210.1046 | 0.5900         |  |  |  |  |  |  |  |  |
| 151.1042 | 2.6041                                                  | 169.1144     | 3.1163         | 192.1044         | 0.3768              | 210.1646 | 0.1208         |  |  |  |  |  |  |  |  |
| 152.1144 | 0.7102                                                  | 170.0143     | 0.0035         | 192.1644         | 0.0314              | 210.3596 | 0.0348         |  |  |  |  |  |  |  |  |
| 153.0844 | 5.4541                                                  | 170.0943     | 1.2377         | 192.2646         | 0.0183              | 211.0245 | 0.0027         |  |  |  |  |  |  |  |  |
| 153.2044 | 0.0612                                                  | 170.1643     | 0.1157         | 193.0844         | 1.3417              | 211.1345 | 1.0074         |  |  |  |  |  |  |  |  |
| 154.0844 | 0.5804                                                  | 171.1543     | 0.4218         | 193.1544         | 0.8520              | 212.1045 | 16.0029        |  |  |  |  |  |  |  |  |
| 154.1544 | 0.5387                                                  | 171.3143     | 0.0242         | 194.0944         | 0.3799              | 212.3345 | 0.2399         |  |  |  |  |  |  |  |  |
| 155.0100 | 0.1094                                                  | 172.1243     | 0.4757         | 195.0946         | 3.4363              | 213.0145 | 0.0099         |  |  |  |  |  |  |  |  |
| 155.1044 | 1.0659                                                  | 173.1143     | 2.0363         | 196.0946         | 0.7657              | 213.1145 | 2.4834         |  |  |  |  |  |  |  |  |
| 156.1042 | 2.1936                                                  | 174.1143     | 1.0136         | 196.2794         | 0.0128              | 213.3445 | 0.0096         |  |  |  |  |  |  |  |  |
| 156.1744 | 0.2103                                                  | 174.2843     | 0.0028         | 197.1144         | 1.5898              | 213.7345 | 0.0398         |  |  |  |  |  |  |  |  |
| 156.2744 | 0.0295                                                  | 174.9843     | 0.0037         | 197.3344         | 0.0627              | 214.0245 | 0.0245         |  |  |  |  |  |  |  |  |
| 157.1242 | 3.8769                                                  | 175.1245     | 1.4523         | 198.1044         | 5.6610              | 214.1245 | 0.6046         |  |  |  |  |  |  |  |  |
| 157.2644 | 0.0815                                                  | 176.0945     | 0.4336         | 199.1044         | 0.5942              | 214.2545 | 0.2322         |  |  |  |  |  |  |  |  |
| 158.1044 | 1.2304                                                  | 177.1443     | 1.1199         | 199.1744         | 0.7578              | 215.1145 | 1.2022         |  |  |  |  |  |  |  |  |
| 159.0544 | 0.5742                                                  | 178.0945     | 0.3188         | 199.3844         | 0.0025              | 215.2645 | 0.0172         |  |  |  |  |  |  |  |  |
| 159.1244 | 2.6671                                                  | 178.1694     | 0.0276         | 199.4046         | 0.0073              | 215.3245 | 0.1016         |  |  |  |  |  |  |  |  |
| 160.0944 | 0.7079                                                  | 178.2443     | 0.0139         | 200.1244         | 1.0553              | 216.1245 | 4.9139         |  |  |  |  |  |  |  |  |
| 160.2342 | 0.0029                                                  | 179.0845     | 0.9860         | 201.1444         | 2.4637              | 216.3345 | 0.0087         |  |  |  |  |  |  |  |  |
| 161.0844 | 0.4566                                                  | 180.0845     | 12.7418        | 202.1244         | 0.8159              | 217.1745 | 4.8842         |  |  |  |  |  |  |  |  |
| 161.1644 | 0.7974                                                  | 181.0032     | 0.0022         | 202.2846         | 0.0717              | 218.0445 | 0.0037         |  |  |  |  |  |  |  |  |
| 162.0844 | 0.7494                                                  | 181.1045     | 2.2584         | 203.1746         | 6.5781              | 218.1345 | 1.7270         |  |  |  |  |  |  |  |  |
| 162.2244 | 0.0432                                                  | 182,1045     | 0.9864         | 204.0244         | 0.0296              | 219.1045 | 0.2199         |  |  |  |  |  |  |  |  |

|          | A. Absinthium powder |          |                |          |                |          |                |  |  |  |  |  |
|----------|----------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|--|
| m/z      | Rel. Int.<br>%       | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |  |
| 219.1845 | 3.2461               | 240.2146 | 0.2272         | 259.4247 | 0.0491         | 277.5248 | 0.0467         |  |  |  |  |  |
| 220.1145 | 0.4231               | 241.1846 | 0.4807         | 260.1147 | 0.5424         | 278.1248 | 0.3673         |  |  |  |  |  |
| 220.1745 | 0.3107               | 242.1048 | 0.0943         | 260.1947 | 0.0109         | 278.2148 | 0.5787         |  |  |  |  |  |
| 220.3347 | 0.0589               | 242.1846 | 0.1167         | 260.2547 | 0.1093         | 279.1546 | 5.5368         |  |  |  |  |  |
| 221.1845 | 3.2411               | 242.2846 | 0.0024         | 261.1147 | 3.2451         | 279.2348 | 5.0682         |  |  |  |  |  |
| 222.0347 | 0.0045               | 243.1046 | 0.8746         | 261.2247 | 0.1412         | 280.1448 | 1.6965         |  |  |  |  |  |
| 222.1245 | 0.1391               | 243.1648 | 0.0866         | 261.4647 | 0.0595         | 280.2446 | 1.1343         |  |  |  |  |  |
| 222.2045 | 0.4091               | 243.2498 | 0.0495         | 262.1847 | 1.5330         | 281.1448 | 7.1186         |  |  |  |  |  |
| 223.1247 | 0.9857               | 243.4048 | 0.0472         | 263.1347 | 17.9901        | 281.2448 | 2.4814         |  |  |  |  |  |
| 224.1147 | 0.5929               | 244.1148 | 0.7513         | 263.2347 | 1.1766         | 282.1548 | 3.5212         |  |  |  |  |  |
| 225.1447 | 0.8504               | 244.1946 | 0.0392         | 263.3849 | 0.3957         | 282.5246 | 0.0468         |  |  |  |  |  |
| 226.1247 | 0.2694               | 245.1246 | 13.5276        | 264.1249 | 3.5740         | 283.1848 | 1.2591         |  |  |  |  |  |
| 226.2547 | 0.0272               | 246.1148 | 2.7670         | 264.2447 | 0.0556         | 283.2648 | 1.4191         |  |  |  |  |  |
| 227.1347 | 1.1743               | 247.1246 | 32.3786        | 265.1547 | 7.5109         | 284.1548 | 1.8805         |  |  |  |  |  |
| 228.1247 | 0.3178               | 248.1346 | 6.6186         | 266.1447 | 3.8041         | 285.1048 | 0.1372         |  |  |  |  |  |
| 228.1947 | 0.0625               | 248.3297 | 0.2016         | 267.1547 | 2.5979         | 285.2048 | 0.0934         |  |  |  |  |  |
| 228.3247 | 0.0058               | 248.4046 | 0.1195         | 268.2047 | 6.2292         | 285.2748 | 3.2157         |  |  |  |  |  |
| 229.1047 | 20.8101              | 249.1646 | 12.2845        | 269.2147 | 2.7621         | 286.0281 | 0.0021         |  |  |  |  |  |
| 230.0147 | 0.0262               | 249.3148 | 0.1318         | 270.2049 | 0.9594         | 286.2148 | 0.2210         |  |  |  |  |  |
| 230.1047 | 6.0492               | 250.0646 | 0.0153         | 270.3849 | 0.0258         | 286.2748 | 0.6261         |  |  |  |  |  |
| 230.3547 | 0.1381               | 250.1548 | 2.4300         | 271.0847 | 0.2680         | 287.2248 | 0.0691         |  |  |  |  |  |
| 231.1247 | 100.0000             | 251.1648 | 13.3530        | 271.2347 | 1.0550         | 287.3048 | 1.7560         |  |  |  |  |  |
| 232.0389 | 0.1982               | 252.1847 | 2.0856         | 272.2547 | 0.3372         | 287.4748 | 0.0667         |  |  |  |  |  |
| 232.1346 | 16.7594              | 253.1847 | 4.8437         | 272.4649 | 0.0260         | 288.2448 | 0.6808         |  |  |  |  |  |
| 233.1346 | 12.5463              | 254.1847 | 0.8491         | 273.1548 | 0.0502         | 289.1048 | 0.0601         |  |  |  |  |  |
| 234.0346 | 0.0278               | 255.2247 | 0.8160         | 273.2446 | 0.4567         | 289.1748 | 0.1982         |  |  |  |  |  |
| 234.1346 | 3.3526               | 256.1447 | 0.1536         | 274.1548 | 0.2545         | 289.2348 | 0.2806         |  |  |  |  |  |
| 234.3546 | 0.1499               | 256.2447 | 0.0711         | 274.2648 | 0.3089         | 289.4048 | 0.0301         |  |  |  |  |  |
| 235.1746 | 17.8801              | 256.3447 | 0.0018         | 274.4148 | 0.0019         | 289.4748 | 0.0173         |  |  |  |  |  |
| 236.1746 | 3.0038               | 257.2447 | 0.7518         | 275.2046 | 0.1656         | 290.1748 | 0.2664         |  |  |  |  |  |
| 237.1846 | 3.5881               | 258.1647 | 0.0076         | 275.2648 | 0.0562         | 290.2748 | 0.0592         |  |  |  |  |  |
| 238.1946 | 0.7666               | 258.2547 | 0.1552         | 276.1648 | 0.0633         | 290.4048 | 0.0151         |  |  |  |  |  |
| 238.3846 | 0.0637               | 258.4347 | 0.0179         | 276.2748 | 0.0231         | 291.1948 | 0.4280         |  |  |  |  |  |
| 239.1446 | 0.2504               | 259.1047 | 0.0842         | 277.1146 | 0.3523         | 291.2750 | 0.0219         |  |  |  |  |  |
| 239.2346 | 0.6045               | 259.1947 | 0.2928         | 277.2148 | 3.0483         | 291.4148 | 0.0187         |  |  |  |  |  |
| 240.1246 | 0.0700               | 259.2647 | 0.0416         | 277.4548 | 0.0417         | 292.1948 | 0.1529         |  |  |  |  |  |

| the corresponding spectrum appears in Figure 3.1. |                |          |                |          |                |          |                |  |  |  |
|---------------------------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| A. Absinthium powder                              |                |          |                |          |                |          |                |  |  |  |
| m/z.                                              | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |  |
| 292.3148                                          | 0.0256         | 307.3449 | 0.0701         | 330.1650 | 0.0369         | 344.1751 | 0.1648         |  |  |  |
| 293.2148                                          | 0.6147         | 308.2349 | 0.0905         | 330.2350 | 0.1778         | 344.2651 | 0.1642         |  |  |  |
| 293.2947                                          | 0.0317         | 309.2149 | 0.2142         | 330.3350 | 0.0984         | 344.3951 | 0.0016         |  |  |  |
| 294.2147                                          | 0.1666         | 309.2849 | 0.0791         | 331.2250 | 0.3464         | 345.1849 | 0.3690         |  |  |  |
| 294.2949                                          | 0.0286         | 310.2449 | 0.2972         | 331.2950 | 0.0294         | 345.2749 | 0.0464         |  |  |  |
| 295.1547                                          | 0.2485         | 311.2349 | 0.3182         | 332.2150 | 0.3755         | 346.1751 | 0.4832         |  |  |  |
| 295.2347                                          | 1.8251         | 312.1649 | 0.1711         | 332.2950 | 0.0270         | 346.2749 | 0.0168         |  |  |  |
| 296.1649                                          | 0.8234         | 312.2749 | 0.1894         | 332.3550 | 0.0330         | 347.1649 | 0.2568         |  |  |  |
| 296.2549                                          | 1.2427         | 313.2149 | 0.2159         | 333.2350 | 0.2308         | 347.2851 | 0.0902         |  |  |  |
| 296.4747                                          | 0.0164         | 313.2749 | 0.0587         | 333.3450 | 0.0213         | 347.3651 | 0.0029         |  |  |  |
| 296.5247                                          | 0.0553         | 314.1548 | 0.6406         | 334.2350 | 0.4838         | 348.1851 | 0.1441         |  |  |  |
| 297.1847                                          | 0.7516         | 314.2448 | 0.0594         | 334.3350 | 0.0896         | 348.2949 | 0.1433         |  |  |  |
| 297.2449                                          | 0.7265         | 315.1148 | 0.0264         | 335.2049 | 0.4182         | 348.3751 | 0.0033         |  |  |  |
| 298.1649                                          | 3.6859         | 315.2248 | 0.6016         | 336.1849 | 0.4172         | 349.2151 | 0.5409         |  |  |  |
| 298.2749                                          | 2.5079         | 316.2250 | 0.9688         | 336.2549 | 0.2842         | 349.3351 | 0.1244         |  |  |  |
| 298.4049                                          | 0.0381         | 316.3048 | 0.0304         | 336.3251 | 0.0225         | 350.2351 | 0.5935         |  |  |  |
| 298.5049                                          | 0.2097         | 317.2348 | 0.7980         | 336.4749 | 0.0602         | 350.3151 | 0.0124         |  |  |  |
| 299.1949                                          | 0.8543         | 318.2248 | 0.4268         | 337.2049 | 0.3621         | 350.3751 | 0.0673         |  |  |  |
| 299.2749                                          | 0.6555         | 319.2348 | 0.9201         | 337.2651 | 0.0746         | 351.2451 | 0.3504         |  |  |  |
| 300.1949                                          | 3.0466         | 319.4450 | 0.0299         | 337.3451 | 0.0074         | 351.3351 | 0.0221         |  |  |  |
| 300.2947                                          | 0.8582         | 320.2350 | 0.5217         | 338.1951 | 0.6281         | 352.2451 | 0.9239         |  |  |  |
| 300.4249                                          | 0.0215         | 321.2350 | 0.4291         | 338.2649 | 0.1218         | 352.3251 | 0.0813         |  |  |  |
| 301.2049                                          | 1.8385         | 322.2450 | 0.3546         | 338.3449 | 0.0869         | 353.2651 | 0.4346         |  |  |  |
| 301.2949                                          | 1.4352         | 323.2548 | 0.2716         | 338.4849 | 0.0648         | 354.2651 | 0.9564         |  |  |  |
| 302.2149                                          | 0.3540         | 324.2650 | 0.2533         | 338.6049 | 0.0136         | 355.0751 | 0.0157         |  |  |  |
| 302.3049                                          | 1.1689         | 325.1950 | 0.0350         | 339.1849 | 0.3560         | 355.1950 | 0.1592         |  |  |  |
| 303.1249                                          | 0.2082         | 325.2850 | 0.1934         | 339.3251 | 0.0848         | 355.2950 | 0.2067         |  |  |  |
| 303.2249                                          | 0.4443         | 325.3862 | 0.0112         | 340.2651 | 0.0900         | 356.0750 | 0.0028         |  |  |  |
| 303.3049                                          | 0.3019         | 326.1850 | 0.0640         | 340.3449 | 0.0857         | 356.1950 | 0.0202         |  |  |  |
| 304.2349                                          | 0.1361         | 326.2950 | 0.1615         | 341.2149 | 0.1357         | 356.2850 | 0.2591         |  |  |  |
| 304.3649                                          | 0.1182         | 327.1950 | 0.0880         | 341.3149 | 0.1614         | 357.2050 | 0.5358         |  |  |  |
| 305.2349                                          | 0.3653         | 327.2850 | 0.1374         | 342.2151 | 0.2221         | 357.2950 | 0.0886         |  |  |  |
| 306.1649                                          | 0.0322         | 328.2250 | 0.2447         | 342.3149 | 0.1050         | 358.2152 | 0.2715         |  |  |  |
| 306.2749                                          | 0.0646         | 328.3248 | 0.0599         | 343.1649 | 0.1261         | 358.2950 | 0.0104         |  |  |  |
| 307.1949                                          | 0.4211         | 329.2350 | 0.4907         | 343.2351 | 0.1639         | 358.3650 | 0.0253         |  |  |  |
| 307.2749                                          | 0.0276         | 329.3150 | 0.0692         | 343.3351 | 0.0823         | 359.1350 | 0.4463         |  |  |  |

|                                         | A. Absinthium powder |          |        |          |         |          |        |  |  |  |  |
|-----------------------------------------|----------------------|----------|--------|----------|---------|----------|--------|--|--|--|--|
| Rel. Int. Rel. Int. Rel. Int. Rel. Int. |                      |          |        |          |         |          |        |  |  |  |  |
| m/z                                     | %                    | m/z      | %      | m/z.     | %       | m/z      | %      |  |  |  |  |
| 359.2250                                | 0.3372               | 372.9152 | 0.0223 | 388.1351 | 1.5036  | 403.1952 | 0.0635 |  |  |  |  |
| 359.2952                                | 0.0439               | 373.1052 | 0.0654 | 388.2653 | 0.2013  | 403.2952 | 0.1301 |  |  |  |  |
| 359.3850                                | 0.0133               | 373.1752 | 0.2457 | 388.3451 | 0.5388  | 403.3652 | 0.0339 |  |  |  |  |
| 359.5150                                | 0.0574               | 373.2452 | 0.0249 | 388.4351 | 0.0734  | 404.1552 | 0.0550 |  |  |  |  |
| 359.5850                                | 0.0078               | 373.3152 | 0.1573 | 389.1553 | 60.6191 | 404.2952 | 0.0832 |  |  |  |  |
| 360.2252                                | 0.3550               | 374.0952 | 0.0153 | 390.1353 | 12.9647 | 405.1952 | 0.0722 |  |  |  |  |
| 360.3150                                | 0.0195               | 374.1652 | 0.0543 | 390.3351 | 0.1070  | 405.2752 | 0.2311 |  |  |  |  |
| 361.0493                                | 0.0134               | 374.2652 | 0.1964 | 391.1753 | 2.2428  | 405.4552 | 0.0451 |  |  |  |  |
| 361.1550                                | 0.1470               | 375.1052 | 4.2851 | 391.2951 | 0.5260  | 406.2852 | 0.1181 |  |  |  |  |
| 361.2352                                | 0.2463               | 376.1451 | 0.7637 | 391.3901 | 0.0666  | 406.3854 | 0.0076 |  |  |  |  |
| 361.3250                                | 0.0645               | 376.5751 | 0.0183 | 391.4851 | 0.1812  | 407.1754 | 0.1417 |  |  |  |  |
| 362.1652                                | 0.6090               | 377.1851 | 0.2584 | 392.1851 | 0.3956  | 407.2652 | 0.0937 |  |  |  |  |
| 362.2650                                | 0.0094               | 377.2551 | 0.0876 | 392.2853 | 0.1029  | 407.3652 | 0.1990 |  |  |  |  |
| 362.3750                                | 0.0809               | 377.3351 | 0.0877 | 393.2652 | 0.2163  | 407.4652 | 0.0064 |  |  |  |  |
| 363.2452                                | 0.2796               | 377.4251 | 0.0113 | 393.3451 | 0.0891  | 409.3852 | 1.1131 |  |  |  |  |
| 364.1952                                | 1.3258               | 377.5251 | 0.0684 | 394.1853 | 0.5154  | 410.2252 | 0.5402 |  |  |  |  |
| 365.2750                                | 0.5869               | 378.1851 | 0.5839 | 394.2653 | 0.1419  | 410.3854 | 0.3584 |  |  |  |  |
| 366.1952                                | 0.0817               | 379.2651 | 0.2502 | 394.3353 | 0.0953  | 411.1952 | 0.0240 |  |  |  |  |
| 366.2652                                | 1.1198               | 379.3451 | 0.1140 | 395.0553 | 0.0014  | 411.2952 | 0.0418 |  |  |  |  |
| 367.2750                                | 0.6210               | 380.2051 | 1.2276 | 395.1953 | 0.3175  | 411.3852 | 0.5563 |  |  |  |  |
| 368.2652                                | 1.1966               | 381.1951 | 0.5426 | 395.2753 | 0.0416  | 411.6254 | 0.0154 |  |  |  |  |
| 369.2150                                | 0.5423               | 381.4153 | 0.0193 | 395.3653 | 0.4132  | 411.6954 | 0.0500 |  |  |  |  |
| 369.3452                                | 0.0465               | 382.1951 | 1.1866 | 396.2053 | 2.2938  | 412.2052 | 0.8274 |  |  |  |  |
| 369.4252                                | 0.0303               | 382.4351 | 0.0973 | 396.3753 | 0.1082  | 412.2954 | 0.0527 |  |  |  |  |
| 369.4852                                | 0.0672               | 383.1951 | 0.5473 | 397.2152 | 0.5786  | 413.2152 | 0.3442 |  |  |  |  |
| 369.5650                                | 0.0564               | 383.2951 | 0.0485 | 397.3852 | 1.0846  | 413.3754 | 0.2564 |  |  |  |  |
| 370.2150                                | 0.6492               | 383.3651 | 0.1547 | 398.2152 | 2.1487  | 414.2154 | 0.6538 |  |  |  |  |
| 371.1052                                | 0.4551               | 384.2051 | 0.5712 | 398.3950 | 0.3619  | 414.3854 | 0.1698 |  |  |  |  |
| 371.3152                                | 4.6970               | 385.2151 | 0.5271 | 398.4752 | 0.0510  | 414.6152 | 0.0534 |  |  |  |  |
| 371.5852                                | 0.0876               | 385.4851 | 0.0298 | 399.0952 | 0.0921  | 415.1554 | 0.1377 |  |  |  |  |
| 371.6750                                | 0.0826               | 386.2153 | 0.5002 | 399.2252 | 0.7985  | 415.2254 | 0.4314 |  |  |  |  |
| 372.1152                                | 0.2420               | 387.1053 | 0.0227 | 400.2352 | 0.5349  | 415.3004 | 0.0594 |  |  |  |  |
| 372.2352                                | 0.2970               | 387.2253 | 0.1413 | 401.2252 | 0.3499  | 415.3754 | 0.1265 |  |  |  |  |
| 372.3152                                | 1.1612               | 387.2853 | 0.0829 | 401.4652 | 0.0703  | 416.2354 | 0.3565 |  |  |  |  |
| 372.6450                                | 0.0110               | 387.3353 | 0.0119 | 402.2252 | 0.2635  | 417.1753 | 0.1067 |  |  |  |  |
| 372.8352                                | 0.0299               | 387.6051 | 0.0235 | 402.3352 | 0.0709  | 417.2553 | 0.2108 |  |  |  |  |

| A. Absinthium powder |                                         |          |        |          |        |          |        |  |  |  |
|----------------------|-----------------------------------------|----------|--------|----------|--------|----------|--------|--|--|--|
|                      | Rel. Int. Rel. Int. Rel. Int. Rel. Int. |          |        |          |        |          |        |  |  |  |
| m/z                  | %                                       | m/z      | %      | m/z      | %      | m/z      | %      |  |  |  |
| 417.3753             | 0.1680                                  | 433.2555 | 0.2936 | 449.3954 | 0.0436 | 467.3955 | 0.0507 |  |  |  |
| 418.2253             | 0.2506                                  | 433.3253 | 0.0190 | 450.3454 | 0.2689 | 468.4955 | 0.0041 |  |  |  |
| 418.2953             | 0.0155                                  | 433.4753 | 0.0020 | 450.5154 | 0.0581 | 469.4055 | 0.1273 |  |  |  |
| 418.4553             | 0.0116                                  | 434.2653 | 0.1673 | 451.3454 | 0.1652 | 470.5055 | 0.0430 |  |  |  |
| 419.3253             | 0.1917                                  | 434.3353 | 0.0376 | 452.4854 | 0.0221 | 471.3255 | 0.0898 |  |  |  |
| 420.2553             | 0.0569                                  | 434.3955 | 0.0308 | 453.3554 | 0.1327 | 471.3855 | 0.0132 |  |  |  |
| 420.3153             | 0.0615                                  | 435.2253 | 0.1280 | 453.4654 | 0.0048 | 471.4955 | 0.0045 |  |  |  |
| 421.2753             | 0.1661                                  | 435.3553 | 0.0713 | 454.3454 | 0.0203 | 472.3455 | 0.1873 |  |  |  |
| 421.3453             | 0.1132                                  | 435.4655 | 0.0541 | 454.4956 | 0.0337 | 473.2255 | 0.1020 |  |  |  |
| 421.4653             | 0.0341                                  | 436.3353 | 0.1848 | 455.3556 | 0.1677 | 473.2955 | 0.0049 |  |  |  |
| 422.2053             | 0.0264                                  | 437.1955 | 0.0099 | 455.4954 | 0.0033 | 473.3755 | 0.1061 |  |  |  |
| 422.3453             | 0.1677                                  | 437.2753 | 0.0698 | 456.2854 | 0.1087 | 474.2857 | 0.1302 |  |  |  |
| 423.2753             | 0.1059                                  | 437.3455 | 0.0165 | 456.5156 | 0.0141 | 474.3855 | 0.0554 |  |  |  |
| 423.3753             | 0.6099                                  | 437.4755 | 0.0123 | 457.3054 | 0.1124 | 474.4655 | 0.0072 |  |  |  |
| 424.2653             | 0.0167                                  | 438.3552 | 0.1932 | 457.3754 | 0.0598 | 475.3055 | 0.3640 |  |  |  |
| 424.3753             | 0.3548                                  | 439.2903 | 0.0557 | 457.4954 | 0.0056 | 475.3855 | 0.0102 |  |  |  |
| 425.2053             | 0.0474                                  | 439.3652 | 0.1850 | 458.3853 | 0.0464 | 476.3155 | 0.0796 |  |  |  |
| 425.2853             | 0.0310                                  | 439.4554 | 0.0076 | 459.3053 | 0.2470 | 476.4055 | 0.0483 |  |  |  |
| 425.3753             | 0.8009                                  | 441.2154 | 0.0152 | 459.3855 | 0.1042 | 477.2955 | 0.5996 |  |  |  |
| 426.2253             | 0.2742                                  | 441.2954 | 0.0076 | 460.3053 | 0.0535 | 477.5455 | 0.0620 |  |  |  |
| 426.3153             | 0.0428                                  | 441.3754 | 0.2695 | 460.4155 | 0.0382 | 478.2455 | 0.2024 |  |  |  |
| 426.3853             | 0.2974                                  | 442.3054 | 0.2319 | 460.4955 | 0.0157 | 478.3255 | 0.1034 |  |  |  |
| 427.2253             | 0.0395                                  | 442.3854 | 0.2557 | 461.2053 | 0.3321 | 478.4355 | 0.0215 |  |  |  |
| 427.3953             | 0.5111                                  | 443.2954 | 0.0628 | 461.3055 | 0.0132 | 478.5455 | 0.0048 |  |  |  |
| 428.2353             | 0.3524                                  | 443.3854 | 0.2318 | 461.3755 | 0.0513 | 479.2956 | 0.5285 |  |  |  |
| 428.2953             | 0.0674                                  | 444.2354 | 0.1443 | 462.2055 | 0.1544 | 479.4854 | 0.0247 |  |  |  |
| 428.3955             | 0.1300                                  | 444.2954 | 0.0666 | 462.3053 | 0.1762 | 480.3254 | 0.2345 |  |  |  |
| 429.1653             | 2.5774                                  | 444.4054 | 0.0645 | 463.2155 | 0.2699 | 480.4954 | 0.0078 |  |  |  |
| 429.3853             | 0.8813                                  | 445.2154 | 2.6160 | 463.3855 | 0.3037 | 481.3254 | 0.2066 |  |  |  |
| 430.3853             | 0.2626                                  | 445.3754 | 0.2502 | 464.2255 | 0.4230 | 481.4956 | 0.0029 |  |  |  |
| 430.5553             | 0.0173                                  | 446.2254 | 1.2014 | 465.2255 | 0.0796 | 482.3354 | 0.1539 |  |  |  |
| 431.3053             | 0.2321                                  | 446.3054 | 0.0466 | 465.3255 | 0.1228 | 482.5256 | 0.0096 |  |  |  |
| 431.3853             | 0.0482                                  | 446.3854 | 0.0183 | 465.3955 | 0.0182 | 483.3156 | 0.1380 |  |  |  |
| 432.1853             | 0.2527                                  | 447.2254 | 1.3044 | 466.3355 | 0.2056 | 483.3856 | 0.0319 |  |  |  |
| 432.3153             | 0.1074                                  | 448.2054 | 0.5553 | 466.5055 | 0.0051 | 483.5356 | 0.0128 |  |  |  |
| 432.3955             | 0.0403                                  | 449.3254 | 0.2255 | 467.3255 | 0.1048 | 484.3956 | 0.0262 |  |  |  |

| HRMS analysis of <i>A. absinthium</i> powder. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.1. |                |          |                |          |                |          |                |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| A. Absinthium powder                                                                                                                             |                |          |                |          |                |          |                |  |  |  |
| m/z                                                                                                                                              | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |  |
| 484.5456                                                                                                                                         | 0.0217         | 505.3255 | 0.0914         | 521.5256 | 0.0116         | 538.5058 | 0.0077         |  |  |  |
| 485.3354                                                                                                                                         | 0.1404         | 505.3955 | 0.0268         | 523.2456 | 0.0506         | 539.3658 | 0.0679         |  |  |  |
| 485.4056                                                                                                                                         | 0.0104         | 505.4955 | 0.0078         | 523.3256 | 0.0340         | 539.4958 | 0.0466         |  |  |  |
| 486.3254                                                                                                                                         | 0.0394         | 506.2555 | 0.0706         | 523.4056 | 0.0374         | 540.4358 | 0.0063         |  |  |  |
| 486.3854                                                                                                                                         | 0.3208         | 506.3657 | 0.0503         | 525.3358 | 0.1538         | 541.3457 | 0.0858         |  |  |  |
| 487.3854                                                                                                                                         | 0.1501         | 507.2155 | 0.0334         | 526.4156 | 0.0047         | 541.5057 | 0.0020         |  |  |  |
| 488.3956                                                                                                                                         | 0.1081         | 507.3155 | 0.0553         | 526.5658 | 0.0220         | 542.3357 | 0.0799         |  |  |  |
| 489.3056                                                                                                                                         | 0.0885         | 507.3955 | 0.0452         | 527.3456 | 0.1324         | 542.4157 | 0.0307         |  |  |  |
| 489.3756                                                                                                                                         | 0.0837         | 507.5155 | 0.0126         | 527.4256 | 0.0389         | 543.2857 | 0.0198         |  |  |  |
| 490.3254                                                                                                                                         | 0.1740         | 508.3557 | 0.1410         | 527.5256 | 0.0580         | 543.3457 | 0.0465         |  |  |  |
| 490.4656                                                                                                                                         | 0.0033         | 508.5257 | 0.0027         | 528.3458 | 0.1521         | 543.4257 | 0.0235         |  |  |  |
| 491.2156                                                                                                                                         | 0.2474         | 509.2255 | 0.1316         | 529.2658 | 0.0817         | 543.4957 | 0.0110         |  |  |  |
| 491.3056                                                                                                                                         | 0.0253         | 509.3255 | 0.0912         | 529.3256 | 0.0479         | 544.3057 | 0.0558         |  |  |  |
| 491.3756                                                                                                                                         | 0.0089         | 509.4055 | 0.0413         | 529.4156 | 0.0471         | 544.3857 | 0.0694         |  |  |  |
| 491.4856                                                                                                                                         | 0.0076         | 509.5257 | 0.0540         | 530.2856 | 0.0069         | 544.5257 | 0.0217         |  |  |  |
| 492.3356                                                                                                                                         | 0.1466         | 510.4157 | 0.0316         | 530.4056 | 0.0065         | 545.3257 | 0.0975         |  |  |  |
| 493.2456                                                                                                                                         | 0.4425         | 511.2557 | 0.2641         | 531.4058 | 0.1484         | 545.4057 | 0.0165         |  |  |  |
| 493.3056                                                                                                                                         | 0.0817         | 511.3257 | 0.0595         | 532.3358 | 0.1836         | 545.4757 | 0.0051         |  |  |  |
| 493.5156                                                                                                                                         | 0.0139         | 511.4357 | 0.0046         | 532.4158 | 0.0093         | 545.7257 | 0.0093         |  |  |  |
| 495.2656                                                                                                                                         | 0.1772         | 512.4057 | 0.0244         | 533.1858 | 0.0024         | 546.2857 | 0.4584         |  |  |  |
| 495.3056                                                                                                                                         | 0.7254         | 513.3357 | 0.2336         | 533.3556 | 0.0943         | 546.4557 | 0.0254         |  |  |  |
| 496.3256                                                                                                                                         | 0.3177         | 513.3957 | 0.0121         | 533.5258 | 0.0477         | 547.2357 | 0.0595         |  |  |  |
| 497.3256                                                                                                                                         | 0.4070         | 514.3357 | 0.3456         | 534.2756 | 0.0316         | 547.3357 | 0.0804         |  |  |  |
| 498.3256                                                                                                                                         | 0.2816         | 515.3257 | 0.1505         | 534.3656 | 0.1666         | 547.4057 | 0.0981         |  |  |  |
| 498.5356                                                                                                                                         | 0.0090         | 515.4257 | 0.0062         | 535.3656 | 0.0380         | 547.4657 | 0.0523         |  |  |  |
| 499.3256                                                                                                                                         | 0.1322         | 516.3457 | 0.2552         | 535.4458 | 0.0353         | 548.3459 | 0.2034         |  |  |  |
| 499.4256                                                                                                                                         | 0.0795         | 516.4957 | 0.0046         | 535.5358 | 0.0144         | 549.2757 | 0.0535         |  |  |  |
| 500.3455                                                                                                                                         | 0.2080         | 517.3257 | 0.1235         | 536.3158 | 0.0676         | 549.3559 | 0.0515         |  |  |  |
| 501.3255                                                                                                                                         | 0.1086         | 517.4457 | 0.0188         | 536.3858 | 0.0094         | 549.4959 | 0.0430         |  |  |  |
| 502.2355                                                                                                                                         | 0.0364         | 518.3457 | 0.2829         | 536.5358 | 0.0209         | 550.2857 | 0.1164         |  |  |  |
| 502.3355                                                                                                                                         | 0.1219         | 519.3457 | 0.1457         | 536.6058 | 0.0247         | 550.3757 | 0.0171         |  |  |  |
| 502.4155                                                                                                                                         | 0.0832         | 519.4957 | 0.0186         | 537.3958 | 0.0609         | 550.4459 | 0.0209         |  |  |  |
| 503.3255                                                                                                                                         | 0.1667         | 520.3356 | 0.1305         | 537.5058 | 0.0022         | 550.5657 | 0.0046         |  |  |  |
| 503.4155                                                                                                                                         | 0.0158         | 520.4056 | 0.0109         | 537.6158 | 0.0069         | 551.3759 | 0.0795         |  |  |  |
| 504.2857                                                                                                                                         | 0.0379         | 521.3356 | 0.0512         | 538.3158 | 0.0264         | 551.5057 | 0.0031         |  |  |  |

 Table A3.3 (continued). Mass data (m/z values and their relative intensities) for the DART 

538.3858

0.0745

552.3859

0.1083

0.0284

504.4555

0.0186 521.4056

|                                         | A Absinthium powder |          |                |          |                |          |                |  |  |  |  |
|-----------------------------------------|---------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| Dol Int         Dol Int         Dol Int |                     |          |                |          |                |          |                |  |  |  |  |
| m/z                                     | Kel. Int.<br>%      | m/z      | Kel. Int.<br>% | m/z      | Kel. Int.<br>% | m/z      | Kel. Int.<br>% |  |  |  |  |
| 552.4959                                | 0.0196              | 565.5258 | 0.0335         | 581.3658 | 0.0590         | 594.3759 | 0.1148         |  |  |  |  |
| 552.5857                                | 0.0105              | 566.3758 | 0.1789         | 581.4460 | 0.0236         | 594.5159 | 0.0056         |  |  |  |  |
| 553.3157                                | 0.0385              | 566.4458 | 0.0169         | 581.5358 | 0.0075         | 595.3559 | 0.0752         |  |  |  |  |
| 553.4957                                | 0.0313              | 566.5358 | 0.0046         | 582.3759 | 0.1138         | 595.5259 | 0.0115         |  |  |  |  |
| 554.4057                                | 0.0579              | 567.3858 | 0.1001         | 582.5159 | 0.0187         | 596.5261 | 0.0082         |  |  |  |  |
| 554.4957                                | 0.0278              | 567.4558 | 0.0031         | 583.3759 | 0.0504         | 597.3661 | 0.0371         |  |  |  |  |
| 555.3859                                | 0.0489              | 567.5358 | 0.0179         | 583.4557 | 0.0086         | 597.4460 | 0.0274         |  |  |  |  |
| 555.4559                                | 0.0069              | 568.3858 | 0.5751         | 583.5259 | 0.0091         | 597.5259 | 0.0140         |  |  |  |  |
| 555.5357                                | 0.0029              | 568.5258 | 0.0119         | 584.3959 | 0.1371         | 598.3859 | 0.0838         |  |  |  |  |
| 556.2459                                | 0.0102              | 569.3858 | 0.1859         | 584.5759 | 0.0102         | 598.4561 | 0.0401         |  |  |  |  |
| 556.3659                                | 0.0712              | 569.4958 | 0.0035         | 585.3859 | 0.1333         | 598.5959 | 0.0162         |  |  |  |  |
| 556.4359                                | 0.0243              | 569.5660 | 0.0184         | 585.4759 | 0.0043         | 599.3761 | 0.0751         |  |  |  |  |
| 557.3357                                | 0.0339              | 569.6358 | 0.0023         | 585.5859 | 0.0025         | 599.6059 | 0.0023         |  |  |  |  |
| 557.4459                                | 0.0152              | 570.4058 | 0.0927         | 586.3959 | 0.1075         | 600.3861 | 0.3318         |  |  |  |  |
| 557.5359                                | 0.0327              | 570.5458 | 0.0668         | 586.4857 | 0.0196         | 600.5061 | 0.0038         |  |  |  |  |
| 558.3759                                | 0.0564              | 571.3958 | 0.0548         | 586.5559 | 0.0250         | 600.5959 | 0.0024         |  |  |  |  |
| 558.4457                                | 0.0173              | 572.3758 | 0.0710         | 587.3959 | 0.0343         | 601.3761 | 0.1270         |  |  |  |  |
| 559.3359                                | 0.0652              | 572.4458 | 0.0157         | 587.4909 | 0.0097         | 601.5259 | 0.0174         |  |  |  |  |
| 559.5459                                | 0.0463              | 572.5658 | 0.0136         | 587.5859 | 0.0190         | 601.8059 | 0.0019         |  |  |  |  |
| 560.3459                                | 0.1476              | 572.6658 | 0.0056         | 588.4059 | 0.0617         | 602.3861 | 0.0584         |  |  |  |  |
| 560.4159                                | 0.0445              | 573.2958 | 0.0135         | 588.5059 | 0.0032         | 602.5261 | 0.0123         |  |  |  |  |
| 560.4959                                | 0.0611              | 573.3758 | 0.0085         | 589.3959 | 0.0381         | 602.6261 | 0.0178         |  |  |  |  |
| 561.3359                                | 0.0567              | 573.4558 | 0.0223         | 589.4759 | 0.0066         | 603.3958 | 0.0203         |  |  |  |  |
| 561.4159                                | 0.0478              | 573.5758 | 0.0063         | 590.3959 | 0.0833         | 603.5360 | 0.0197         |  |  |  |  |
| 561.4957                                | 0.0434              | 574.4460 | 0.0116         | 590.4859 | 0.0169         | 603.6260 | 0.0023         |  |  |  |  |
| 561.5658                                | 0.0198              | 575.4260 | 0.0545         | 591.3559 | 0.0228         | 604.4058 | 0.0408         |  |  |  |  |
| 562.2558                                | 0.8424              | 575.5060 | 0.0062         | 591.4961 | 0.0233         | 604.4660 | 0.0144         |  |  |  |  |
| 563.2758                                | 0.2638              | 576.3458 | 0.1743         | 591.5859 | 0.0095         | 604.5458 | 0.0131         |  |  |  |  |
| 563.4858                                | 0.0067              | 576.5158 | 0.0080         | 592.3059 | 0.0034         | 604.6560 | 0.0051         |  |  |  |  |
| 563.5358                                | 0.0041              | 577.3458 | 0.0639         | 592.3759 | 0.0654         | 605.4060 | 0.0233         |  |  |  |  |
| 564.2758                                | 0.1790              | 577.5258 | 0.0422         | 592.4959 | 0.0153         | 605.4660 | 0.0159         |  |  |  |  |
| 564.4358                                | 0.0160              | 578.3660 | 0.0320         | 592.5759 | 0.0101         | 605.5460 | 0.0045         |  |  |  |  |
| 564.5458                                | 0.0034              | 578.5260 | 0.0389         | 592.6759 | 0.0090         | 606.4060 | 0.0899         |  |  |  |  |
| 564.6358                                | 0.0335              | 579.3460 | 0.0035         | 593.3859 | 0.0383         | 606.5360 | 0.0099         |  |  |  |  |
| 565.2958                                | 0.0023              | 579.4160 | 0.0641         | 593.5159 | 0.0260         | 606.6260 | 0.0115         |  |  |  |  |
| 565.3658                                | 0.0282              | 580.5258 | 0.0026         | 593.6659 | 0.0196         | 607.2958 | 0.0261         |  |  |  |  |

| the corresponding spectrum appears in Figure 3.1. |                |          |                |          |                |          |                |  |  |
|---------------------------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| A. Absinthium powder                              |                |          |                |          |                |          |                |  |  |
| m/z                                               | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |
| 607.5060                                          | 0.0149         | 622.4062 | 0.0683         | 638.6861 | 0.0064         | 657.5062 | 0.0151         |  |  |
| 607.5760                                          | 0.0161         | 622.5460 | 0.0181         | 639.4661 | 0.0126         | 658.5062 | 0.0334         |  |  |
| 608.3760                                          | 0.1499         | 623.4659 | 0.0232         | 639.5661 | 0.0068         | 659.3862 | 0.0384         |  |  |
| 608.4510                                          | 0.0413         | 623.5659 | 0.0050         | 640.4761 | 0.0022         | 659.5262 | 0.0350         |  |  |
| 608.5260                                          | 0.0170         | 624.4759 | 0.0037         | 640.5661 | 0.0062         | 660.3962 | 0.0757         |  |  |
| 609.3160                                          | 0.0024         | 625.3961 | 0.0563         | 641.4861 | 0.0047         | 660.5362 | 0.0225         |  |  |
| 609.3860                                          | 0.0612         | 625.4861 | 0.0028         | 641.5661 | 0.0089         | 661.3962 | 0.0382         |  |  |
| 609.5160                                          | 0.0289         | 626.3359 | 0.2718         | 642.4863 | 0.0022         | 661.6517 | 0.0025         |  |  |
| 610.5460                                          | 0.0411         | 626.4061 | 0.1512         | 643.4963 | 0.0182         | 662.5662 | 0.0150         |  |  |
| 611.5360                                          | 0.0019         | 626.5259 | 0.0024         | 645.4862 | 0.0063         | 663.3862 | 0.0398         |  |  |
| 612.3560                                          | 2.8563         | 627.3361 | 0.1230         | 646.4160 | 0.0386         | 663.4662 | 0.0025         |  |  |
| 613.3660                                          | 0.9564         | 627.5061 | 0.0227         | 646.4960 | 0.0273         | 663.5562 | 0.0142         |  |  |
| 614.4160                                          | 0.1711         | 627.5861 | 0.0070         | 646.6162 | 0.0210         | 663.6262 | 0.0080         |  |  |
| 614.4960                                          | 0.0033         | 628.5061 | 0.0038         | 647.4060 | 0.0090         | 664.3862 | 0.0514         |  |  |
| 615.3860                                          | 0.0637         | 629.5059 | 0.0124         | 647.4762 | 0.0123         | 664.5662 | 0.0048         |  |  |
| 615.5060                                          | 0.0444         | 630.4161 | 0.0742         | 647.6360 | 0.0057         | 665.4161 | 0.0435         |  |  |
| 615.6460                                          | 0.0124         | 631.3959 | 0.0293         | 648.5160 | 0.0390         | 665.5161 | 0.0059         |  |  |
| 616.5160                                          | 0.0465         | 631.5059 | 0.0122         | 648.6360 | 0.0128         | 665.5961 | 0.0098         |  |  |
| 617.3860                                          | 0.0136         | 632.4161 | 0.1135         | 649.4160 | 0.0243         | 666.4161 | 0.0390         |  |  |
| 617.4460                                          | 0.0407         | 633.3961 | 0.0675         | 649.5160 | 0.0025         | 666.5561 | 0.0091         |  |  |
| 617.5160                                          | 0.0029         | 633.5161 | 0.0087         | 649.5960 | 0.0082         | 666.6461 | 0.0112         |  |  |
| 617.6460                                          | 0.0035         | 633.5961 | 0.0087         | 649.6760 | 0.0093         | 666.7161 | 0.0091         |  |  |
| 618.3960                                          | 0.0685         | 633.6961 | 0.0073         | 650.4160 | 0.0451         | 667.4561 | 0.0030         |  |  |
| 618.5260                                          | 0.0108         | 634.4661 | 0.0408         | 650.5460 | 0.0048         | 667.5861 | 0.0010         |  |  |
| 618.6762                                          | 0.0116         | 634.5461 | 0.0134         | 650.6060 | 0.0196         | 667.7161 | 0.0043         |  |  |
| 619.3860                                          | 0.0422         | 635.3861 | 0.0301         | 650.6862 | 0.0088         | 668.5761 | 0.0086         |  |  |
| 619.4560                                          | 0.0271         | 635.4661 | 0.0022         | 651.4160 | 0.0327         | 669.4961 | 0.0029         |  |  |
| 619.5360                                          | 0.0026         | 635.5461 | 0.0200         | 651.5462 | 0.0216         | 669.5863 | 0.0054         |  |  |
| 619.6660                                          | 0.0020         | 635.6161 | 0.0147         | 652.4062 | 0.0492         | 670.5161 | 0.0069         |  |  |
| 619.7560                                          | 0.0077         | 635.7061 | 0.0034         | 652.5462 | 0.0206         | 671.3561 | 0.0014         |  |  |
| 620.3960                                          | 0.0560         | 636.3961 | 0.0384         | 653.4162 | 0.0297         | 675.4063 | 0.0239         |  |  |
| 620.5360                                          | 0.0291         | 636.5661 | 0.0257         | 653.4962 | 0.0172         | 675.5063 | 0.0251         |  |  |
| 620.6660                                          | 0.0186         | 637.4061 | 0.0323         | 653.5660 | 0.0136         | 675.6761 | 0.0056         |  |  |
| 621.4060                                          | 0.0200         | 637.4761 | 0.0062         | 654.5662 | 0.0248         | 675.7963 | 0.0038         |  |  |
| 621.5460                                          | 0.0170         | 637.5661 | 0.0249         | 656.4962 | 0.0316         | 676.3663 | 0.0654         |  |  |
| 621.6660                                          | 0.0157         | 638.5761 | 0.0179         | 657.4262 | 0.0079         | 676.4462 | 0.0082         |  |  |

| the corresponding spectrum uppears in Figure 5.1. |                |          |                |          |                |          |                |  |  |
|---------------------------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| A. Absinthium powder                              |                |          |                |          |                |          |                |  |  |
| m/z                                               | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |
| 676.5261                                          | 0.0660         | 694.3962 | 0.0211         | 715.6063 | 0.0024         | 741.5264 | 0.0043         |  |  |
| 677.5463                                          | 0.0044         | 694.6064 | 0.0198         | 716.5963 | 0.0061         | 741.6266 | 0.0022         |  |  |
| 677.6263                                          | 0.0163         | 694.7462 | 0.0062         | 717.5965 | 0.0011         | 742.6164 | 0.0053         |  |  |
| 677.7063                                          | 0.0182         | 695.6264 | 0.0066         | 720.4563 | 0.0102         | 743.6164 | 0.0055         |  |  |
| 678.5961                                          | 0.0080         | 696.4462 | 0.0174         | 720.5265 | 0.0057         | 744.6166 | 0.0043         |  |  |
| 678.7263                                          | 0.0183         | 696.5964 | 0.0199         | 721.6263 | 0.0032         | 746.5464 | 0.0072         |  |  |
| 679.4163                                          | 0.0279         | 696.6562 | 0.0013         | 722.6365 | 0.0027         | 746.6264 | 0.0055         |  |  |
| 679.5963                                          | 0.0183         | 697.3964 | 0.0087         | 722.7963 | 0.0013         | 748.6463 | 0.0047         |  |  |
| 680.4013                                          | 0.0370         | 697.4664 | 0.0019         | 723.4365 | 0.0089         | 749.6365 | 0.0018         |  |  |
| 680.5963                                          | 0.0242         | 699.4762 | 0.0049         | 723.6465 | 0.0022         | 752.6065 | 0.0013         |  |  |
| 681.4563                                          | 0.0224         | 700.5264 | 0.0168         | 724.4465 | 0.0060         | 752.6765 | 0.0028         |  |  |
| 681.5963                                          | 0.0153         | 705.3964 | 0.0016         | 725.4565 | 0.0097         | 753.6165 | 0.0010         |  |  |
| 682.4563                                          | 0.0106         | 705.6664 | 0.0027         | 726.6565 | 0.0047         | 754.6465 | 0.0027         |  |  |
| 682.5563                                          | 0.0136         | 705.7564 | 0.0017         | 727.5744 | 0.0082         | 755.6265 | 0.0011         |  |  |
| 683.4163                                          | 0.0191         | 706.3963 | 0.0020         | 728.5964 | 0.0097         | 756.5165 | 0.0039         |  |  |
| 683.4863                                          | 0.0098         | 706.5863 | 0.0032         | 729.5964 | 0.0013         | 756.6265 | 0.0036         |  |  |
| 684.5063                                          | 0.0046         | 706.6563 | 0.0040         | 730.5464 | 0.0154         | 757.6265 | 0.0010         |  |  |
| 688.5764                                          | 0.0117         | 707.4063 | 0.0036         | 733.7864 | 0.0010         | 762.4767 | 0.0016         |  |  |
| 689.4062                                          | 0.0072         | 707.6463 | 0.0052         | 734.4964 | 0.0028         | 768.4866 | 0.0049         |  |  |
| 689.6462                                          | 0.0088         | 708.4363 | 0.0196         | 735.6764 | 0.0015         | 768.5766 | 0.0011         |  |  |
| 690.4762                                          | 0.0165         | 708.5863 | 0.0037         | 736.5164 | 0.0025         | 770.6064 | 0.0013         |  |  |
| 690.6564                                          | 0.0126         | 708.6463 | 0.0025         | 736.6164 | 0.0046         | 776.4566 | 0.0019         |  |  |
| 691.4062                                          | 0.0085         | 709.5963 | 0.0015         | 738.4264 | 0.0028         | 778.6266 | 0.0025         |  |  |
| 691.4962                                          | 0.0101         | 710.4263 | 0.0072         | 738.6364 | 0.0045         | 781.6166 | 0.0010         |  |  |
| 691.6662                                          | 0.0045         | 710.6063 | 0.0068         | 740.4664 | 0.0100         | 782.6766 | 0.0016         |  |  |
| 692.4764                                          | 0.0035         | 711.6063 | 0.0025         | 740.5366 | 0.0045         | 792.6067 | 0.0047         |  |  |
| 692.5564                                          | 0.0076         | 712.6063 | 0.0033         | 740.6364 | 0.0042         | 794.6167 | 0.0011         |  |  |
| 692.6462                                          | 0.0118         | 713.5865 | 0.0054         | 741.3664 | 0.0019         |          |                |  |  |
| 693.6164                                          | 0.0051         | 714.5863 | 0.0035         | 741.4664 | 0.0136         |          |                |  |  |

| A. Absinthium seed |                |          |                |          |                |          |                |  |
|--------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|
| m/z.               | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |
| 61.0339            | 0.0077         | 88.0741  | 0.3545         | 110.2142 | 0.2002         | 130.0643 | 8.5624         |  |
| 61.1041            | 0.0045         | 88.2041  | 0.0243         | 111.0540 | 0.6201         | 130.2343 | 0.2163         |  |
| 62.0639            | 0.0245         | 89.0641  | 41.2958        | 111.1140 | 3.6292         | 131.0643 | 1.4724         |  |
| 67.0540            | 0.0962         | 89.2541  | 0.2766         | 111.2342 | 0.2857         | 131.2243 | 0.3548         |  |
| 68.0538            | 0.0164         | 90.0641  | 11.2002        | 112.0742 | 6.5991         | 132.1041 | 4.2517         |  |
| 68.9640            | 0.0328         | 90.1641  | 0.4804         | 113.0542 | 3.8696         | 133.0643 | 2.0356         |  |
| 69.0440            | 1.1626         | 91.0541  | 2.2326         | 115.0542 | 2.2760         | 133.2543 | 0.1652         |  |
| 69.1440            | 0.0515         | 91.1241  | 0.4108         | 115.1040 | 0.8205         | 134.0843 | 0.4475         |  |
| 70.0640            | 3.1145         | 92.0641  | 0.1841         | 115.2442 | 0.3061         | 134.1943 | 0.0464         |  |
| 71.0640            | 0.7515         | 93.0641  | 2.8307         | 116.0742 | 37.2390        | 134.2543 | 0.0432         |  |
| 72.0840            | 5.7430         | 93.1341  | 0.0021         | 116.2242 | 0.5961         | 135.1043 | 25.1682        |  |
| 72.2040            | 0.1155         | 95.0841  | 4.1132         | 117.0642 | 42.4009        | 135.2443 | 0.1265         |  |
| 72.9940            | 0.0322         | 96.0541  | 0.4782         | 117.1642 | 0.1152         | 136.0643 | 50.5126        |  |
| 73.0640            | 7.2213         | 97.0341  | 1.6525         | 117.2442 | 0.7127         | 136.1343 | 3.0901         |  |
| 74.0640            | 0.8635         | 97.0941  | 4.7288         | 118.0842 | 6.0764         | 136.2143 | 0.7433         |  |
| 75.0440            | 1.6586         | 97.2241  | 0.0859         | 118.2042 | 0.6559         | 136.2843 | 0.0043         |  |
| 76.0640            | 0.7205         | 97.2841  | 0.1781         | 119.0042 | 0.0111         | 136.4043 | 0.2110         |  |
| 77.0440            | 0.9092         | 98.0841  | 0.1140         | 119.0842 | 0.6754         | 136.9843 | 0.0358         |  |
| 78.0440            | 0.0144         | 99.0541  | 4.2895         | 120.0742 | 1.9076         | 137.0743 | 50.5187        |  |
| 79.0440            | 1.1858         | 100.0841 | 0.0463         | 120.2042 | 0.1437         | 137.1243 | 5.1013         |  |
| 79.1242            | 0.0588         | 100.2341 | 0.0045         | 121.0842 | 2.0223         | 137.2843 | 0.6070         |  |
| 80.0540            | 0.6966         | 101.0641 | 3.8752         | 122.0742 | 0.1122         | 137.9843 | 0.1306         |  |
| 81.0540            | 0.9623         | 101.1841 | 0.3330         | 122.2242 | 0.0106         | 138.0843 | 2.9421         |  |
| 81.1442            | 0.0367         | 102.0741 | 0.2397         | 123.0942 | 2.7865         | 138.1643 | 0.5395         |  |
| 82.0642            | 0.1540         | 103.0541 | 1.4873         | 124.0642 | 5.9249         | 139.0054 | 0.0191         |  |
| 82.9442            | 0.0120         | 103.1443 | 0.6132         | 124.1844 | 0.0764         | 139.1043 | 4.2342         |  |
| 83.0240            | 0.0328         | 104.0741 | 3.6580         | 125.0942 | 2.6624         | 139.2243 | 0.1475         |  |
| 83.0840            | 2.9215         | 104.1443 | 0.0252         | 125.2144 | 0.2966         | 139.2643 | 0.3757         |  |
| 84.0640            | 3.7901         | 104.2343 | 0.1435         | 126.0642 | 3.8396         | 140.0843 | 0.7585         |  |
| 84.9540            | 0.0813         | 105.0641 | 0.4708         | 126.1542 | 0.0411         | 140.2543 | 0.0245         |  |
| 85.0342            | 7.9050         | 105.1843 | 0.1852         | 127.0442 | 24.9968        | 140.3143 | 0.0678         |  |
| 85.0942            | 1.8724         | 106.0641 | 0.3796         | 127.1142 | 5.8769         | 141.1043 | 2.0851         |  |
| 86.0740            | 1.5450         | 107.0841 | 3.2777         | 127.2342 | 0.1503         | 142.1043 | 0.4484         |  |
| 86.1742            | 0.0170         | 109.0942 | 3.5115         | 128.0844 | 0.2317         | 142.1843 | 0.0167         |  |
| 87.0539            | 2.9484         | 109.2042 | 0.0202         | 129.0641 | 3.3483         | 143.0943 | 1.9847         |  |
| 87.1641            | 0.1018         | 110.0742 | 1.8244         | 129.2141 | 0.0882         | 143.1743 | 0.2208         |  |

| A. Absinthium seed |                |          |                |          |                |          |                |  |
|--------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|
| m/z                | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |
| 144.0843           | 3.8238         | 162.2244 | 0.3310         | 182.1943 | 0.5146         | 199.4046 | 0.0174         |  |
| 145.0543           | 28.5045        | 163.0644 | 8.2313         | 183.0945 | 2.5383         | 200.1244 | 0.1136         |  |
| 145.2243           | 0.4832         | 163.1344 | 1.2165         | 183.1945 | 0.0809         | 200.1844 | 0.0918         |  |
| 146.0843           | 14.5802        | 164.0844 | 0.3964         | 184.1145 | 0.1790         | 200.2346 | 0.5673         |  |
| 146.1643           | 12.9979        | 164.1644 | 0.2872         | 184.2045 | 0.0891         | 201.1444 | 0.9261         |  |
| 146.9943           | 0.0133         | 165.0844 | 2.6959         | 185.1145 | 1.4972         | 201.2244 | 0.0187         |  |
| 147.0743           | 2.8892         | 165.2744 | 0.2101         | 185.2145 | 0.0812         | 201.3044 | 0.1070         |  |
| 147.2345           | 0.0274         | 166.0944 | 3.2960         | 185.3245 | 0.1118         | 202.1244 | 0.4413         |  |
| 148.0745           | 1.8909         | 166.1944 | 0.1630         | 186.1145 | 0.1676         | 202.2846 | 0.1233         |  |
| 149.0165           | 1.7816         | 167.0944 | 1.7233         | 186.2245 | 0.0334         | 203.1746 | 1.5619         |  |
| 149.1142           | 1.1345         | 167.1744 | 0.1418         | 187.1245 | 0.7026         | 203.3346 | 0.1948         |  |
| 149.9942           | 0.0138         | 167.2544 | 0.1631         | 188.0945 | 0.3033         | 204.1844 | 0.2438         |  |
| 150.0942           | 2.1970         | 168.0944 | 0.2743         | 188.1645 | 0.5245         | 205.1046 | 1.9153         |  |
| 150.1542           | 0.5463         | 168.1744 | 0.2257         | 189.1345 | 0.9053         | 205.1946 | 0.6353         |  |
| 150.2342           | 0.0224         | 168.9844 | 0.0449         | 190.1244 | 2.4029         | 205.2646 | 0.0510         |  |
| 150.3142           | 0.0798         | 169.1144 | 0.7634         | 191.1644 | 0.8260         | 205.3346 | 0.2674         |  |
| 151.1042           | 2.4169         | 170.0943 | 2.4524         | 191.3244 | 0.1444         | 206.1146 | 1.3888         |  |
| 151.9942           | 0.0233         | 170.1643 | 0.7699         | 192.1044 | 0.8808         | 207.1546 | 0.6841         |  |
| 152.1144           | 1.8475         | 170.3143 | 0.0121         | 192.1644 | 0.7164         | 207.3046 | 0.0065         |  |
| 153.0844           | 7.3443         | 171.3143 | 0.0316         | 192.2646 | 0.1631         | 208.1146 | 0.1866         |  |
| 154.0844           | 0.2669         | 172.1243 | 0.0233         | 193.0844 | 1.9747         | 208.2096 | 0.2489         |  |
| 154.1544           | 0.6016         | 173.1143 | 2.5624         | 193.1544 | 1.2033         | 209.1346 | 0.6855         |  |
| 155.1044           | 4.3168         | 174.1143 | 1.6005         | 194.0944 | 0.1066         | 210.1046 | 0.5924         |  |
| 156.1042           | 0.8579         | 174.2843 | 0.0278         | 194.1944 | 0.0112         | 210.1646 | 0.4759         |  |
| 156.1744           | 0.0032         | 175.1245 | 1.0943         | 194.9975 | 0.0072         | 210.3596 | 0.0539         |  |
| 156.2744           | 0.0043         | 176.1694 | 0.3052         | 195.0946 | 3.1210         | 211.1345 | 3.0752         |  |
| 157.1242           | 8.6263         | 178.0945 | 0.1522         | 195.1845 | 0.2334         | 212.1045 | 4.5670         |  |
| 157.2644           | 0.4851         | 178.1694 | 0.1653         | 196.0946 | 0.5111         | 212.2245 | 0.0402         |  |
| 158.1044           | 0.7496         | 178.2443 | 0.0012         | 196.2794 | 0.0381         | 212.3345 | 0.1979         |  |
| 158.1844           | 0.9330         | 179.0845 | 1.2791         | 197.1144 | 1.5219         | 213.1145 | 0.9750         |  |
| 158.9742           | 0.0192         | 179.1743 | 0.2183         | 197.3344 | 0.1330         | 213.2095 | 0.1117         |  |
| 159.0544           | 0.0104         | 180.0845 | 17.4680        | 198.1044 | 3.6321         | 213.3445 | 0.0168         |  |
| 159.1244           | 1.8878         | 181.0032 | 0.0079         | 198.1746 | 0.0900         | 214.1245 | 0.0236         |  |
| 160.0944           | 0.5539         | 181.1045 | 2.1415         | 199.1044 | 0.0119         | 214.2545 | 3.1092         |  |
| 161.2344           | 0.0030         | 181.1945 | 0.0652         | 199.1744 | 1.9133         | 215.1145 | 0.0645         |  |
| 162.0844           | 2.6589         | 182.1045 | 1.2815         | 199.3844 | 0.0011         | 215.1895 | 0.3722         |  |

| A. Absinthium seed |                |          |                |          |                |          |                |  |
|--------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|
| m/z.               | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |
| 215.2645           | 0.1361         | 231.2847 | 0.1691         | 252.1247 | 0.0722         | 272.2547 | 0.0314         |  |
| 215.3245           | 0.0777         | 232.0389 | 0.0108         | 252.1847 | 0.1192         | 272.4649 | 0.0261         |  |
| 216.1245           | 3.0779         | 232.1346 | 2.0151         | 253.1847 | 0.8417         | 273.2446 | 0.0113         |  |
| 216.1945           | 0.0097         | 233.1346 | 1.6849         | 254.1847 | 0.0882         | 274.1548 | 0.0543         |  |
| 216.3345           | 0.1228         | 234.1346 | 0.2621         | 255.2247 | 1.2228         | 274.2648 | 0.6870         |  |
| 217.0770           | 0.2061         | 234.2046 | 0.0143         | 256.1447 | 0.0199         | 274.4148 | 0.0208         |  |
| 217.1745           | 0.6003         | 234.3546 | 0.0237         | 256.2447 | 0.0508         | 275.2648 | 0.0807         |  |
| 217.3645           | 0.0310         | 235.1746 | 1.8698         | 256.3447 | 0.0245         | 277.2148 | 2.4102         |  |
| 218.1345           | 0.3988         | 236.1746 | 0.3679         | 257.2447 | 6.0798         | 277.4548 | 0.0804         |  |
| 218.2747           | 0.0156         | 237.1846 | 0.8437         | 258.2547 | 1.1295         | 277.5248 | 0.0903         |  |
| 219.1045           | 0.4915         | 238.1946 | 0.2835         | 258.4347 | 0.1400         | 278.2148 | 0.7028         |  |
| 219.1845           | 0.7159         | 238.3846 | 0.0303         | 259.1947 | 3.3580         | 279.1546 | 0.2520         |  |
| 219.3045           | 0.0106         | 239.1446 | 0.3931         | 259.4247 | 0.1201         | 279.2348 | 51.6559        |  |
| 220.1145           | 0.4840         | 239.2346 | 1.2640         | 260.1947 | 0.1186         | 280.1448 | 0.5290         |  |
| 220.1745           | 0.0285         | 240.2146 | 0.0678         | 261.1147 | 1.1132         | 280.2446 | 12.1284        |  |
| 220.2546           | 0.0183         | 241.1846 | 1.3675         | 261.2247 | 0.7872         | 281.1448 | 0.6879         |  |
| 220.3347           | 0.0708         | 242.1846 | 0.0738         | 261.4647 | 0.0998         | 281.2448 | 52.2017        |  |
| 221.1845           | 0.8104         | 242.2846 | 0.9462         | 262.1847 | 0.5058         | 282.1548 | 0.2286         |  |
| 222.1245           | 0.0030         | 243.1648 | 0.3973         | 262.2547 | 0.2678         | 282.2648 | 9.9797         |  |
| 222.2045           | 0.0380         | 243.2498 | 0.1048         | 263.1347 | 3.4730         | 282.5246 | 0.3523         |  |
| 223.1247           | 0.8684         | 243.4048 | 0.1022         | 263.2347 | 23.6652        | 283.2648 | 10.7828        |  |
| 224.1147           | 0.1883         | 244.1148 | 1.4705         | 264.1249 | 0.6248         | 284.1548 | 0.0445         |  |
| 225.1447           | 1.1930         | 244.1946 | 0.3537         | 264.2447 | 3.8598         | 284.2648 | 1.2786         |  |
| 225.2547           | 0.2439         | 245.1246 | 2.6048         | 265.1547 | 1.7065         | 285.1048 | 1.0515         |  |
| 226.1247           | 0.1671         | 245.2246 | 2.6123         | 265.2449 | 3.0021         | 285.2048 | 0.0320         |  |
| 227.1347           | 0.8899         | 246.1148 | 1.4909         | 266.1447 | 0.4431         | 285.2748 | 1.7000         |  |
| 227.4147           | 0.0224         | 246.2446 | 0.2136         | 266.2547 | 0.6415         | 286.0281 | 0.0177         |  |
| 228.1947           | 0.1707         | 247.1246 | 7.7799         | 267.1547 | 0.1947         | 286.2748 | 0.0845         |  |
| 229.1047           | 5.0525         | 247.2248 | 0.4967         | 267.2647 | 0.3879         | 287.2248 | 0.0410         |  |
| 229.2045           | 0.6200         | 248.1346 | 1.4966         | 268.1149 | 1.9904         | 287.4748 | 0.0276         |  |
| 230.1047           | 0.4054         | 248.3297 | 0.0359         | 268.2047 | 0.5413         | 288.2448 | 0.0189         |  |
| 230.1847           | 0.3360         | 248.4046 | 0.1176         | 269.2147 | 0.7286         | 289.2348 | 0.0142         |  |
| 230.2547           | 2.2896         | 249.1646 | 1.3545         | 270.2049 | 0.0154         | 289.4048 | 0.0212         |  |
| 230.3547           | 0.1008         | 249.2648 | 0.0525         | 270.3049 | 0.0163         | 290.1748 | 0.0218         |  |
| 231.1247           | 13.8742        | 250.1548 | 0.1091         | 270.3849 | 0.0479         | 291.1948 | 0.1849         |  |
| 231.2147           | 0.1998         | 251.1648 | 1.5220         | 271.2347 | 0.6634         | 291.2750 | 0.0113         |  |

| A. Absinthium seed |                |          |                |          |                |          |                |  |
|--------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|
| m/z                | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |
| 291.4148           | 0.0832         | 315.2998 | 1.4832         | 335.3249 | 0.0281         | 351.3351 | 0.2121         |  |
| 292.1948           | 0.0398         | 315.4448 | 0.0561         | 336.1849 | 0.1975         | 352.1751 | 0.0504         |  |
| 293.2148           | 0.9967         | 316.2250 | 0.9076         | 336.2549 | 0.0258         | 352.2451 | 0.2253         |  |
| 294.2147           | 0.1312         | 316.3048 | 0.5518         | 336.3251 | 0.0047         | 352.3251 | 0.1651         |  |
| 295.2347           | 9.4293         | 317.0648 | 0.1872         | 336.4749 | 0.0525         | 353.2651 | 1.2844         |  |
| 296.2549           | 1.8684         | 317.2348 | 0.3283         | 337.2651 | 1.8501         | 354.2651 | 0.6474         |  |
| 296.4747           | 0.0535         | 318.2248 | 0.0360         | 337.3451 | 0.0118         | 355.0751 | 0.7350         |  |
| 296.5247           | 0.1264         | 319.2348 | 0.0190         | 338.2649 | 0.4657         | 355.1950 | 0.0180         |  |
| 297.2449           | 27.5080        | 319.4450 | 0.0373         | 338.3449 | 0.8284         | 355.2950 | 12.4215        |  |
| 298.2749           | 59.9312        | 320.2350 | 0.0712         | 338.4251 | 0.0398         | 356.0750 | 0.3558         |  |
| 298.5049           | 0.1159         | 321.1550 | 0.0171         | 338.4849 | 0.1317         | 356.1950 | 0.0600         |  |
| 299.1949           | 0.6525         | 321.2350 | 0.0688         | 338.6049 | 0.0570         | 356.2850 | 2.5877         |  |
| 299.2749           | 11.8350        | 322.2450 | 0.1498         | 339.1049 | 0.0994         | 357.0750 | 0.2243         |  |
| 300.1949           | 0.2509         | 323.2548 | 0.1215         | 339.3251 | 0.6675         | 357.2050 | 0.1532         |  |
| 300.2947           | 6.3775         | 324.2650 | 0.8082         | 340.2651 | 0.2254         | 357.2950 | 0.8318         |  |
| 301.2049           | 0.0815         | 325.1150 | 0.2831         | 340.3449 | 0.1356         | 358.2152 | 0.2412         |  |
| 301.2949           | 0.7104         | 325.1950 | 0.0218         | 340.4251 | 0.0070         | 358.2950 | 0.3693         |  |
| 302.3049           | 0.0904         | 325.2850 | 0.3584         | 341.3149 | 0.6053         | 358.3650 | 0.0425         |  |
| 303.0549           | 0.0141         | 326.2950 | 0.1338         | 342.2151 | 0.0348         | 359.2250 | 0.1099         |  |
| 303.3049           | 0.0094         | 327.2850 | 0.2446         | 342.3149 | 0.2487         | 359.2952 | 0.2346         |  |
| 304.2349           | 0.0066         | 328.3248 | 0.1111         | 343.1649 | 0.3245         | 359.5150 | 0.0483         |  |
| 305.2349           | 0.0127         | 329.2350 | 0.0531         | 343.3351 | 0.1438         | 360.1550 | 0.2815         |  |
| 306.2749           | 0.9310         | 329.3150 | 0.0897         | 344.2651 | 0.2884         | 360.2252 | 0.3296         |  |
| 307.2749           | 0.0794         | 330.1150 | 0.0131         | 344.3951 | 0.0078         | 360.3150 | 0.2263         |  |
| 308.2349           | 0.0187         | 330.2350 | 0.1414         | 345.2749 | 0.1059         | 361.0493 | 0.0122         |  |
| 309.2149           | 0.1481         | 330.3350 | 0.0255         | 346.2749 | 0.1741         | 361.2352 | 0.1395         |  |
| 309.2849           | 0.2882         | 331.0950 | 5.4222         | 347.0851 | 0.0466         | 361.3250 | 0.0565         |  |
| 310.2449           | 1.7125         | 331.2950 | 0.8723         | 347.1649 | 0.0060         | 362.2650 | 0.2136         |  |
| 311.2349           | 0.1707         | 332.0950 | 0.9401         | 347.2851 | 0.1277         | 363.1752 | 0.0036         |  |
| 311.2749           | 0.9380         | 332.2150 | 0.6975         | 347.3651 | 0.0032         | 363.2452 | 0.0606         |  |
| 312.2749           | 0.7400         | 332.2950 | 3.0123         | 348.2949 | 0.8337         | 364.1952 | 0.2067         |  |
| 313.1149           | 0.1130         | 333.0950 | 0.0945         | 349.3351 | 0.1077         | 364.2550 | 0.2474         |  |
| 313.2749           | 2.0211         | 333.1750 | 0.0882         | 350.2351 | 0.0209         | 365.2750 | 0.3536         |  |
| 314.2448           | 2.4460         | 333.3450 | 0.2980         | 350.3151 | 0.0616         | 365.4150 | 0.0174         |  |
| 315.1148           | 0.2424         | 334.3350 | 0.0439         | 351.1751 | 0.1520         | 366.2950 | 0.3276         |  |
| 315.2248           | 6.8480         | 335.2049 | 0.1016         | 351.2451 | 0.1901         | 367.2050 | 0.2876         |  |
| A. Absinthium seed |                |          |                |          |                |          |                |  |  |
|--------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| m/z                | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |
| 367.3352           | 0.3726         | 376.5751 | 0.0575         | 393.4453 | 0.0940         | 408.4554 | 0.0519         |  |  |
| 368.2052           | 0.0753         | 377.1851 | 0.0058         | 394.1853 | 0.0063         | 409.3852 | 2.3246         |  |  |
| 368.2652           | 0.1049         | 377.2551 | 0.2989         | 394.2653 | 0.1222         | 410.2952 | 0.3790         |  |  |
| 368.3350           | 0.1669         | 377.3351 | 0.0828         | 394.3353 | 0.2956         | 410.3854 | 0.6383         |  |  |
| 369.2150           | 0.2595         | 377.4251 | 0.0085         | 395.2753 | 1.3692         | 411.3852 | 1.4485         |  |  |
| 369.3452           | 0.6414         | 377.5251 | 0.1390         | 395.3653 | 5.3406         | 411.6254 | 0.0790         |  |  |
| 369.4252           | 2.5058         | 378.2651 | 0.4268         | 396.1353 | 0.0253         | 411.6954 | 0.1788         |  |  |
| 369.4852           | 0.0717         | 378.3351 | 0.0240         | 396.3753 | 2.0546         | 412.2954 | 0.1593         |  |  |
| 369.5650           | 0.1619         | 379.2651 | 16.3623        | 397.0552 | 0.0608         | 412.3852 | 0.5545         |  |  |
| 370.3352           | 0.6134         | 380.0651 | 0.1134         | 397.2152 | 0.0066         | 413.3052 | 0.3568         |  |  |
| 370.4337           | 0.6249         | 380.2851 | 3.6781         | 397.3852 | 17.2076        | 413.3754 | 0.9794         |  |  |
| 371.1052           | 13.4222        | 381.2851 | 3.2323         | 398.2152 | 0.5912         | 414.3154 | 0.2379         |  |  |
| 371.3152           | 59.9483        | 382.1251 | 0.0231         | 398.2952 | 0.2479         | 414.3854 | 0.9685         |  |  |
| 371.5852           | 0.8103         | 382.2951 | 1.2016         | 398.3950 | 4.2988         | 414.6152 | 0.1977         |  |  |
| 371.6750           | 0.6295         | 382.3551 | 0.0405         | 398.5452 | 0.6650         | 415.3754 | 0.5279         |  |  |
| 371.7551           | 0.0305         | 383.3651 | 4.6425         | 399.3652 | 0.8908         | 416.3652 | 0.5769         |  |  |
| 371.8352           | 0.1284         | 384.1251 | 0.0084         | 400.0752 | 0.0052         | 416.4452 | 0.0066         |  |  |
| 372.1152           | 5.1981         | 384.2051 | 0.0039         | 400.3552 | 0.4426         | 417.3753 | 0.2704         |  |  |
| 372.2352           | 0.0285         | 384.3751 | 1.1128         | 401.2252 | 0.0931         | 418.2253 | 0.1046         |  |  |
| 372.3152           | 15.5203        | 385.3151 | 0.7488         | 401.3252 | 0.2238         | 418.2953 | 0.1994         |  |  |
| 372.6450           | 0.1105         | 386.3351 | 0.7504         | 401.4652 | 0.0488         | 418.3653 | 0.1086         |  |  |
| 372.8352           | 0.4032         | 387.3353 | 0.4753         | 402.3352 | 1.3219         | 418.4553 | 0.0421         |  |  |
| 372.9152           | 0.3248         | 387.6051 | 0.0362         | 403.1952 | 0.0037         | 419.1853 | 0.0160         |  |  |
| 373.1052           | 2.7045         | 388.1351 | 0.3540         | 403.3652 | 0.4719         | 419.3253 | 0.9093         |  |  |
| 373.1752           | 0.0384         | 388.3451 | 8.7539         | 404.1552 | 0.1237         | 420.3153 | 0.1819         |  |  |
| 373.3152           | 2.0065         | 388.5351 | 0.0961         | 404.2952 | 0.2808         | 421.1953 | 0.1894         |  |  |
| 374.0952           | 0.5629         | 389.1553 | 2.6418         | 404.6452 | 0.0259         | 421.2753 | 0.1034         |  |  |
| 374.2652           | 0.2913         | 389.2653 | 0.9947         | 405.2752 | 0.1055         | 421.3453 | 0.1971         |  |  |
| 374.3252           | 0.6841         | 389.3453 | 2.2144         | 405.3752 | 0.2365         | 421.4653 | 0.2248         |  |  |
| 375.1052           | 0.6765         | 390.1353 | 0.4452         | 406.2852 | 0.0468         | 422.2053 | 0.0282         |  |  |
| 375.1752           | 0.2394         | 390.2551 | 0.0360         | 406.3854 | 0.0100         | 422.3453 | 0.1645         |  |  |
| 375.2452           | 0.0439         | 390.3351 | 0.6314         | 407.1754 | 0.0474         | 422.4851 | 0.0570         |  |  |
| 375.3152           | 0.5161         | 391.1753 | 0.1943         | 407.2652 | 0.2069         | 423.2753 | 0.0572         |  |  |
| 376.1451           | 0.1903         | 391.2951 | 1.1851         | 407.3652 | 0.0367         | 423.3753 | 0.2818         |  |  |
| 376.2551           | 0.0446         | 392.2853 | 0.2943         | 407.4652 | 0.0247         | 423.4753 | 0.0072         |  |  |
| 376.3351           | 0.3739         | 393.3451 | 0.5062         | 408.3752 | 0.0945         | 424.2053 | 0.0253         |  |  |

| A. Absinthium seed |                |          |                |          |                |          |                |  |  |
|--------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| m/z.               | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |
| 424.3753           | 0.3905         | 444.4054 | 0.0666         | 461.4255 | 0.1870         | 479.2956 | 0.0485         |  |  |
| 424.5353           | 0.0075         | 445.2154 | 0.0112         | 462.1355 | 0.0094         | 479.3754 | 0.3453         |  |  |
| 425.3753           | 0.3494         | 445.3754 | 1.3984         | 462.2055 | 0.0646         | 479.4854 | 0.0493         |  |  |
| 426.3153           | 0.4146         | 446.3854 | 0.8715         | 463.3855 | 0.9876         | 480.4954 | 0.0313         |  |  |
| 426.4653           | 0.0205         | 447.3854 | 1.6879         | 464.2255 | 0.0870         | 481.3254 | 0.1403         |  |  |
| 427.3953           | 0.8807         | 448.2054 | 0.0542         | 464.3155 | 0.0043         | 481.3954 | 0.0121         |  |  |
| 428.3955           | 0.6191         | 448.3854 | 0.3675         | 464.3855 | 0.2079         | 481.4956 | 0.0571         |  |  |
| 429.1653           | 0.0071         | 449.3954 | 0.2618         | 465.3955 | 0.2546         | 482.3354 | 0.0682         |  |  |
| 429.2353           | 0.0036         | 449.5154 | 0.0374         | 465.4855 | 0.0281         | 482.4756 | 0.0661         |  |  |
| 429.3853           | 3.6109         | 450.2154 | 0.0124         | 466.3355 | 0.1563         | 482.5256 | 0.0248         |  |  |
| 430.2353           | 0.1375         | 450.3454 | 0.1669         | 466.5055 | 0.0944         | 483.3856 | 0.2132         |  |  |
| 430.3853           | 3.0544         | 450.5154 | 0.0578         | 467.3955 | 0.3813         | 483.5356 | 0.0457         |  |  |
| 431.3853           | 5.0368         | 451.3454 | 0.2013         | 468.3955 | 0.1063         | 484.3956 | 0.1026         |  |  |
| 432.1853           | 0.0799         | 451.4254 | 0.0148         | 468.4955 | 0.0318         | 484.5456 | 0.0419         |  |  |
| 432.3955           | 1.8944         | 453.3554 | 0.1802         | 469.4055 | 0.1299         | 485.4056 | 0.1046         |  |  |
| 433.4003           | 0.6599         | 453.4654 | 0.0233         | 470.3455 | 0.0384         | 486.2256 | 0.0206         |  |  |
| 434.2653           | 0.0073         | 454.2154 | 0.0875         | 470.4155 | 0.0906         | 486.3854 | 0.5837         |  |  |
| 434.3955           | 0.2949         | 454.3454 | 0.0979         | 470.5055 | 0.0700         | 487.3854 | 0.2135         |  |  |
| 435.3553           | 0.2288         | 454.4956 | 0.0955         | 471.3855 | 0.0692         | 487.5256 | 0.0982         |  |  |
| 435.4655           | 0.1036         | 455.3556 | 0.1383         | 471.4955 | 0.0336         | 488.3956 | 0.2371         |  |  |
| 436.3353           | 0.1496         | 455.4354 | 0.0205         | 472.3455 | 0.1285         | 488.4656 | 0.0234         |  |  |
| 437.1955           | 0.0716         | 455.4954 | 0.0534         | 472.3855 | 0.0099         | 488.5456 | 0.0683         |  |  |
| 437.2753           | 0.0328         | 456.2854 | 0.0122         | 473.3755 | 0.0588         | 489.3756 | 0.1188         |  |  |
| 437.3455           | 0.0995         | 456.3754 | 0.0446         | 474.3855 | 0.2300         | 490.4656 | 0.0300         |  |  |
| 437.4755           | 0.0759         | 456.5156 | 0.1332         | 474.4655 | 0.0217         | 491.3056 | 0.0039         |  |  |
| 438.2154           | 0.2303         | 457.3754 | 0.1517         | 475.3855 | 0.1368         | 491.3756 | 0.3084         |  |  |
| 438.3552           | 0.2487         | 457.4954 | 0.0559         | 476.3155 | 0.0269         | 491.4856 | 0.0058         |  |  |
| 438.4852           | 0.1289         | 458.2354 | 0.1227         | 476.4055 | 0.1940         | 492.3356 | 0.0695         |  |  |
| 439.2903           | 0.0066         | 458.3853 | 0.1120         | 476.4955 | 0.0141         | 493.3856 | 0.2874         |  |  |
| 439.3652           | 0.3679         | 459.1855 | 0.0079         | 477.2955 | 0.0771         | 493.5156 | 0.0070         |  |  |
| 440.3654           | 0.2758         | 459.3855 | 0.1864         | 477.4355 | 0.0688         | 494.3656 | 0.0143         |  |  |
| 441.3754           | 0.1897         | 459.4855 | 0.0676         | 477.5455 | 0.0347         | 495.3856 | 0.2400         |  |  |
| 442.3054           | 0.2607         | 460.3053 | 0.2411         | 478.2455 | 0.0104         | 495.4456 | 0.0332         |  |  |
| 442.3854           | 0.4019         | 460.4155 | 0.0099         | 478.3255 | 0.1805         | 496.3256 | 0.0576         |  |  |
| 443.3854           | 0.2663         | 460.4955 | 0.0742         | 478.4355 | 0.0122         | 497.3956 | 0.1088         |  |  |
| 444.2954           | 0.2934         | 461.3755 | 0.2467         | 478.5455 | 0.0053         | 498.3256 | 0.0592         |  |  |

| A. Absinthium seed |                |          |                |          |                |          |                |  |  |
|--------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| m/z.               | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |
| 498.3956           | 0.1150         | 520.4056 | 0.0536         | 545.4057 | 0.0567         | 564.5458 | 0.0086         |  |  |
| 498.5356           | 0.0554         | 521.5256 | 0.2611         | 545.4757 | 0.1240         | 564.6358 | 0.0031         |  |  |
| 499.3256           | 0.0138         | 522.4256 | 0.1238         | 545.7257 | 0.0045         | 565.5258 | 0.0329         |  |  |
| 499.4256           | 0.0443         | 523.4056 | 0.0529         | 546.3857 | 0.0156         | 566.4458 | 0.0981         |  |  |
| 500.4255           | 0.2258         | 525.4256 | 0.2084         | 546.4557 | 0.0860         | 566.5358 | 0.0118         |  |  |
| 501.3957           | 0.0104         | 526.4156 | 0.1614         | 547.4657 | 0.2551         | 567.3858 | 0.1189         |  |  |
| 501.4755           | 0.0550         | 526.5658 | 0.0572         | 548.3459 | 0.0526         | 567.4558 | 0.0144         |  |  |
| 502.4155           | 0.2389         | 527.4256 | 0.1146         | 548.4657 | 0.1268         | 567.5358 | 0.0533         |  |  |
| 503.4155           | 0.2023         | 527.5256 | 0.0113         | 549.3559 | 0.0838         | 568.5258 | 0.0051         |  |  |
| 504.4555           | 0.0165         | 528.4256 | 0.1889         | 549.4959 | 0.1116         | 569.4958 | 0.0974         |  |  |
| 505.3955           | 0.2749         | 529.4156 | 0.0288         | 550.2857 | 0.0093         | 569.5660 | 0.0561         |  |  |
| 505.5755           | 0.0067         | 530.4056 | 0.0888         | 550.4459 | 0.0727         | 569.6358 | 0.0040         |  |  |
| 506.2555           | 0.0098         | 531.4058 | 0.2206         | 550.5657 | 0.0292         | 570.4058 | 0.1113         |  |  |
| 506.3657           | 0.1381         | 532.4158 | 0.1296         | 551.5057 | 0.2557         | 570.5458 | 0.0406         |  |  |
| 507.3955           | 0.2319         | 533.4407 | 0.1760         | 552.3859 | 0.0372         | 571.4458 | 0.0995         |  |  |
| 507.5155           | 0.0416         | 533.5258 | 0.0413         | 552.4959 | 0.0901         | 571.5558 | 0.0143         |  |  |
| 508.3557           | 0.1863         | 534.3656 | 0.0903         | 552.5857 | 0.0624         | 572.4458 | 0.0321         |  |  |
| 508.5257           | 0.0839         | 534.4858 | 0.0712         | 553.4957 | 0.0250         | 572.5658 | 0.0029         |  |  |
| 509.2255           | 0.0029         | 535.4458 | 0.1132         | 554.4957 | 0.0782         | 573.4558 | 0.1930         |  |  |
| 509.4055           | 0.1826         | 535.5358 | 0.0106         | 555.3859 | 0.0436         | 574.4460 | 0.1600         |  |  |
| 509.5257           | 0.0600         | 536.5358 | 0.0156         | 555.4559 | 0.0509         | 575.5060 | 5.3988         |  |  |
| 510.4157           | 0.1342         | 536.6058 | 0.0877         | 556.3659 | 0.0034         | 576.5158 | 1.7812         |  |  |
| 511.3257           | 0.1330         | 537.5058 | 0.2106         | 556.4359 | 0.0580         | 577.5258 | 1.4352         |  |  |
| 511.4357           | 0.0380         | 537.6158 | 0.0652         | 557.4459 | 0.2784         | 578.5260 | 0.5325         |  |  |
| 512.4057           | 0.0666         | 538.3858 | 0.0708         | 557.5359 | 0.0041         | 579.5260 | 0.4060         |  |  |
| 512.5757           | 0.0134         | 538.5058 | 0.0865         | 558.4457 | 0.2189         | 580.4360 | 0.1457         |  |  |
| 513.3957           | 0.0798         | 539.3658 | 0.0412         | 559.4459 | 0.4397         | 580.5258 | 0.0727         |  |  |
| 514.3357           | 0.0369         | 539.4958 | 0.0699         | 559.5459 | 0.0201         | 580.6060 | 0.0064         |  |  |
| 514.4157           | 0.1094         | 540.4358 | 0.1007         | 560.4159 | 0.0720         | 581.4460 | 0.0058         |  |  |
| 515.4257           | 0.0360         | 541.4257 | 0.1019         | 560.4959 | 0.1348         | 581.5358 | 0.0167         |  |  |
| 516.4257           | 0.2177         | 541.5057 | 0.0176         | 561.4957 | 0.6502         | 582.5159 | 0.0735         |  |  |
| 516.4957           | 0.0082         | 542.4157 | 0.0485         | 562.5158 | 0.3347         | 583.4557 | 0.0606         |  |  |
| 517.4457           | 0.0903         | 543.4257 | 0.0718         | 563.4358 | 0.1125         | 583.5259 | 0.0071         |  |  |
| 518.4357           | 0.1137         | 543.4957 | 0.0430         | 563.4858 | 0.0364         | 584.5759 | 0.0071         |  |  |
| 518.5157           | 0.0074         | 544.3857 | 0.2480         | 563.5358 | 0.0870         | 585.3859 | 0.0753         |  |  |
| 519,4957           | 0.9803         | 544 5257 | 0.0657         | 564 4358 | 0.0027         | 585 4759 | 0.0854         |  |  |

**Table A3.4 (continued).** Mass data (m/z values and their relative intensities) for the DART-HRMS analysis of *A. absinthium* seed. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.1.

| A. Absinthium seed |                |          |                |          |                |          |                |  |  |
|--------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| m/z.               | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |
| 585.5859           | 0.0055         | 607.5760 | 0.0866         | 631.5059 | 0.5154         | 659.5262 | 12.9289        |  |  |
| 586.3959           | 0.0631         | 608.4510 | 0.0118         | 632.5361 | 0.3288         | 660.5362 | 5.5682         |  |  |
| 586.5559           | 0.0483         | 608.5260 | 0.0835         | 633.5161 | 2.3094         | 661.5562 | 2.9388         |  |  |
| 587.4909           | 0.0789         | 609.5160 | 0.1586         | 633.6961 | 0.0166         | 662.5662 | 0.7432         |  |  |
| 587.5859           | 0.0121         | 610.5460 | 0.7343         | 634.5461 | 1.8370         | 663.5562 | 0.2423         |  |  |
| 588.5059           | 0.0932         | 611.5360 | 0.2021         | 635.5461 | 1.2565         | 664.5662 | 0.1427         |  |  |
| 589.4759           | 0.2366         | 612.3560 | 0.0121         | 635.7061 | 0.0141         | 665.5161 | 0.0492         |  |  |
| 589.5959           | 0.0365         | 612.4760 | 0.1372         | 636.5661 | 0.5835         | 665.5961 | 0.0031         |  |  |
| 590.4859           | 0.0563         | 612.5460 | 0.1022         | 637.5661 | 0.3195         | 666.5561 | 0.1756         |  |  |
| 591.4961           | 0.5266         | 613.5060 | 0.1623         | 637.7161 | 0.0043         | 666.7161 | 0.0281         |  |  |
| 591.5859           | 0.0066         | 614.4960 | 0.1108         | 638.5761 | 0.2563         | 667.5861 | 0.0777         |  |  |
| 592.4959           | 0.2526         | 615.5060 | 2.5911         | 639.5661 | 0.1078         | 667.7161 | 0.0187         |  |  |
| 592.6759           | 0.0574         | 616.5160 | 1.2760         | 640.4761 | 0.1476         | 668.5761 | 1.0519         |  |  |
| 593.5159           | 0.2646         | 617.5160 | 3.8543         | 641.4861 | 0.1151         | 669.5863 | 0.4915         |  |  |
| 593.6659           | 0.0114         | 618.5260 | 1.1245         | 641.5661 | 0.0248         | 675.5063 | 2.0499         |  |  |
| 594.5159           | 0.1878         | 618.6762 | 0.3420         | 642.4863 | 0.0809         | 676.5261 | 8.8438         |  |  |
| 595.5259           | 0.1241         | 619.3860 | 0.0437         | 643.4963 | 0.0542         | 677.5463 | 3.5702         |  |  |
| 596.5261           | 0.0278         | 619.5360 | 0.4843         | 644.4960 | 0.0406         | 678.5961 | 2.3270         |  |  |
| 597.5259           | 0.2500         | 619.6660 | 0.0627         | 645.4862 | 0.0089         | 678.7263 | 0.1993         |  |  |
| 598.4561           | 0.2292         | 619.7560 | 0.1620         | 646.4960 | 0.0731         | 679.4163 | 0.0090         |  |  |
| 599.5061           | 4.9894         | 620.5360 | 0.1319         | 646.6162 | 0.0097         | 679.5963 | 0.9353         |  |  |
| 600.5061           | 1.6251         | 620.6660 | 0.0711         | 647.4762 | 0.0305         | 680.3263 | 0.0026         |  |  |
| 601.3761           | 0.0067         | 621.5460 | 0.0384         | 647.6360 | 0.0189         | 680.5963 | 1.0469         |  |  |
| 601.5259           | 2.1357         | 621.6660 | 0.0177         | 648.5160 | 0.1287         | 681.4563 | 0.0038         |  |  |
| 602.3861           | 0.0063         | 622.5460 | 0.0772         | 648.6360 | 0.0077         | 681.5963 | 0.3019         |  |  |
| 602.5261           | 0.7791         | 623.4659 | 0.0244         | 649.5160 | 0.3783         | 682.5563 | 0.1779         |  |  |
| 602.6261           | 0.0085         | 623.5659 | 0.0408         | 649.6760 | 0.0049         | 683.4863 | 0.0098         |  |  |
| 603.3060           | 0.0304         | 624.4759 | 0.3130         | 650.5460 | 0.7286         | 684.5063 | 0.0832         |  |  |
| 603.5360           | 1.0100         | 624.5459 | 0.0052         | 650.6862 | 0.0189         | 685.4962 | 0.0091         |  |  |
| 604.3158           | 0.0203         | 625.4861 | 0.1336         | 651.5462 | 1.2632         | 688.5764 | 0.1360         |  |  |
| 604.5458           | 0.4894         | 626.5259 | 0.1017         | 652.5462 | 7.4825         | 690.6564 | 0.0030         |  |  |
| 605.5460           | 0.2148         | 627.5061 | 0.0165         | 653.5660 | 2.5408         | 691.6662 | 0.0046         |  |  |
| 606.4060           | 0.0166         | 627.5861 | 0.0081         | 654.5662 | 1.0360         | 692.5564 | 2.1809         |  |  |
| 606.5360           | 0.1106         | 628.5061 | 0.0523         | 656.4962 | 0.1744         | 694.6064 | 0.8570         |  |  |
| 606.6260           | 0.0221         | 629.5059 | 0.1083         | 657.5062 | 4.3870         | 695.6264 | 0.1339         |  |  |
| 607.5060           | 0.1172         | 630.4961 | 0.1024         | 658.5062 | 2.3846         | 695.7464 | 0.0041         |  |  |

| · · ·    | A. Absinthium seed |          |                |          |                |          |                |  |  |  |
|----------|--------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z      | Rel. Int.<br>%     | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 696.5964 | 0.5385             | 743.6164 | 0.2213         | 781.6166 | 0.3996         | 863.6170 | 0.0620         |  |  |  |
| 697.6262 | 0.2518             | 744.6166 | 0.2580         | 782.6766 | 0.0946         | 868.6470 | 0.0664         |  |  |  |
| 700.5264 | 0.0985             | 745.6266 | 0.1582         | 784.6668 | 0.0794         | 872.7669 | 0.6410         |  |  |  |
| 704.6564 | 0.0064             | 746.6264 | 0.4897         | 785.6266 | 0.2432         | 873.7669 | 0.3646         |  |  |  |
| 705.6664 | 0.0294             | 747.6265 | 0.3209         | 788.6167 | 0.3000         | 874.7669 | 0.4464         |  |  |  |
| 705.7564 | 0.0024             | 748.6463 | 0.5271         | 790.6167 | 0.4364         | 875.7769 | 0.2707         |  |  |  |
| 706.5863 | 0.6067             | 749.6365 | 0.2505         | 792.6067 | 0.4260         | 876.7869 | 0.1523         |  |  |  |
| 707.6463 | 0.0143             | 750.8165 | 0.0939         | 793.6067 | 0.2348         | 877.7269 | 0.8943         |  |  |  |
| 708.5863 | 0.7301             | 751.5965 | 0.3816         | 794.6167 | 0.7072         | 878.7369 | 0.7561         |  |  |  |
| 709.5963 | 0.3503             | 751.6863 | 0.0484         | 795.6267 | 0.4042         | 879.0569 | 0.0411         |  |  |  |
| 710.6063 | 0.4899             | 752.6065 | 0.5278         | 796.6267 | 0.4222         | 879.7369 | 3.8423         |  |  |  |
| 711.6063 | 0.2194             | 752.6765 | 0.0104         | 796.7067 | 0.0252         | 880.7371 | 1.9447         |  |  |  |
| 712.6063 | 0.2480             | 753.6165 | 0.3577         | 797.6367 | 0.2096         | 881.7469 | 1.4180         |  |  |  |
| 713.5865 | 0.1294             | 754.6465 | 0.3414         | 805.5967 | 0.0887         | 882.7471 | 0.5159         |  |  |  |
| 714.5863 | 0.1139             | 755.6265 | 0.1791         | 807.6067 | 0.1036         | 883.7571 | 0.3351         |  |  |  |
| 715.6063 | 0.0561             | 756.6265 | 0.1785         | 809.6066 | 0.1689         | 884.7571 | 0.2749         |  |  |  |
| 717.5965 | 0.1071             | 757.6265 | 0.1696         | 810.6266 | 0.5443         | 885.7771 | 0.1344         |  |  |  |
| 718.6763 | 0.0131             | 761.6165 | 0.1758         | 811.6166 | 0.3201         | 886.7871 | 0.0687         |  |  |  |
| 719.6565 | 0.0357             | 762.6165 | 0.3706         | 812.6366 | 0.2334         | 895.7370 | 0.5214         |  |  |  |
| 720.7365 | 0.0360             | 764.6765 | 0.1141         | 819.6266 | 0.1376         | 896.7570 | 1.6384         |  |  |  |
| 721.5363 | 0.0080             | 767.6067 | 0.2657         | 821.5868 | 0.1263         | 897.7570 | 1.1949         |  |  |  |
| 721.6263 | 0.2477             | 768.5766 | 0.4499         | 822.6068 | 0.1241         | 898.7670 | 0.9538         |  |  |  |
| 722.6365 | 0.2834             | 768.6666 | 0.0154         | 831.7269 | 0.0550         | 899.7770 | 0.4726         |  |  |  |
| 723.6465 | 0.1928             | 769.6066 | 0.3416         | 833.7469 | 0.0079         | 900.7970 | 0.3218         |  |  |  |
| 725.6065 | 0.2465             | 769.7011 | 0.0093         | 835.6169 | 0.0590         | 901.7970 | 0.0899         |  |  |  |
| 727.5744 | 0.1841             | 770.6064 | 0.8236         | 837.5867 | 0.0438         | 902.7970 | 0.0081         |  |  |  |
| 728.5964 | 0.2871             | 771.6364 | 0.5518         | 848.7569 | 0.0942         | 906.6772 | 0.0340         |  |  |  |
| 729.5964 | 0.1867             | 772.6366 | 0.3393         | 849.7469 | 0.0190         | 907.6770 | 0.0422         |  |  |  |
| 735.6764 | 0.0042             | 773.6364 | 0.1779         | 853.7170 | 0.4683         | 908.6872 | 0.0198         |  |  |  |
| 736.6164 | 0.4112             | 775.6164 | 0.2823         | 854.7268 | 0.3197         | 910.7072 | 0.0352         |  |  |  |
| 737.6364 | 0.1859             | 776.6166 | 0.3364         | 855.7368 | 1.2436         | 912.7569 | 0.6736         |  |  |  |
| 738.6364 | 0.2353             | 776.6866 | 0.0106         | 856.7468 | 0.7694         | 914.7771 | 0.2883         |  |  |  |
| 739.6464 | 0.1691             | 777.6166 | 0.1818         | 857.7568 | 0.3171         | 930.8371 | 0.0769         |  |  |  |
| 740.6364 | 0.2020             | 778.6266 | 0.4112         | 858.7570 | 0.2125         | 946.7772 | 0.0241         |  |  |  |
| 741.6266 | 0.1610             | 779.6366 | 0.2511         | 859.7668 | 0.0505         | 954.8371 | 0.0302         |  |  |  |
| 742.6164 | 0.1642             | 780.7066 | 0.0051         | 860.7668 | 0.0216         | 956.8473 | 0.0430         |  |  |  |

| spectrum ap        | spectrum appears in Figure 3.1. |           |                |           |                |           |                |  |  |
|--------------------|---------------------------------|-----------|----------------|-----------|----------------|-----------|----------------|--|--|
| A. Absinthium seed |                                 |           |                |           |                |           |                |  |  |
| m/z                | Rel. Int.<br>%                  | m/z       | Rel. Int.<br>% | m/z       | Rel. Int.<br>% | m/z       | Rel. Int.<br>% |  |  |
| 957.8671           | 0.0093                          | 998.8173  | 0.0551         | 1015.7774 | 0.1524         | 1035.8576 | 0.0191         |  |  |
| 969.7873           | 0.0458                          | 1000.7873 | 0.0679         | 1016.7974 | 0.1985         | 1057.8476 | 0.0143         |  |  |
| 970.7773           | 0.0948                          | 1001.7973 | 0.0282         | 1017.8074 | 0.0699         | 1058.8376 | 0.0228         |  |  |
| 974.7874           | 0.0021                          | 1002.8173 | 0.0234         | 1031.8374 | 0.0460         |           |                |  |  |
| 978.7674           | 0.0210                          | 1007.8273 | 0.1162         | 1032.8274 | 0.0705         |           |                |  |  |
| 997.8173           | 0.0647                          | 1014.7875 | 0.1885         | 1034.8576 | 0.0286         |           |                |  |  |

| A. Absinthium tincture |                |          |                |          |                |          |                |  |  |
|------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| m/z                    | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |
| 62.0639                | 0.0071         | 89.2541  | 0.0584         | 111.2342 | 0.0349         | 130.1543 | 0.5747         |  |  |
| 65.0541                | 0.0249         | 90.0641  | 2.0243         | 112.0742 | 0.5280         | 130.2343 | 0.0116         |  |  |
| 67.0540                | 0.0282         | 90.1641  | 0.0601         | 113.0542 | 0.5720         | 131.0643 | 1.0222         |  |  |
| 68.9640                | 0.0049         | 91.0541  | 1.0553         | 114.0842 | 0.0609         | 131.2243 | 0.0652         |  |  |
| 69.0440                | 0.2619         | 92.0641  | 0.0688         | 115.0542 | 0.7994         | 132.1041 | 3.2236         |  |  |
| 69.1440                | 0.0104         | 93.0641  | 36.3133        | 115.1040 | 0.3258         | 133.0643 | 2.9299         |  |  |
| 70.0640                | 1.0348         | 93.1341  | 0.2653         | 115.2442 | 0.0524         | 133.2543 | 0.0573         |  |  |
| 70.1340                | 0.0020         | 94.0641  | 1.6029         | 116.0742 | 25.1456        | 134.0843 | 0.3293         |  |  |
| 71.0640                | 0.2138         | 94.1741  | 0.2113         | 116.2242 | 0.2814         | 134.1943 | 0.0613         |  |  |
| 72.0840                | 0.7456         | 95.0241  | 0.0048         | 117.0642 | 5.3270         | 134.2543 | 0.0327         |  |  |
| 72.2040                | 0.0453         | 95.0841  | 3.2434         | 117.2442 | 0.1904         | 135.1043 | 94.3581        |  |  |
| 73.0640                | 1.6518         | 96.0541  | 0.0717         | 118.0842 | 2.5391         | 135.2443 | 1.0253         |  |  |
| 74.0640                | 0.5628         | 97.0341  | 1.0567         | 118.2042 | 0.1246         | 135.9943 | 0.0596         |  |  |
| 75.0440                | 0.3751         | 97.0941  | 0.5378         | 119.0842 | 0.7680         | 136.0643 | 3.7305         |  |  |
| 75.1140                | 1.9582         | 97.2241  | 0.0052         | 120.0742 | 0.3024         | 136.1343 | 10.9441        |  |  |
| 76.0640                | 0.1644         | 97.2841  | 0.0284         | 120.2042 | 0.0396         | 136.2143 | 0.7611         |  |  |
| 77.0440                | 0.0961         | 98.0841  | 0.2797         | 121.0842 | 0.6385         | 136.2843 | 0.0736         |  |  |
| 78.0440                | 0.0037         | 99.0541  | 1.2337         | 122.0742 | 0.0164         | 136.4043 | 0.1418         |  |  |
| 79.0440                | 1.9468         | 100.0841 | 0.0298         | 123.0942 | 0.9329         | 136.9843 | 0.0935         |  |  |
| 79.1242                | 0.0048         | 101.0641 | 0.8662         | 123.2942 | 0.0057         | 137.0743 | 0.3476         |  |  |
| 80.0540                | 0.1080         | 101.1841 | 0.0654         | 124.0642 | 0.2157         | 137.1243 | 44.1460        |  |  |
| 81.0540                | 9.9085         | 102.0741 | 0.0175         | 124.1844 | 0.0098         | 137.2143 | 1.2811         |  |  |
| 82.0642                | 0.3674         | 103.0541 | 0.6721         | 125.0942 | 0.5186         | 137.2843 | 0.5252         |  |  |
| 82.9442                | 0.0085         | 104.0741 | 2.0646         | 125.2144 | 0.0043         | 137.9843 | 0.1061         |  |  |
| 83.0840                | 0.5053         | 104.2343 | 0.0329         | 126.0642 | 1.2051         | 138.0843 | 0.0591         |  |  |
| 84.0640                | 0.4440         | 105.0641 | 0.4827         | 126.1542 | 0.0268         | 138.1643 | 4.4227         |  |  |
| 84.9540                | 0.0187         | 105.1843 | 0.0755         | 127.0442 | 6.7202         | 139.0054 | 0.0846         |  |  |
| 85.0342                | 3.4864         | 106.0641 | 0.0409         | 127.1142 | 0.9593         | 139.1043 | 0.2369         |  |  |
| 85.0942                | 0.1589         | 107.0841 | 3.7356         | 127.2342 | 0.0447         | 139.2243 | 0.0333         |  |  |
| 86.0740                | 0.5917         | 108.0640 | 0.1352         | 127.9777 | 0.0040         | 139.2643 | 0.0688         |  |  |
| 86.1742                | 0.0084         | 109.0340 | 2.5654         | 128.0844 | 1.1828         | 140.0043 | 0.0032         |  |  |
| 87.0539                | 0.7272         | 109.0942 | 1.3359         | 128.2243 | 0.0821         | 140.0843 | 0.4261         |  |  |
| 87.1641                | 0.0417         | 110.0742 | 0.4568         | 128.3041 | 0.0038         | 140.3143 | 0.0211         |  |  |
| 88.0741                | 0.1020         | 110.1640 | 0.0045         | 129.0641 | 0.9715         | 141.1043 | 0.6748         |  |  |
| 88.2041                | 0.0042         | 110.2142 | 0.0524         | 129.2141 | 0.0128         | 142.1043 | 3.9298         |  |  |
| 89.0641                | 5.8049         | 111.1140 | 0.3539         | 130.0643 | 7.5097         | 142.1843 | 0.0108         |  |  |

| Table A3.5 (continued). Mass data ( $m/z$ values and their relative intensities) for the DART- |
|------------------------------------------------------------------------------------------------|
| HRMS analysis of A. absinthium tincture. Ten replicates of one sample were averaged where      |
| the corresponding spectrum appears in Figure 3.1.                                              |

| A. Absinthium tincture |                |          |                |          |                |          |                |  |  |
|------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| m/z                    | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |
| 143.0943               | 0.5855         | 160.0042 | 0.0084         | 178.2443 | 0.0055         | 198.1044 | 4.1262         |  |  |
| 144.0843               | 1.6581         | 160.0944 | 0.6560         | 179.0845 | 0.6239         | 198.1746 | 0.0049         |  |  |
| 144.1743               | 0.0598         | 161.1644 | 2.0729         | 180.0845 | 9.7425         | 199.0346 | 0.0015         |  |  |
| 144.2443               | 0.0360         | 162.0844 | 0.7146         | 181.0032 | 0.0012         | 199.1044 | 0.4673         |  |  |
| 145.0543               | 7.7067         | 162.2244 | 0.0063         | 181.1045 | 1.2993         | 199.1744 | 0.6996         |  |  |
| 145.1243               | 0.2423         | 163.0644 | 7.3887         | 181.1945 | 0.9694         | 199.4046 | 0.0015         |  |  |
| 145.2243               | 0.1180         | 163.1344 | 1.0014         | 182.0143 | 0.0045         | 200.1244 | 0.9852         |  |  |
| 146.0843               | 1.3336         | 164.0844 | 0.3901         | 182.1045 | 0.3788         | 200.1844 | 0.0021         |  |  |
| 147.0743               | 1.2831         | 164.1644 | 0.1224         | 182.1943 | 0.1325         | 201.1444 | 4.3431         |  |  |
| 147.2345               | 0.0022         | 165.0844 | 1.2441         | 183.0945 | 1.2663         | 202.1244 | 1.2666         |  |  |
| 148.0745               | 0.1662         | 165.2744 | 0.0558         | 184.1145 | 1.7788         | 202.2846 | 0.0455         |  |  |
| 149.1142               | 0.5606         | 166.0944 | 0.4822         | 185.1145 | 2.2092         | 203.1746 | 4.2152         |  |  |
| 149.9942               | 0.0209         | 166.1944 | 0.0156         | 186.1145 | 0.9693         | 204.0244 | 0.0145         |  |  |
| 150.0942               | 0.9642         | 167.0944 | 0.4566         | 187.1245 | 1.5630         | 204.1844 | 0.6291         |  |  |
| 150.1542               | 0.0897         | 167.2544 | 0.0537         | 188.0945 | 0.5427         | 205.1046 | 0.4215         |  |  |
| 150.2342               | 0.0123         | 168.0944 | 0.2402         | 188.1645 | 1.0170         | 205.1946 | 3.4250         |  |  |
| 150.3142               | 0.0248         | 168.1744 | 0.0119         | 189.1345 | 1.3725         | 205.4046 | 0.0152         |  |  |
| 151.1042               | 1.3554         | 168.2544 | 0.0373         | 189.4045 | 0.0156         | 206.1146 | 0.4467         |  |  |
| 151.2342               | 0.0553         | 168.9844 | 0.0178         | 190.1244 | 0.4748         | 206.2044 | 0.4012         |  |  |
| 152.1144               | 0.4844         | 169.1144 | 0.4855         | 191.0678 | 1.0660         | 207.0746 | 1.8141         |  |  |
| 153.0844               | 13.0097        | 170.0943 | 0.7063         | 191.1644 | 0.3300         | 207.1546 | 1.7662         |  |  |
| 154.0144               | 0.0032         | 170.1643 | 1.1136         | 191.3244 | 0.0863         | 208.1146 | 0.6600         |  |  |
| 154.0844               | 0.1222         | 170.3143 | 0.0180         | 192.1044 | 0.2391         | 208.2096 | 0.1821         |  |  |
| 154.1544               | 1.8085         | 171.1543 | 0.0280         | 192.2646 | 0.0169         | 209.1346 | 0.8336         |  |  |
| 155.0100               | 0.0085         | 171.3143 | 0.0191         | 193.0844 | 1.1384         | 210.1046 | 0.7793         |  |  |
| 155.1044               | 0.8417         | 172.1243 | 2.4882         | 193.1544 | 0.0954         | 210.1646 | 0.0387         |  |  |
| 156.1042               | 1.0748         | 173.1143 | 1.7777         | 194.0944 | 0.2435         | 210.3596 | 0.0059         |  |  |
| 156.1744               | 0.0039         | 174.1143 | 0.5087         | 195.0946 | 13.9189        | 211.1345 | 0.4994         |  |  |
| 156.2744               | 0.0183         | 174.2843 | 0.0068         | 195.1845 | 1.3034         | 212.1045 | 17.1033        |  |  |
| 157.1242               | 1.8408         | 175.0543 | 0.0676         | 195.2744 | 0.3006         | 212.1845 | 0.0367         |  |  |
| 157.2644               | 0.1131         | 175.1245 | 0.8725         | 196.0144 | 0.0347         | 212.3345 | 0.2481         |  |  |
| 158.1044               | 19.8836        | 176.0945 | 0.5259         | 196.0946 | 1.7477         | 213.0145 | 0.0210         |  |  |
| 158.2544               | 0.0204         | 177.0645 | 0.1209         | 196.2794 | 0.0488         | 213.1145 | 2.2449         |  |  |
| 158.9742               | 0.0305         | 177.1443 | 0.2352         | 197.1144 | 0.7177         | 213.3045 | 0.0062         |  |  |
| 159.0544               | 0.8624         | 178.0945 | 0.1356         | 197.3344 | 0.0783         | 213.3445 | 0.0332         |  |  |
| 159.1244               | 2.4850         | 178.1694 | 0.0430         | 198.0244 | 0.0075         | 213.7345 | 0.0407         |  |  |

| HRMS analysis of A. <i>absinthium tincture</i> . Ten replicates of one sample were averaged where |                |          |                |              |                |          |                |  |  |
|---------------------------------------------------------------------------------------------------|----------------|----------|----------------|--------------|----------------|----------|----------------|--|--|
| the corresponding spectrum appears in Figure 3.1.                                                 |                |          |                |              |                |          |                |  |  |
| A. Absinthium tincture                                                                            |                |          |                |              |                |          |                |  |  |
| m/z                                                                                               | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | <i>m/z</i> , | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |
| 214.0245                                                                                          | 0.0183         | 231.0247 | 0.0027         | 248.4046     | 0.1021         | 268.2047 | 0.5507         |  |  |
| 214.1245                                                                                          | 0.8341         | 231.1247 | 34.1941        | 249.1646     | 4.4412         | 269.1347 | 0.5190         |  |  |
| 214.2545                                                                                          | 0.2571         | 231.3247 | 0.3079         | 249.2648     | 0.0068         | 269.2147 | 2.4481         |  |  |
| 215.1145                                                                                          | 0.7732         | 232.0389 | 0.0794         | 250.1548     | 0.9231         | 270.2049 | 0.7184         |  |  |
| 215.1895                                                                                          | 0.1773         | 232.1346 | 6.6442         | 251.1648     | 3.3880         | 270.3849 | 0.0294         |  |  |
| 215.2645                                                                                          | 0.0183         | 233.0346 | 0.0040         | 252.1247     | 0.4648         | 271.0847 | 0.5086         |  |  |
| 215.3245                                                                                          | 0.0521         | 233.1346 | 8.2950         | 252.1847     | 0.0685         | 271.1597 | 0.0762         |  |  |
| 216.1245                                                                                          | 10.1334        | 234.0346 | 0.0174         | 252.2647     | 0.0051         | 271.2347 | 3.2743         |  |  |
| 216.1945                                                                                          | 0.0015         | 234.1346 | 2.4610         | 253.1847     | 3.3493         | 271.4147 | 0.0208         |  |  |
| 216.3345                                                                                          | 0.0132         | 234.3546 | 0.0671         | 254.1847     | 0.6009         | 272.1349 | 0.0160         |  |  |
| 217.1745                                                                                          | 2.5802         | 235.1746 | 12.5424        | 255.2247     | 0.2265         | 272.2547 | 0.5725         |  |  |
| 218.0445                                                                                          | 0.0148         | 236.1746 | 2.0313         | 256.1447     | 0.2523         | 272.4649 | 0.0304         |  |  |
| 218.1345                                                                                          | 1.3737         | 237.1846 | 1.8993         | 256.2447     | 0.0899         | 273.1548 | 0.3181         |  |  |
| 219.1845                                                                                          | 2.0461         | 238.1146 | 0.0495         | 256.3447     | 0.0018         | 273.2446 | 0.7268         |  |  |
| 220.1145                                                                                          | 0.3874         | 238.1946 | 0.4278         | 257.1647     | 0.0707         | 274.1548 | 0.1972         |  |  |
| 220.1745                                                                                          | 0.0593         | 238.3846 | 0.0437         | 257.2447     | 0.0712         | 274.2648 | 0.1001         |  |  |
| 220.3347                                                                                          | 0.0362         | 239.2346 | 2.3366         | 258.1647     | 0.0644         | 274.4148 | 0.0279         |  |  |
| 221.0545                                                                                          | 0.1864         | 240.1246 | 0.1316         | 258.2547     | 0.0336         | 275.2046 | 1.4751         |  |  |
| 221.1845                                                                                          | 1.8364         | 240.2146 | 0.4433         | 258.4347     | 0.0154         | 276.1648 | 0.2664         |  |  |
| 222.0347                                                                                          | 0.0016         | 241.1046 | 0.5379         | 259.1947     | 0.1581         | 276.2748 | 0.0039         |  |  |
| 222.1245                                                                                          | 0.0602         | 241.1846 | 0.1839         | 259.2647     | 0.0231         | 277.1146 | 1.0502         |  |  |
| 222.2045                                                                                          | 0.2447         | 242.1048 | 0.2607         | 259.4247     | 0.0083         | 277.2148 | 0.1568         |  |  |
| 223.1247                                                                                          | 0.3390         | 242.1846 | 0.0124         | 260.1147     | 0.3180         | 277.4548 | 0.0040         |  |  |
| 224.1147                                                                                          | 0.4065         | 242.2846 | 0.0068         | 260.2547     | 0.0412         | 277.5248 | 0.0230         |  |  |
| 224.2545                                                                                          | 0.0218         | 243.1046 | 0.8008         | 261.1147     | 1.1808         | 278.1248 | 0.6067         |  |  |
| 225.1447                                                                                          | 0.7626         | 243.1648 | 0.0834         | 261.2247     | 0.0155         | 278.2148 | 0.0243         |  |  |
| 226.1247                                                                                          | 0.9722         | 243.2498 | 0.0116         | 261.4647     | 0.0137         | 279.1546 | 1.6952         |  |  |
| 227.1347                                                                                          | 0.7217         | 243.4048 | 0.0232         | 262.1847     | 0.6009         | 279.4048 | 0.0317         |  |  |
| 227.4147                                                                                          | 0.0060         | 244.1148 | 0.5946         | 263.1347     | 12.9541        | 280.1448 | 0.5783         |  |  |
| 228.1247                                                                                          | 0.3810         | 244.1946 | 0.0148         | 263.3849     | 0.2120         | 280.2446 | 0.5533         |  |  |
| 228.1947                                                                                          | 0.0114         | 245.1246 | 6.5700         | 264.1249     | 2.0949         | 281.1448 | 5.7724         |  |  |

**Table A3.5 (continued).** Mass data (m/z values and their relative intensities) for the DART-

0.0092

1.5522

5.3481

1.3818

0.0722

264.2447

265.1547

265.2449

266.1447

267.1547

0.0100

1.0754

0.8083

0.6250

0.3571

281.2448

282.1548

282.2648

282.5246

283.0948

0.0558

0.9245

0.0795

0.0181

0.0825

245.2246

246.1148

247.1246

248.1346

248.3297

0.0015

12.0553

0.0104

2.7117

0.0837

228.3247

229.1047

230.0147

230.1047

230.3547

| Table A3.5 (continued). Mass data ( $m/z$ values and their relative intensities) for the DART- |
|------------------------------------------------------------------------------------------------|
| HRMS analysis of A. absinthium tincture. Ten replicates of one sample were averaged where      |
| the corresponding spectrum appears in Figure 3.1.                                              |

| A. Absinthium tincture |                |          |                |          |                |          |                |  |  |
|------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| m/z                    | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |
| 283.1848               | 0.6651         | 296.4747 | 0.0147         | 311.1449 | 0.3086         | 331.0950 | 0.1893         |  |  |
| 283.2648               | 0.1322         | 296.5247 | 0.0236         | 311.2349 | 0.0182         | 331.2250 | 0.1777         |  |  |
| 284.1548               | 0.2164         | 297.1847 | 0.8349         | 311.2749 | 0.1541         | 331.2950 | 0.0284         |  |  |
| 284.2648               | 0.0797         | 298.1649 | 1.6865         | 312.1649 | 0.2420         | 332.2150 | 0.2038         |  |  |
| 284.3648               | 0.0059         | 298.2749 | 0.0857         | 312.2749 | 0.0112         | 332.2950 | 0.0252         |  |  |
| 285.1048               | 0.4050         | 298.4049 | 0.0413         | 313.2149 | 0.1712         | 332.3550 | 0.0282         |  |  |
| 285.2748               | 1.3377         | 298.5049 | 0.0353         | 314.2448 | 0.8044         | 333.1750 | 0.1056         |  |  |
| 286.1348               | 0.0329         | 299.0949 | 0.0215         | 315.2248 | 0.2066         | 333.2350 | 0.0068         |  |  |
| 286.2148               | 0.0747         | 299.1949 | 0.4621         | 315.4448 | 0.0062         | 333.3450 | 0.0131         |  |  |
| 286.2748               | 0.2475         | 299.2749 | 0.0282         | 316.2250 | 0.2173         | 334.2350 | 0.6895         |  |  |
| 287.3048               | 1.4514         | 300.1949 | 0.3464         | 317.0648 | 0.0438         | 335.2049 | 0.2425         |  |  |
| 287.4748               | 0.0388         | 300.4249 | 0.0388         | 317.2348 | 0.1038         | 336.1849 | 0.0724         |  |  |
| 288.0348               | 0.0011         | 301.0949 | 0.3642         | 318.2248 | 0.1289         | 336.2549 | 0.3572         |  |  |
| 288.1348               | 0.0825         | 301.2049 | 0.2650         | 319.2348 | 0.2313         | 336.4749 | 0.0520         |  |  |
| 288.2448               | 0.2800         | 301.2949 | 0.2398         | 319.4450 | 0.0018         | 337.2049 | 1.1734         |  |  |
| 289.1048               | 0.7724         | 302.1449 | 0.3062         | 320.1648 | 0.9176         | 338.1951 | 0.3160         |  |  |
| 289.1748               | 0.1048         | 302.3049 | 0.1087         | 320.2350 | 0.0316         | 338.2649 | 0.1309         |  |  |
| 289.2348               | 0.1561         | 303.1249 | 0.4762         | 321.1550 | 0.3739         | 338.4251 | 0.0156         |  |  |
| 289.4048               | 0.0108         | 303.3049 | 0.1465         | 321.2350 | 0.1662         | 338.4849 | 0.0318         |  |  |
| 289.4748               | 0.0151         | 304.1549 | 0.1237         | 322.2450 | 0.3132         | 339.1849 | 0.2119         |  |  |
| 290.1748               | 0.4913         | 304.2349 | 0.1137         | 323.1750 | 0.1782         | 339.3251 | 0.1114         |  |  |
| 290.2748               | 0.3719         | 304.3649 | 0.0048         | 323.2548 | 0.1491         | 340.3449 | 0.0614         |  |  |
| 290.4048               | 0.0371         | 305.1549 | 0.1524         | 323.3570 | 0.0025         | 341.1349 | 0.4068         |  |  |
| 291.1948               | 2.9599         | 305.2349 | 0.1482         | 324.1750 | 0.6040         | 341.2149 | 0.0158         |  |  |
| 291.2750               | 0.0105         | 305.3149 | 0.0674         | 324.2650 | 0.1990         | 341.3149 | 0.1797         |  |  |
| 291.4148               | 0.1011         | 306.1649 | 0.3631         | 325.1950 | 0.3243         | 342.2151 | 0.9155         |  |  |
| 292.1948               | 0.6580         | 306.2749 | 0.0840         | 325.2850 | 0.2215         | 342.3149 | 0.0012         |  |  |
| 293.1348               | 0.2885         | 307.1949 | 0.7736         | 326.1850 | 1.3670         | 343.1649 | 0.1811         |  |  |
| 293.2148               | 0.6379         | 307.2749 | 0.4476         | 326.2950 | 0.2031         | 343.2351 | 0.0853         |  |  |
| 293.2947               | 0.0201         | 308.2349 | 0.6230         | 327.1950 | 0.2139         | 343.3351 | 0.0197         |  |  |
| 294.2147               | 0.3665         | 308.3315 | 0.0214         | 327.2850 | 0.1452         | 344.1751 | 0.3797         |  |  |
| 294.2949               | 0.0213         | 309.2149 | 5.6435         | 328.2250 | 0.3963         | 345.1849 | 0.2066         |  |  |
| 295.1547               | 2.3359         | 309.2849 | 1.0392         | 328.3248 | 0.0086         | 345.2749 | 0.0013         |  |  |
| 296.1649               | 0.3693         | 309.3549 | 0.0756         | 329.2350 | 0.2988         | 346.1751 | 0.3255         |  |  |
| 296.2549               | 0.2825         | 310.1349 | 1.0852         | 330.2350 | 0.2077         | 347.0851 | 0.4028         |  |  |
| 296.3447               | 0.1253         | 310.2449 | 0.0519         | 330.3350 | 0.0579         | 347.1649 | 0.4195         |  |  |

| A. Absinthium tincture |                |          |                |          |                |          |                |
|------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|
| m/z                    | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |
| 347.2851               | 0.0037         | 362.3750 | 0.0170         | 374.3252 | 0.0052         | 387.2253 | 0.0784         |
| 348.1149               | 0.0492         | 363.2452 | 0.1949         | 375.1052 | 2.8164         | 387.2853 | 0.0242         |
| 348.1851               | 0.2599         | 364.1952 | 0.6650         | 375.2452 | 0.0019         | 387.6051 | 0.0172         |
| 348.2949               | 0.0060         | 365.2750 | 0.3407         | 376.1451 | 0.5084         | 388.1351 | 0.3108         |
| 349.2151               | 0.1332         | 365.4150 | 0.0022         | 376.2551 | 0.0017         | 388.2653 | 0.3309         |
| 349.3351               | 0.0383         | 366.2652 | 0.5554         | 376.3351 | 0.0014         | 388.3451 | 0.0114         |
| 350.2351               | 0.3809         | 366.2950 | 0.0012         | 376.5751 | 0.0202         | 388.4351 | 0.0781         |
| 350.3751               | 0.0042         | 367.2750 | 0.3957         | 377.1851 | 0.2251         | 388.5351 | 0.0025         |
| 351.2451               | 0.1283         | 368.2652 | 1.0909         | 377.2551 | 0.0318         | 389.1553 | 35.1469        |
| 351.3351               | 0.0017         | 369.2150 | 0.3552         | 377.3351 | 0.0526         | 390.1353 | 7.5208         |
| 352.2451               | 0.7292         | 369.4252 | 0.0396         | 377.4251 | 0.0182         | 390.2551 | 0.0081         |
| 352.3251               | 0.0079         | 369.4852 | 0.0576         | 377.5251 | 0.0415         | 390.3351 | 0.1055         |
| 353.1851               | 0.4032         | 369.5650 | 0.0507         | 378.1851 | 1.0607         | 391.1753 | 1.2976         |
| 354.1951               | 0.2643         | 370.2150 | 0.9058         | 378.3351 | 0.0035         | 391.2951 | 0.5549         |
| 354.2651               | 0.4743         | 371.1052 | 0.9000         | 379.1751 | 0.0518         | 391.3901 | 0.1904         |
| 355.0751               | 0.0428         | 371.2250 | 0.0743         | 379.2651 | 0.2646         | 392.1851 | 0.4879         |
| 355.1950               | 0.0115         | 371.3152 | 0.5281         | 379.3451 | 0.0110         | 392.2853 | 0.1007         |
| 355.2950               | 0.2377         | 371.4952 | 0.0104         | 380.2051 | 0.5292         | 393.2652 | 0.1879         |
| 356.0750               | 0.0209         | 371.5852 | 0.0436         | 380.3451 | 0.0038         | 393.3451 | 0.1300         |
| 356.2850               | 0.4206         | 371.6750 | 0.0296         | 381.1951 | 0.0855         | 393.4453 | 0.0052         |
| 357.0750               | 0.0081         | 371.7551 | 0.0046         | 381.2851 | 0.2354         | 394.2653 | 0.3295         |
| 357.2050               | 0.2786         | 371.8352 | 0.0092         | 381.3451 | 0.0020         | 394.3353 | 0.0048         |
| 357.2950               | 0.0039         | 372.1152 | 0.3629         | 381.4153 | 0.0056         | 395.0553 | 0.0023         |
| 357.3850               | 0.0010         | 372.2352 | 0.6795         | 382.2951 | 0.5853         | 395.1953 | 0.1865         |
| 358.2152               | 0.2039         | 372.3152 | 0.0740         | 382.4351 | 0.0523         | 395.2753 | 0.0014         |
| 359.1350               | 0.1084         | 372.6450 | 0.0252         | 383.1951 | 0.1259         | 395.3653 | 0.1575         |
| 359.2250               | 0.1795         | 372.8352 | 0.0334         | 383.2951 | 0.1363         | 396.2053 | 2.4907         |
| 359.2952               | 0.0063         | 372.9152 | 0.0289         | 383.3651 | 0.0395         | 396.2853 | 0.0066         |
| 359.3850               | 0.0205         | 373.1052 | 0.1964         | 384.2051 | 0.2584         | 396.3753 | 0.0027         |
| 359.5150               | 0.0296         | 373.1752 | 0.0652         | 384.2751 | 0.1508         | 397.0552 | 0.0066         |
| 360.2252               | 0.3244         | 373.2452 | 0.1366         | 385.2151 | 0.2363         | 397.2152 | 0.5724         |
| 361.1550               | 0.0679         | 373.3152 | 0.0208         | 385.3151 | 0.0073         | 397.3852 | 0.3709         |
| 361.2352               | 0.1908         | 373.4052 | 0.0055         | 385.4851 | 0.0120         | 398.2152 | 0.7710         |
| 361.3250               | 0.0366         | 374.0952 | 0.0292         | 386.2153 | 0.3277         | 398.3950 | 0.0895         |
| 362.1652               | 0.1732         | 374.1652 | 0.0444         | 386.3351 | 0.0589         | 398.4752 | 0.0456         |
| 362.2650               | 0.0603         | 374.2652 | 0.1751         | 387.1053 | 0.0838         | 398.5452 | 0.0404         |

| Table A3.5 (continued). Mass data (m/z values and their relative intensities) for the DART- |  |  |  |  |  |
|---------------------------------------------------------------------------------------------|--|--|--|--|--|
| HRMS analysis of A. absinthium tincture. Ten replicates of one sample were averaged where   |  |  |  |  |  |
| the corresponding spectrum appears in Figure 3.1.                                           |  |  |  |  |  |
|                                                                                             |  |  |  |  |  |

| A. Absinthium tincture |                |          |                |          |                |          |                |
|------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|
| m/z                    | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |
| 399.2252               | 0.3230         | 412.2052 | 0.5860         | 427.2253 | 0.0555         | 441.3754 | 0.0219         |
| 399.3652               | 0.0116         | 412.3852 | 0.0029         | 427.2953 | 0.1705         | 441.4754 | 0.0027         |
| 400.2352               | 0.8933         | 413.2152 | 0.4899         | 427.3953 | 0.1643         | 442.2454 | 0.2299         |
| 401.2252               | 0.1688         | 413.3052 | 0.0032         | 428.2353 | 0.2707         | 442.3054 | 0.0613         |
| 401.3252               | 0.0739         | 413.3754 | 0.0072         | 428.2953 | 0.0082         | 442.3854 | 0.0014         |
| 401.4652               | 0.0453         | 413.4554 | 0.0029         | 428.3955 | 0.0038         | 443.2954 | 0.1338         |
| 402.2252               | 0.2336         | 414.2154 | 0.3107         | 428.4953 | 0.0173         | 443.3854 | 0.0650         |
| 403.1952               | 0.0375         | 414.3154 | 0.0081         | 429.1653 | 0.4000         | 444.2354 | 0.3144         |
| 403.2952               | 0.0993         | 414.3854 | 0.0039         | 429.2353 | 0.0590         | 444.2954 | 0.0253         |
| 403.3652               | 0.0188         | 414.6152 | 0.0232         | 429.3853 | 0.5772         | 445.2154 | 0.2200         |
| 404.1552               | 0.0643         | 415.2254 | 0.1588         | 430.2353 | 0.0418         | 445.3054 | 0.0195         |
| 404.2952               | 0.0787         | 415.3004 | 0.0792         | 430.3853 | 0.2155         | 445.3754 | 0.0926         |
| 404.6452               | 0.0026         | 415.3754 | 0.0033         | 431.2253 | 0.2093         | 446.2254 | 0.3166         |
| 405.1952               | 0.1437         | 416.2354 | 1.0424         | 431.3053 | 0.0124         | 446.3054 | 0.0017         |
| 405.2752               | 0.0807         | 417.2553 | 0.2805         | 431.3853 | 0.0139         | 446.3854 | 0.0014         |
| 405.3752               | 0.1693         | 417.3753 | 0.0070         | 431.4753 | 0.0108         | 447.2254 | 0.3186         |
| 405.4552               | 0.0356         | 418.2253 | 0.3208         | 432.1853 | 0.0512         | 447.3254 | 0.0056         |
| 406.1952               | 0.0571         | 418.2953 | 0.0041         | 432.3153 | 0.1826         | 447.3854 | 0.0145         |
| 406.2852               | 0.1582         | 418.4553 | 0.0181         | 432.3955 | 0.0641         | 448.2054 | 0.2726         |
| 406.3854               | 0.0363         | 419.1853 | 0.0844         | 433.2555 | 0.1910         | 448.3254 | 0.0033         |
| 407.1754               | 0.1492         | 419.3253 | 0.0414         | 433.4003 | 0.0034         | 449.3254 | 0.1454         |
| 407.2652               | 0.0104         | 420.2553 | 0.3832         | 434.2653 | 0.1437         | 449.3954 | 0.0034         |
| 407.3652               | 0.0706         | 421.2753 | 0.1757         | 434.3353 | 0.0039         | 449.5154 | 0.0024         |
| 407.4652               | 0.0072         | 421.3453 | 0.0485         | 435.2253 | 0.1312         | 450.2154 | 0.0899         |
| 408.4554               | 0.0023         | 421.4653 | 0.0264         | 435.3553 | 0.0048         | 450.3454 | 0.0719         |
| 409.2052               | 0.0849         | 422.2053 | 0.2159         | 435.4655 | 0.0086         | 450.5154 | 0.0381         |
| 409.2752               | 0.0292         | 422.3453 | 0.0178         | 436.3353 | 0.0334         | 451.2254 | 0.0061         |
| 409.3852               | 0.1717         | 423.2753 | 0.1233         | 437.1955 | 0.0249         | 451.3454 | 0.0867         |
| 410.2252               | 0.9700         | 423.3753 | 0.1296         | 437.2753 | 0.0485         | 452.4854 | 0.0328         |
| 410.3854               | 0.0036         | 424.2653 | 1.1587         | 437.3455 | 0.0115         | 453.3554 | 0.0421         |
| 411.1952               | 0.0988         | 425.2853 | 0.3644         | 437.4755 | 0.0084         | 454.4956 | 0.0510         |
| 411.2952               | 0.1558         | 425.3753 | 0.1763         | 438.2154 | 1.2155         | 455.2856 | 0.1021         |
| 411.3852               | 0.2018         | 425.4553 | 0.0013         | 439.2903 | 0.3600         | 455.3556 | 0.0055         |
| 411.4754               | 0.0035         | 425.5953 | 0.0022         | 439.3652 | 0.0016         | 456.2854 | 0.1081         |
| 411.6254               | 0.0018         | 426.2253 | 0.8246         | 439.4554 | 0.0131         | 456.5156 | 0.0225         |
| 411.6954               | 0.0142         | 426.3853 | 0.0016         | 441.2954 | 0.1259         | 457.2256 | 0.0747         |

| Table A3.5 (continued). Mass data ( $m/z$ values and their relative intensities) for the DART- |
|------------------------------------------------------------------------------------------------|
| HRMS analysis of A. absinthium tincture. Ten replicates of one sample were averaged where      |
| the corresponding spectrum appears in Figure 3.1.                                              |
|                                                                                                |

| A. Absinthium tincture |                |          |                |          |                |          |                |
|------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|
| m/z                    | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |
| 457.3054               | 0.1027         | 476.3155 | 0.0264         | 491.4856 | 0.0088         | 511.3257 | 0.1402         |
| 457.3754               | 0.0177         | 476.4055 | 0.0011         | 492.2256 | 0.2546         | 511.4357 | 0.0011         |
| 459.3053               | 0.4100         | 477.2955 | 0.3728         | 492.3356 | 0.0112         | 512.5757 | 0.0039         |
| 459.3855               | 0.0042         | 477.5455 | 0.0428         | 493.2456 | 0.1793         | 513.3357 | 0.1931         |
| 460.3053               | 0.1459         | 478.2455 | 0.1956         | 493.3056 | 0.1186         | 514.3357 | 0.2355         |
| 460.4155               | 0.0010         | 478.3255 | 0.0134         | 495.3056 | 0.2018         | 515.3257 | 0.0988         |
| 460.4955               | 0.0405         | 478.4355 | 0.0013         | 495.4456 | 0.0034         | 515.4257 | 0.0045         |
| 461.3055               | 0.2122         | 479.2956 | 0.3893         | 496.3256 | 0.1969         | 516.3457 | 0.1346         |
| 461.3755               | 0.0101         | 479.3754 | 0.0058         | 497.3256 | 0.3227         | 516.4957 | 0.0049         |
| 462.1355               | 0.0019         | 479.4854 | 0.0112         | 497.3956 | 0.0013         | 517.3257 | 0.0784         |
| 462.3053               | 0.1867         | 480.3254 | 0.1972         | 498.3256 | 0.2788         | 517.4457 | 0.0016         |
| 463.3153               | 0.2232         | 480.4954 | 0.0044         | 498.5356 | 0.0183         | 518.3457 | 0.0893         |
| 463.3855               | 0.0018         | 481.3254 | 0.1635         | 499.3256 | 0.0925         | 518.4357 | 0.0069         |
| 464.2255               | 0.1816         | 481.3954 | 0.0023         | 499.4256 | 0.0082         | 519.3457 | 0.0797         |
| 464.3155               | 0.0211         | 481.4956 | 0.0015         | 500.3455 | 0.1200         | 519.4957 | 0.0048         |
| 465.3255               | 0.1205         | 482.3354 | 0.1312         | 501.2257 | 0.0191         | 520.3356 | 0.0083         |
| 465.3955               | 0.0012         | 482.4756 | 0.0197         | 501.3255 | 0.0358         | 521.3356 | 0.0814         |
| 466.2355               | 0.0921         | 482.5256 | 0.0128         | 502.3355 | 0.1278         | 521.4056 | 0.0043         |
| 466.3355               | 0.3689         | 483.3156 | 0.0962         | 502.4155 | 0.0133         | 521.5256 | 0.0028         |
| 466.5055               | 0.0190         | 483.5356 | 0.0118         | 503.3255 | 0.1190         | 523.2456 | 0.0842         |
| 467.3255               | 0.1494         | 484.5456 | 0.0530         | 503.4155 | 0.0010         | 523.3256 | 0.0033         |
| 469.3353               | 0.0819         | 485.3354 | 0.1172         | 504.2857 | 0.1002         | 523.4056 | 0.0040         |
| 469.4055               | 0.0042         | 485.4056 | 0.0013         | 504.4555 | 0.0301         | 524.2756 | 0.0728         |
| 471.3255               | 0.2470         | 486.2256 | 0.0329         | 505.3255 | 0.1031         | 525.3358 | 0.0900         |
| 471.3855               | 0.0060         | 486.3254 | 0.1202         | 505.3955 | 0.0176         | 525.4256 | 0.0063         |
| 471.4955               | 0.0044         | 487.3156 | 0.0699         | 506.2555 | 0.1022         | 526.5658 | 0.0145         |
| 472.2555               | 0.2350         | 487.3854 | 0.0101         | 506.3657 | 0.0144         | 527.3456 | 0.0660         |
| 472.3455               | 0.0028         | 487.5256 | 0.0028         | 507.3155 | 0.0818         | 527.4256 | 0.0116         |
| 472.3855               | 0.0014         | 488.3956 | 0.0015         | 507.3955 | 0.0063         | 527.5256 | 0.0063         |
| 473.2255               | 0.0490         | 488.4656 | 0.0048         | 508.2355 | 0.0294         | 528.3458 | 0.0949         |
| 473.2955               | 0.0647         | 488.5456 | 0.0201         | 508.3557 | 0.1046         | 529.2658 | 0.0549         |
| 473.3755               | 0.0010         | 489.3056 | 0.0960         | 508.5257 | 0.0117         | 529.3256 | 0.0051         |
| 474.2857               | 0.1625         | 489.3756 | 0.0077         | 509.3255 | 0.1149         | 529.4156 | 0.0031         |
| 474.3855               | 0.0015         | 490.3254 | 0.2219         | 509.5257 | 0.0206         | 530.2856 | 0.0016         |
| 474.4655               | 0.0016         | 490.4656 | 0.0017         | 510.4157 | 0.0220         | 530.4056 | 0.0098         |
| 475.3055               | 0.2806         | 491.3056 | 0.1947         | 510.5357 | 0.0013         | 531.3158 | 0.0459         |

| Table A3.5 (continued). Mass data (m/z values and their relative intensities) for the DART- |
|---------------------------------------------------------------------------------------------|
| HRMS analysis of A. absinthium tincture. Ten replicates of one sample were averaged where   |
| the corresponding spectrum appears in Figure 3.1.                                           |
| · · · · · · ·                                                                               |

| A. Absinthium tincture |                |          |                |          |                |          |                |
|------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|
| m/z                    | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |
| 531.4058               | 0.0129         | 547.4657 | 0.0239         | 562.2558 | 0.2577         | 577.5258 | 0.0404         |
| 532.3358               | 0.0899         | 548.3459 | 0.0995         | 562.3458 | 0.0096         | 578.3660 | 0.0615         |
| 532.4158               | 0.0081         | 548.4657 | 0.0071         | 562.4358 | 0.0086         | 578.5260 | 0.0253         |
| 533.2707               | 0.0228         | 549.2757 | 0.0391         | 563.2758 | 0.0746         | 579.3460 | 0.0385         |
| 533.3556               | 0.0462         | 549.3559 | 0.0292         | 563.3558 | 0.1157         | 579.4160 | 0.0094         |
| 533.4407               | 0.0023         | 549.4959 | 0.0069         | 564.2758 | 0.1089         | 580.5258 | 0.0024         |
| 533.5258               | 0.0043         | 550.2857 | 0.0214         | 564.4358 | 0.0036         | 580.6060 | 0.0054         |
| 534.3656               | 0.0956         | 550.3757 | 0.0405         | 564.5458 | 0.0015         | 581.3658 | 0.0435         |
| 535.4458               | 0.0155         | 550.4459 | 0.0137         | 564.6358 | 0.0083         | 582.3759 | 0.0459         |
| 536.3158               | 0.0547         | 550.5657 | 0.0020         | 565.2958 | 0.0101         | 582.5159 | 0.0069         |
| 536.5358               | 0.0096         | 551.3759 | 0.0232         | 565.3658 | 0.0149         | 583.3759 | 0.0297         |
| 536.6058               | 0.0051         | 551.5057 | 0.0238         | 565.5258 | 0.0040         | 583.5259 | 0.0059         |
| 537.3958               | 0.0052         | 552.3859 | 0.0318         | 566.3758 | 0.1060         | 583.5859 | 0.0020         |
| 537.5058               | 0.0268         | 552.4959 | 0.0221         | 567.3858 | 0.0638         | 584.3959 | 0.0558         |
| 537.6158               | 0.0028         | 552.5857 | 0.0153         | 567.5358 | 0.0040         | 585.3859 | 0.0485         |
| 538.3158               | 0.1194         | 553.3157 | 0.0501         | 568.3858 | 0.2121         | 585.5859 | 0.0075         |
| 538.5058               | 0.0033         | 553.4957 | 0.0277         | 569.3158 | 0.0012         | 586.3959 | 0.0856         |
| 539.3658               | 0.0614         | 554.4057 | 0.0124         | 569.3858 | 0.0753         | 586.4857 | 0.0031         |
| 539.4958               | 0.0107         | 554.4957 | 0.0541         | 569.4958 | 0.0039         | 586.5559 | 0.0069         |
| 541.3457               | 0.0754         | 555.5357 | 0.0087         | 569.5660 | 0.0079         | 587.3959 | 0.0026         |
| 541.4257               | 0.0023         | 556.3659 | 0.1374         | 570.4058 | 0.0763         | 587.4909 | 0.0128         |
| 541.5057               | 0.0015         | 557.3357 | 0.0484         | 570.5458 | 0.0449         | 587.5859 | 0.0059         |
| 542.3357               | 0.0907         | 557.4459 | 0.0011         | 571.3958 | 0.0542         | 588.2659 | 0.0246         |
| 543.3457               | 0.0457         | 557.5359 | 0.0157         | 572.3758 | 0.0787         | 588.4059 | 0.0450         |
| 543.4257               | 0.0040         | 558.3759 | 0.1645         | 572.4458 | 0.0102         | 588.6059 | 0.0012         |
| 543.4957               | 0.0091         | 559.3359 | 0.0880         | 572.5658 | 0.0016         | 589.3959 | 0.0453         |
| 544.3057               | 0.1404         | 559.4459 | 0.0024         | 572.6658 | 0.0095         | 589.4759 | 0.0092         |
| 544.3857               | 0.0065         | 559.5459 | 0.0038         | 573.2958 | 0.0196         | 589.5959 | 0.0018         |
| 545.3257               | 0.0842         | 560.2259 | 0.0490         | 573.3758 | 0.0034         | 590.2959 | 0.0449         |
| 545.4757               | 0.0094         | 560.3459 | 0.0669         | 573.4558 | 0.0332         | 590.3959 | 0.0389         |
| 545.7257               | 0.0047         | 560.4159 | 0.0055         | 574.4460 | 0.0358         | 590.4859 | 0.0034         |
| 546.2857               | 0.3155         | 560.4959 | 0.0041         | 575.3358 | 0.0070         | 591.3559 | 0.0188         |
| 546.4557               | 0.0537         | 561.3359 | 0.0536         | 575.5060 | 0.1901         | 591.4961 | 0.0245         |
| 547.2357               | 0.0671         | 561.4159 | 0.0270         | 576.3458 | 0.1186         | 591.5859 | 0.0029         |
| 547.3357               | 0.0300         | 561.4957 | 0.0345         | 576.5158 | 0.0899         | 592.3059 | 0.0015         |
| 547.4057               | 0.0679         | 561.5658 | 0.0028         | 577.3458 | 0.0545         | 592.3759 | 0.0597         |

| HRMS analysis of A. absinthium tincture. Ten replicates of one sample were averaged where |                |              |                |              |                |          |                |
|-------------------------------------------------------------------------------------------|----------------|--------------|----------------|--------------|----------------|----------|----------------|
| the corresp                                                                               | onding spec    | trum appears | in Figure 3.   | 1.           |                |          |                |
| A. Absinthium tincture                                                                    |                |              |                |              |                |          |                |
| m/z                                                                                       | Rel. Int.<br>% | m/z          | Rel. Int.<br>% | <i>m/z</i> , | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |
| 592.4959                                                                                  | 0.0357         | 605.3160     | 0.0089         | 620.6660     | 0.0088         | 637.4761 | 0.0134         |
| 592.5759                                                                                  | 0.0067         | 605.4060     | 0.0327         | 621.5460     | 0.0188         | 637.5661 | 0.0299         |
| 592.6759                                                                                  | 0.0061         | 605.5460     | 0.0087         | 621.6660     | 0.0096         | 638.5761 | 0.0323         |
| 593.3159                                                                                  | 0.0153         | 606.4060     | 0.1001         | 622.4062     | 0.0705         | 638.6861 | 0.0017         |
| 593.3859                                                                                  | 0.0286         | 606.5360     | 0.0028         | 622.5460     | 0.0280         | 643.4963 | 0.0026         |
| 593.5159                                                                                  | 0.0355         | 606.6260     | 0.0050         | 623.5659     | 0.0020         | 645.4862 | 0.0033         |
| 594.3759                                                                                  | 0.0865         | 607.2958     | 0.0198         | 624.5459     | 0.0011         | 646.4160 | 0.0389         |
| 594.5159                                                                                  | 0.0039         | 607.5060     | 0.0104         | 625.3961     | 0.0644         | 646.4960 | 0.0021         |
| 595.3559                                                                                  | 0.0629         | 607.5760     | 0.0092         | 626.3359     | 0.3283         | 646.6162 | 0.0170         |
| 595.5259                                                                                  | 0.0120         | 608.3060     | 0.0013         | 626.4061     | 0.3054         | 647.4060 | 0.0227         |
| 596.5261                                                                                  | 0.0178         | 608.3760     | 0.3760         | 626.5259     | 0.0015         | 647.4762 | 0.0039         |
| 597.3661                                                                                  | 0.0226         | 608.4510     | 0.0012         | 627.3361     | 0.1877         | 648.5160 | 0.0109         |
| 597.4460                                                                                  | 0.0059         | 608.5260     | 0.0065         | 628.5061     | 0.0011         | 648.6360 | 0.0011         |
| 597.5259                                                                                  | 0.0234         | 609.3860     | 0.1669         | 629.2761     | 0.0012         | 649.4160 | 0.0271         |
| 598.3859                                                                                  | 0.0536         | 610.5460     | 0.0882         | 629.4310     | 0.0219         | 649.5160 | 0.0149         |
| 598.4561                                                                                  | 0.0419         | 611.5360     | 0.0086         | 629.5059     | 0.0039         | 649.5960 | 0.0053         |
| 598.5959                                                                                  | 0.0066         | 612.3560     | 2.6442         | 630.4161     | 0.0532         | 649.6760 | 0.0019         |
| 599.3761                                                                                  | 0.0041         | 613.3660     | 0.8886         | 630.4961     | 0.0196         | 650.4160 | 0.0524         |
| 599.5061                                                                                  | 0.0538         | 614.4160     | 0.1839         | 631.3959     | 0.0315         | 650.6862 | 0.0069         |
| 599.6059                                                                                  | 0.0018         | 614.4960     | 0.0617         | 631.5059     | 0.0186         | 651.4160 | 0.0436         |
| 600.3861                                                                                  | 0.1700         | 615.3860     | 0.0338         | 632.4161     | 0.0395         | 651.5462 | 0.0045         |
| 600.5061                                                                                  | 0.0013         | 615.5060     | 0.0955         | 632.5361     | 0.0025         | 652.4062 | 0.0899         |
| 601.3761                                                                                  | 0.0635         | 616.5160     | 0.0481         | 633.3961     | 0.0892         | 652.5462 | 0.0052         |
| 601.5259                                                                                  | 0.0229         | 617.3860     | 0.0013         | 633.5161     | 0.0199         | 653.4162 | 0.0464         |
| 601.5961                                                                                  | 0.0016         | 617.4460     | 0.0308         | 633.5961     | 0.0017         | 653.4962 | 0.0033         |
| 601.8059                                                                                  | 0.0016         | 617.5160     | 0.0472         | 633.6961     | 0.0124         | 653.5660 | 0.0062         |
| 602.3861                                                                                  | 0.0370         | 618.3960     | 0.0555         | 634.3261     | 0.0022         | 654.5662 | 0.0403         |
| 602.5261                                                                                  | 0.0152         | 618.5260     | 0.0353         | 634.4661     | 0.0031         | 655.4762 | 0.0024         |
| 602.6261                                                                                  | 0.0121         | 618.6762     | 0.0050         | 634.5461     | 0.0323         | 657.4262 | 0.0030         |
| 603.3060                                                                                  | 0.0073         | 619.3860     | 0.0482         | 635.3861     | 0.0447         | 657.5062 | 0.0106         |
| 603.3958                                                                                  | 0.0110         | 619.4560     | 0.0149         | 635.5461     | 0.0202         | 658.5062 | 0.0051         |

**Table A3.5 (continued).** Mass data (m/z values and their relative intensities) for the DART-

0.0056

0.0060

0.0091

0.0515

0.0248

635.6161

635.7061

636.3961

636.5661

637.4061

0.0126

0.0017

0.0672 0.0290

0.0144

659.3862

659.5262

659.6162

660.3962

660.5362

0.0352

0.0246

0.0016

0.0641

0.0028

603.5360

604.3158

604.4058

604.4660

604.5458

0.0209

0.0631

0.0020

0.0033

0.0263

619.5360

619.7560

620.3260

620.3960

620.5360

| Table A3.5 (continued). Mass data (m/z values and their relative intensities) for the DART- |
|---------------------------------------------------------------------------------------------|
| HRMS analysis of A. absinthium tincture. Ten replicates of one sample were averaged where   |
| the corresponding spectrum appears in Figure 3.1.                                           |
|                                                                                             |

| A. Absinthium tincture |                |          |                |          |                |          |                |
|------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|
| m/z                    | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |
| 660.6317               | 0.0026         | 680.4013 | 0.0638         | 707.4063 | 0.0263         | 740.4664 | 0.0294         |
| 661.3962               | 0.0393         | 680.5963 | 0.0016         | 707.6463 | 0.0022         | 740.5366 | 0.0196         |
| 661.5562               | 0.0109         | 681.4563 | 0.0385         | 708.4363 | 0.3030         | 740.6364 | 0.0180         |
| 661.6517               | 0.0057         | 681.5963 | 0.0079         | 710.4263 | 0.0749         | 741.4664 | 0.0348         |
| 662.5662               | 0.0044         | 682.4563 | 0.0030         | 710.6063 | 0.0058         | 741.5264 | 0.0026         |
| 663.3862               | 0.0570         | 682.5563 | 0.0190         | 717.5965 | 0.0020         | 741.6266 | 0.0061         |
| 663.6262               | 0.0032         | 683.4163 | 0.0397         | 719.3963 | 0.0179         | 742.6164 | 0.0126         |
| 664.3862               | 0.0555         | 684.5063 | 0.0033         | 720.4563 | 0.0357         | 743.6164 | 0.0084         |
| 664.5662               | 0.0051         | 688.5764 | 0.0073         | 720.6665 | 0.0067         | 744.6166 | 0.0061         |
| 665.4161               | 0.1588         | 689.4062 | 0.0263         | 721.5363 | 0.0017         | 745.6266 | 0.0042         |
| 665.5961               | 0.0020         | 689.4762 | 0.0042         | 721.6263 | 0.0019         | 746.5464 | 0.0175         |
| 666.4161               | 0.0204         | 689.6462 | 0.0084         | 722.6365 | 0.0075         | 746.6264 | 0.0037         |
| 666.6461               | 0.0105         | 690.4762 | 0.0165         | 723.4365 | 0.0203         | 747.6265 | 0.0015         |
| 666.7161               | 0.0057         | 690.6564 | 0.0127         | 724.4465 | 0.0296         | 749.6365 | 0.0066         |
| 667.5861               | 0.0101         | 691.4062 | 0.0262         | 724.6665 | 0.0032         | 750.6863 | 0.0016         |
| 667.7161               | 0.0033         | 692.4764 | 0.0035         | 725.4565 | 0.0223         | 751.4665 | 0.0121         |
| 668.5761               | 0.0052         | 692.5564 | 0.0102         | 725.6665 | 0.0031         | 751.5965 | 0.0012         |
| 669.5863               | 0.0080         | 692.6462 | 0.0121         | 726.6565 | 0.0024         | 751.6863 | 0.0035         |
| 670.5161               | 0.0166         | 693.6164 | 0.0011         | 727.5744 | 0.0029         | 752.6065 | 0.0027         |
| 671.3561               | 0.0023         | 694.3962 | 0.0393         | 728.5964 | 0.0085         | 753.4165 | 0.0042         |
| 673.6463               | 0.0031         | 694.4762 | 0.0048         | 729.5964 | 0.0059         | 753.6165 | 0.0012         |
| 674.6263               | 0.0041         | 694.6064 | 0.0162         | 730.5464 | 0.0225         | 754.6465 | 0.0015         |
| 675.4063               | 0.0279         | 696.4462 | 0.0432         | 732.6864 | 0.0012         | 756.5165 | 0.0133         |
| 675.5063               | 0.0030         | 696.5964 | 0.0057         | 733.3964 | 0.0110         | 756.6265 | 0.0034         |
| 675.7963               | 0.0027         | 697.3964 | 0.0234         | 734.3964 | 0.0068         | 757.6265 | 0.0035         |
| 676.3663               | 0.0896         | 697.4664 | 0.0037         | 734.4964 | 0.0081         | 761.3767 | 0.0047         |
| 676.4462               | 0.0014         | 697.6262 | 0.0027         | 735.4064 | 0.0034         | 762.4767 | 0.0030         |
| 676.5261               | 0.0035         | 699.4762 | 0.0116         | 735.4864 | 0.0058         | 762.6165 | 0.0017         |
| 676.6763               | 0.0020         | 700.5264 | 0.0067         | 736.4066 | 0.0141         | 763.4765 | 0.0027         |
| 677.5463               | 0.0048         | 704.4064 | 0.0355         | 736.6164 | 0.0097         | 765.3965 | 0.0092         |
| 677.6263               | 0.0019         | 704.6564 | 0.0012         | 737.4164 | 0.0138         | 766.6665 | 0.0022         |
| 677.7063               | 0.0018         | 705.3964 | 0.0046         | 737.5064 | 0.0068         | 767.3967 | 0.0019         |
| 678.5961               | 0.0052         | 705.6664 | 0.0024         | 737.6364 | 0.0074         | 767.4765 | 0.0105         |
| 678.7263               | 0.0095         | 706.3963 | 0.0346         | 738.4264 | 0.0208         | 767.6067 | 0.0034         |
| 679.4163               | 0.0450         | 706.5863 | 0.0051         | 738.6364 | 0.0105         | 768.4866 | 0.0132         |
| 679.5963               | 0.0019         | 706.6563 | 0.0021         | 739.6464 | 0.0057         | 768.5766 | 0.0038         |

| the corresponding spectrum appears in Figure 3.1. |                        |          |                |          |                |          |                |  |
|---------------------------------------------------|------------------------|----------|----------------|----------|----------------|----------|----------------|--|
|                                                   | A. Absinthium tincture |          |                |          |                |          |                |  |
| m/z                                               | Rel. Int.<br>%         | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |
| 769.4166                                          | 0.0031                 | 778.6966 | 0.0026         | 789.3865 | 0.0067         | 804.5667 | 0.0030         |  |
| 769.6066                                          | 0.0038                 | 779.6366 | 0.0012         | 790.6167 | 0.0026         | 812.6366 | 0.0014         |  |
| 770.6064                                          | 0.0021                 | 779.7066 | 0.0020         | 793.6067 | 0.0059         | 816.4266 | 0.0057         |  |
| 772.6366                                          | 0.0078                 | 781.6166 | 0.0030         | 795.6267 | 0.0032         | 820.5668 | 0.0034         |  |
| 773.6364                                          | 0.0022                 | 782.6766 | 0.0026         | 796.3967 | 0.0028         | 839.5569 | 0.0020         |  |
| 775.6164                                          | 0.0023                 | 784.4266 | 0.0030         | 796.6267 | 0.0061         | 840.5569 | 0.0019         |  |
| 776.4566                                          | 0.0116                 | 784.6668 | 0.0012         | 797.3567 | 0.0055         | 856.5368 | 0.0032         |  |
| 776.6166                                          | 0.0031                 | 785.6266 | 0.0023         | 797.4367 | 0.0026         | 878.5569 | 0.0031         |  |
| 777.6866                                          | 0.0026                 | 786.4266 | 0.0054         | 797.6367 | 0.0031         | 890.6471 | 0.0042         |  |
| 778.6266                                          | 0.0053                 | 787.4366 | 0.0027         | 798.4367 | 0.0104         |          |                |  |

**Table A3.5 (continued).** Mass data (m/z values and their relative intensities) for the DART-HRMS analysis of A. *absinthium tincture*. Ten replicates of one sample were averaged where the corresponding spectrum appears in Figure 3.1.

| Table A3.6 Known molecules of interest in the indicated species. |                 |                         |                      |                                                                                                                                            |  |  |  |
|------------------------------------------------------------------|-----------------|-------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Index                                                            | Species         | Molecules of Interest   | Monoisotopic<br>Mass | Structure                                                                                                                                  |  |  |  |
| 1                                                                | A. absinthium   | (-)–thujone             | 152.1201             | H<br>C 10 H 16 O                                                                                                                           |  |  |  |
|                                                                  |                 | Absinthin               | 496.2824             |                                                                                                                                            |  |  |  |
| 2                                                                | A. vulgaris     | None                    | None                 | None                                                                                                                                       |  |  |  |
| 2                                                                |                 | Sesquiterpene alkaloids |                      |                                                                                                                                            |  |  |  |
| 3                                                                | C. zacatecnicni | Caleochromenes          |                      |                                                                                                                                            |  |  |  |
| 4                                                                | Luinag          | Lactucin                | 276.0998             | $C_{15}H_{16}O_5$                                                                                                                          |  |  |  |
| 4                                                                | L. virosa       | Lactucopicrin           | 410.1366             | HO, H, H, H, O, H, H, H, O, H, |  |  |  |
| 5                                                                | S. tortuosum    | Mesembrenol             | 289.1678             | $C_{17}H_{23}NO_3$                                                                                                                         |  |  |  |
|                                                                  |                 | Tortuosamine            | 326.1994             | C <sub>20</sub> H <sub>26</sub> N <sub>2</sub> O <sub>2</sub>                                                                              |  |  |  |

| Table A | Table A3.6 (continued).       Known molecules of interest in the indicated species. |                                         |                      |                                                |  |  |
|---------|-------------------------------------------------------------------------------------|-----------------------------------------|----------------------|------------------------------------------------|--|--|
| Index   | Species                                                                             | Molecules of Interest                   | Monoisotopic<br>Mass | Structure                                      |  |  |
| 5       |                                                                                     | Mesembrine                              | 289.1678             | $C_{17}H_{23}NO_3$                             |  |  |
|         | S. tortuosum                                                                        | Hordenine                               | 165.1154             | но<br>С <sub>10</sub> Н <sub>15</sub> NO       |  |  |
|         |                                                                                     | Mesembrenone                            | 287.1521             | $C_{17}H_{21}NO_3$                             |  |  |
| 6       | E. lobata                                                                           | None                                    | None                 | None                                           |  |  |
| 7       | 2-Meth<br>A. peregrina N,N-D<br>(DMT)<br>Bufote                                     | 2-Methyltryptoline                      | 186.1157             | C <sub>12</sub> H <sub>14</sub> N <sub>2</sub> |  |  |
|         |                                                                                     | <i>N,N-</i> Dimethyltryptamine<br>(DMT) | 188.1313             | C <sub>12</sub> H <sub>16</sub> N <sub>2</sub> |  |  |
|         |                                                                                     | Bufotenin                               | 204.1263             | $C_{12}H_{16}N_2O$                             |  |  |

| Table A3.6 (continued).         Known molecules of interest in the indicated species. |              |                                           |                      |                                                                           |  |
|---------------------------------------------------------------------------------------|--------------|-------------------------------------------|----------------------|---------------------------------------------------------------------------|--|
| Index                                                                                 | Species      | Molecules of Interest                     | Monoisotopic<br>Mass | Structure                                                                 |  |
|                                                                                       |              | Bufotenin-oxide                           | 220.1212             | HO<br>HO<br>C <sub>12</sub> H <sub>16</sub> N <sub>2</sub> O <sub>2</sub> |  |
| 7                                                                                     |              | 5-Methoxy- <i>N</i> -<br>methyltryptamine | 204.1263             | $C_{12}H_{16}N_2O$                                                        |  |
|                                                                                       |              | <i>N</i> -Methyltryptamine                | 174.1157             | $C_{12}H_{16}N_{2}O$ $C_{11}H_{14}N_{2}$                                  |  |
|                                                                                       | A. peregrina | 5-Methoxy DMT                             | 218.1419             | $C_{13}H_{18}N_2O$                                                        |  |
|                                                                                       |              | DMT-oxide                                 | 204.1263             |                                                                           |  |
|                                                                                       |              | Tryptoline                                | 172.1000             | C <sub>11</sub> H <sub>12</sub> N <sub>2</sub>                            |  |

| Table A | Table A3.6 (continued).         Known molecules of interest in the indicated species. |                                         |                      |                                                               |  |  |  |
|---------|---------------------------------------------------------------------------------------|-----------------------------------------|----------------------|---------------------------------------------------------------|--|--|--|
| Index   | Species                                                                               | Molecules of Interest                   | Monoisotopic<br>Mass | Structure                                                     |  |  |  |
| 7       | A. peregrina                                                                          | Catechol                                | 110.0368             | он<br>С <sub>6</sub> H <sub>6</sub> O <sub>2</sub>            |  |  |  |
| 8       | M. hostilis                                                                           | <i>N,N</i> -Dimethyltryptamine<br>(DMT) | 188.1313             | $C_{12}H_{16}N_2$                                             |  |  |  |
| 9       | P. nitida                                                                             | Pericine                                | 278.1783             | $C_{19}H_{22}N_2$                                             |  |  |  |
|         |                                                                                       | Akuammine                               | 382.1893             | $H_{22}H_{26}N_2O_4$                                          |  |  |  |
| 10      |                                                                                       | Ibogaine                                | 310.2045             | $C_{20}H_{26}N_2O$                                            |  |  |  |
|         | V. africana                                                                           | Voacangine                              | 368.2100             | C <sub>22</sub> H <sub>26</sub> N <sub>2</sub> O <sub>3</sub> |  |  |  |

| Table A | A3.6 (continued). | species.                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------|-------------------|------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Index   | Species           | Molecules of Interest        | Monoisotopic<br>Mass | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 10      | V. africana       | Voacamine                    | 704.3938             | C <sub>43</sub> H <sub>52</sub> N <sub>4</sub> O <sub>5</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 11      |                   | Mitragynine                  | 398.2206             | $C_{23}H_{30}N_2O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         |                   | Mitraphylline                | 368.1736             | $C_{21}H_{24}N_2O_4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|         | M. speciosa       | 7-Hydroxymitragynine         | 414.2155             | $H_{H^0}$ $C_{23}H_{30}N_2O_5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |                   | Mitragynine<br>pseudoindoxyl | 414.2155             | $ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & $ |
|         |                   | Ajmalicine                   | 352.1787             | $\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| Table A | Table A3.6 (continued).         Known molecules of interest in the indicated species. |                                         |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
|---------|---------------------------------------------------------------------------------------|-----------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Index   | Species                                                                               | Molecules of Interest                   | Monoisotopic<br>Mass | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| 12      |                                                                                       | Yohimbine                               | 354.1943             | С <sub>21</sub> H <sub>26</sub> N <sub>2</sub> O <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|         | C. johimbe                                                                            | Ajmalicine                              | 352.1787             | $\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$<br>$\downarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |
|         |                                                                                       | Corynanthine                            | 354.1943             | $C_{21}H_{26}N_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
| 13      | P. viridis                                                                            | <i>N</i> -Methyltryptamine              | 174.1157             | C <sub>11</sub> H <sub>14</sub> N <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|         |                                                                                       | <i>N,N</i> -Dimethyltryptamine<br>(DMT) | 188.1313             | $C_{12}H_{16}N_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |
| 14      | L. leonurus                                                                           | Leonurine                               | 311.1481             | $H_{10}$ $H$ |  |  |

| Table A | Table A3.6 (continued). Known molecules of interest in the indicated species. |                       |                      |                                                                                                                          |  |  |
|---------|-------------------------------------------------------------------------------|-----------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------|--|--|
| Index   | Species                                                                       | Molecules of Interest | Monoisotopic<br>Mass | Structure                                                                                                                |  |  |
| 15      | L. nepetifolia                                                                | Leonurine             | 311.1481             | $ \begin{array}{c}                                     $                                                                 |  |  |
| 16      | L. sibiricus                                                                  | Leonurine             | 311.1481             | $ \begin{array}{c} \downarrow \\ \downarrow \\ HO \\ HO \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ |  |  |
| 17      | S. divinorum                                                                  | Salvinorin A          | 432.1784             | $C_{23}H_{28}O_8$                                                                                                        |  |  |
| 18      | S. vulgaris                                                                   | None                  | None                 | None                                                                                                                     |  |  |
|         |                                                                               | Harmine               | 212.0950             | ъ                                                                                                                        |  |  |
| 19      | B. caapi                                                                      | Harmaline             | 214.1106             | $\sim$                                                    |  |  |
|         |                                                                               | Tetrahydroharmine     | 216.1263             | С <sub>13</sub> Н <sub>16</sub> N <sub>2</sub> O                                                                         |  |  |

| Table A | Table A3.6 (continued).         Known molecules of interest in the indicated species. |                                            |                      |                                                  |  |  |  |
|---------|---------------------------------------------------------------------------------------|--------------------------------------------|----------------------|--------------------------------------------------|--|--|--|
| Index   | Species                                                                               | Molecules of Interest                      | Monoisotopic<br>Mass | Structure                                        |  |  |  |
| 20      |                                                                                       | N-Methyltryptamine                         | 174.1157             | $C_{11}H_{14}N_2$                                |  |  |  |
|         | Decharging                                                                            | <i>N,N-</i><br>Dimethyltryptamine<br>(DMT) | 188.1313             | $C_{12}H_{16}N_2$                                |  |  |  |
|         | D. cabrerana                                                                          | 5-Methoxy DMT                              | 218.1419             | с <sub>13</sub> H <sub>18</sub> N <sub>2</sub> O |  |  |  |
|         |                                                                                       | Bufotenin                                  | 204.1263             | $H_{H_{16}N_2O}$                                 |  |  |  |
| 21      | T. diffusa                                                                            | Damianin                                   | Unknown              | Unknown                                          |  |  |  |
| 22      | A. officinalis                                                                        | None                                       | None                 | None                                             |  |  |  |
| 23      | T. populnea                                                                           | None                                       | None                 | None                                             |  |  |  |
| 24      |                                                                                       | Aporphine                                  | 235.1361             | C <sub>17</sub> H <sub>17</sub> N                |  |  |  |
|         | n. caerulea                                                                           | Nuciferine                                 | 295.1572             | $C_{19}H_{21}NO_2$                               |  |  |  |

| Table A | Table A3.6 (continued). Known molecules of interest in the indicated species. |                       |                      |                                                |  |  |
|---------|-------------------------------------------------------------------------------|-----------------------|----------------------|------------------------------------------------|--|--|
| Index   | Species                                                                       | Molecules of Interest | Monoisotopic<br>Mass | Structure                                      |  |  |
| 25      | P. betel                                                                      | Chavibetol            | 164.0837             | C <sub>10</sub> H <sub>12</sub> O <sub>2</sub> |  |  |
| 26      |                                                                               | Dihydromethysticin    | 276.0998             | C <sub>15</sub> H <sub>16</sub> O <sub>5</sub> |  |  |
|         |                                                                               | Methysticin           | 274.0841             | C <sub>15</sub> H <sub>14</sub> O <sub>5</sub> |  |  |
|         | P. methysticum                                                                | Dihydrokavain         | 232.1099             | C <sub>14</sub> H <sub>16</sub> O <sub>3</sub> |  |  |
|         |                                                                               | Kavain                | 230.0943             | C <sub>14</sub> H <sub>14</sub> O <sub>3</sub> |  |  |
|         |                                                                               | Desmethoxyyangonin    | 228.0786             | C <sub>14</sub> H <sub>12</sub> O <sub>3</sub> |  |  |

| Table A | Table A3.6 (continued). Known molecules of interest in the indicated species. |                                       |                      |                                                                                                                                |  |  |  |
|---------|-------------------------------------------------------------------------------|---------------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Index   | Species                                                                       | Molecules of Interest                 | Monoisotopic<br>Mass | Structure                                                                                                                      |  |  |  |
| 26      | P. methysticum                                                                | Yangonin                              | 258.0892             | C <sub>15</sub> H <sub>14</sub> O <sub>4</sub>                                                                                 |  |  |  |
| 27      | A. racemosa                                                                   | Cimigenol                             | 488.3502             | HOCH H H H H H H H H H H H H H H H H H H                                                                                       |  |  |  |
| 28      |                                                                               | Tetrahydrocannabinolic<br>acid (THCA) | 358.2144             | $H^{0}$<br>$H^{0}$<br>$H^{0}$<br>$H^{0}$<br>$C_{22}H_{30}O_{4}$                                                                |  |  |  |
|         | C sativa                                                                      | Cannabidivarin<br>(CBDV)              | 286.1933             | $\begin{array}{c} H_{0} \\ H_{0} \\ H_{0} \\ C_{22}H_{30}O_{4} \\ C_{19}H_{22}O_{2} \\ H_{0} \\ H_{0} \\ H_{0} \\ \end{array}$ |  |  |  |
|         | C. sativa                                                                     | Tetrahydrocannabinol<br>(THC)         | 314.2246             |                                                                                                                                |  |  |  |
|         |                                                                               | Cannabinol (CBN)                      | 310.1933             |                                                                                                                                |  |  |  |

| Table A3.6 (continued). Known molecules of interest in the indicated species. |            |                                     |                      |                                                          |  |
|-------------------------------------------------------------------------------|------------|-------------------------------------|----------------------|----------------------------------------------------------|--|
| Index                                                                         | Species    | Molecules of Interest               | Monoisotopic<br>Mass | Structure                                                |  |
| 28                                                                            |            | Cannabidiol (CBD)                   | 314.2246             |                                                          |  |
|                                                                               | C. sativa  | Cannabidiolic acid<br>(CBDA)        | 358.2144             | C <sub>22</sub> H <sub>30</sub> O <sub>4</sub>           |  |
|                                                                               |            | Tetrahydrocannabidivar<br>in (THCV) | 286.1933             |                                                          |  |
| 29                                                                            |            | Vasicinone                          | 202.0742             | $C_{11}H_{10}N_2O_2$                                     |  |
|                                                                               | P. harmala | Harmalol                            | 200.0950             | $HO \rightarrow HO \rightarrow HO$<br>$C_{12}H_{12}N_2O$ |  |
|                                                                               |            | Harmine                             | 212.0950             | ъ-С-<br>                                                 |  |

| Table A | Table A3.6 (continued).         Known molecules of interest in the indicated species. |                       |                      |                                                                           |  |  |  |
|---------|---------------------------------------------------------------------------------------|-----------------------|----------------------|---------------------------------------------------------------------------|--|--|--|
| Index   | Species                                                                               | Molecules of Interest | Monoisotopic<br>Mass | Structure                                                                 |  |  |  |
| 29      |                                                                                       | Harmaline             | 214.1106             | $C_{13}H_{14}N_2O$                                                        |  |  |  |
|         | D. hammala                                                                            | Tetrahydroharmine     | 216.1263             |                                                                           |  |  |  |
|         | P. harmala                                                                            | Harmane               | 182.0844             | $C_{12}H_{10}N_2$                                                         |  |  |  |
|         |                                                                                       | Vasicine (peganine)   | 188.0950             | $C_{11}H_{12}N_2O$                                                        |  |  |  |
| 30      | A. nervosa                                                                            | Ergometrine           | 325.1790             | NH<br>NH<br>C <sub>19</sub> H <sub>23</sub> N <sub>3</sub> O <sub>2</sub> |  |  |  |
|         |                                                                                       | Lysergic acid         | 268.1212             | $C_{16}H_{16}N_2O_2$                                                      |  |  |  |

| Table A | Table A3.6 (continued).         Known molecules of interest in the indicated species. |                                       |                      |                                                                           |  |  |  |
|---------|---------------------------------------------------------------------------------------|---------------------------------------|----------------------|---------------------------------------------------------------------------|--|--|--|
| Index   | Species                                                                               | Molecules of Interest                 | Monoisotopic<br>Mass | Structure                                                                 |  |  |  |
| 30      |                                                                                       | Lysergol                              | 254.1419             | HO<br>HN<br>C <sub>16</sub> H <sub>18</sub> N <sub>2</sub> O              |  |  |  |
|         | A. nervosa                                                                            | Ergine                                | 267.1372             | $H_2N \rightarrow O$                                                      |  |  |  |
|         |                                                                                       | Argyroside                            | 576.4026             | $C_{24}H_{56}O_7$                                                         |  |  |  |
| 31      | C. tricolor                                                                           | Unknown                               |                      |                                                                           |  |  |  |
| 32      |                                                                                       | Ergometrine                           | 325.1790             | он<br>HN<br>C <sub>19</sub> H <sub>23</sub> N <sub>3</sub> O <sub>2</sub> |  |  |  |
|         | I. tricolor                                                                           | Lysergic acid-α-<br>hydroxyethylamide | 311.1634             | $C_{18}H_{21}N_3O_2$                                                      |  |  |  |
|         |                                                                                       | Ergine                                | 267.1372             | $H_2N \to O$ $H_1N \to C_{16}H_{17}N_3O$                                  |  |  |  |

| Table A3.6 (continued). Known molecules of interest in the indicated species. |               |                        |                      |                                                       |
|-------------------------------------------------------------------------------|---------------|------------------------|----------------------|-------------------------------------------------------|
| Index                                                                         | Species       | Molecules of Interest  | Monoisotopic<br>Mass | Structure                                             |
| 33                                                                            | A. baetica    | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |
|                                                                               |               | Hyoscine (Scopolamine) | 303.1471             | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub> |
| 34                                                                            | A. belladonna | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |
| 34                                                                            | A. belladonna | Hyoscyamine            | 289.1678             | $C_{17}H_{23}NO_3$                                    |
|                                                                               |               | Hyoscine (Scopolamine) | 303.1471             | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub> |
| 35                                                                            | A. komarovii  | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |

| Table A3.6 (continued). Known molecules of interest in the indicated species. |              |                        |                      |                                                                                                                                                |
|-------------------------------------------------------------------------------|--------------|------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Index                                                                         | Species      | Molecules of Interest  | Monoisotopic<br>Mass | Structure                                                                                                                                      |
| 35                                                                            | A. komarovii | Hyoscyamine            | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |
|                                                                               |              | Hyoscine (Scopolamine) | 303.1471             | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub>                                                                                          |
| 36                                                                            | B. arborea   | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |
|                                                                               |              | Hyoscyamine            | 289.1678             | $h \rightarrow f \rightarrow $ |
|                                                                               |              | Hyoscine (Scopolamine) | 303.1471             | $C_{17}H_{21}NO_4$                                                                                                                             |
| 37                                                                            | B. aurea     | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |

| Table A3.6 (continued). Known molecules of interest in the indicated species. |               |                        |                      |                                                                                                                                                |
|-------------------------------------------------------------------------------|---------------|------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Index                                                                         | Species       | Molecules of Interest  | Monoisotopic<br>Mass | Structure                                                                                                                                      |
| 37                                                                            | B. aurea      | Hyoscyamine            | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |
|                                                                               |               | Hyoscine (Scopolamine) | 303.1471             | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub>                                                                                          |
| 38                                                                            | B. sanguinea  | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |
|                                                                               |               | Hyoscyamine            | 289.1678             | $h \rightarrow f \rightarrow $ |
|                                                                               |               | Hyoscine (Scopolamine) | 303.1471             | $C_{17}H_{21}NO_4$                                                                                                                             |
| 39                                                                            | B. suaveolens | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |

| Table A3.6 (continued).         Known molecules of interest in the indicated species. |                |                        |                      |                                                       |
|---------------------------------------------------------------------------------------|----------------|------------------------|----------------------|-------------------------------------------------------|
| Index                                                                                 | Species        | Molecules of Interest  | Monoisotopic<br>Mass | Structure                                             |
| 39                                                                                    | B. suaveolens  | Hyoscyamine            | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |
|                                                                                       |                | Hyoscine (Scopolamine) | 303.1471             | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub> |
| 40                                                                                    | B. versicolor  | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |
|                                                                                       |                | Hyoscyamine            | 289.1678             | $rac{}{}^{N}$                                         |
|                                                                                       |                | Hyoscine (Scopolamine) | 303.1471             | $C_{17}H_{21}NO_4$                                    |
| 41                                                                                    | D. ceratocaula | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |

| Table A3.6 (continued).         Known molecules of interest in the indicated species. |                |                        |                      |                                                                                                                                                |
|---------------------------------------------------------------------------------------|----------------|------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Index                                                                                 | Species        | Molecules of Interest  | Monoisotopic<br>Mass | Structure                                                                                                                                      |
| 41                                                                                    | D. ceratocaula | Hyoscyamine            | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |
|                                                                                       |                | Hyoscine (Scopolamine) | 303.1471             | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub>                                                                                          |
| 42                                                                                    | D. discolor    | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |
|                                                                                       |                | Hyoscyamine            | 289.1678             | $h \rightarrow f \rightarrow $ |
|                                                                                       |                | Hyoscine (Scopolamine) | 303.1471             | $C_{17}H_{21}NO_4$                                                                                                                             |
| 43                                                                                    | D. ferox       | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |

| Table A | Table A3.6 (continued).       Known molecules of interest in the indicated species. |                        |                      |                                                                                                                                                |  |
|---------|-------------------------------------------------------------------------------------|------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Index   | Species                                                                             | Molecules of Interest  | Monoisotopic<br>Mass | Structure                                                                                                                                      |  |
| 43      | D. ferox                                                                            | Hyoscyamine            | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |  |
|         |                                                                                     | Hyoscine (Scopolamine) | 303.1471             | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub>                                                                                          |  |
| 44      | D. innoxia                                                                          | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |  |
|         |                                                                                     | Hyoscyamine            | 289.1678             | $h \rightarrow f \rightarrow $ |  |
|         |                                                                                     | Hyoscine (Scopolamine) | 303.1471             | $C_{17}H_{21}NO_4$                                                                                                                             |  |
| 45      | D. leichhardtii                                                                     | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |  |
| Table A3.6 (continued). Known molecules of interest in the indicated species. |                 |                        |                                                 |                                                       |  |  |  |  |
|-------------------------------------------------------------------------------|-----------------|------------------------|-------------------------------------------------|-------------------------------------------------------|--|--|--|--|
| Index                                                                         | Species         | Molecules of Interest  | Monoisotopic<br>Mass                            | Structure                                             |  |  |  |  |
| 15                                                                            | D. lojobhaudtij | Hyoscyamine            | 289.1678                                        | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |  |  |  |  |
| 43                                                                            | D. leicnnaraili | Hyoscine (Scopolamine) | 303.1471                                        | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub> |  |  |  |  |
|                                                                               | Atropine        | 289.1678               | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub> |                                                       |  |  |  |  |
| 46                                                                            | D. metel        | Hyoscyamine            | 289.1678                                        | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |  |  |  |  |
|                                                                               |                 | Hyoscine (Scopolamine) | 303.1471                                        | $C_{17}H_{21}NO_4$                                    |  |  |  |  |
| 47                                                                            | D. parajuli     | Atropine               | 289.1678                                        | С <sub>17</sub> Н <sub>23</sub> NO <sub>3</sub>       |  |  |  |  |

| Table A | Table A3.6 (continued). Known molecules of interest in the indicated species. |                        |                      |                                                                                                                                                |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------|------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Index   | Species                                                                       | Molecules of Interest  | Monoisotopic<br>Mass | Structure                                                                                                                                      |  |  |  |  |  |  |
| 47      | D. parajuli                                                                   | Hyoscyamine            | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |  |  |  |  |  |  |
|         | D. parajuu                                                                    | Hyoscine (Scopolamine) | 303.1471             | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub>                                                                                          |  |  |  |  |  |  |
|         |                                                                               | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |  |  |  |  |  |  |
| 48      | D. quercifolia                                                                | Hyoscyamine            | 289.1678             | $h \rightarrow f \rightarrow $ |  |  |  |  |  |  |
|         |                                                                               | Hyoscine (Scopolamine) | 303.1471             | $C_{17}H_{21}NO_4$                                                                                                                             |  |  |  |  |  |  |
| 49      | D. stramonium                                                                 | Atropine               | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>                                                                                                |  |  |  |  |  |  |

| Table A | Table A3.6 (continued). Known molecules of interest in the indicated species. |                           |                      |                                                       |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------|---------------------------|----------------------|-------------------------------------------------------|--|--|--|--|--|
| Index   | Species                                                                       | Molecules of Interest     | Monoisotopic<br>Mass | Structure                                             |  |  |  |  |  |
| 40      | Determonium                                                                   | Hyoscyamine               | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |  |  |  |  |  |
| 49      |                                                                               | Hyoscine<br>(Scopolamine) | 303.1471             | он<br>С <sub>17</sub> H <sub>21</sub> NO <sub>4</sub> |  |  |  |  |  |
|         |                                                                               | Atropine                  | 289.1678             | С <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |  |  |  |  |  |
| 50      | D. wrightii                                                                   | Hyoscyamine               | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |  |  |  |  |  |
|         |                                                                               | Hyoscine<br>(Scopolamine) | 303.1471             | $C_{17}H_{21}NO_4$                                    |  |  |  |  |  |
| 51      | H. albus                                                                      | Hyoscyamine               | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub>       |  |  |  |  |  |

| Table A | Table A3.6 (continued). Known molecules of interest in the indicated species. |                       |                      |                                                 |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------|-----------------------|----------------------|-------------------------------------------------|--|--|--|--|--|--|
| Index   | Species                                                                       | Molecules of Interest | Monoisotopic<br>Mass | Structure                                       |  |  |  |  |  |  |
| 52      | H. aureus                                                                     | Hyoscyamine           | 289.1678             | $C_{17}H_{23}NO_3$                              |  |  |  |  |  |  |
| 53      | H. muticus                                                                    | Hyoscyamine           | 289.1678             | $C_{17}H_{23}NO_3$                              |  |  |  |  |  |  |
| 54      | H. niger                                                                      | Hyoscyamine           | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub> |  |  |  |  |  |  |
| 55      | H. pusillus                                                                   | Hyoscyamine           | 289.1678             | C <sub>17</sub> H <sub>23</sub> NO <sub>3</sub> |  |  |  |  |  |  |
| 56      | M autumnalia                                                                  | Apoatropine           | 271.1572             | C <sub>17</sub> H <sub>21</sub> NO <sub>2</sub> |  |  |  |  |  |  |
| 50      | M. autumnalis                                                                 | Cuscohygrine          | 224.1889             | $C_{13}H_{24}N_2O$                              |  |  |  |  |  |  |

|         | L. virosa flower |          |                |          |                |          |                |  |  |  |  |
|---------|------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z     | Rel. Int.<br>%   | m/z,     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |
| 60.0541 | 0.2286           | 86.0740  | 12.1543        | 102.0741 | 0.6491         | 121.0842 | 12.8068        |  |  |  |  |
| 60.1541 | 0.0074           | 86.1742  | 0.2380         | 102.1641 | 0.0032         | 122.0042 | 0.0017         |  |  |  |  |
| 61.0339 | 8.0786           | 87.0539  | 20.1001        | 103.0541 | 13.4775        | 122.0742 | 2.3519         |  |  |  |  |
| 61.1041 | 0.4093           | 87.1641  | 0.1657         | 104.0741 | 10.8328        | 122.2242 | 0.0811         |  |  |  |  |
| 62.0639 | 0.2370           | 88.0741  | 1.1695         | 104.1443 | 0.1349         | 123.0942 | 4.0858         |  |  |  |  |
| 65.0541 | 0.0518           | 88.1441  | 0.0312         | 104.2343 | 0.1051         | 124.0642 | 8.0340         |  |  |  |  |
| 67.0540 | 0.2348           | 88.2041  | 0.0077         | 105.0641 | 0.9899         | 124.1844 | 0.0767         |  |  |  |  |
| 68.0538 | 2.5510           | 89.0641  | 3.9929         | 106.0641 | 0.1767         | 125.0942 | 6.7076         |  |  |  |  |
| 68.1240 | 0.1250           | 89.1741  | 0.0780         | 107.0141 | 1.8230         | 125.2144 | 0.0679         |  |  |  |  |
| 69.0440 | 9.3342           | 90.0641  | 32.8085        | 107.0841 | 1.5358         | 126.0642 | 8.6720         |  |  |  |  |
| 70.0640 | 2.2022           | 90.1641  | 1.1082         | 108.0640 | 1.4842         | 127.0442 | 70.3863        |  |  |  |  |
| 70.1340 | 0.0421           | 90.9639  | 0.0395         | 108.1542 | 0.2021         | 127.2342 | 0.5208         |  |  |  |  |
| 71.0640 | 3.5726           | 91.0541  | 3.1266         | 109.0340 | 9.6020         | 127.9777 | 0.0090         |  |  |  |  |
| 72.0140 | 0.3294           | 91.1241  | 1.4243         | 109.0942 | 5.6036         | 128.0844 | 4.3861         |  |  |  |  |
| 72.0840 | 5.3212           | 92.0641  | 0.1300         | 109.2042 | 0.0756         | 128.2243 | 0.2134         |  |  |  |  |
| 72.2040 | 0.0822           | 93.0641  | 4.3745         | 110.0742 | 22.1513        | 128.9841 | 0.0346         |  |  |  |  |
| 72.9940 | 0.6834           | 93.1341  | 0.2548         | 110.2142 | 0.2929         | 129.0641 | 20.2923        |  |  |  |  |
| 73.0640 | 2.7689           | 94.0641  | 1.5865         | 111.0540 | 10.8317        | 129.2141 | 0.1459         |  |  |  |  |
| 73.1840 | 0.0247           | 94.1741  | 0.0720         | 111.1140 | 0.5890         | 130.0643 | 4.8195         |  |  |  |  |
| 74.0640 | 1.2134           | 95.0241  | 1.1282         | 111.2342 | 0.0685         | 130.2343 | 0.1893         |  |  |  |  |
| 75.0440 | 29.1202          | 95.0841  | 4.5441         | 112.0742 | 6.4196         | 131.0643 | 14.2362        |  |  |  |  |
| 75.1140 | 0.0259           | 96.0541  | 54.6389        | 113.0542 | 11.1953        | 131.1643 | 0.2241         |  |  |  |  |
| 76.0640 | 0.8634           | 96.1291  | 0.9630         | 114.0842 | 3.2425         | 131.2243 | 0.3927         |  |  |  |  |
| 77.0440 | 0.3269           | 97.0341  | 27.9648        | 114.2242 | 0.1048         | 132.0343 | 1.2999         |  |  |  |  |
| 78.0440 | 0.0494           | 97.0941  | 1.6962         | 115.0542 | 35.2873        | 132.1041 | 6.5688         |  |  |  |  |
| 79.0440 | 0.4073           | 97.2241  | 0.0462         | 115.2442 | 0.2127         | 132.9841 | 0.0091         |  |  |  |  |
| 80.0540 | 0.7698           | 97.2841  | 0.0909         | 115.9642 | 0.0273         | 133.0643 | 5.1109         |  |  |  |  |
| 81.0540 | 12.5941          | 97.9941  | 0.2914         | 116.0742 | 3.7716         | 133.2543 | 0.1070         |  |  |  |  |
| 82.0642 | 1.3027           | 98.0841  | 3.0402         | 116.2242 | 0.0783         | 134.0843 | 2.0447         |  |  |  |  |
| 83.0240 | 1.7946           | 99.0541  | 41.4203        | 117.0642 | 29.9573        | 134.1943 | 0.0753         |  |  |  |  |
| 83.0840 | 1.7660           | 99.1841  | 0.8789         | 117.2442 | 0.1611         | 134.2543 | 0.1619         |  |  |  |  |
| 84.0640 | 9.9524           | 100.0841 | 3.3293         | 118.0842 | 3.4390         | 135.0343 | 3.4028         |  |  |  |  |
| 84.1542 | 0.1136           | 100.2341 | 0.0283         | 118.2042 | 0.1373         | 135.1043 | 2.9000         |  |  |  |  |
| 85.0342 | 21.4274          | 100.9841 | 0.5710         | 119.0842 | 0.6694         | 135.2443 | 0.0329         |  |  |  |  |
| 85.0942 | 2.0909           | 101.0641 | 8.1433         | 120.0742 | 1.3166         | 136.0643 | 18.6590        |  |  |  |  |
| 85.1642 | 0.0103           | 101.1841 | 0.1076         | 120.2042 | 0.0468         | 136.2143 | 0.3715         |  |  |  |  |

|          | <i>L. virosa</i> flower |          |                |          |                |          |                |  |  |  |
|----------|-------------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z      | Rel. Int.<br>%          | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 136.2843 | 0.0063                  | 150.3142 | 0.1130         | 170.0143 | 0.0020         | 191.3244 | 0.2765         |  |  |  |
| 136.4043 | 0.0966                  | 151.1042 | 10.5445        | 170.0943 | 4.7060         | 192.0044 | 0.0018         |  |  |  |
| 137.0743 | 10.6458                 | 151.9942 | 0.0035         | 171.1543 | 0.1909         | 192.1044 | 2.0417         |  |  |  |
| 137.1243 | 0.8900                  | 152.1144 | 4.7175         | 171.3143 | 0.0211         | 192.1644 | 1.1487         |  |  |  |
| 137.2143 | 0.2312                  | 153.0844 | 17.0492        | 172.1243 | 1.9975         | 193.0844 | 24.2045        |  |  |  |
| 137.2843 | 0.1072                  | 154.0844 | 5.5130         | 173.1143 | 2.2013         | 193.1544 | 0.3486         |  |  |  |
| 137.9843 | 0.0158                  | 155.0100 | 0.0062         | 174.1143 | 1.5082         | 194.0144 | 0.0608         |  |  |  |
| 138.0843 | 3.5115                  | 155.1044 | 5.1401         | 175.0543 | 1.0031         | 194.0944 | 4.9224         |  |  |  |
| 139.0054 | 1.2468                  | 155.2644 | 0.0424         | 175.1245 | 1.3075         | 194.9975 | 0.0066         |  |  |  |
| 139.1043 | 5.1999                  | 156.1042 | 3.4559         | 176.0945 | 2.4399         | 195.0946 | 3.3197         |  |  |  |
| 139.2643 | 0.0886                  | 156.1744 | 0.1816         | 176.1694 | 0.1133         | 195.2744 | 0.2261         |  |  |  |
| 140.0043 | 0.0029                  | 156.2744 | 0.0174         | 177.0645 | 5.0113         | 196.0144 | 0.0051         |  |  |  |
| 140.0843 | 6.6638                  | 157.0544 | 1.4219         | 177.1443 | 1.7150         | 196.0946 | 3.5807         |  |  |  |
| 140.2543 | 0.0276                  | 157.1242 | 1.3602         | 178.0945 | 3.0780         | 196.2794 | 0.1864         |  |  |  |
| 140.3143 | 0.0935                  | 157.2644 | 0.1241         | 179.0845 | 14.7202        | 197.1144 | 5.5468         |  |  |  |
| 141.1043 | 4.8646                  | 158.1044 | 3.2886         | 179.2145 | 0.0449         | 197.2244 | 0.1596         |  |  |  |
| 142.1043 | 3.8233                  | 159.0544 | 5.8899         | 180.0143 | 0.0083         | 197.3344 | 0.0873         |  |  |  |
| 142.1843 | 0.7758                  | 159.1244 | 0.4003         | 180.0845 | 12.8943        | 198.1044 | 7.8548         |  |  |  |
| 143.0343 | 3.9860                  | 160.0944 | 2.4160         | 180.2345 | 0.0276         | 199.1044 | 20.2048        |  |  |  |
| 143.0943 | 4.1905                  | 160.2342 | 0.0124         | 181.0032 | 0.0109         | 199.3844 | 0.0218         |  |  |  |
| 143.9843 | 0.0080                  | 161.0844 | 4.1312         | 181.1045 | 5.9437         | 200.1244 | 5.1994         |  |  |  |
| 144.0843 | 4.5604                  | 162.0844 | 2.7875         | 182.0143 | 0.0040         | 201.0394 | 0.9549         |  |  |  |
| 144.1743 | 0.0650                  | 162.2244 | 0.1633         | 182.1045 | 5.6085         | 201.1444 | 4.0136         |  |  |  |
| 144.2443 | 0.0364                  | 163.0644 | 27.0958        | 183.0945 | 8.5432         | 201.3044 | 0.3041         |  |  |  |
| 145.0543 | 33.4717                 | 163.1344 | 0.1963         | 184.1145 | 2.7562         | 202.1244 | 1.8829         |  |  |  |
| 145.2243 | 0.0751                  | 163.2644 | 0.0376         | 185.1145 | 3.0669         | 202.2846 | 0.0598         |  |  |  |
| 146.0843 | 3.7597                  | 164.0844 | 4.6281         | 186.1145 | 2.1770         | 203.1144 | 0.1284         |  |  |  |
| 146.1643 | 0.0401                  | 164.2244 | 0.1078         | 187.1245 | 2.5861         | 203.1746 | 2.6795         |  |  |  |
| 146.2443 | 0.2036                  | 164.9869 | 0.0053         | 188.0945 | 2.4804         | 203.3346 | 0.0697         |  |  |  |
| 146.9943 | 0.0092                  | 165.0844 | 5.9265         | 189.0356 | 1.8762         | 204.1146 | 1.2655         |  |  |  |
| 147.0743 | 5.1617                  | 166.0944 | 4.8991         | 189.1345 | 2.0823         | 204.1844 | 0.5133         |  |  |  |
| 148.0745 | 1.7110                  | 167.0944 | 5.8499         | 189.2345 | 0.1667         | 205.1046 | 5.4658         |  |  |  |
| 149.0165 | 1.6969                  | 167.2544 | 0.1688         | 189.3145 | 0.1081         | 205.1946 | 2.6313         |  |  |  |
| 149.1142 | 2.4863                  | 168.0944 | 3.7961         | 190.1244 | 2.2174         | 205.3346 | 0.0280         |  |  |  |
| 150.0942 | 5.3803                  | 168.2544 | 0.2205         | 191.0678 | 1.0142         | 205.4046 | 0.0711         |  |  |  |
| 150.2342 | 0.0583                  | 169.1144 | 3.4586         | 191.1644 | 7.7943         | 206.1146 | 2.3775         |  |  |  |

| - speen uni up | <i>L. virosa</i> flower |          |           |          |           |          |           |  |  |  |
|----------------|-------------------------|----------|-----------|----------|-----------|----------|-----------|--|--|--|
| m/z            | Rel. Int.               | m/z      | Rel. Int. | m/z      | Rel. Int. | m/z      | Rel. Int. |  |  |  |
| 206.2044       | 0.1331                  | 222.2947 | 0.1379    | 241.1046 | 6.8763    | 254.3547 | 0.1141    |  |  |  |
| 207.0746       | 1.6385                  | 223.1247 | 2.6392    | 241.1846 | 0.1869    | 255.1347 | 0.3731    |  |  |  |
| 207.1546       | 2.6818                  | 224.1147 | 1.5180    | 241.3046 | 0.0491    | 255.2247 | 0.7703    |  |  |  |
| 208.1146       | 2.1770                  | 225.0447 | 0.2961    | 242.1048 | 1.1922    | 256.1447 | 0.7865    |  |  |  |
| 209.1346       | 16.2431                 | 225.1447 | 2.2372    | 243.1046 | 2.1909    | 256.2447 | 0.0801    |  |  |  |
| 210.1046       | 4.4357                  | 225.2547 | 0.2334    | 243.1648 | 0.2112    | 256.3447 | 0.0022    |  |  |  |
| 210.3596       | 0.1012                  | 226.1247 | 1.3417    | 243.2498 | 0.1423    | 257.0847 | 0.0924    |  |  |  |
| 211.1345       | 4.1664                  | 226.2547 | 0.0128    | 243.4048 | 0.0374    | 257.1647 | 0.4573    |  |  |  |
| 211.2445       | 0.2487                  | 227.1347 | 3.0111    | 244.1148 | 1.1628    | 257.2447 | 2.5197    |  |  |  |
| 211.3145       | 0.1109                  | 227.4147 | 0.0316    | 244.1946 | 0.2126    | 258.0947 | 0.4580    |  |  |  |
| 212.0245       | 0.0112                  | 228.1247 | 1.1498    | 245.1246 | 1.4157    | 258.1647 | 0.1626    |  |  |  |
| 212.1045       | 3.7479                  | 229.1047 | 1.6588    | 245.2246 | 1.2429    | 258.2547 | 0.4486    |  |  |  |
| 212.3345       | 0.0852                  | 229.2045 | 3.2842    | 246.1148 | 1.0856    | 258.4347 | 0.0831    |  |  |  |
| 213.0145       | 0.0075                  | 230.1047 | 2.5258    | 246.2446 | 0.0913    | 259.1047 | 2.9838    |  |  |  |
| 213.1145       | 2.4455                  | 230.1847 | 0.8661    | 247.1246 | 2.0369    | 259.1947 | 0.1642    |  |  |  |
| 213.7345       | 0.0038                  | 230.3547 | 0.0591    | 247.2248 | 0.1047    | 259.2647 | 1.1520    |  |  |  |
| 214.1245       | 2.2874                  | 231.1247 | 1.7555    | 248.1346 | 1.4877    | 259.4247 | 0.0431    |  |  |  |
| 215.1145       | 7.3372                  | 231.2147 | 1.6451    | 248.3297 | 0.0988    | 260.1147 | 1.1129    |  |  |  |
| 215.3245       | 0.1606                  | 232.1346 | 1.5563    | 248.4046 | 0.0298    | 260.1947 | 0.1232    |  |  |  |
| 215.3545       | 0.1632                  | 232.2346 | 0.1375    | 249.0646 | 0.1484    | 260.2547 | 0.2560    |  |  |  |
| 216.1245       | 4.5358                  | 233.1346 | 1.5316    | 249.1646 | 1.6517    | 261.1147 | 1.6315    |  |  |  |
| 216.3345       | 0.0454                  | 234.1346 | 1.1626    | 249.3148 | 0.0278    | 261.2247 | 0.6991    |  |  |  |
| 217.0770       | 2.5775                  | 234.2046 | 0.2021    | 250.1548 | 0.9319    | 261.4647 | 0.0805    |  |  |  |
| 217.1745       | 2.9787                  | 234.3546 | 0.0760    | 251.1048 | 0.3947    | 262.1847 | 0.9056    |  |  |  |
| 217.3645       | 0.1428                  | 235.0846 | 0.3938    | 251.1648 | 1.6170    | 263.1347 | 1.2243    |  |  |  |
| 218.0445       | 0.0038                  | 235.1746 | 0.6993    | 251.2748 | 0.0074    | 263.2347 | 1.2618    |  |  |  |
| 218.1345       | 1.9293                  | 236.1046 | 0.9583    | 252.1247 | 0.7741    | 263.3849 | 0.2177    |  |  |  |
| 219.1045       | 2.0860                  | 236.1746 | 0.2051    | 252.1847 | 0.1453    | 264.1249 | 0.6868    |  |  |  |
| 219.1845       | 4.1079                  | 237.1146 | 1.5977    | 252.2647 | 0.0292    | 264.2447 | 0.0731    |  |  |  |
| 220.1145       | 1.4774                  | 238.1146 | 1.1911    | 253.1047 | 0.5372    | 265.1547 | 1.3771    |  |  |  |
| 220.1745       | 0.5701                  | 238.1946 | 0.2157    | 253.1847 | 0.8833    | 265.2449 | 0.5070    |  |  |  |
| 220.2546       | 0.1826                  | 238.3846 | 0.0632    | 253.2847 | 0.1316    | 266.1447 | 1.0081    |  |  |  |
| 220.3347       | 0.1646                  | 239.1446 | 1.2947    | 254.1145 | 1.0688    | 267.1547 | 1.4283    |  |  |  |
| 221.0545       | 0.6098                  | 239.2346 | 0.1801    | 254.1847 | 0.0503    | 267.2647 | 0.2049    |  |  |  |
| 221.1845       | 1.4070                  | 240.1246 | 1.0522    | 254.2747 | 0.0485    | 268.1149 | 4.5251    |  |  |  |
| 222.1245       | 1.3077                  | 240.2146 | 0.0842    | 254.3047 | 0.0732    | 268.2847 | 0.1228    |  |  |  |

| spectrum ap | L. virosa flower |          |                |          |                |          |                 |  |  |  |
|-------------|------------------|----------|----------------|----------|----------------|----------|-----------------|--|--|--|
|             | Rol Int          |          | Rol Int        |          | <b>Dol Int</b> |          | Rol Int         |  |  |  |
| m/z         | Kel. IIIt.<br>%  | m/z      | кет. ппт.<br>% | m/z      | кет. ппт.<br>% | m/z      | кеі. IIIt.<br>% |  |  |  |
| 269.1347    | 0.7391           | 281.2448 | 1.9866         | 296.1649 | 0.2477         | 308.2349 | 0.2859          |  |  |  |
| 269.2147    | 0.9421           | 282.1548 | 0.6226         | 296.2549 | 1.2508         | 308.3315 | 0.0779          |  |  |  |
| 270.1247    | 0.8070           | 282.2648 | 0.8480         | 296.4747 | 0.0646         | 309.2149 | 1.5572          |  |  |  |
| 270.2049    | 0.0036           | 282.5246 | 0.1022         | 296.5247 | 0.0992         | 309.2849 | 0.0163          |  |  |  |
| 270.3849    | 0.0556           | 283.1848 | 0.9249         | 297.1847 | 0.0783         | 310.1349 | 0.2401          |  |  |  |
| 271.0847    | 1.4830           | 283.2648 | 0.2333         | 297.2449 | 1.3710         | 310.2449 | 0.5760          |  |  |  |
| 271.1597    | 0.2527           | 284.1548 | 0.6752         | 298.1649 | 0.2480         | 311.2349 | 0.7404          |  |  |  |
| 271.2347    | 0.9700           | 284.2648 | 0.2753         | 298.2749 | 0.6358         | 311.2749 | 0.5270          |  |  |  |
| 272.1349    | 0.6983           | 285.1048 | 1.0151         | 298.4049 | 0.1113         | 312.1649 | 0.2952          |  |  |  |
| 272.2547    | 0.3211           | 285.2048 | 0.0764         | 298.5049 | 0.1134         | 312.2749 | 0.3284          |  |  |  |
| 272.3549    | 0.0407           | 285.2748 | 0.7010         | 299.1949 | 0.5584         | 313.1149 | 0.0692          |  |  |  |
| 272.4649    | 0.0549           | 285.4148 | 0.0218         | 299.2749 | 0.6488         | 313.2749 | 3.7049          |  |  |  |
| 273.0848    | 0.5357           | 286.1348 | 0.6223         | 300.1949 | 0.4348         | 314.1548 | 0.2168          |  |  |  |
| 273.1548    | 0.4998           | 286.2148 | 0.2720         | 300.2947 | 0.2996         | 314.2448 | 0.8693          |  |  |  |
| 273.2446    | 0.1447           | 286.2748 | 0.0390         | 300.4249 | 0.1117         | 315.1148 | 0.2844          |  |  |  |
| 274.1248    | 0.2591           | 287.0648 | 0.3161         | 301.0949 | 1.1750         | 315.2248 | 0.5047          |  |  |  |
| 274.1548    | 0.3568           | 287.1248 | 0.4374         | 301.2049 | 0.0880         | 315.2998 | 0.1333          |  |  |  |
| 274.2648    | 0.1346           | 287.2248 | 0.2661         | 301.2949 | 0.2221         | 315.4448 | 0.1329          |  |  |  |
| 274.4148    | 0.0738           | 287.3848 | 0.0654         | 302.1049 | 0.1973         | 316.1150 | 0.1167          |  |  |  |
| 275.1046    | 0.4872           | 287.4748 | 0.0793         | 302.1449 | 0.4021         | 316.2250 | 0.3469          |  |  |  |
| 275.2046    | 1.7042           | 288.1348 | 0.5463         | 302.2149 | 0.1701         | 316.3048 | 0.0329          |  |  |  |
| 276.0946    | 0.4915           | 288.2448 | 0.1333         | 302.3049 | 0.1258         | 317.1250 | 0.0664          |  |  |  |
| 276.1648    | 0.7245           | 289.1048 | 0.8222         | 302.4149 | 0.1057         | 317.2348 | 0.5032          |  |  |  |
| 277.1146    | 1.1655           | 289.1748 | 0.4699         | 303.0549 | 0.1202         | 318.1048 | 0.0628          |  |  |  |
| 277.2148    | 6.5586           | 289.2348 | 0.3223         | 303.1249 | 0.4300         | 318.2248 | 0.3251          |  |  |  |
| 277.4548    | 0.0954           | 289.4048 | 0.0759         | 303.2249 | 0.2811         | 319.2348 | 0.5130          |  |  |  |
| 277.5248    | 0.1483           | 289.4748 | 0.0208         | 303.3049 | 0.0226         | 319.3050 | 0.0473          |  |  |  |
| 278.1248    | 0.4042           | 290.1748 | 0.7507         | 304.1549 | 0.4942         | 319.4450 | 0.0956          |  |  |  |
| 278.2148    | 1.8311           | 291.1948 | 2.3464         | 304.2349 | 0.2844         | 320.1648 | 0.1133          |  |  |  |
| 279.1546    | 1.4648           | 291.4148 | 0.2423         | 305.1549 | 0.5234         | 320.2350 | 0.2582          |  |  |  |
| 279.2348    | 9.0819           | 292.1148 | 0.4560         | 305.2349 | 0.1554         | 321.1550 | 0.1319          |  |  |  |
| 279.4048    | 0.1123           | 292.1948 | 0.5726         | 306.1649 | 0.5077         | 321.2350 | 0.3562          |  |  |  |
| 280.1448    | 0.6739           | 293.2148 | 3.2664         | 306.2749 | 0.3023         | 321.3150 | 0.0399          |  |  |  |
| 280.2446    | 1.5795           | 294.1098 | 0.3383         | 307.1149 | 0.3437         | 322.1748 | 0.2487          |  |  |  |
| 280.3648    | 0.0564           | 294.2147 | 0.7533         | 307.1949 | 1.0189         | 322.2450 | 0.3298          |  |  |  |
| 281.1448    | 0.3373           | 295.2347 | 3.9788         | 308.1360 | 0.3517         | 323.1750 | 0.4098          |  |  |  |

| speed and ap | L virosa flower                 |          |                |          |                |          |                |  |  |  |
|--------------|---------------------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
|              | Dol Int Dol Int Dol Int Dol Int |          |                |          |                |          |                |  |  |  |
| m/z          | Kel. Int.<br>%                  | m/z      | Kel. Int.<br>% | m/z      | Kel. Int.<br>% | m/z      | Kel. Int.<br>% |  |  |  |
| 323.2548     | 0.2871                          | 337.2049 | 0.2293         | 350.1649 | 0.1377         | 364.2550 | 0.2693         |  |  |  |
| 323.3570     | 0.0776                          | 337.2651 | 0.7765         | 350.2351 | 0.1596         | 365.2750 | 0.6252         |  |  |  |
| 324.1750     | 0.2921                          | 338.1951 | 0.0726         | 350.3151 | 0.2340         | 365.4150 | 3.0897         |  |  |  |
| 324.2650     | 0.4066                          | 338.2649 | 0.5209         | 351.1751 | 0.0559         | 366.2652 | 0.0263         |  |  |  |
| 325.1150     | 0.0765                          | 338.3449 | 0.1927         | 351.2451 | 0.8248         | 366.2950 | 0.1479         |  |  |  |
| 325.1950     | 0.3080                          | 338.4849 | 0.0782         | 352.2451 | 0.5249         | 366.4150 | 0.8380         |  |  |  |
| 325.2850     | 0.8959                          | 338.6049 | 0.0494         | 353.2651 | 1.4179         | 367.2050 | 0.2590         |  |  |  |
| 326.1850     | 0.2967                          | 339.1849 | 0.0497         | 354.2651 | 0.5078         | 367.2750 | 0.1857         |  |  |  |
| 326.2950     | 0.6610                          | 339.3251 | 0.8560         | 355.0751 | 0.1433         | 367.3352 | 0.1961         |  |  |  |
| 327.1950     | 0.3135                          | 339.4249 | 0.0061         | 355.2950 | 0.9849         | 368.2052 | 0.2671         |  |  |  |
| 327.2850     | 0.6952                          | 340.2651 | 0.4046         | 356.0750 | 0.0738         | 368.2652 | 0.0160         |  |  |  |
| 328.2250     | 0.3525                          | 340.3449 | 0.0074         | 356.1950 | 0.0726         | 368.3350 | 0.1845         |  |  |  |
| 328.3248     | 0.5697                          | 341.1349 | 0.1578         | 356.2850 | 0.4306         | 369.1252 | 0.0395         |  |  |  |
| 329.1050     | 0.1100                          | 341.2149 | 0.1771         | 357.0750 | 0.1377         | 369.2150 | 0.7150         |  |  |  |
| 329.2350     | 0.3780                          | 341.3149 | 0.5113         | 357.2050 | 0.3074         | 369.3452 | 0.5092         |  |  |  |
| 329.3150     | 0.1354                          | 342.1451 | 0.1694         | 357.2950 | 0.4336         | 369.4252 | 0.0451         |  |  |  |
| 330.1650     | 0.2841                          | 342.2151 | 0.1384         | 358.2152 | 0.3130         | 369.4852 | 0.0347         |  |  |  |
| 330.2350     | 0.2377                          | 342.3149 | 0.2357         | 358.2950 | 0.2115         | 369.5650 | 0.1439         |  |  |  |
| 330.3350     | 0.1736                          | 343.1649 | 0.3045         | 358.3650 | 0.0082         | 370.2150 | 0.0893         |  |  |  |
| 331.0950     | 0.2601                          | 343.2351 | 0.5996         | 359.1350 | 0.0788         | 370.3352 | 0.3883         |  |  |  |
| 331.2250     | 0.2595                          | 343.3351 | 0.4484         | 359.2250 | 0.5741         | 371.1052 | 1.2912         |  |  |  |
| 331.2950     | 1.0312                          | 344.1751 | 0.3810         | 359.2952 | 0.3332         | 371.2250 | 0.3566         |  |  |  |
| 332.0950     | 0.1555                          | 344.2651 | 0.1423         | 359.5150 | 0.0130         | 371.3152 | 0.2349         |  |  |  |
| 332.2150     | 0.3969                          | 344.3951 | 0.0357         | 359.5850 | 0.1018         | 371.4052 | 0.2169         |  |  |  |
| 332.2950     | 0.2503                          | 345.1849 | 0.5047         | 360.1550 | 0.1288         | 371.5852 | 0.0754         |  |  |  |
| 332.3550     | 0.0078                          | 345.2749 | 0.3326         | 360.2252 | 0.3141         | 371.6750 | 0.0563         |  |  |  |
| 333.1750     | 0.4042                          | 346.1751 | 0.2348         | 360.3150 | 0.0712         | 371.7551 | 0.0671         |  |  |  |
| 333.2350     | 0.1877                          | 346.2749 | 0.2442         | 361.1550 | 0.1511         | 372.1152 | 0.4631         |  |  |  |
| 334.1550     | 0.2068                          | 347.1649 | 0.1015         | 361.2352 | 0.5581         | 372.2352 | 0.4416         |  |  |  |
| 334.2350     | 0.3457                          | 347.2851 | 0.4311         | 361.3250 | 0.0772         | 372.3152 | 0.1936         |  |  |  |
| 334.3350     | 0.0907                          | 347.3651 | 0.0461         | 362.1652 | 0.2049         | 372.4152 | 0.0395         |  |  |  |
| 335.2049     | 0.6569                          | 348.1851 | 0.1685         | 362.2650 | 0.2656         | 372.4902 | 0.0437         |  |  |  |
| 336.1849     | 0.3435                          | 348.2949 | 0.3848         | 362.3750 | 0.2233         | 373.1052 | 0.2852         |  |  |  |
| 336.2549     | 0.0970                          | 349.1101 | 0.1170         | 363.1752 | 0.2002         | 373.1752 | 0.1108         |  |  |  |
| 336.3251     | 0.0173                          | 349.2151 | 0.5066         | 363.2452 | 0.2560         | 373.2452 | 0.3584         |  |  |  |
| 336.4749     | 0.0626                          | 349.3351 | 0.0309         | 364.1952 | 0.1098         | 373.3152 | 0.1684         |  |  |  |

| <i>L. virosa</i> flower |                |          |                |          |                |          |                |  |  |
|-------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| m/z.                    | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |
| 374.0952                | 0.0078         | 385.2151 | 0.2860         | 399.3652 | 0.7697         | 413.3052 | 0.2760         |  |  |
| 374.1652                | 0.0259         | 385.3151 | 0.3301         | 400.1552 | 0.0114         | 413.3754 | 0.7374         |  |  |
| 374.2652                | 0.3142         | 385.4851 | 0.0843         | 400.2352 | 0.1290         | 414.2154 | 0.0217         |  |  |
| 374.3252                | 0.0840         | 386.2153 | 0.1556         | 400.3552 | 0.1573         | 414.3154 | 0.1239         |  |  |
| 375.1752                | 0.1269         | 386.3351 | 0.1608         | 400.4452 | 0.4823         | 414.3854 | 0.3251         |  |  |
| 375.2452                | 0.3294         | 387.1053 | 0.1367         | 401.2252 | 0.4244         | 414.6152 | 0.0773         |  |  |
| 375.3152                | 0.1447         | 387.2253 | 0.1280         | 401.3252 | 0.0639         | 415.0554 | 0.0057         |  |  |
| 376.1451                | 0.1007         | 387.2853 | 0.1648         | 401.4652 | 0.0948         | 415.2254 | 0.0797         |  |  |
| 376.2551                | 0.1279         | 387.3353 | 0.0228         | 402.1252 | 0.0193         | 415.3004 | 0.3185         |  |  |
| 376.3351                | 0.0496         | 387.6051 | 0.0237         | 402.2252 | 0.0871         | 415.3754 | 0.2040         |  |  |
| 376.5751                | 0.0064         | 388.1351 | 0.1373         | 402.3352 | 0.2601         | 416.3652 | 0.3348         |  |  |
| 377.1851                | 0.1128         | 388.2653 | 0.3211         | 403.1952 | 0.0752         | 417.1753 | 0.0851         |  |  |
| 377.2551                | 0.3010         | 388.4351 | 0.1214         | 403.2952 | 0.3690         | 417.2553 | 0.0914         |  |  |
| 377.3351                | 0.2358         | 388.5351 | 0.0946         | 403.4452 | 0.0186         | 417.3053 | 0.1415         |  |  |
| 377.4251                | 0.0154         | 389.2653 | 0.4840         | 404.1552 | 0.0721         | 417.3753 | 0.0385         |  |  |
| 377.5251                | 0.1328         | 390.1353 | 0.0062         | 404.2952 | 0.2094         | 417.4553 | 0.1594         |  |  |
| 378.2651                | 0.3336         | 390.2551 | 0.2004         | 404.3752 | 0.0209         | 418.2253 | 0.0817         |  |  |
| 379.1751                | 0.0241         | 390.3351 | 0.0304         | 404.6452 | 0.0060         | 418.2953 | 0.1855         |  |  |
| 379.2651                | 0.2172         | 391.1753 | 0.0730         | 405.3752 | 1.2255         | 418.3653 | 0.1026         |  |  |
| 379.3451                | 0.3643         | 391.2951 | 0.4097         | 406.1952 | 0.0268         | 418.4553 | 0.0819         |  |  |
| 380.2051                | 0.1949         | 391.3901 | 0.1924         | 406.3854 | 0.4390         | 419.3253 | 0.4169         |  |  |
| 380.2851                | 0.0196         | 391.4851 | 0.0216         | 407.2652 | 0.1124         | 420.2553 | 0.0770         |  |  |
| 380.3451                | 0.2240         | 392.2853 | 0.3492         | 407.3652 | 6.6078         | 420.3153 | 0.0605         |  |  |
| 381.1951                | 0.3662         | 393.3451 | 1.0761         | 408.3752 | 3.3015         | 421.3453 | 1.1270         |  |  |
| 381.2851                | 0.0260         | 394.1853 | 0.0895         | 409.2052 | 0.0344         | 422.2053 | 0.0181         |  |  |
| 381.3451                | 0.3048         | 394.3353 | 0.4002         | 409.3852 | 63.9548        | 422.3453 | 0.4738         |  |  |
| 381.4153                | 0.6704         | 395.2753 | 0.2391         | 410.2252 | 0.1028         | 422.4851 | 0.0215         |  |  |
| 382.2951                | 0.3057         | 395.3653 | 2.5967         | 410.3854 | 19.9172        | 423.3753 | 5.2412         |  |  |
| 382.3551                | 0.0431         | 396.2053 | 0.0052         | 411.1252 | 0.2148         | 424.3753 | 2.1722         |  |  |
| 382.4351                | 0.3887         | 396.3753 | 1.1716         | 411.3852 | 4.7150         | 425.2053 | 0.0166         |  |  |
| 383.2951                | 0.0499         | 397.2152 | 0.0215         | 411.6254 | 0.0785         | 425.3753 | 8.2646         |  |  |
| 383.3651                | 0.9655         | 397.3852 | 4.4393         | 411.6954 | 0.3171         | 426.3853 | 2.7636         |  |  |
| 384.2051                | 0.1463         | 398.2152 | 0.2202         | 412.2052 | 0.2213         | 427.3953 | 4.2071         |  |  |
| 384.2751                | 0.0846         | 398.2952 | 0.0764         | 412.2954 | 0.0744         | 428.2953 | 0.0231         |  |  |
| 384.3051                | 0.0723         | 398.3950 | 1.1350         | 412.3852 | 0.8829         | 428.3955 | 1.2893         |  |  |
| 384.3751                | 0.2193         | 398.5452 | 0.0526         | 413.0454 | 0.0739         | 429.1653 | 0.0049         |  |  |

|          | <i>L. virosa</i> flower |          |                |          |                |          |                |  |  |  |
|----------|-------------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z.     | Rel. Int.<br>%          | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 429.3853 | 1.6234                  | 446.3854 | 0.2531         | 464.3155 | 0.1306         | 481.4956 | 0.0191         |  |  |  |
| 430.2353 | 0.1987                  | 447.3254 | 0.0523         | 464.3855 | 0.1487         | 482.2154 | 0.0130         |  |  |  |
| 430.3053 | 0.0164                  | 447.3854 | 0.2336         | 465.2255 | 0.0023         | 482.3354 | 0.1947         |  |  |  |
| 430.3853 | 0.3807                  | 448.3254 | 0.1961         | 465.3955 | 0.4898         | 482.4756 | 0.0221         |  |  |  |
| 430.5553 | 0.1050                  | 448.3854 | 0.0836         | 465.4855 | 0.0335         | 482.5256 | 0.0382         |  |  |  |
| 431.3853 | 0.5484                  | 449.2154 | 0.0038         | 466.3355 | 0.0708         | 483.3856 | 1.9489         |  |  |  |
| 432.1853 | 0.0391                  | 449.3254 | 0.1500         | 466.4055 | 0.3409         | 484.3956 | 0.5540         |  |  |  |
| 432.3153 | 0.1110                  | 449.3954 | 0.0586         | 466.5055 | 0.0468         | 485.2156 | 0.0040         |  |  |  |
| 432.3955 | 0.1928                  | 449.4354 | 0.1162         | 467.3955 | 1.7507         | 485.4056 | 0.4758         |  |  |  |
| 433.1855 | 0.0048                  | 449.5154 | 0.0296         | 468.3955 | 0.5720         | 486.3254 | 0.1975         |  |  |  |
| 433.3253 | 0.3535                  | 450.2154 | 0.1559         | 469.1855 | 0.0040         | 486.3854 | 0.1170         |  |  |  |
| 434.1953 | 0.0062                  | 450.3454 | 0.1575         | 469.4055 | 2.7503         | 486.4556 | 0.0454         |  |  |  |
| 434.2653 | 0.0801                  | 450.5154 | 0.0320         | 470.4155 | 0.9349         | 487.3854 | 0.2010         |  |  |  |
| 434.3353 | 0.0206                  | 451.3454 | 0.3208         | 471.3855 | 0.4345         | 487.5256 | 0.1291         |  |  |  |
| 434.3955 | 0.0065                  | 451.4254 | 0.0717         | 472.3455 | 0.2926         | 488.3956 | 0.0806         |  |  |  |
| 435.2253 | 0.0803                  | 452.4854 | 0.0673         | 472.3855 | 0.0237         | 488.4656 | 0.0663         |  |  |  |
| 435.3553 | 0.3058                  | 453.3554 | 0.5310         | 473.2255 | 0.0117         | 488.5456 | 0.0203         |  |  |  |
| 435.4655 | 0.1136                  | 454.3454 | 0.2923         | 473.3755 | 0.2761         | 489.1956 | 0.0053         |  |  |  |
| 436.3353 | 0.1813                  | 454.4956 | 0.0429         | 474.3855 | 0.2546         | 489.3756 | 0.2491         |  |  |  |
| 437.3455 | 0.6501                  | 455.3556 | 1.1135         | 474.4655 | 0.0207         | 491.3056 | 0.1359         |  |  |  |
| 437.4755 | 0.0866                  | 456.2854 | 0.0111         | 475.3055 | 0.1320         | 491.3756 | 0.1203         |  |  |  |
| 438.3552 | 0.4051                  | 456.3754 | 0.3063         | 475.3855 | 0.0895         | 491.4856 | 0.0788         |  |  |  |
| 438.4852 | 0.0272                  | 456.5156 | 0.0490         | 476.3155 | 0.0733         | 492.3356 | 0.0914         |  |  |  |
| 439.2154 | 0.0082                  | 457.3754 | 0.9655         | 476.4055 | 0.1156         | 493.3056 | 0.0659         |  |  |  |
| 439.3652 | 1.7850                  | 458.3853 | 0.3836         | 477.2955 | 0.1470         | 493.3856 | 0.1874         |  |  |  |
| 440.3654 | 1.0579                  | 459.3855 | 0.4747         | 477.4355 | 0.0991         | 494.3656 | 0.1017         |  |  |  |
| 441.2154 | 0.0365                  | 460.3053 | 0.1206         | 477.5455 | 0.0237         | 495.3856 | 0.3191         |  |  |  |
| 441.3754 | 4.4880                  | 460.4155 | 0.0834         | 478.3255 | 0.0890         | 496.3256 | 0.0875         |  |  |  |
| 442.3854 | 1.4419                  | 460.4955 | 0.0148         | 478.4355 | 0.1006         | 497.3956 | 0.3662         |  |  |  |
| 443.3854 | 0.9998                  | 461.3755 | 0.2686         | 478.5455 | 0.0319         | 498.3256 | 0.2145         |  |  |  |
| 444.2954 | 0.2636                  | 462.2055 | 0.0199         | 479.2956 | 0.0189         | 498.3956 | 0.0384         |  |  |  |
| 444.4054 | 0.0952                  | 462.3053 | 0.1480         | 479.3754 | 0.2662         | 498.5356 | 0.0330         |  |  |  |
| 445.1154 | 0.0572                  | 462.4455 | 0.0993         | 479.4854 | 0.1231         | 499.2156 | 0.0042         |  |  |  |
| 445.2154 | 0.0120                  | 463.2155 | 0.0046         | 480.3254 | 0.1040         | 499.3256 | 0.0668         |  |  |  |
| 445.3754 | 0.5075                  | 463.3855 | 0.3968         | 480.4954 | 0.0914         | 499.4256 | 0.2868         |  |  |  |
| 446.3054 | 0.1795                  | 464.2255 | 0.0356         | 481.3954 | 0.5351         | 500.3455 | 0.0599         |  |  |  |

| w        | <i>L. virosa</i> flower |          |                |          |                |          |                |  |  |  |
|----------|-------------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z      | Rel. Int.<br>%          | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 500.4255 | 0.2310                  | 516.3457 | 0.0366         | 535.4458 | 0.0325         | 552.4959 | 0.3242         |  |  |  |
| 501.3255 | 0.1440                  | 516.4257 | 0.1535         | 535.5358 | 0.0298         | 552.5857 | 0.0305         |  |  |  |
| 501.3957 | 0.0565                  | 517.3257 | 0.1939         | 536.2558 | 0.0157         | 553.3957 | 0.0704         |  |  |  |
| 501.4755 | 0.0056                  | 517.4457 | 0.0246         | 536.3158 | 0.0154         | 553.4957 | 0.1747         |  |  |  |
| 502.3355 | 0.0294                  | 518.3457 | 0.0152         | 536.3858 | 0.0073         | 554.4957 | 0.2603         |  |  |  |
| 502.4155 | 0.1213                  | 518.4357 | 0.1328         | 536.5358 | 0.0581         | 555.4559 | 0.2164         |  |  |  |
| 503.3255 | 0.1365                  | 518.5157 | 0.0092         | 536.6058 | 0.0467         | 556.3659 | 0.1049         |  |  |  |
| 503.4155 | 0.1158                  | 519.4057 | 0.2306         | 537.3958 | 0.0377         | 556.4359 | 0.0556         |  |  |  |
| 504.2857 | 0.0715                  | 520.3356 | 0.0933         | 537.5058 | 0.2089         | 557.4459 | 0.0966         |  |  |  |
| 504.4555 | 0.0689                  | 520.4056 | 0.1470         | 538.3858 | 0.1418         | 557.5359 | 0.0653         |  |  |  |
| 505.1857 | 0.0025                  | 521.4056 | 0.1860         | 538.5058 | 0.2095         | 558.4457 | 0.0791         |  |  |  |
| 505.3255 | 0.0073                  | 521.5256 | 0.1320         | 539.3658 | 0.1846         | 559.4459 | 0.1791         |  |  |  |
| 505.3955 | 0.2498                  | 522.4256 | 0.1864         | 539.4958 | 0.1199         | 559.5459 | 0.0230         |  |  |  |
| 506.3657 | 0.1619                  | 523.3256 | 0.0884         | 540.4358 | 0.0884         | 560.3459 | 0.0154         |  |  |  |
| 507.3955 | 0.1902                  | 523.4056 | 0.1019         | 541.4257 | 0.2082         | 560.4159 | 0.1214         |  |  |  |
| 507.5155 | 0.1035                  | 524.2756 | 0.0176         | 542.3357 | 0.1123         | 560.4959 | 0.0109         |  |  |  |
| 508.3557 | 0.1029                  | 525.4256 | 0.2164         | 542.4157 | 0.0386         | 561.4159 | 0.0754         |  |  |  |
| 508.5257 | 0.0347                  | 526.4156 | 0.1559         | 543.3457 | 0.0240         | 561.4957 | 0.0602         |  |  |  |
| 509.3255 | 0.0547                  | 526.5658 | 0.0530         | 543.4257 | 0.0443         | 561.5658 | 0.0567         |  |  |  |
| 509.4055 | 0.1542                  | 527.3456 | 0.0890         | 543.4957 | 0.0318         | 562.2558 | 0.0033         |  |  |  |
| 509.5257 | 0.1513                  | 527.4256 | 0.0579         | 544.3857 | 0.0803         | 562.4358 | 0.0786         |  |  |  |
| 510.2257 | 0.0038                  | 527.5256 | 0.0100         | 544.5257 | 0.0543         | 562.5158 | 0.0561         |  |  |  |
| 510.4157 | 0.1537                  | 528.4256 | 0.1921         | 545.4057 | 0.1590         | 563.4358 | 0.1026         |  |  |  |
| 510.5357 | 0.0129                  | 529.3256 | 0.1497         | 545.4757 | 0.0928         | 563.4858 | 0.3308         |  |  |  |
| 511.3257 | 0.1701                  | 529.4156 | 0.0126         | 545.7257 | 0.0125         | 563.6158 | 0.0071         |  |  |  |
| 511.4357 | 0.1259                  | 530.4056 | 0.0623         | 546.2857 | 0.0028         | 564.3558 | 0.1087         |  |  |  |
| 512.2057 | 0.0264                  | 531.4058 | 0.1004         | 546.3857 | 0.0806         | 564.4358 | 0.0212         |  |  |  |
| 512.4057 | 0.0745                  | 531.4756 | 0.0803         | 546.4557 | 0.0709         | 564.5458 | 0.1326         |  |  |  |
| 512.5757 | 0.0156                  | 532.3358 | 0.1029         | 547.4657 | 0.1149         | 564.6358 | 0.0027         |  |  |  |
| 513.3357 | 0.0352                  | 532.4158 | 0.1356         | 548.3459 | 0.0308         | 565.2958 | 0.0052         |  |  |  |
| 513.3957 | 0.1451                  | 533.2707 | 0.0032         | 548.4657 | 0.1447         | 565.5258 | 0.0618         |  |  |  |
| 514.3357 | 0.1987                  | 533.3556 | 0.0752         | 549.3559 | 0.0472         | 566.4458 | 0.0716         |  |  |  |
| 514.4157 | 0.0791                  | 533.4407 | 0.0923         | 549.4959 | 0.2394         | 566.5358 | 0.0639         |  |  |  |
| 515.2357 | 0.0103                  | 533.5258 | 0.0975         | 550.4459 | 0.1782         | 567.4558 | 0.1954         |  |  |  |
| 515.3257 | 0.1546                  | 534.4858 | 0.2085         | 550.5657 | 0.0698         | 568.3858 | 0.0670         |  |  |  |
| 515.4257 | 0.0275                  | 535.3656 | 0.1990         | 551.5057 | 0.4275         | 569.3858 | 0.0612         |  |  |  |

| L. virosa flower |                |          |                |          |                |          |                |  |  |  |
|------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z              | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 569.4958         | 0.0687         | 589.4759 | 0.4809         | 610.5460 | 0.2179         | 632.5361 | 0.1042         |  |  |  |
| 569.5660         | 0.0294         | 590.3959 | 0.0839         | 611.5360 | 0.0404         | 633.5161 | 0.0621         |  |  |  |
| 569.6358         | 0.0599         | 590.4859 | 0.1049         | 612.4760 | 0.1484         | 633.5961 | 0.1306         |  |  |  |
| 570.4058         | 0.0553         | 591.3559 | 0.0431         | 612.5460 | 0.0056         | 633.6961 | 0.0315         |  |  |  |
| 570.5458         | 0.1187         | 591.4961 | 0.3294         | 613.3660 | 0.0561         | 634.4661 | 0.0373         |  |  |  |
| 571.4458         | 0.2256         | 592.4959 | 0.1302         | 613.5060 | 0.0790         | 634.5461 | 0.0836         |  |  |  |
| 572.3758         | 0.1181         | 592.5759 | 0.0330         | 614.4160 | 0.0132         | 635.5461 | 0.0378         |  |  |  |
| 572.4458         | 0.0398         | 592.6759 | 0.0381         | 614.4960 | 0.0337         | 635.6161 | 0.2656         |  |  |  |
| 572.5658         | 0.0184         | 593.5159 | 0.1259         | 615.5060 | 0.1332         | 636.3961 | 0.0280         |  |  |  |
| 573.4558         | 0.1725         | 594.5159 | 0.1067         | 615.6460 | 0.0479         | 636.5661 | 0.0242         |  |  |  |
| 573.5758         | 0.0254         | 597.3661 | 0.0037         | 616.5160 | 0.0950         | 637.5661 | 0.0491         |  |  |  |
| 574.4460         | 0.0922         | 597.4460 | 0.0850         | 617.5160 | 0.2146         | 638.5761 | 0.1421         |  |  |  |
| 575.5060         | 0.7925         | 597.5259 | 0.0228         | 617.6460 | 0.0190         | 638.6861 | 0.2157         |  |  |  |
| 576.5158         | 0.2770         | 598.4561 | 0.0575         | 618.5260 | 0.1723         | 639.5661 | 0.1578         |  |  |  |
| 577.5258         | 0.3265         | 598.5959 | 0.0687         | 618.6762 | 0.0048         | 640.4761 | 0.0653         |  |  |  |
| 578.5260         | 0.1356         | 599.5061 | 0.1714         | 619.4560 | 0.0609         | 640.5661 | 0.0596         |  |  |  |
| 579.5260         | 0.2123         | 600.3861 | 0.0501         | 619.5360 | 0.1140         | 641.4861 | 0.1144         |  |  |  |
| 580.4360         | 0.1728         | 600.5061 | 0.0908         | 619.6660 | 0.0117         | 642.4863 | 0.0993         |  |  |  |
| 581.3658         | 0.1026         | 601.3761 | 0.0832         | 619.7560 | 0.0298         | 643.4261 | 0.0830         |  |  |  |
| 581.4460         | 0.0394         | 601.5259 | 0.0394         | 620.3960 | 0.0045         | 643.4963 | 0.0104         |  |  |  |
| 581.5358         | 0.0343         | 601.5961 | 0.0038         | 620.4560 | 0.0863         | 644.4960 | 0.0034         |  |  |  |
| 582.2957         | 0.0069         | 602.3861 | 0.0349         | 620.5360 | 0.0309         | 645.4862 | 0.0269         |  |  |  |
| 582.3759         | 0.0262         | 602.5261 | 0.0234         | 620.6660 | 0.1093         | 646.4960 | 0.0070         |  |  |  |
| 582.5159         | 0.0462         | 603.5360 | 0.1250         | 621.6660 | 0.2800         | 646.6162 | 0.1500         |  |  |  |
| 583.4557         | 0.0975         | 603.6260 | 0.0538         | 623.4659 | 0.0106         | 647.6360 | 0.1308         |  |  |  |
| 583.5859         | 0.0483         | 604.4660 | 0.0319         | 623.5659 | 0.1408         | 648.6360 | 0.2514         |  |  |  |
| 585.4759         | 0.1774         | 604.5458 | 0.1300         | 624.4759 | 0.0790         | 649.5960 | 0.1603         |  |  |  |
| 585.5859         | 0.0078         | 604.6560 | 0.0131         | 624.5459 | 0.0665         | 649.6760 | 0.0473         |  |  |  |
| 586.3959         | 0.0675         | 605.4660 | 0.1776         | 625.4861 | 0.1530         | 650.5460 | 0.0404         |  |  |  |
| 586.4857         | 0.0620         | 605.5460 | 0.1013         | 626.5259 | 0.0225         | 650.6060 | 0.2830         |  |  |  |
| 586.5559         | 0.0620         | 606.4060 | 0.1035         | 627.5061 | 0.0149         | 651.5462 | 0.0983         |  |  |  |
| 587.4909         | 0.1556         | 606.5360 | 0.0777         | 627.5861 | 0.0182         | 652.4860 | 0.0262         |  |  |  |
| 587.5859         | 0.0392         | 607.5060 | 0.3054         | 628.5061 | 0.0070         | 652.5462 | 0.0669         |  |  |  |
| 588.4059         | 0.0349         | 608.4510 | 0.0108         | 629.5059 | 0.0506         | 653.4162 | 0.0631         |  |  |  |
| 588.5059         | 0.0946         | 608.5260 | 0.1773         | 630.4961 | 0.0360         | 653.5660 | 0.0697         |  |  |  |
| 588.6059         | 0.0071         | 609.5160 | 0.1614         | 631.5059 | 0.0952         | 654.5662 | 0.0616         |  |  |  |

| <i>L. virosa</i> flower |                |          |                |          |                |          |           |  |  |  |
|-------------------------|----------------|----------|----------------|----------|----------------|----------|-----------|--|--|--|
| m/z                     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int. |  |  |  |
| 655.4762                | 0.0501         | 680.4763 | 0.0099         | 708.6463 | 0.0311         | 740.4664 | 0.0032    |  |  |  |
| 656.4962                | 0.0032         | 680.5963 | 0.2446         | 709.5963 | 0.0883         | 740.5366 | 0.0172    |  |  |  |
| 657.5062                | 0.0335         | 681.4563 | 0.0048         | 710.6063 | 0.1095         | 740.6364 | 0.0110    |  |  |  |
| 658.5062                | 0.0337         | 681.5963 | 0.1403         | 711.6063 | 0.0849         | 741.4664 | 0.0023    |  |  |  |
| 659.5262                | 0.0071         | 682.4563 | 0.0422         | 712.6063 | 0.0662         | 741.5264 | 0.0087    |  |  |  |
| 659.6162                | 0.0928         | 683.4163 | 0.0155         | 713.5865 | 0.0764         | 741.6266 | 0.0082    |  |  |  |
| 660.5362                | 0.0397         | 683.4863 | 0.0047         | 714.5863 | 0.0812         | 742.3564 | 0.0034    |  |  |  |
| 660.6317                | 0.0854         | 684.5063 | 0.0387         | 715.6063 | 0.0543         | 742.6164 | 0.0104    |  |  |  |
| 661.5562                | 0.1875         | 685.4962 | 0.0309         | 716.5963 | 0.0116         | 743.6164 | 0.0065    |  |  |  |
| 662.5662                | 0.1674         | 688.5764 | 0.0408         | 717.5965 | 0.0759         | 744.6166 | 0.0053    |  |  |  |
| 663.5562                | 0.0786         | 689.4762 | 0.0030         | 718.6763 | 0.0030         | 745.6266 | 0.0120    |  |  |  |
| 663.6262                | 0.1517         | 689.6462 | 0.0307         | 719.6565 | 0.0100         | 746.5464 | 0.0169    |  |  |  |
| 664.4662                | 0.0071         | 690.4762 | 0.0121         | 720.7365 | 0.0059         | 746.6264 | 0.0357    |  |  |  |
| 665.4161                | 0.0686         | 690.6564 | 0.0485         | 721.5363 | 0.0297         | 747.6265 | 0.0333    |  |  |  |
| 665.5961                | 0.3062         | 691.6662 | 0.0817         | 721.6263 | 0.0415         | 748.6463 | 0.0356    |  |  |  |
| 666.4161                | 0.0565         | 692.6462 | 0.1047         | 722.6365 | 0.0431         | 749.6365 | 0.0238    |  |  |  |
| 666.6461                | 0.3035         | 693.6164 | 0.0645         | 722.7963 | 0.0310         | 750.6863 | 0.0331    |  |  |  |
| 666.7161                | 0.0111         | 694.6064 | 0.0386         | 723.6465 | 0.0314         | 750.8165 | 0.0140    |  |  |  |
| 667.4561                | 0.0050         | 694.7462 | 0.1781         | 724.6665 | 0.0378         | 751.5965 | 0.0436    |  |  |  |
| 667.5861                | 0.0551         | 695.6264 | 0.0908         | 725.6065 | 0.0517         | 751.6863 | 0.0131    |  |  |  |
| 667.7161                | 0.0807         | 695.7464 | 0.0538         | 725.6665 | 0.0056         | 752.6065 | 0.0545    |  |  |  |
| 668.4806                | 0.0076         | 696.5964 | 0.0076         | 726.6565 | 0.0337         | 752.6765 | 0.0028    |  |  |  |
| 668.5761                | 0.0167         | 696.6562 | 0.1219         | 727.5744 | 0.0376         | 753.6165 | 0.0220    |  |  |  |
| 669.5863                | 0.0319         | 697.4664 | 0.0059         | 728.5964 | 0.0607         | 753.6665 | 0.0117    |  |  |  |
| 670.5161                | 0.0026         | 697.6262 | 0.1006         | 729.5964 | 0.0322         | 754.6465 | 0.0393    |  |  |  |
| 673.6463                | 0.0265         | 700.5264 | 0.0159         | 732.6864 | 0.0394         | 755.6265 | 0.0086    |  |  |  |
| 674.6263                | 0.0658         | 703.6464 | 0.0541         | 733.4764 | 0.0058         | 756.6265 | 0.0142    |  |  |  |
| 675.6761                | 0.1741         | 704.6564 | 0.0396         | 733.7864 | 0.0075         | 757.6265 | 0.0051    |  |  |  |
| 676.5261                | 0.0080         | 705.6664 | 0.0565         | 734.6864 | 0.0191         | 766.6665 | 0.0022    |  |  |  |
| 676.6763                | 0.0963         | 705.7564 | 0.0444         | 735.4864 | 0.0026         | 767.6067 | 0.0147    |  |  |  |
| 677.5463                | 0.0758         | 706.3963 | 0.0031         | 735.6764 | 0.0228         | 768.5766 | 0.0445    |  |  |  |
| 677.6263                | 0.0083         | 706.5863 | 0.0560         | 736.5164 | 0.0140         | 769.6066 | 0.0247    |  |  |  |
| 677.7063                | 0.2583         | 706.6563 | 0.0514         | 736.6164 | 0.0150         | 769.7011 | 0.0068    |  |  |  |
| 678.5961                | 0.1232         | 707.6463 | 0.0336         | 737.5064 | 0.0069         | 770.6064 | 0.0229    |  |  |  |
| 678.7263                | 0.0998         | 708.4363 | 0.0031         | 737.6364 | 0.0095         | 771.6364 | 0.0075    |  |  |  |
| 679.5963                | 0.2458         | 708.5863 | 0.0748         | 738.6364 | 0.0097         | 772.6366 | 0.0158    |  |  |  |

| L. virosa flower |                |          |                |          |                |          |                |  |  |  |
|------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z              | Rel. Int.<br>% | m/z,     | Rel. Int.<br>% | m/z,     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 773.6364         | 0.0043         | 779.6366 | 0.0020         | 790.6167 | 0.0186         | 810.6266 | 0.0170         |  |  |  |
| 775.6164         | 0.0036         | 779.7066 | 0.0138         | 792.6067 | 0.0340         | 831.7269 | 0.0057         |  |  |  |
| 776.6166         | 0.0065         | 780.7066 | 0.0101         | 793.6067 | 0.0045         | 833.7469 | 0.0173         |  |  |  |
| 776.6866         | 0.0103         | 781.6166 | 0.0272         | 794.6167 | 0.0045         | 837.5867 | 0.0040         |  |  |  |
| 777.6166         | 0.0185         | 782.6766 | 0.0225         | 798.4367 | 0.0088         | 857.7568 | 0.0030         |  |  |  |
| 778.6266         | 0.0284         | 784.6668 | 0.0028         | 798.6567 | 0.0043         | 867.5870 | 0.0033         |  |  |  |
| 778.6966         | 0.0062         | 788.6167 | 0.0031         | 809.6066 | 0.0225         |          |                |  |  |  |

|         | L. virosa resin |          |                |          |                |          |                |  |  |  |  |
|---------|-----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z     | Rel. Int.<br>%  | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |  |  |
| 61.0339 | 0.7124          | 94.0641  | 0.8176         | 115.1040 | 1.4447         | 134.2543 | 0.1316         |  |  |  |  |
| 61.1041 | 0.0043          | 94.1741  | 0.0409         | 115.2442 | 0.2043         | 135.1043 | 19.1216        |  |  |  |  |
| 62.0639 | 0.0470          | 95.0841  | 1.9881         | 116.0742 | 8.7260         | 135.2443 | 0.0423         |  |  |  |  |
| 67.0540 | 0.1254          | 96.0541  | 9.8180         | 116.1442 | 0.3302         | 135.9943 | 0.1394         |  |  |  |  |
| 68.0538 | 0.1347          | 97.0341  | 17.9665        | 116.2242 | 0.2752         | 136.0643 | 0.9455         |  |  |  |  |
| 68.9640 | 0.5185          | 97.0941  | 1.1207         | 117.0642 | 14.9564        | 136.1343 | 1.9620         |  |  |  |  |
| 69.0440 | 2.2074          | 97.9941  | 0.0463         | 117.2442 | 0.0422         | 136.2843 | 0.1675         |  |  |  |  |
| 70.0640 | 1.4948          | 98.0841  | 1.9964         | 118.0842 | 2.9964         | 136.4043 | 0.1179         |  |  |  |  |
| 71.0640 | 1.7818          | 99.0541  | 23.7888        | 118.2042 | 0.1826         | 137.0743 | 0.8315         |  |  |  |  |
| 72.0840 | 6.1101          | 99.1841  | 0.0027         | 119.0842 | 0.4167         | 137.1243 | 1.1149         |  |  |  |  |
| 72.2040 | 0.2915          | 100.0041 | 0.0828         | 120.0742 | 0.6144         | 137.2143 | 0.0152         |  |  |  |  |
| 74.0640 | 2.2216          | 100.0841 | 3.6358         | 120.2042 | 0.1153         | 138.0843 | 0.4751         |  |  |  |  |
| 75.0440 | 3.0884          | 100.2341 | 0.1340         | 122.0742 | 0.2106         | 138.1643 | 0.4580         |  |  |  |  |
| 76.0640 | 0.2077          | 101.0641 | 20.6625        | 123.0942 | 7.1162         | 139.0054 | 0.7713         |  |  |  |  |
| 77.0440 | 1.2866          | 101.1841 | 0.1273         | 123.2942 | 0.1219         | 139.1043 | 1.9631         |  |  |  |  |
| 78.0440 | 0.0526          | 102.0741 | 2.5669         | 124.0642 | 0.4730         | 139.2243 | 0.0070         |  |  |  |  |
| 79.0440 | 0.7682          | 104.0741 | 1.6473         | 125.0942 | 1.7632         | 139.2643 | 0.2560         |  |  |  |  |
| 80.0540 | 0.9257          | 104.1443 | 0.0199         | 125.2144 | 0.0444         | 140.0843 | 2.9004         |  |  |  |  |
| 81.0540 | 2.1750          | 104.2343 | 0.0075         | 126.0642 | 36.3376        | 140.2543 | 0.1375         |  |  |  |  |
| 81.1442 | 0.0039          | 105.0641 | 1.0985         | 126.1542 | 2.3627         | 140.3143 | 0.1938         |  |  |  |  |
| 82.0642 | 0.3156          | 106.0641 | 0.3994         | 127.0442 | 94.0547        | 141.1043 | 1.7822         |  |  |  |  |
| 82.9442 | 0.0354          | 108.0640 | 6.4785         | 127.1142 | 6.4677         | 142.1043 | 3.6325         |  |  |  |  |
| 83.0840 | 0.9001          | 109.0340 | 2.5335         | 127.2342 | 0.5891         | 142.1843 | 1.0908         |  |  |  |  |
| 84.0640 | 1.1861          | 109.0942 | 2.8434         | 127.9777 | 0.0876         | 143.0343 | 0.7645         |  |  |  |  |
| 85.0342 | 42.2101         | 109.2042 | 0.0297         | 128.0844 | 9.5947         | 143.0943 | 3.1594         |  |  |  |  |
| 85.0942 | 1.8611          | 110.0742 | 18.3547        | 128.1843 | 0.3096         | 144.0843 | 7.3841         |  |  |  |  |
| 86.0740 | 28.3835         | 110.2142 | 0.4300         | 128.2243 | 0.2054         | 144.2443 | 0.1281         |  |  |  |  |
| 86.1742 | 0.4200          | 111.0540 | 3.9270         | 128.9841 | 0.0217         | 145.0543 | 79.5103        |  |  |  |  |
| 86.9739 | 0.0036          | 111.1140 | 1.9436         | 129.0641 | 18.3875        | 145.2243 | 0.5873         |  |  |  |  |
| 88.0741 | 0.4268          | 111.2342 | 0.2225         | 129.1391 | 0.6163         | 145.9868 | 0.0116         |  |  |  |  |
| 88.2041 | 0.0194          | 112.0742 | 1.2598         | 130.0643 | 11.4386        | 146.0843 | 5.1643         |  |  |  |  |
| 90.0641 | 0.0324          | 112.1542 | 0.4297         | 130.1543 | 1.7785         | 146.2443 | 0.0428         |  |  |  |  |
| 90.1641 | 0.0029          | 113.0542 | 6.8637         | 131.2243 | 0.0985         | 146.9943 | 0.0136         |  |  |  |  |
| 91.0541 | 0.6604          | 114.0842 | 3.1716         | 132.1041 | 1.4199         | 147.0743 | 2.8866         |  |  |  |  |
| 92.0641 | 0.0669          | 114.2242 | 0.4389         | 134.0843 | 0.0202         | 148.0745 | 0.9315         |  |  |  |  |
| 93.0641 | 5.2372          | 115.0542 | 6.5265         | 134.1943 | 0.0140         | 149.0165 | 0.0271         |  |  |  |  |

| L. virosa resin |                 |          |                |          |                |          |                 |  |  |  |
|-----------------|-----------------|----------|----------------|----------|----------------|----------|-----------------|--|--|--|
|                 | Rol Int         |          | Dol Int        |          | Dol Int        |          | Rol Int         |  |  |  |
| m/z             | Kel. IIIt.<br>% | m/z      | Kel. Int.<br>% | m/z      | кет. ппт.<br>% | m/z      | кеі. IIIt.<br>% |  |  |  |
| 149.1142        | 0.3672          | 166.2344 | 0.0695         | 189.2345 | 0.2437         | 206.2044 | 0.1023          |  |  |  |
| 149.9942        | 0.0376          | 167.0944 | 3.4622         | 189.4045 | 0.0113         | 207.0746 | 0.0400          |  |  |  |
| 150.0942        | 4.4773          | 167.2544 | 0.0356         | 190.1244 | 1.6009         | 207.3046 | 0.0567          |  |  |  |
| 150.1542        | 0.5056          | 168.2544 | 0.0705         | 190.2244 | 0.0040         | 208.1146 | 4.1789          |  |  |  |
| 150.2342        | 0.1484          | 168.9844 | 0.0167         | 191.3244 | 0.0871         | 208.2096 | 0.0748          |  |  |  |
| 150.3142        | 0.0966          | 169.1144 | 2.8344         | 192.1044 | 1.9339         | 209.2746 | 0.0095          |  |  |  |
| 151.2342        | 0.8687          | 170.0943 | 1.5581         | 192.1644 | 0.9082         | 210.1046 | 0.3126          |  |  |  |
| 152.1144        | 1.2620          | 170.1643 | 0.9929         | 193.0844 | 0.5696         | 210.3596 | 0.0182          |  |  |  |
| 152.2444        | 0.0396          | 171.1543 | 9.0636         | 193.1544 | 0.1416         | 211.1345 | 2.6482          |  |  |  |
| 153.0844        | 4.1420          | 171.3143 | 0.2915         | 194.0944 | 19.4882        | 211.3145 | 0.0316          |  |  |  |
| 154.0844        | 2.1755          | 172.1243 | 2.3745         | 194.9975 | 0.0133         | 212.1045 | 1.7322          |  |  |  |
| 154.1544        | 0.6215          | 173.1143 | 2.1399         | 196.2794 | 0.1162         | 212.3345 | 0.0595          |  |  |  |
| 155.1044        | 2.9497          | 174.1143 | 1.4456         | 197.1144 | 0.6771         | 213.1145 | 0.7475          |  |  |  |
| 155.2644        | 0.0310          | 176.0945 | 0.0387         | 197.3344 | 0.0019         | 213.2095 | 0.1058          |  |  |  |
| 156.1042        | 1.6298          | 178.0945 | 1.3781         | 198.1044 | 22.5370        | 214.1245 | 0.9891          |  |  |  |
| 156.1744        | 1.1605          | 178.1694 | 0.0892         | 198.2444 | 0.0311         | 214.2545 | 0.5507          |  |  |  |
| 156.2744        | 0.0523          | 180.0845 | 54.5224        | 199.1044 | 0.7586         | 215.1145 | 0.8193          |  |  |  |
| 157.0544        | 0.0357          | 180.2345 | 0.1073         | 199.1744 | 3.1130         | 215.1895 | 0.7426          |  |  |  |
| 157.1242        | 2.0297          | 181.0032 | 0.0416         | 199.3844 | 0.0376         | 215.3545 | 0.2166          |  |  |  |
| 157.2644        | 0.2483          | 181.1045 | 3.1129         | 199.4046 | 0.0699         | 216.1245 | 9.0045          |  |  |  |
| 158.1044        | 5.4861          | 181.2345 | 0.0426         | 200.1244 | 4.8650         | 216.1945 | 0.1883          |  |  |  |
| 158.1844        | 0.9673          | 182.0143 | 0.0276         | 200.1844 | 1.0751         | 217.0770 | 1.2803          |  |  |  |
| 159.0544        | 0.0536          | 182.1045 | 5.7978         | 201.0394 | 2.5797         | 217.1745 | 0.6434          |  |  |  |
| 159.1244        | 0.9510          | 182.9989 | 0.0032         | 201.1444 | 1.4410         | 217.3645 | 0.1561          |  |  |  |
| 160.0944        | 1.3988          | 183.0945 | 5.8730         | 201.3044 | 0.2731         | 218.1345 | 2.9566          |  |  |  |
| 160.1744        | 0.2670          | 183.1945 | 0.2232         | 202.1244 | 1.5260         | 220.1145 | 0.3831          |  |  |  |
| 161.0844        | 0.4107          | 184.1145 | 1.5810         | 202.2846 | 0.2153         | 220.1745 | 0.0497          |  |  |  |
| 162.0844        | 4.8159          | 185.1145 | 2.3072         | 203.1144 | 0.0397         | 220.3347 | 0.1996          |  |  |  |
| 162.2244        | 0.2356          | 185.2145 | 0.2702         | 203.1746 | 1.9114         | 222.1245 | 2.7791          |  |  |  |
| 163.0644        | 44.0975         | 185.3245 | 0.0572         | 203.3346 | 0.2133         | 224.1147 | 0.0735          |  |  |  |
| 163.1344        | 5.1191          | 186.1145 | 2.4210         | 204.1146 | 0.7496         | 224.2545 | 0.4678          |  |  |  |
| 163.2644        | 0.0129          | 187.1245 | 2.7307         | 204.1844 | 0.7790         | 225.2547 | 0.0116          |  |  |  |
| 164.0844        | 3.4792          | 188.0945 | 1.4758         | 205.1046 | 4.4487         | 226.1247 | 0.2001          |  |  |  |
| 164.1644        | 0.1974          | 188.1645 | 1.0463         | 205.3346 | 0.0039         | 227.1347 | 1.4111          |  |  |  |
| 165.2744        | 0.0083          | 189.0356 | 0.8609         | 205.4046 | 0.0065         | 228.1247 | 0.0582          |  |  |  |
| 166.0944        | 0.8362          | 189.1345 | 1.0446         | 206.1146 | 1.5839         | 228.1947 | 1.1783          |  |  |  |

| spectrum appears in Figure 5.4D. |                |          |                |          |                |          |                |  |  |
|----------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
|                                  |                |          | L. viros       | a resin  |                |          |                |  |  |
| m/z                              | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |
| 229.1047                         | 1.4943         | 247.2248 | 0.7507         | 271.0847 | 4.2146         | 288.1348 | 0.6505         |  |  |
| 229.2045                         | 1.1053         | 248.1346 | 1.0527         | 271.1597 | 0.0286         | 288.2448 | 1.1915         |  |  |
| 230.1047                         | 6.3898         | 248.2548 | 0.6008         | 271.2347 | 0.8827         | 289.1048 | 4.2089         |  |  |
| 230.1847                         | 1.4637         | 248.3297 | 0.0750         | 272.1349 | 0.5321         | 289.2348 | 0.7576         |  |  |
| 230.3547                         | 0.1506         | 248.4046 | 0.1774         | 272.2547 | 1.2047         | 289.4048 | 0.1540         |  |  |
| 231.1247                         | 0.9418         | 250.1548 | 0.5458         | 272.4649 | 0.2617         | 289.4748 | 0.0023         |  |  |
| 231.2147                         | 0.5388         | 252.1247 | 0.3567         | 273.0848 | 0.6734         | 290.1748 | 0.6728         |  |  |
| 232.1346                         | 0.9315         | 252.1847 | 0.3704         | 273.2446 | 1.1007         | 290.2748 | 0.5021         |  |  |
| 232.2346                         | 0.1393         | 252.2647 | 0.2074         | 274.1248 | 0.1937         | 291.0948 | 0.1231         |  |  |
| 233.1346                         | 0.6037         | 254.2747 | 0.0033         | 274.1548 | 0.0990         | 291.1948 | 0.5094         |  |  |
| 233.2246                         | 0.4905         | 255.0847 | 0.8123         | 274.2648 | 0.8427         | 291.2750 | 0.1409         |  |  |
| 234.1346                         | 3.5518         | 255.2247 | 2.1887         | 274.4148 | 0.3312         | 291.4148 | 0.2275         |  |  |
| 234.2046                         | 0.2774         | 257.2447 | 1.2794         | 275.1046 | 0.3094         | 292.1148 | 0.3797         |  |  |
| 234.3546                         | 0.2151         | 258.1647 | 0.0336         | 275.2046 | 0.0191         | 292.1948 | 0.0577         |  |  |
| 236.1046                         | 0.2990         | 258.2547 | 0.7412         | 275.2648 | 0.5395         | 292.3148 | 0.5597         |  |  |
| 236.1746                         | 0.7208         | 258.4347 | 0.1410         | 276.1648 | 0.6470         | 293.2947 | 0.0608         |  |  |
| 237.1146                         | 0.1275         | 259.1047 | 0.6880         | 276.2748 | 0.9012         | 294.2147 | 0.1867         |  |  |
| 237.1846                         | 0.0603         | 259.1947 | 7.1764         | 277.2148 | 0.9589         | 294.2949 | 0.4862         |  |  |
| 238.1146                         | 0.2983         | 259.2647 | 0.1258         | 277.4548 | 0.0525         | 295.2347 | 0.0096         |  |  |
| 238.1946                         | 0.2011         | 259.4247 | 0.2398         | 277.5248 | 0.0309         | 296.1649 | 0.1555         |  |  |
| 238.3846                         | 0.1275         | 260.1147 | 0.4076         | 278.1248 | 0.2783         | 296.2549 | 0.8224         |  |  |
| 241.1046                         | 0.0313         | 260.1947 | 0.6897         | 278.2148 | 0.6303         | 296.3447 | 0.0011         |  |  |
| 241.1846                         | 1.4813         | 260.2547 | 1.0684         | 278.2948 | 0.4324         | 296.4747 | 0.1952         |  |  |
| 242.1048                         | 0.0772         | 261.1147 | 0.5152         | 279.4048 | 0.0501         | 296.5247 | 0.0569         |  |  |
| 242.1846                         | 0.6135         | 261.2247 | 0.6948         | 280.1448 | 0.1656         | 298.4049 | 0.1158         |  |  |
| 243.1046                         | 1.5618         | 261.4647 | 0.1570         | 280.2446 | 0.6189         | 298.5049 | 0.0313         |  |  |
| 243.1648                         | 0.6721         | 262.1847 | 0.6696         | 281.2448 | 3.3893         | 299.1949 | 0.0016         |  |  |
| 243.2498                         | 0.4358         | 262.2547 | 0.1364         | 282.1548 | 0.0050         | 299.2749 | 0.3641         |  |  |
| 243.4048                         | 0.1443         | 264.1249 | 0.0134         | 282.2648 | 1.1134         | 300.4249 | 0.0495         |  |  |
| 244.1148                         | 0.3227         | 264.2447 | 0.1582         | 282.5246 | 0.0661         | 302.1449 | 0.0154         |  |  |
| 244.1946                         | 0.8473         | 266.1447 | 0.3938         | 286.1348 | 0.0132         | 302.2149 | 0.0280         |  |  |
| 245.1246                         | 0.0170         | 266.2547 | 0.2543         | 286.2148 | 0.0136         | 302.3049 | 0.4502         |  |  |
| 245.2246                         | 0.5003         | 267.2647 | 0.5508         | 286.2748 | 0.1978         | 303.1249 | 0.1004         |  |  |
| 246.1148                         | 0.6017         | 268.2847 | 0.2902         | 287.1248 | 0.0698         | 303.3049 | 0.4674         |  |  |
| 246.2446                         | 0.4677         | 270.1247 | 0.0164         | 287.2248 | 0.6672         | 304.1549 | 0.3033         |  |  |
| 247.1246                         | 1.5820         | 270.3849 | 0.0015         | 287.4748 | 0.1683         | 304.2349 | 0.8102         |  |  |

| L virasa resin |                |          |                |          |                |          |                |  |  |  |
|----------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
|                | Dol T-4        |          |                | u 105111 | Dol T4         |          | Dal I-4        |  |  |  |
| m/z            | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 305.1549       | 0.0434         | 324.2650 | 0.1667         | 344.2651 | 0.0874         | 361.2352 | 0.2189         |  |  |  |
| 305.2349       | 0.1117         | 325.1150 | 0.0432         | 344.3951 | 0.1071         | 361.3250 | 0.2991         |  |  |  |
| 305.3149       | 0.3251         | 325.2850 | 0.0309         | 346.1751 | 0.0025         | 362.1652 | 0.1977         |  |  |  |
| 306.1649       | 1.1018         | 326.1850 | 0.0182         | 347.2851 | 0.1063         | 362.2650 | 0.1137         |  |  |  |
| 306.2749       | 0.5739         | 326.2950 | 0.0102         | 347.3651 | 0.1386         | 362.3750 | 0.3135         |  |  |  |
| 306.3549       | 0.2144         | 329.3150 | 0.1834         | 348.1851 | 0.0933         | 363.1752 | 0.0555         |  |  |  |
| 307.2749       | 0.1203         | 330.1650 | 3.2693         | 348.2949 | 0.2159         | 363.2452 | 0.1112         |  |  |  |
| 307.3449       | 0.0044         | 330.3350 | 0.0761         | 348.3751 | 0.2914         | 364.1952 | 0.0915         |  |  |  |
| 308.1360       | 0.0426         | 331.2250 | 0.8706         | 349.2151 | 0.0061         | 364.2550 | 0.1059         |  |  |  |
| 308.2349       | 0.0184         | 331.2950 | 0.7665         | 349.3351 | 0.2514         | 365.2750 | 0.0040         |  |  |  |
| 308.3315       | 0.3108         | 332.2150 | 0.3612         | 350.1649 | 0.1588         | 365.4150 | 0.0210         |  |  |  |
| 309.2849       | 0.0030         | 332.2950 | 0.3595         | 350.2351 | 0.0435         | 366.1952 | 0.0347         |  |  |  |
| 310.1349       | 0.1152         | 332.3550 | 0.1976         | 350.3151 | 0.0271         | 366.2652 | 0.0119         |  |  |  |
| 310.2449       | 0.4485         | 333.1750 | 0.0266         | 350.3751 | 0.3082         | 366.2950 | 0.0289         |  |  |  |
| 315.2248       | 0.0243         | 333.3450 | 0.2455         | 351.3351 | 0.2244         | 366.4150 | 0.2863         |  |  |  |
| 315.2998       | 0.2186         | 334.1550 | 0.2678         | 352.3251 | 0.0957         | 367.3352 | 0.0963         |  |  |  |
| 315.4448       | 0.0542         | 334.2350 | 0.1098         | 353.3451 | 0.1157         | 368.2052 | 0.0041         |  |  |  |
| 316.2250       | 0.0699         | 334.3350 | 0.5019         | 354.1251 | 0.1293         | 368.3350 | 0.0422         |  |  |  |
| 316.3048       | 0.4697         | 335.2049 | 0.1501         | 354.1951 | 0.0435         | 369.3452 | 0.6979         |  |  |  |
| 317.2348       | 0.2350         | 335.3249 | 0.1649         | 354.2651 | 0.0315         | 369.5650 | 0.0053         |  |  |  |
| 317.3150       | 0.3007         | 336.1849 | 0.1505         | 354.3351 | 0.4283         | 370.1351 | 0.1684         |  |  |  |
| 318.2248       | 0.0284         | 336.3251 | 0.8686         | 355.0751 | 0.1211         | 370.2150 | 0.3367         |  |  |  |
| 318.2950       | 0.5331         | 336.4749 | 0.1228         | 355.3550 | 0.0723         | 370.3352 | 0.0161         |  |  |  |
| 319.2348       | 0.0444         | 337.3451 | 0.2377         | 356.1950 | 61.0486        | 371.1052 | 0.5228         |  |  |  |
| 319.3050       | 0.3450         | 338.1951 | 0.0186         | 357.2050 | 11.2963        | 371.3152 | 1.1704         |  |  |  |
| 319.4450       | 0.1521         | 338.2649 | 0.0186         | 358.2152 | 0.2195         | 371.5852 | 0.1397         |  |  |  |
| 320.1648       | 0.1254         | 338.3449 | 11.4925        | 358.3650 | 0.0645         | 371.6750 | 0.0013         |  |  |  |
| 320.2350       | 0.0615         | 338.4849 | 0.0312         | 359.2250 | 0.0361         | 371.7551 | 0.0120         |  |  |  |
| 320.3148       | 0.4308         | 338.6049 | 0.1590         | 359.2952 | 1.0006         | 371.8352 | 0.0013         |  |  |  |
| 321.2350       | 0.0541         | 339.3251 | 2.4868         | 359.5150 | 0.0435         | 372.1152 | 0.7698         |  |  |  |
| 321.3150       | 0.1611         | 340.3449 | 0.4743         | 359.5850 | 0.1096         | 372.3152 | 0.4930         |  |  |  |
| 322.1748       | 0.1480         | 341.3149 | 1.1918         | 360.0950 | 0.0226         | 372.8352 | 0.0113         |  |  |  |
| 322.2450       | 0.0532         | 342.1451 | 12.8975        | 360.1550 | 0.1640         | 372.9152 | 0.0113         |  |  |  |
| 322.3248       | 0.3197         | 342.3149 | 0.0832         | 360.3150 | 0.5790         | 373.1052 | 0.0545         |  |  |  |
| 323.2548       | 0.1509         | 343.1649 | 2.9910         | 361.0493 | 0.0129         | 374.0952 | 0.0247         |  |  |  |
| 324.1750       | 0.2059         | 343.3351 | 0.0623         | 361.1550 | 0.0268         | 375.1052 | 0.0292         |  |  |  |

| L virosa resin |                |          |                |          |                |          |                |  |  |  |
|----------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
|                | Dal L 4        |          |                | u 103111 |                |          |                |  |  |  |
| m/z            | Kel. Int.<br>% | m/z      | Kel. Int.<br>% | m/z      | Kel. Int.<br>% | m/z      | Kel. Int.<br>% |  |  |  |
| 375.1752       | 0.0086         | 394.3353 | 0.0457         | 416.4452 | 0.0030         | 441.3754 | 0.0233         |  |  |  |
| 375.3152       | 0.0498         | 395.3653 | 0.1091         | 417.3753 | 0.0575         | 442.3854 | 0.2503         |  |  |  |
| 376.1451       | 0.0706         | 396.3753 | 0.0393         | 419.3253 | 0.1229         | 443.3854 | 0.1176         |  |  |  |
| 376.2551       | 0.0106         | 397.3852 | 0.4093         | 420.2553 | 0.0326         | 444.4054 | 0.0383         |  |  |  |
| 376.3351       | 0.4976         | 398.2152 | 0.0103         | 420.3153 | 0.0643         | 445.3754 | 0.0080         |  |  |  |
| 376.5751       | 0.0397         | 398.3950 | 0.0891         | 421.2753 | 0.0011         | 445.4454 | 0.0250         |  |  |  |
| 377.3351       | 0.1320         | 398.5452 | 0.0147         | 421.3453 | 0.0059         | 449.3254 | 0.0052         |  |  |  |
| 377.4251       | 0.0367         | 399.3652 | 0.2387         | 422.2053 | 0.0629         | 449.3954 | 0.0212         |  |  |  |
| 377.5251       | 0.0399         | 400.3552 | 0.0672         | 422.3453 | 0.0698         | 450.2154 | 0.0479         |  |  |  |
| 378.1851       | 0.0986         | 403.3652 | 0.0240         | 422.4851 | 0.0153         | 450.3454 | 0.0172         |  |  |  |
| 378.2651       | 0.0691         | 403.4452 | 0.0123         | 423.2753 | 0.0222         | 451.2254 | 0.0160         |  |  |  |
| 379.1751       | 0.0119         | 404.1552 | 0.0109         | 423.3753 | 0.1703         | 451.3454 | 0.0236         |  |  |  |
| 379.2651       | 0.0845         | 404.2952 | 0.0016         | 424.2053 | 0.0058         | 451.4254 | 0.0995         |  |  |  |
| 379.3451       | 0.0662         | 404.3752 | 0.0167         | 424.2653 | 0.0171         | 452.4854 | 0.0212         |  |  |  |
| 380.2051       | 0.0943         | 405.2752 | 0.1686         | 424.3753 | 0.0666         | 453.3554 | 0.0280         |  |  |  |
| 380.2851       | 0.0241         | 405.3752 | 0.0375         | 424.4453 | 0.0345         | 454.2154 | 0.0241         |  |  |  |
| 380.3451       | 0.0588         | 405.4552 | 0.0243         | 424.4753 | 0.0048         | 454.3454 | 0.0153         |  |  |  |
| 381.3451       | 0.0072         | 406.1952 | 0.0335         | 425.3753 | 0.0865         | 454.4956 | 0.0034         |  |  |  |
| 382.4351       | 0.0073         | 406.2852 | 0.2347         | 426.3853 | 0.0077         | 455.3556 | 0.0189         |  |  |  |
| 383.3651       | 0.2465         | 406.3854 | 0.0946         | 427.3953 | 0.1798         | 456.3754 | 0.0045         |  |  |  |
| 384.3051       | 0.0371         | 407.2652 | 0.0444         | 428.3955 | 0.3552         | 457.3754 | 0.0152         |  |  |  |
| 384.3751       | 0.0712         | 407.3652 | 0.0357         | 429.3853 | 0.2013         | 458.3853 | 0.0120         |  |  |  |
| 386.4053       | 0.0132         | 407.4652 | 0.0533         | 430.3853 | 0.0591         | 459.3855 | 0.0121         |  |  |  |
| 387.3353       | 0.0227         | 408.1952 | 0.0324         | 431.3853 | 0.0120         | 460.4155 | 0.0204         |  |  |  |
| 388.1351       | 0.0703         | 408.3752 | 0.1165         | 432.1853 | 0.0069         | 461.3755 | 0.0080         |  |  |  |
| 390.1353       | 0.0077         | 408.4554 | 0.0370         | 432.3955 | 0.0145         | 464.2255 | 0.0018         |  |  |  |
| 391.1753       | 0.0437         | 409.3852 | 0.9391         | 433.1855 | 0.0216         | 464.3855 | 0.0087         |  |  |  |
| 391.2951       | 0.4605         | 410.2252 | 0.0355         | 435.2253 | 0.0036         | 465.2255 | 0.0124         |  |  |  |
| 391.4851       | 0.0066         | 410.3854 | 0.2687         | 436.3353 | 0.0795         | 465.3955 | 0.0080         |  |  |  |
| 392.1851       | 0.0059         | 411.3852 | 1.2938         | 437.1955 | 0.0140         | 465.4855 | 0.0641         |  |  |  |
| 392.2853       | 0.2576         | 411.6954 | 0.0152         | 437.2753 | 0.0036         | 466.2355 | 0.0540         |  |  |  |
| 393.2652       | 0.0169         | 412.3852 | 0.3360         | 437.3455 | 0.0085         | 466.3355 | 0.1361         |  |  |  |
| 393.3451       | 0.0110         | 413.3754 | 0.0540         | 438.2154 | 0.0223         | 466.4055 | 0.0558         |  |  |  |
| 393.4453       | 0.0181         | 414.3854 | 0.0459         | 438.3552 | 0.0350         | 466.5055 | 0.0468         |  |  |  |
| 394.1853       | 0.0601         | 415.3754 | 0.0365         | 439.3652 | 0.0754         | 467.3955 | 0.2021         |  |  |  |
| 394.2653       | 0.0091         | 416.3652 | 0.1952         | 440.3654 | 0.0296         | 468.3955 | 0.0525         |  |  |  |

|          |                |          | L. viros       | a resin  |                |          |                |  |  |
|----------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|
| m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |
| 469.4055 | 0.0892         | 502.4155 | 0.0148         | 552.4959 | 0.0152         | 605.5460 | 0.0921         |  |  |
| 470.4155 | 0.0083         | 503.4155 | 0.0167         | 552.5857 | 0.0023         | 606.5360 | 0.0356         |  |  |
| 471.4955 | 0.0032         | 504.4555 | 0.0099         | 554.4057 | 0.0039         | 608.5260 | 0.0184         |  |  |
| 474.3855 | 0.0205         | 505.4955 | 0.0485         | 554.4957 | 0.0025         | 610.5460 | 0.0364         |  |  |
| 476.4055 | 0.0387         | 507.5155 | 0.0273         | 555.4559 | 0.0136         | 611.5360 | 0.0167         |  |  |
| 477.4355 | 0.0159         | 508.2355 | 0.0047         | 556.2459 | 0.0059         | 612.3560 | 0.0036         |  |  |
| 479.2956 | 0.0259         | 508.3557 | 0.0074         | 559.5459 | 0.0174         | 612.5460 | 0.0106         |  |  |
| 479.4854 | 0.0623         | 508.5257 | 0.0053         | 561.5658 | 0.0356         | 613.5060 | 0.0091         |  |  |
| 480.2454 | 0.0157         | 509.5257 | 0.0061         | 562.4358 | 0.0030         | 615.5060 | 0.0696         |  |  |
| 480.3254 | 0.0058         | 510.4157 | 0.0039         | 562.5158 | 0.0205         | 616.5160 | 0.0222         |  |  |
| 480.4954 | 0.0463         | 510.5357 | 0.0205         | 563.5358 | 0.0053         | 617.5160 | 0.2133         |  |  |
| 481.3254 | 0.0077         | 512.2057 | 0.0057         | 564.5458 | 0.0106         | 618.5260 | 0.0735         |  |  |
| 481.3954 | 0.0104         | 516.4257 | 0.0144         | 565.5258 | 0.0129         | 619.5360 | 0.0861         |  |  |
| 481.4956 | 0.0129         | 519.4057 | 0.0096         | 573.4558 | 0.0061         | 625.3961 | 0.0032         |  |  |
| 482.2154 | 0.0773         | 521.4056 | 0.0062         | 575.5060 | 0.3357         | 626.3359 | 0.0052         |  |  |
| 482.3354 | 0.0133         | 521.5256 | 0.0571         | 576.5158 | 0.1118         | 627.3361 | 0.0041         |  |  |
| 482.4756 | 0.0221         | 524.2756 | 0.0039         | 577.5258 | 0.1712         | 628.2761 | 0.0041         |  |  |
| 482.5256 | 0.0039         | 528.4256 | 0.0083         | 578.5260 | 0.0995         | 632.5361 | 0.0220         |  |  |
| 483.3856 | 0.0853         | 531.4756 | 0.0304         | 579.5260 | 0.1283         | 633.5161 | 0.0174         |  |  |
| 483.5356 | 0.0126         | 532.4158 | 0.0036         | 580.5258 | 0.0326         | 634.5461 | 0.0694         |  |  |
| 485.4056 | 0.0114         | 533.4407 | 0.0041         | 582.2957 | 0.0045         | 635.5461 | 0.0280         |  |  |
| 486.3854 | 0.0534         | 533.5258 | 0.0036         | 584.3959 | 0.0030         | 636.5661 | 0.0440         |  |  |
| 487.3854 | 0.0202         | 534.4858 | 0.0255         | 585.4759 | 0.0041         | 637.5661 | 0.0197         |  |  |
| 488.3956 | 0.0729         | 535.5358 | 0.0318         | 589.4759 | 0.0152         | 650.5460 | 0.0106         |  |  |
| 489.3756 | 0.0150         | 536.2558 | 0.0068         | 591.4961 | 0.0220         | 675.6761 | 0.0954         |  |  |
| 491.3756 | 0.0212         | 536.5358 | 0.0189         | 594.5159 | 0.0114         | 676.6763 | 0.0205         |  |  |
| 493.3056 | 0.0095         | 537.3958 | 0.0027         | 597.5259 | 0.0114         | 697.6262 | 0.0036         |  |  |
| 493.3856 | 0.0180         | 537.5058 | 0.0376         | 598.5959 | 0.0152         | 708.6463 | 0.0136         |  |  |
| 493.5156 | 0.0694         | 538.3158 | 0.0057         | 599.5061 | 0.2701         | 712.6063 | 0.0044         |  |  |
| 494.3656 | 0.0059         | 538.5058 | 0.0181         | 600.3861 | 0.0030         | 743.6164 | 0.0099         |  |  |
| 495.3856 | 0.0173         | 539.3658 | 0.0011         | 600.5061 | 0.0820         | 848.7569 | 0.0099         |  |  |
| 495.4456 | 0.0521         | 545.4757 | 0.0129         | 601.5259 | 0.3087         | 853.7170 | 0.0243         |  |  |
| 496.3256 | 0.0495         | 547.4657 | 0.0027         | 601.8059 | 0.0361         | 854.7268 | 0.0174         |  |  |
| 498.3256 | 0.0063         | 548.4657 | 0.1003         | 602.5261 | 0.1141         | 855.7368 | 0.0940         |  |  |
| 499.4256 | 0.0041         | 549.4959 | 0.0664         | 603.5360 | 0.2544         | 856.7468 | 0.0601         |  |  |
| 500.4255 | 0.0447         | 551.5057 | 0.0725         | 604.5458 | 0.1013         | 857.7568 | 0.0601         |  |  |

| Table A3.8 (continued). Mass data ( $m/z$ values and their relative intensities) for the DART-HRMS |
|----------------------------------------------------------------------------------------------------|
| analysis of L. virosa resin. Ten replicates of one sample were averaged where the corresponding    |
| spectrum appears in Figure 3.4B.                                                                   |

| L. virosa resin |                |          |                |          |                |          |                |  |  |  |
|-----------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z.            | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |  |
| 858.7570        | 0.0235         | 877.7269 | 0.0356         | 883.7571 | 0.0615         | 898.7670 | 0.0621         |  |  |  |
| 859.7668        | 0.0121         | 878.7369 | 0.0265         | 884.7571 | 0.0417         | 899.7770 | 0.0296         |  |  |  |
| 872.7669        | 0.0273         | 878.9070 | 0.0129         | 885.7771 | 0.0265         | 900.7970 | 0.0356         |  |  |  |
| 873.7669        | 0.0189         | 879.7369 | 0.1355         | 886.7871 | 0.0121         | 901.7970 | 0.0129         |  |  |  |
| 874.7669        | 0.0424         | 880.7371 | 0.0706         | 895.7370 | 0.0144         | 902.7970 | 0.0182         |  |  |  |
| 875.7769        | 0.0243         | 881.7469 | 0.1122         | 896.7570 | 0.0356         | 912.7569 | 0.0083         |  |  |  |
| 876.7869        | 0.0227         | 882.7471 | 0.0455         | 897.7570 | 0.0318         |          |                |  |  |  |

| 1 15ult 5.4D | •              |          |                |          |                |          |                |
|--------------|----------------|----------|----------------|----------|----------------|----------|----------------|
|              |                |          | L. viro        | sa leaf  |                |          |                |
| m/z          | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |
| 67.0540      | 0.7454         | 86.0740  | 5.7982         | 102.0741 | 1.7797         | 119.0842 | 4.6495         |
| 67.1240      | 0.0121         | 86.1742  | 0.3543         | 102.1641 | 0.2434         | 120.0742 | 2.3631         |
| 68.0538      | 0.1011         | 87.0539  | 12.9080        | 103.0541 | 6.6356         | 120.2042 | 0.0929         |
| 68.9640      | 2.0296         | 87.1641  | 0.4761         | 103.1443 | 1.8051         | 121.0842 | 8.4130         |
| 69.0440      | 4.7702         | 88.0741  | 1.6945         | 104.0741 | 7.0855         | 122.0742 | 0.7699         |
| 69.1440      | 0.1896         | 88.1441  | 0.0827         | 104.1443 | 0.1540         | 122.2242 | 0.1046         |
| 70.0640      | 6.9897         | 88.2041  | 0.0672         | 104.2343 | 0.1380         | 123.0942 | 10.1989        |
| 70.1340      | 0.8426         | 89.0641  | 53.6069        | 105.0641 | 4.3390         | 123.2242 | 0.0349         |
| 71.0640      | 3.2002         | 89.1741  | 1.2905         | 105.1443 | 0.1159         | 123.2942 | 0.0615         |
| 71.1540      | 0.2993         | 89.2541  | 1.1775         | 105.1843 | 0.4484         | 124.0642 | 1.0931         |
| 72.0140      | 0.2860         | 90.0641  | 5.5087         | 106.0641 | 1.3984         | 124.1844 | 0.2743         |
| 72.0840      | 3.2613         | 90.1641  | 0.0158         | 107.0841 | 14.6083        | 125.0942 | 8.4995         |
| 72.1540      | 0.0435         | 91.0541  | 7.7225         | 108.0640 | 1.7689         | 125.2144 | 1.4086         |
| 72.2040      | 0.1586         | 91.1241  | 0.7991         | 109.0340 | 2.5524         | 126.0642 | 2.9841         |
| 73.0640      | 12.5788        | 92.0641  | 1.4647         | 109.0942 | 22.2814        | 126.1542 | 1.2894         |
| 73.1840      | 0.9735         | 93.0641  | 9.3396         | 109.2042 | 0.2180         | 127.0442 | 43.2376        |
| 74.0640      | 6.8508         | 93.1341  | 2.0996         | 110.0742 | 2.7741         | 127.1142 | 9.5924         |
| 74.1340      | 0.5554         | 94.0641  | 0.7459         | 110.2142 | 0.5794         | 127.2342 | 1.1638         |
| 75.0440      | 6.5345         | 94.1741  | 0.0493         | 111.0540 | 4.8162         | 128.0844 | 2.6043         |
| 75.1140      | 0.7347         | 95.0241  | 0.5440         | 111.1140 | 12.6583        | 128.1843 | 0.1885         |
| 76.0640      | 0.9550         | 95.0841  | 21.4255        | 111.2342 | 1.3469         | 128.2243 | 0.1206         |
| 77.0440      | 0.7770         | 95.1541  | 0.0024         | 112.0742 | 1.9476         | 129.0641 | 11.5672        |
| 78.0440      | 0.3790         | 96.0541  | 2.0518         | 112.1542 | 0.7945         | 129.1391 | 1.0567         |
| 79.0440      | 5.1788         | 97.0341  | 16.9433        | 113.0542 | 8.4270         | 130.0643 | 8.8233         |
| 79.1242      | 0.0566         | 97.0941  | 16.7854        | 114.0842 | 2.3617         | 130.1543 | 1.6989         |
| 80.0540      | 5.2936         | 97.2241  | 1.8660         | 114.2242 | 0.9382         | 130.2343 | 0.4751         |
| 81.0540      | 4.9516         | 97.2841  | 1.1708         | 115.0542 | 7.3034         | 131.0643 | 4.0198         |
| 81.1442      | 0.0412         | 97.9941  | 0.0256         | 115.1040 | 5.0082         | 131.2243 | 0.9234         |
| 82.0642      | 0.6270         | 98.0841  | 1.7035         | 115.2442 | 0.9188         | 132.1041 | 6.1989         |
| 83.0240      | 1.6711         | 99.0541  | 21.7555        | 116.0742 | 58.8242        | 133.0643 | 4.8283         |
| 83.0840      | 8.0210         | 99.1841  | 3.1153         | 116.2242 | 1.6864         | 133.2543 | 0.3011         |
| 84.0640      | 6.6958         | 100.0041 | 0.2719         | 117.0642 | 11.3390        | 134.0843 | 1.4209         |
| 84.1542      | 0.0507         | 100.0841 | 1.4818         | 117.1642 | 0.1912         | 134.1943 | 0.0904         |
| 85.0342      | 41.7694        | 100.2341 | 0.3833         | 117.2442 | 0.9786         | 134.2543 | 0.1542         |
| 85.0942      | 9.1746         | 101.0641 | 18.0107        | 118.0842 | 5.2742         | 135.1043 | 35.8102        |
| 85.1642      | 2.4411         | 101.1841 | 1.4625         | 118.2042 | 0.6472         | 135.2443 | 0.6714         |

|          | L. virosa leaf |          |                |          |                |          |                |  |  |  |  |
|----------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z      | Rel. Int.<br>% |  |  |  |  |
| 135.9943 | 0.7061         | 148.1544 | 0.2629         | 165.0844 | 4.1933         | 184.1145 | 1.1684         |  |  |  |  |
| 136.0643 | 1.5787         | 149.0165 | 2.1212         | 165.1794 | 2.5526         | 185.1145 | 4.3437         |  |  |  |  |
| 136.1343 | 2.8812         | 149.1142 | 6.3845         | 165.2744 | 0.5244         | 185.2145 | 0.8688         |  |  |  |  |
| 136.2143 | 0.0185         | 149.9942 | 0.0609         | 166.0944 | 2.1597         | 186.1145 | 1.3364         |  |  |  |  |
| 136.4043 | 0.2040         | 150.0942 | 0.9346         | 166.1944 | 0.8473         | 187.1245 | 3.6718         |  |  |  |  |
| 137.0743 | 11.4520        | 150.1542 | 1.0652         | 166.2344 | 0.1250         | 188.0945 | 1.0843         |  |  |  |  |
| 137.1243 | 11.5760        | 150.2342 | 0.3110         | 167.0944 | 5.1223         | 188.1645 | 0.9696         |  |  |  |  |
| 137.2143 | 0.1790         | 150.3142 | 0.2820         | 167.1744 | 0.1817         | 188.2445 | 0.1838         |  |  |  |  |
| 137.2843 | 1.4707         | 151.1042 | 4.7857         | 167.2544 | 0.7275         | 189.1345 | 3.2198         |  |  |  |  |
| 138.0843 | 0.9660         | 151.2342 | 0.7586         | 167.3344 | 0.5305         | 189.2345 | 0.1159         |  |  |  |  |
| 138.1643 | 1.4588         | 152.1144 | 2.2843         | 167.9944 | 0.0623         | 189.3145 | 0.0378         |  |  |  |  |
| 139.0054 | 1.3440         | 153.0844 | 10.6830        | 168.0944 | 1.5788         | 190.1244 | 3.6685         |  |  |  |  |
| 139.1043 | 6.3327         | 154.0844 | 1.1369         | 168.1744 | 0.5581         | 190.2244 | 0.3253         |  |  |  |  |
| 139.2643 | 0.9178         | 154.1544 | 0.6539         | 168.2544 | 0.2452         | 191.1644 | 10.8922        |  |  |  |  |
| 140.0843 | 1.1658         | 155.1044 | 10.3284        | 169.1144 | 5.0420         | 191.3244 | 1.5427         |  |  |  |  |
| 140.2143 | 0.0766         | 156.1042 | 1.7193         | 169.2044 | 0.4572         | 192.1644 | 1.1979         |  |  |  |  |
| 140.2543 | 0.0761         | 156.1744 | 0.5243         | 170.0943 | 1.6336         | 193.0844 | 0.7378         |  |  |  |  |
| 140.3143 | 0.0449         | 156.2744 | 0.1643         | 170.1643 | 0.5382         | 193.1544 | 3.5028         |  |  |  |  |
| 141.1043 | 6.1236         | 157.0544 | 0.2728         | 171.1543 | 9.1444         | 194.0944 | 1.5833         |  |  |  |  |
| 141.2043 | 0.4262         | 157.1242 | 6.3594         | 172.1243 | 1.9057         | 194.1944 | 0.1433         |  |  |  |  |
| 142.1043 | 1.4166         | 157.1944 | 0.1823         | 173.1143 | 6.3475         | 195.0946 | 4.3830         |  |  |  |  |
| 142.1843 | 0.8623         | 157.2644 | 1.1400         | 174.1143 | 1.3633         | 195.1845 | 2.8121         |  |  |  |  |
| 143.0343 | 0.4412         | 158.1044 | 1.5646         | 174.9843 | 0.0027         | 196.0946 | 1.6264         |  |  |  |  |
| 143.0943 | 6.9152         | 158.2544 | 0.0338         | 175.1245 | 4.0693         | 196.2794 | 0.1675         |  |  |  |  |
| 143.1743 | 0.4570         | 159.1244 | 5.8237         | 176.0945 | 0.9188         | 197.1144 | 8.8982         |  |  |  |  |
| 144.0843 | 3.4648         | 160.0944 | 1.3149         | 176.1694 | 0.3540         | 197.2244 | 0.1439         |  |  |  |  |
| 144.1743 | 0.4133         | 161.0844 | 3.3368         | 177.1443 | 6.4129         | 197.3344 | 0.4531         |  |  |  |  |
| 144.2443 | 0.0550         | 161.1644 | 0.3406         | 178.0945 | 0.7833         | 198.1044 | 29.9832        |  |  |  |  |
| 145.0543 | 62.1230        | 161.2344 | 0.3430         | 178.1694 | 0.3428         | 198.2444 | 0.0378         |  |  |  |  |
| 145.2243 | 1.8394         | 162.0844 | 3.4825         | 179.0845 | 6.8302         | 199.1744 | 8.1836         |  |  |  |  |
| 146.0843 | 4.5773         | 162.2244 | 0.6121         | 179.1743 | 0.3987         | 199.3844 | 0.0666         |  |  |  |  |
| 146.1643 | 0.3244         | 163.0644 | 37.0864        | 180.0845 | 50.2760        | 200.1244 | 0.8614         |  |  |  |  |
| 146.2443 | 0.0856         | 163.1344 | 10.5187        | 180.2345 | 0.1038         | 200.1844 | 1.9005         |  |  |  |  |
| 147.0743 | 9.2754         | 163.2644 | 0.3873         | 181.1045 | 10.7219        | 200.2346 | 0.2941         |  |  |  |  |
| 147.2345 | 0.2071         | 164.0844 | 1.5915         | 182.1045 | 2.4550         | 201.1444 | 2.7135         |  |  |  |  |
| 148.0745 | 1.0020         | 164.1644 | 1.4294         | 183.0945 | 8.8296         | 201.3044 | 0.4510         |  |  |  |  |

| L. virosa leaf |                |          |                |          |                |          |                |  |  |  |
|----------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z            | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |  |
| 202.1244       | 1.3672         | 215.2645 | 0.0827         | 234.2796 | 0.0355         | 254.2747 | 0.2374         |  |  |  |
| 202.2846       | 0.3153         | 215.3245 | 0.2337         | 234.3546 | 0.1936         | 254.3047 | 0.1096         |  |  |  |
| 203.1746       | 4.2798         | 215.3545 | 0.3452         | 235.1746 | 3.7200         | 254.3547 | 0.0449         |  |  |  |
| 203.3346       | 0.1561         | 216.1245 | 1.5188         | 236.1746 | 1.1517         | 255.0847 | 0.1184         |  |  |  |
| 204.1146       | 0.0703         | 216.1945 | 0.2711         | 237.1146 | 0.1868         | 255.2247 | 10.8902        |  |  |  |
| 204.1844       | 0.9464         | 216.3345 | 0.1060         | 237.1846 | 4.1255         | 256.2447 | 1.7157         |  |  |  |
| 205.1046       | 2.2484         | 217.1745 | 3.7947         | 238.1946 | 1.3504         | 256.3447 | 0.0378         |  |  |  |
| 205.1946       | 3.7771         | 218.1345 | 1.3178         | 238.3846 | 0.1556         | 257.2447 | 50.8453        |  |  |  |
| 205.2646       | 0.0555         | 219.1845 | 8.1508         | 239.1446 | 0.8546         | 258.2547 | 8.1804         |  |  |  |
| 205.3346       | 0.1141         | 220.1145 | 0.2109         | 239.2346 | 6.9514         | 258.4347 | 0.7340         |  |  |  |
| 205.4046       | 0.0205         | 220.1745 | 1.2141         | 240.2146 | 1.4310         | 259.1947 | 10.9923        |  |  |  |
| 206.1146       | 1.4421         | 220.3347 | 0.3432         | 241.1846 | 6.4119         | 259.4247 | 0.6647         |  |  |  |
| 206.2044       | 0.5615         | 221.1845 | 3.2379         | 242.1048 | 0.0615         | 260.1947 | 1.0652         |  |  |  |
| 207.1546       | 4.3058         | 222.1245 | 0.3274         | 242.1846 | 0.9323         | 260.2547 | 0.5028         |  |  |  |
| 207.3046       | 0.0867         | 222.2045 | 0.3120         | 242.2846 | 0.7423         | 261.1147 | 0.9703         |  |  |  |
| 208.1146       | 0.6455         | 223.1247 | 4.2756         | 243.1648 | 1.4869         | 261.2247 | 5.8651         |  |  |  |
| 208.2096       | 0.7388         | 224.1147 | 0.8139         | 243.2498 | 1.3738         | 261.4647 | 0.4652         |  |  |  |
| 209.1346       | 4.2934         | 224.2545 | 0.6718         | 243.4048 | 0.5293         | 262.1847 | 0.7042         |  |  |  |
| 209.2746       | 0.2414         | 225.1447 | 3.4135         | 244.1148 | 0.0544         | 262.2547 | 0.3161         |  |  |  |
| 210.1046       | 0.8722         | 226.1247 | 0.7447         | 244.1946 | 1.0185         | 263.1347 | 1.5094         |  |  |  |
| 210.1646       | 0.4838         | 226.2547 | 0.7727         | 245.2246 | 2.5902         | 263.2347 | 6.5495         |  |  |  |
| 210.2246       | 0.4881         | 227.1347 | 2.0332         | 246.1148 | 0.9981         | 264.1249 | 0.2526         |  |  |  |
| 210.3596       | 0.1320         | 227.4147 | 0.0646         | 246.2446 | 0.4449         | 264.2447 | 0.9210         |  |  |  |
| 211.0245       | 0.0310         | 228.1947 | 1.4967         | 247.2248 | 2.1570         | 265.1547 | 1.0668         |  |  |  |
| 211.1345       | 5.8447         | 229.1047 | 1.2742         | 248.1346 | 0.6194         | 265.2449 | 4.6287         |  |  |  |
| 211.2445       | 0.2244         | 229.2045 | 4.3597         | 248.2548 | 0.4603         | 266.1447 | 0.5732         |  |  |  |
| 212.1045       | 1.6621         | 230.1047 | 0.2824         | 248.3297 | 0.1658         | 266.2547 | 0.6929         |  |  |  |
| 212.1845       | 0.2113         | 230.1847 | 1.2147         | 248.4046 | 0.1330         | 267.1547 | 1.7717         |  |  |  |
| 212.2245       | 0.0686         | 230.3547 | 0.3421         | 249.1646 | 1.7705         | 267.2647 | 1.2346         |  |  |  |
| 212.3345       | 0.2204         | 231.1247 | 0.1918         | 250.1548 | 0.6054         | 268.1149 | 0.5384         |  |  |  |
| 213.0145       | 0.0469         | 231.2147 | 2.2759         | 251.1648 | 3.2354         | 268.2047 | 0.8597         |  |  |  |
| 213.1145       | 0.7146         | 232.1346 | 0.9751         | 252.1847 | 0.6679         | 268.2847 | 0.2407         |  |  |  |
| 213.2095       | 3.0592         | 233.1346 | 1.9897         | 252.2647 | 0.0736         | 269.2147 | 4.0359         |  |  |  |
| 214.1245       | 0.5642         | 233.2246 | 1.2178         | 253.1847 | 4.0156         | 270.1247 | 0.0678         |  |  |  |
| 214.2545       | 2.0634         | 234.1346 | 0.0496         | 254.1145 | 0.0662         | 270.2049 | 0.5636         |  |  |  |
| 215.1895       | 2.4279         | 234.2046 | 0.6724         | 254.1847 | 0.7326         | 270.3849 | 0.1821         |  |  |  |

| L. virosa leaf |                |          |                |          |                |          |                |  |  |  |
|----------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z            | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 271.0847       | 1.1777         | 286.1348 | 0.0298         | 300.4249 | 0.2230         | 318.2950 | 0.2712         |  |  |  |
| 271.1597       | 0.2082         | 286.2748 | 0.9743         | 301.0949 | 0.0283         | 319.2348 | 0.7400         |  |  |  |
| 271.2347       | 7.4824         | 287.0648 | 0.0709         | 301.2049 | 3.2204         | 319.4450 | 0.0483         |  |  |  |
| 272.2547       | 2.8511         | 287.2248 | 1.5136         | 301.2949 | 0.5634         | 320.2350 | 0.2661         |  |  |  |
| 272.4649       | 0.3057         | 287.3848 | 0.0497         | 302.2149 | 0.4624         | 320.3148 | 0.1050         |  |  |  |
| 273.1548       | 0.3997         | 287.4748 | 0.1561         | 302.3049 | 0.1300         | 321.2350 | 0.6631         |  |  |  |
| 273.2446       | 1.5811         | 288.2448 | 0.9597         | 302.4149 | 0.2171         | 321.3150 | 0.0023         |  |  |  |
| 274.2648       | 3.2795         | 289.1048 | 0.1980         | 303.2249 | 0.2168         | 322.2450 | 0.2990         |  |  |  |
| 274.4148       | 0.0917         | 289.1748 | 0.4139         | 303.3049 | 0.2868         | 323.2548 | 1.1600         |  |  |  |
| 275.1046       | 0.0242         | 289.2348 | 1.2586         | 304.2349 | 0.5036         | 323.3570 | 0.3392         |  |  |  |
| 275.2046       | 4.5066         | 289.4048 | 0.1219         | 305.2349 | 0.5997         | 324.2650 | 0.5894         |  |  |  |
| 275.2648       | 3.4137         | 289.4748 | 0.1928         | 305.3149 | 0.1001         | 325.1950 | 0.4088         |  |  |  |
| 276.1648       | 0.2520         | 290.1748 | 0.2720         | 306.2749 | 0.1661         | 325.2850 | 1.6630         |  |  |  |
| 276.2748       | 0.8862         | 290.2748 | 0.1836         | 307.1949 | 1.8319         | 326.2950 | 0.8915         |  |  |  |
| 277.1146       | 0.1843         | 291.1948 | 4.8966         | 307.2749 | 0.3852         | 327.1950 | 0.5890         |  |  |  |
| 277.2148       | 41.2851        | 291.4148 | 0.1890         | 307.3449 | 0.2753         | 327.2850 | 1.3432         |  |  |  |
| 277.4548       | 0.3835         | 292.1148 | 0.0526         | 308.2349 | 0.4932         | 328.2250 | 0.1104         |  |  |  |
| 277.5248       | 1.1050         | 292.1948 | 0.3500         | 309.2149 | 2.7961         | 328.3248 | 0.8362         |  |  |  |
| 278.2148       | 8.4645         | 292.3148 | 0.1861         | 309.2849 | 2.1134         | 329.1050 | 0.0536         |  |  |  |
| 279.1546       | 0.9788         | 293.2148 | 6.6358         | 310.2449 | 1.4517         | 329.2350 | 3.1563         |  |  |  |
| 279.2348       | 65.0575        | 294.2147 | 1.1120         | 311.2349 | 0.2793         | 329.3150 | 0.7319         |  |  |  |
| 280.1448       | 0.4881         | 294.2949 | 0.2512         | 311.2749 | 2.6365         | 330.1150 | 0.0169         |  |  |  |
| 280.2446       | 10.6433        | 295.2347 | 8.9567         | 312.2749 | 1.4718         | 330.1650 | 0.5767         |  |  |  |
| 280.3648       | 0.3924         | 296.2549 | 28.5176        | 313.1149 | 0.2060         | 330.3350 | 0.6799         |  |  |  |
| 281.2448       | 14.0126        | 296.4747 | 0.3163         | 313.2149 | 0.2579         | 331.2250 | 0.8173         |  |  |  |
| 282.1548       | 0.0266         | 296.5247 | 0.9942         | 313.2749 | 3.6806         | 331.2950 | 1.2782         |  |  |  |
| 282.2648       | 2.7034         | 297.2449 | 10.0726        | 314.2448 | 1.3442         | 332.2150 | 0.5686         |  |  |  |
| 282.5246       | 0.1178         | 298.2749 | 10.4950        | 315.1148 | 0.5675         | 332.2950 | 0.3872         |  |  |  |
| 283.0948       | 0.0460         | 298.4049 | 0.1620         | 315.2248 | 0.8189         | 333.2350 | 0.2491         |  |  |  |
| 283.1848       | 0.5490         | 298.5049 | 0.8699         | 315.2998 | 0.5329         | 333.3450 | 0.3268         |  |  |  |
| 283.2648       | 9.1266         | 299.0949 | 0.0352         | 315.4448 | 0.1984         | 334.2350 | 0.0684         |  |  |  |
| 284.1548       | 0.2456         | 299.1949 | 0.2388         | 316.1150 | 0.0179         | 334.3350 | 0.1905         |  |  |  |
| 284.2648       | 1.3427         | 299.2749 | 3.9152         | 316.2250 | 0.1151         | 335.2049 | 0.2601         |  |  |  |
| 284.3648       | 0.1655         | 300.1949 | 0.0307         | 316.3048 | 0.3866         | 335.3249 | 0.1837         |  |  |  |
| 285.1048       | 0.3166         | 300.2947 | 2.8931         | 317.2348 | 0.6159         | 336.1849 | 0.0412         |  |  |  |
| 285.2748       | 3.2903         | 300.3749 | 0.0662         | 318.2248 | 0.0824         | 336.2549 | 0.1572         |  |  |  |

| L. virosa leaf |                |          |                |          |                |          |                |  |  |  |
|----------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z            | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 336.3251       | 0.5910         | 353.2651 | 0.7151         | 369.3452 | 4.3046         | 379.3451 | 1.0169         |  |  |  |
| 336.4749       | 0.1245         | 353.3451 | 0.2665         | 369.4852 | 0.0361         | 380.2051 | 0.0203         |  |  |  |
| 337.2651       | 0.6945         | 354.3351 | 1.1505         | 369.5650 | 0.3838         | 380.2851 | 0.0202         |  |  |  |
| 337.3451       | 0.6154         | 355.0751 | 0.7819         | 370.3352 | 1.4889         | 380.3451 | 0.1702         |  |  |  |
| 338.2649       | 0.0428         | 355.1950 | 0.1899         | 371.1052 | 5.8727         | 381.3451 | 0.2266         |  |  |  |
| 338.3449       | 10.6728        | 355.2950 | 1.2628         | 371.3152 | 91.4659        | 381.4153 | 0.7820         |  |  |  |
| 338.4849       | 0.4651         | 355.3550 | 0.1817         | 371.5852 | 1.2111         | 382.2951 | 0.3180         |  |  |  |
| 338.6049       | 0.4224         | 355.4350 | 0.0552         | 371.6750 | 0.6222         | 382.3551 | 0.1277         |  |  |  |
| 339.3251       | 2.6203         | 356.0750 | 0.1112         | 371.7551 | 0.6240         | 382.4351 | 0.4159         |  |  |  |
| 340.3449       | 0.8415         | 356.1950 | 0.0113         | 371.8352 | 0.2916         | 383.3651 | 2.7658         |  |  |  |
| 340.4251       | 0.0202         | 356.3550 | 0.4809         | 372.1152 | 3.1019         | 384.3051 | 0.0151         |  |  |  |
| 341.3149       | 1.5644         | 357.0750 | 0.0591         | 372.2352 | 0.2186         | 384.3751 | 0.7393         |  |  |  |
| 342.3149       | 0.4792         | 357.2950 | 0.6869         | 372.3152 | 22.9632        | 385.3151 | 1.3263         |  |  |  |
| 343.1649       | 0.1724         | 357.3850 | 0.1271         | 372.6450 | 0.1156         | 385.4851 | 0.1842         |  |  |  |
| 343.2351       | 0.5239         | 358.2152 | 0.0269         | 372.8352 | 0.4591         | 386.3351 | 0.6063         |  |  |  |
| 343.3351       | 0.2625         | 358.2950 | 0.1312         | 372.9152 | 0.2762         | 386.4053 | 0.1356         |  |  |  |
| 344.1751       | 0.0205         | 358.3650 | 0.1845         | 373.1052 | 1.5561         | 387.2853 | 0.0757         |  |  |  |
| 344.2651       | 0.4101         | 359.2250 | 0.1420         | 373.1752 | 0.1149         | 387.3353 | 0.7136         |  |  |  |
| 344.3951       | 0.0229         | 359.2952 | 0.9122         | 373.2452 | 0.7016         | 387.6051 | 0.0264         |  |  |  |
| 345.1849       | 0.1476         | 360.2252 | 0.1134         | 373.3152 | 2.9724         | 388.1351 | 0.3113         |  |  |  |
| 345.2749       | 0.7830         | 360.3150 | 0.5107         | 374.0952 | 0.3650         | 388.2653 | 0.1575         |  |  |  |
| 346.1751       | 2.1626         | 361.2352 | 0.1213         | 374.2652 | 0.3210         | 388.3451 | 8.4317         |  |  |  |
| 346.2749       | 0.3354         | 361.3250 | 0.5775         | 374.3252 | 0.5373         | 389.1553 | 0.1937         |  |  |  |
| 347.1649       | 0.4967         | 362.1652 | 0.0745         | 375.1052 | 0.4067         | 389.2653 | 0.0710         |  |  |  |
| 347.2851       | 0.5058         | 362.2650 | 0.1337         | 375.2452 | 0.1439         | 389.3453 | 1.9074         |  |  |  |
| 347.3651       | 0.0531         | 362.3750 | 0.2409         | 375.3152 | 0.6218         | 390.1353 | 0.0142         |  |  |  |
| 348.1851       | 0.0912         | 363.2452 | 0.2505         | 376.1451 | 0.0543         | 390.3351 | 0.3525         |  |  |  |
| 348.2949       | 0.5925         | 364.1952 | 0.0642         | 376.2551 | 0.0282         | 391.2951 | 2.5477         |  |  |  |
| 349.2151       | 0.2777         | 364.2550 | 0.1990         | 376.3351 | 0.2065         | 391.3901 | 0.3802         |  |  |  |
| 349.3351       | 0.5429         | 365.2750 | 0.9575         | 376.5751 | 0.0146         | 391.4851 | 0.4807         |  |  |  |
| 350.2351       | 0.0833         | 365.4150 | 2.1004         | 377.2551 | 0.0665         | 392.2853 | 0.6938         |  |  |  |
| 350.3151       | 0.1322         | 366.2652 | 0.1081         | 377.3351 | 0.5344         | 393.3451 | 1.6435         |  |  |  |
| 350.3751       | 0.1409         | 366.2950 | 0.2110         | 377.4251 | 0.2519         | 393.4453 | 1.5709         |  |  |  |
| 351.2451       | 0.3271         | 366.4150 | 0.6390         | 377.5251 | 0.0876         | 394.1853 | 0.0180         |  |  |  |
| 351.3351       | 0.7487         | 367.3352 | 1.2400         | 378.2651 | 0.2368         | 394.3353 | 0.4925         |  |  |  |
| 352.3251       | 0.5224         | 368.3350 | 0.4180         | 378.3351 | 0.0723         | 395.3653 | 3.1883         |  |  |  |

| L. virosa leaf |                |          |                |          |                |          |                |  |  |  |
|----------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z            | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |  |
| 396.2853       | 0.0897         | 412.2954 | 0.0261         | 431.4753 | 0.0355         | 453.4654 | 0.8113         |  |  |  |
| 396.3753       | 1.3711         | 412.3852 | 1.4372         | 432.3153 | 0.1274         | 454.3454 | 0.0426         |  |  |  |
| 397.3852       | 8.7273         | 413.0454 | 0.0169         | 432.3955 | 0.2976         | 454.4956 | 0.5374         |  |  |  |
| 398.2152       | 0.0378         | 413.3754 | 1.9093         | 433.3253 | 0.1994         | 455.3556 | 0.9418         |  |  |  |
| 398.3950       | 1.9397         | 414.3854 | 1.2907         | 433.4003 | 0.3272         | 455.4354 | 0.0327         |  |  |  |
| 398.5452       | 0.0338         | 414.6152 | 0.0894         | 433.4753 | 0.0256         | 455.4954 | 0.1077         |  |  |  |
| 399.2252       | 0.0703         | 415.3004 | 0.2893         | 434.3353 | 0.0158         | 456.3754 | 0.2018         |  |  |  |
| 399.3652       | 1.2426         | 415.3754 | 0.5603         | 434.3955 | 0.1068         | 456.5156 | 0.6504         |  |  |  |
| 400.3552       | 0.0710         | 416.2354 | 0.0615         | 435.3553 | 0.3261         | 457.3754 | 1.2375         |  |  |  |
| 400.4452       | 1.5107         | 416.3652 | 0.3117         | 435.4655 | 0.3531         | 457.4954 | 0.4681         |  |  |  |
| 401.3252       | 1.7201         | 416.4452 | 0.0396         | 437.3455 | 0.3552         | 458.2354 | 0.0282         |  |  |  |
| 401.4652       | 0.4041         | 417.3753 | 0.1290         | 437.4755 | 0.9043         | 458.3853 | 0.4535         |  |  |  |
| 402.3352       | 1.6695         | 417.4553 | 0.3229         | 438.3552 | 0.3958         | 459.3053 | 0.1773         |  |  |  |
| 403.2952       | 0.1273         | 418.2253 | 0.0225         | 438.4852 | 0.3550         | 459.3855 | 0.5322         |  |  |  |
| 403.3652       | 0.5359         | 418.3653 | 0.0769         | 439.3652 | 3.8921         | 459.4855 | 0.0315         |  |  |  |
| 404.2952       | 0.0233         | 418.4553 | 0.0168         | 440.3654 | 1.7026         | 460.3053 | 0.1073         |  |  |  |
| 404.3752       | 0.0390         | 419.3253 | 1.3654         | 441.3754 | 2.9894         | 460.4155 | 0.1863         |  |  |  |
| 405.3752       | 1.0604         | 420.3153 | 0.1335         | 442.3854 | 0.9883         | 460.4955 | 0.0412         |  |  |  |
| 405.4552       | 0.0933         | 421.3453 | 0.6919         | 442.4554 | 0.2635         | 461.3755 | 0.0455         |  |  |  |
| 406.2852       | 0.0493         | 421.4653 | 0.9483         | 443.3854 | 1.4003         | 461.4255 | 0.5038         |  |  |  |
| 406.3854       | 0.2157         | 422.3453 | 0.2488         | 444.2354 | 0.0620         | 462.1355 | 0.1198         |  |  |  |
| 407.3652       | 2.5359         | 422.4851 | 0.3831         | 444.2954 | 0.0752         | 462.4455 | 0.0112         |  |  |  |
| 408.3752       | 1.7865         | 423.3753 | 2.3152         | 444.4054 | 0.5612         | 463.3855 | 0.8969         |  |  |  |
| 408.4554       | 0.0686         | 424.2653 | 0.0370         | 445.2154 | 3.5551         | 464.3855 | 0.0490         |  |  |  |
| 409.2052       | 0.0755         | 424.3753 | 1.3632         | 445.3754 | 1.2596         | 465.4855 | 1.0817         |  |  |  |
| 409.3852       | 54.0622        | 424.5353 | 0.0374         | 446.2254 | 1.1867         | 466.5055 | 0.2051         |  |  |  |
| 410.2252       | 0.2406         | 425.3753 | 7.9042         | 446.3854 | 0.7638         | 467.4655 | 0.6665         |  |  |  |
| 410.2952       | 0.0179         | 426.2253 | 0.0845         | 447.2254 | 0.0345         | 468.4955 | 0.3983         |  |  |  |
| 410.3854       | 14.1632        | 426.3853 | 2.3747         | 447.3254 | 0.0135         | 469.4055 | 0.2287         |  |  |  |
| 411.1252       | 0.1388         | 427.3953 | 7.6420         | 447.3854 | 0.6176         | 470.4155 | 0.0113         |  |  |  |
| 411.1952       | 0.0397         | 428.3955 | 2.3486         | 448.3854 | 0.0169         | 470.5055 | 0.3835         |  |  |  |
| 411.3852       | 7.0249         | 429.3853 | 3.7848         | 449.4354 | 0.3202         | 471.3255 | 0.0463         |  |  |  |
| 411.6254       | 0.2707         | 430.2353 | 0.0169         | 449.5154 | 0.2210         | 471.3855 | 0.2269         |  |  |  |
| 411.6954       | 0.6644         | 430.3853 | 0.7942         | 451.4254 | 1.0194         | 471.4955 | 0.3039         |  |  |  |
| 412.1252       | 0.0666         | 430.5553 | 0.0542         | 452.4854 | 0.2565         | 472.3455 | 0.0480         |  |  |  |
| 412.2052       | 0.0842         | 431.3853 | 0.7604         | 453.3554 | 0.0104         | 472.3855 | 0.0297         |  |  |  |

|          | L. virosa leaf |          |                |          |                |          |                |  |  |  |  |
|----------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z      | Rel. Int.<br>% |  |  |  |  |
| 473.3755 | 0.1615         | 493.3056 | 0.0315         | 521.5256 | 0.7790         | 563.6158 | 0.0259         |  |  |  |  |
| 474.3855 | 0.4633         | 493.5156 | 0.6023         | 526.5658 | 0.0158         | 564.5458 | 0.0146         |  |  |  |  |
| 474.4655 | 0.1047         | 495.4456 | 0.2589         | 527.5256 | 0.0817         | 565.5258 | 0.1033         |  |  |  |  |
| 475.3855 | 0.1203         | 498.5356 | 0.1799         | 531.3158 | 0.0227         | 566.5358 | 0.1179         |  |  |  |  |
| 476.3155 | 0.1271         | 499.4256 | 0.0449         | 531.4756 | 0.0679         | 567.3858 | 0.0352         |  |  |  |  |
| 476.4055 | 0.1241         | 500.4255 | 0.0140         | 533.5258 | 0.4830         | 569.3858 | 0.0352         |  |  |  |  |
| 476.4955 | 0.0191         | 502.4155 | 0.1117         | 535.4458 | 0.0248         | 575.5060 | 0.0819         |  |  |  |  |
| 477.4355 | 0.0248         | 503.3255 | 0.1571         | 535.5358 | 0.4105         | 577.5258 | 0.0833         |  |  |  |  |
| 477.5455 | 0.1912         | 503.4155 | 0.0912         | 536.5358 | 0.2087         | 578.5260 | 0.0463         |  |  |  |  |
| 478.4355 | 0.0303         | 504.2857 | 0.0706         | 537.5058 | 0.5602         | 579.5260 | 0.1312         |  |  |  |  |
| 478.5455 | 0.0135         | 505.4955 | 0.2375         | 537.6158 | 0.0653         | 583.3759 | 0.0207         |  |  |  |  |
| 479.4854 | 0.6986         | 507.2155 | 0.1435         | 538.5058 | 0.0668         | 585.3859 | 0.0310         |  |  |  |  |
| 480.4954 | 0.4051         | 507.3155 | 0.0527         | 547.3357 | 0.0496         | 591.3559 | 0.0289         |  |  |  |  |
| 481.4956 | 0.3039         | 507.5155 | 0.7211         | 548.3459 | 0.0310         | 591.5859 | 0.0917         |  |  |  |  |
| 482.5256 | 0.4019         | 508.2355 | 0.0093         | 549.4959 | 0.1379         | 592.5759 | 0.0113         |  |  |  |  |
| 483.3856 | 0.1079         | 508.3557 | 0.0149         | 550.5657 | 0.3245         | 593.6659 | 0.0135         |  |  |  |  |
| 483.5356 | 0.0447         | 508.5257 | 0.2078         | 551.5057 | 0.4667         | 621.6660 | 0.3343         |  |  |  |  |
| 484.5456 | 0.4062         | 509.5257 | 0.3434         | 552.4959 | 0.0463         | 638.6861 | 0.2819         |  |  |  |  |
| 485.4056 | 0.1247         | 510.5357 | 0.3308         | 552.5857 | 0.0846         | 647.6360 | 0.0102         |  |  |  |  |
| 486.3854 | 0.2312         | 512.5757 | 0.0473         | 553.3957 | 0.0331         | 649.6760 | 0.1662         |  |  |  |  |
| 486.4556 | 0.0104         | 516.4257 | 0.0294         | 553.4957 | 0.0248         | 663.6262 | 0.0130         |  |  |  |  |
| 487.3854 | 0.1761         | 517.4457 | 0.6652         | 554.5659 | 0.0674         | 665.5961 | 0.1467         |  |  |  |  |
| 487.5256 | 0.1173         | 518.4357 | 0.0947         | 555.5357 | 0.0766         | 666.7161 | 0.2811         |  |  |  |  |
| 488.3956 | 0.1228         | 518.5157 | 0.1531         | 557.5359 | 0.2998         | 667.7161 | 0.0338         |  |  |  |  |
| 488.4656 | 0.0704         | 519.4957 | 0.6833         | 559.5459 | 0.1118         | 677.7063 | 0.0365         |  |  |  |  |
| 489.3756 | 0.0124         | 520.3356 | 0.0310         | 561.5658 | 0.1929         | 691.6662 | 0.0121         |  |  |  |  |
| 491.4856 | 0.2203         | 520.4056 | 0.0124         | 563.5358 | 0.0792         | 694.7462 | 0.0821         |  |  |  |  |

| L. virosa seed |                |         |                |          |                |          |                |  |  |  |
|----------------|----------------|---------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z            | Rel. Int.<br>% | m/z     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 61.0339        | 0.0540         | 84.9540 | 1.5340         | 99.0541  | 8.0281         | 114.2242 | 0.3842         |  |  |  |
| 62.0639        | 0.0211         | 85.0342 | 6.6669         | 99.1841  | 0.2638         | 114.2842 | 0.0159         |  |  |  |
| 63.9941        | 0.0013         | 85.0942 | 5.2269         | 99.9741  | 0.4427         | 115.0542 | 3.9089         |  |  |  |
| 65.0541        | 0.1728         | 85.1642 | 1.2244         | 100.0041 | 0.2495         | 115.1040 | 3.4285         |  |  |  |
| 67.0540        | 0.7067         | 86.0740 | 2.5861         | 100.0841 | 1.6704         | 115.2442 | 0.5582         |  |  |  |
| 67.1240        | 0.0132         | 86.1742 | 0.1879         | 100.2341 | 0.2457         | 116.0742 | 4.4396         |  |  |  |
| 68.0538        | 0.2258         | 86.9739 | 0.1786         | 101.0641 | 10.5764        | 116.1442 | 0.3794         |  |  |  |
| 68.9640        | 2.0743         | 87.0539 | 7.9539         | 101.1841 | 0.5253         | 116.2242 | 0.3651         |  |  |  |
| 69.0440        | 2.2852         | 87.1641 | 0.5548         | 102.0741 | 2.0447         | 117.0642 | 6.7608         |  |  |  |
| 69.1440        | 0.0171         | 88.0741 | 2.4599         | 102.1641 | 0.5136         | 117.1642 | 0.0237         |  |  |  |
| 70.0640        | 3.9662         | 88.1441 | 0.1166         | 103.0541 | 2.9276         | 117.2442 | 0.5902         |  |  |  |
| 70.1340        | 0.1884         | 88.2041 | 0.0419         | 103.1443 | 1.3502         | 118.0842 | 4.1920         |  |  |  |
| 71.0640        | 2.0901         | 89.0641 | 47.1292        | 104.0741 | 7.8757         | 118.2042 | 0.3712         |  |  |  |
| 71.1540        | 0.0254         | 89.1741 | 1.4786         | 104.1443 | 0.1365         | 119.0842 | 2.6028         |  |  |  |
| 72.0140        | 0.7004         | 89.2541 | 0.7072         | 104.2343 | 0.0892         | 120.0742 | 1.4033         |  |  |  |
| 72.0840        | 7.1025         | 90.0641 | 13.2610        | 105.0641 | 2.6448         | 120.2042 | 0.0834         |  |  |  |
| 72.2040        | 0.3579         | 90.1641 | 0.2743         | 105.1443 | 0.1924         | 121.0842 | 5.6576         |  |  |  |
| 73.0640        | 12.4416        | 90.9639 | 0.0088         | 105.1843 | 0.2353         | 122.0742 | 0.6594         |  |  |  |
| 73.1840        | 0.8386         | 91.0541 | 7.8696         | 106.0641 | 0.8375         | 122.2242 | 0.0174         |  |  |  |
| 74.0640        | 10.7760        | 91.1241 | 0.5334         | 107.0841 | 11.4656        | 123.0942 | 6.8313         |  |  |  |
| 74.1340        | 0.7992         | 92.0641 | 2.7568         | 107.1543 | 0.6739         | 123.2942 | 0.1438         |  |  |  |
| 75.0440        | 5.9828         | 93.0641 | 19.7785        | 108.0640 | 1.4479         | 124.0642 | 1.8736         |  |  |  |
| 75.1140        | 1.0052         | 93.1341 | 3.8696         | 108.1542 | 0.3483         | 124.1844 | 0.2344         |  |  |  |
| 76.0640        | 0.9046         | 94.0641 | 1.1155         | 109.0340 | 0.0749         | 125.0942 | 5.6321         |  |  |  |
| 77.0440        | 0.5228         | 94.1741 | 0.1124         | 109.0942 | 14.3183        | 125.2144 | 0.5501         |  |  |  |
| 78.0440        | 0.1618         | 95.0241 | 0.6149         | 109.2042 | 0.3314         | 126.0642 | 5.1648         |  |  |  |
| 79.0440        | 2.4665         | 95.0841 | 13.7120        | 110.0742 | 3.1577         | 126.1542 | 0.6843         |  |  |  |
| 79.1242        | 0.0381         | 96.0541 | 4.3881         | 110.2142 | 0.5162         | 127.0442 | 10.0990        |  |  |  |
| 80.0540        | 1.6704         | 96.1291 | 0.0831         | 111.0540 | 2.6034         | 127.1142 | 8.5092         |  |  |  |
| 81.0540        | 3.4058         | 97.0341 | 2.6297         | 111.1140 | 10.2602        | 127.2342 | 1.2948         |  |  |  |
| 81.1442        | 0.1729         | 97.0941 | 10.0175        | 111.2342 | 0.8564         | 128.0844 | 2.1383         |  |  |  |
| 82.0642        | 0.8069         | 97.1741 | 0.3336         | 112.0742 | 5.0939         | 128.2243 | 0.3198         |  |  |  |
| 82.9442        | 2.3093         | 97.2241 | 0.5709         | 112.1542 | 0.9442         | 129.0641 | 4.0289         |  |  |  |
| 83.0240        | 0.5367         | 97.2841 | 0.5470         | 113.0542 | 6.5723         | 129.1391 | 3.8286         |  |  |  |
| 83.0840        | 11.2725        | 97.9941 | 3.9093         | 113.1642 | 0.1384         | 130.0643 | 5.4490         |  |  |  |
| 84.0640        | 4.9945         | 98.0841 | 3.1402         | 114.0842 | 4.2307         | 130.1543 | 1.8839         |  |  |  |

|          | L. virosa seed |          |           |          |           |          |           |  |  |  |  |
|----------|----------------|----------|-----------|----------|-----------|----------|-----------|--|--|--|--|
|          | Rel. Int.      |          | Rel. Int. |          | Rel. Int. |          | Rel. Int. |  |  |  |  |
| m/z      | %              | m/z      | %         | m/z      | %         | m/z      | %         |  |  |  |  |
| 130.2343 | 0.0938         | 144.1743 | 1.3300    | 160.1744 | 0.2362    | 176.1694 | 0.4294    |  |  |  |  |
| 131.0643 | 5.0999         | 145.0543 | 13.6654   | 161.0844 | 3.1651    | 177.1443 | 4.1164    |  |  |  |  |
| 131.2243 | 1.0271         | 145.1243 | 3.4205    | 162.0844 | 1.5544    | 178.0945 | 0.2119    |  |  |  |  |
| 132.1041 | 4.5749         | 145.2243 | 0.9942    | 162.2244 | 0.1518    | 178.1694 | 0.7782    |  |  |  |  |
| 133.0643 | 4.5939         | 146.0843 | 3.9264    | 163.0644 | 8.1584    | 179.0845 | 8.2755    |  |  |  |  |
| 133.2543 | 0.0155         | 146.1643 | 27.7545   | 163.1344 | 5.0646    | 180.0845 | 11.7015   |  |  |  |  |
| 134.0843 | 0.9482         | 146.2443 | 0.4380    | 163.2644 | 0.0204    | 180.1645 | 0.9841    |  |  |  |  |
| 134.2543 | 0.1196         | 146.9943 | 0.0103    | 164.0844 | 1.1635    | 181.1045 | 2.5610    |  |  |  |  |
| 135.1043 | 16.1556        | 147.0743 | 4.0793    | 164.1644 | 0.8203    | 181.1945 | 1.5888    |  |  |  |  |
| 135.2443 | 0.4013         | 147.1843 | 0.9405    | 165.0844 | 1.9239    | 182.1045 | 1.0212    |  |  |  |  |
| 135.9943 | 0.7307         | 148.0745 | 2.7810    | 165.1794 | 1.7071    | 182.1943 | 0.5247    |  |  |  |  |
| 136.0643 | 12.9754        | 149.0165 | 1.5047    | 165.2744 | 0.4425    | 183.0945 | 3.1162    |  |  |  |  |
| 136.1343 | 1.4914         | 149.1142 | 2.3303    | 166.0944 | 2.2487    | 183.1945 | 1.7119    |  |  |  |  |
| 136.2143 | 0.0960         | 149.9942 | 0.2772    | 166.1944 | 0.3969    | 184.1145 | 0.3409    |  |  |  |  |
| 136.2843 | 0.2449         | 150.0942 | 0.3063    | 166.2344 | 0.0545    | 184.2045 | 0.5132    |  |  |  |  |
| 136.4043 | 0.2103         | 150.1542 | 0.4860    | 167.0944 | 2.4922    | 185.1145 | 2.5977    |  |  |  |  |
| 137.0743 | 76.7042        | 150.2342 | 0.0430    | 167.1744 | 0.0799    | 185.2145 | 2.1164    |  |  |  |  |
| 137.1243 | 6.2730         | 150.3142 | 0.0244    | 167.2544 | 0.7016    | 186.1145 | 0.6948    |  |  |  |  |
| 137.2143 | 0.1511         | 151.1042 | 3.4742    | 167.3344 | 0.4696    | 187.1245 | 1.8087    |  |  |  |  |
| 137.2843 | 1.1153         | 151.9942 | 0.0588    | 168.0944 | 0.9564    | 188.0945 | 0.5790    |  |  |  |  |
| 137.9843 | 0.0644         | 152.1144 | 1.2338    | 168.1744 | 0.3304    | 188.1645 | 0.2272    |  |  |  |  |
| 138.0843 | 5.8481         | 152.2444 | 0.0356    | 168.2544 | 0.1562    | 188.2445 | 0.0543    |  |  |  |  |
| 138.1643 | 1.2116         | 153.0844 | 9.9724    | 168.9844 | 0.0140    | 189.1345 | 1.3040    |  |  |  |  |
| 139.0054 | 2.3318         | 154.0844 | 0.6352    | 169.1144 | 4.4557    | 189.2345 | 0.0285    |  |  |  |  |
| 139.1043 | 6.8633         | 154.1544 | 0.6810    | 169.2044 | 0.3222    | 189.3145 | 0.0153    |  |  |  |  |
| 139.2243 | 0.0423         | 155.1044 | 5.5304    | 170.0943 | 0.9779    | 190.1244 | 1.8067    |  |  |  |  |
| 139.2643 | 0.7339         | 156.1042 | 1.0608    | 170.1643 | 1.5213    | 190.2244 | 0.1467    |  |  |  |  |
| 140.0843 | 1.2995         | 156.1744 | 0.1503    | 171.1543 | 7.6265    | 191.1644 | 2.4204    |  |  |  |  |
| 140.2543 | 0.0445         | 156.2744 | 0.1551    | 171.3143 | 0.2637    | 191.3244 | 0.4151    |  |  |  |  |
| 140.3143 | 0.0341         | 157.1242 | 10.4160   | 172.1243 | 1.0058    | 192.1044 | 0.6801    |  |  |  |  |
| 141.1043 | 4.5283         | 157.2644 | 1.1936    | 173.0243 | 0.0092    | 192.1644 | 2.2001    |  |  |  |  |
| 142.1043 | 0.9877         | 158.1044 | 0.8871    | 173.1143 | 2.7424    | 193.0844 | 0.5314    |  |  |  |  |
| 142.1843 | 0.0670         | 158.1844 | 1.4251    | 174.1143 | 2.1282    | 193.1544 | 1.9720    |  |  |  |  |
| 143.0343 | 0.0313         | 159.0544 | 0.0090    | 174.9843 | 0.1058    | 194.0944 | 0.4489    |  |  |  |  |
| 143.0943 | 4.0868         | 159.1244 | 3.7571    | 175.1245 | 2.0759    | 194.1944 | 0.2570    |  |  |  |  |
| 144.0843 | 2.0561         | 160.0944 | 0.9000    | 176.0945 | 0.2234    | 195.0946 | 0.3958    |  |  |  |  |

| L. virosa seed |           |          |           |          |           |          |           |  |  |  |
|----------------|-----------|----------|-----------|----------|-----------|----------|-----------|--|--|--|
|                | Rel. Int. |          | Rel. Int. |          | Rel. Int. |          | Rel. Int. |  |  |  |
| m/z            | %         | m/z      | %         | m/z      | %         | m/z      | %         |  |  |  |
| 195.1845       | 2.6859    | 211.0245 | 0.1096    | 229.1047 | 0.6116    | 245.2246 | 2.5288    |  |  |  |
| 195.2744       | 0.1679    | 211.1345 | 2.7755    | 229.2045 | 1.8294    | 246.1148 | 1.6194    |  |  |  |
| 196.0946       | 0.7771    | 212.1045 | 0.5035    | 230.1847 | 0.6314    | 246.2446 | 0.2363    |  |  |  |
| 196.2794       | 0.0567    | 212.1845 | 0.4768    | 230.3547 | 0.1089    | 247.2248 | 0.9345    |  |  |  |
| 197.1144       | 2.3132    | 212.3345 | 0.1252    | 231.1247 | 0.0844    | 248.1346 | 0.1802    |  |  |  |
| 197.3344       | 0.3033    | 213.0145 | 0.0678    | 231.2147 | 0.8233    | 248.2548 | 0.2522    |  |  |  |
| 198.1044       | 11.4001   | 213.1145 | 0.3641    | 232.1346 | 0.1062    | 248.4046 | 0.0342    |  |  |  |
| 199.1744       | 4.4171    | 213.2095 | 1.1862    | 232.2346 | 0.3107    | 249.1646 | 0.3915    |  |  |  |
| 199.3844       | 0.0423    | 214.1245 | 0.2016    | 233.1346 | 0.0602    | 249.2648 | 0.1210    |  |  |  |
| 200.1244       | 0.0817    | 214.2545 | 0.9710    | 233.2246 | 0.6022    | 250.1548 | 0.2680    |  |  |  |
| 200.1844       | 0.9465    | 215.1145 | 0.0796    | 234.1346 | 1.0743    | 251.1048 | 0.0520    |  |  |  |
| 200.2346       | 0.2567    | 215.1895 | 1.1344    | 234.2046 | 0.9301    | 251.1648 | 0.8073    |  |  |  |
| 201.1444       | 1.2714    | 215.3245 | 0.1392    | 234.3546 | 0.2210    | 252.1247 | 28.4194   |  |  |  |
| 201.2244       | 0.0396    | 215.3545 | 0.0815    | 235.0846 | 0.5877    | 252.2647 | 0.1507    |  |  |  |
| 201.3044       | 0.2429    | 216.1245 | 0.4932    | 235.1746 | 1.7316    | 253.1047 | 3.2901    |  |  |  |
| 202.1244       | 0.8354    | 216.1945 | 0.6032    | 236.1046 | 0.4419    | 253.1847 | 1.3601    |  |  |  |
| 202.2846       | 0.2225    | 216.3345 | 0.0116    | 236.1746 | 0.7241    | 254.1145 | 2.7115    |  |  |  |
| 203.1746       | 1.5314    | 217.0770 | 6.2648    | 237.1146 | 2.2429    | 254.1847 | 0.7363    |  |  |  |
| 203.3346       | 0.1621    | 217.1745 | 2.3569    | 237.1846 | 1.2915    | 254.2747 | 0.4604    |  |  |  |
| 204.1146       | 0.0657    | 218.1345 | 0.8922    | 238.1146 | 0.0629    | 255.0847 | 0.0527    |  |  |  |
| 204.1844       | 0.4317    | 219.1845 | 1.5228    | 238.1946 | 0.4659    | 255.1347 | 0.1662    |  |  |  |
| 205.1046       | 1.6868    | 220.1145 | 0.2408    | 238.3846 | 0.0425    | 255.2247 | 4.5787    |  |  |  |
| 205.1946       | 1.1447    | 220.1745 | 0.5053    | 239.1446 | 0.6163    | 256.2447 | 0.7370    |  |  |  |
| 205.3346       | 0.0145    | 220.3347 | 0.1156    | 239.2346 | 1.4025    | 257.0847 | 0.4817    |  |  |  |
| 206.1146       | 1.1088    | 221.1845 | 0.9326    | 240.2146 | 0.3865    | 257.2447 | 8.3380    |  |  |  |
| 206.2044       | 0.1896    | 222.1245 | 0.1065    | 241.1046 | 0.3488    | 258.0947 | 0.0735    |  |  |  |
| 207.1546       | 1.2243    | 222.2045 | 0.1140    | 241.1846 | 1.2938    | 258.2547 | 1.4501    |  |  |  |
| 208.1146       | 0.3716    | 223.1247 | 1.4956    | 242.1846 | 0.4298    | 258.4347 | 0.2015    |  |  |  |
| 208.2096       | 0.6340    | 224.1147 | 0.3914    | 242.2846 | 0.4568    | 259.1047 | 0.2394    |  |  |  |
| 209.1346       | 1.2235    | 224.2545 | 0.2521    | 243.1046 | 0.2166    | 259.1947 | 0.3473    |  |  |  |
| 209.2146       | 0.5912    | 225.1447 | 1.6835    | 243.1648 | 1.1123    | 259.2647 | 0.5695    |  |  |  |
| 209.2746       | 0.1243    | 226.1247 | 0.8393    | 243.2498 | 0.0773    | 259.4247 | 0.0515    |  |  |  |
| 210.1046       | 0.6949    | 226.2547 | 0.1106    | 243.4048 | 0.1498    | 260.1147 | 0.0476    |  |  |  |
| 210.1646       | 0.0632    | 227.1347 | 1.1617    | 244.1148 | 0.1627    | 260.1947 | 0.0567    |  |  |  |
| 210.2246       | 0.4572    | 227.4147 | 0.0386    | 244.1946 | 0.7245    | 260.2547 | 0.2893    |  |  |  |
| 210.3596       | 0.0827    | 228.1947 | 2.0964    | 245.1246 | 0.0290    | 261.1147 | 0.0173    |  |  |  |

| spectrum appears in Figure 5.4D. |                |          |                |          |                |          |                |  |  |  |
|----------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| L. virosa seed                   |                |          |                |          |                |          |                |  |  |  |
| m/z                              | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 261.2247                         | 0.8060         | 277.1146 | 0.4541         | 291.2750 | 0.0351         | 313.1149 | 0.1845         |  |  |  |
| 261.4647                         | 0.0758         | 277.2148 | 0.9661         | 291.4148 | 0.1492         | 313.2749 | 1.7408         |  |  |  |
| 262.1847                         | 0.3462         | 277.4548 | 0.0334         | 292.1148 | 0.0153         | 314.2448 | 2.9041         |  |  |  |
| 263.1347                         | 0.0364         | 277.5248 | 0.0242         | 292.1948 | 0.0136         | 315.1148 | 0.0695         |  |  |  |
| 263.2347                         | 12.6853        | 278.2148 | 0.5930         | 292.3148 | 0.1343         | 315.2998 | 1.3067         |  |  |  |
| 264.1249                         | 0.0224         | 278.2948 | 0.1441         | 293.2148 | 0.3590         | 315.4448 | 0.1244         |  |  |  |
| 264.2447                         | 1.8749         | 279.1546 | 1.4501         | 293.2947 | 0.2439         | 316.1150 | 0.0123         |  |  |  |
| 265.2449                         | 1.5339         | 279.2348 | 21.8238        | 294.2147 | 0.0553         | 316.3048 | 0.8271         |  |  |  |
| 266.1447                         | 0.2326         | 280.1448 | 0.2227         | 294.2949 | 0.1651         | 317.2348 | 0.1040         |  |  |  |
| 266.2547                         | 0.5885         | 280.2446 | 5.3412         | 295.2347 | 2.3962         | 317.3150 | 0.2477         |  |  |  |
| 267.1547                         | 0.2296         | 281.2448 | 40.2757        | 296.2549 | 1.4834         | 318.2950 | 0.3409         |  |  |  |
| 267.2647                         | 0.7698         | 282.1548 | 0.0820         | 296.4747 | 0.1803         | 319.3050 | 0.2063         |  |  |  |
| 268.1149                         | 1.8357         | 282.2648 | 7.6867         | 296.5247 | 0.0553         | 319.4450 | 0.0143         |  |  |  |
| 268.2047                         | 0.8202         | 282.5246 | 0.4411         | 297.2449 | 14.1026        | 320.2350 | 0.0356         |  |  |  |
| 268.2847                         | 0.1523         | 283.0948 | 0.0082         | 298.2749 | 64.1160        | 320.3148 | 0.1730         |  |  |  |
| 269.1347                         | 0.0045         | 283.2648 | 4.7962         | 298.5049 | 0.9660         | 321.2350 | 0.0477         |  |  |  |
| 269.2147                         | 1.4572         | 284.1548 | 0.0114         | 299.0949 | 0.0480         | 321.3150 | 0.1327         |  |  |  |
| 270.1247                         | 0.0159         | 284.2648 | 0.6929         | 299.2749 | 12.4504        | 322.2450 | 0.0946         |  |  |  |
| 270.2049                         | 0.2685         | 285.1048 | 0.2442         | 300.2947 | 4.0846         | 322.3248 | 0.1682         |  |  |  |
| 270.3849                         | 0.0127         | 285.2748 | 2.0674         | 300.4249 | 0.1725         | 323.2548 | 0.2795         |  |  |  |
| 271.0847                         | 0.1289         | 286.1348 | 0.0978         | 301.0949 | 0.2582         | 324.2650 | 0.5203         |  |  |  |
| 271.1597                         | 0.1077         | 286.2748 | 0.6013         | 301.2949 | 0.7237         | 325.1150 | 0.0306         |  |  |  |
| 271.2347                         | 1.6591         | 287.1248 | 0.0254         | 302.3049 | 0.4821         | 325.2850 | 0.4807         |  |  |  |
| 272.1349                         | 0.0638         | 287.2248 | 0.4332         | 303.3049 | 0.2659         | 326.2950 | 0.4210         |  |  |  |
| 272.2547                         | 0.9198         | 287.4748 | 0.0754         | 304.2349 | 0.3602         | 327.2850 | 0.5762         |  |  |  |
| 272.4649                         | 0.0852         | 288.2448 | 0.3864         | 305.2349 | 0.1291         | 328.3248 | 0.4872         |  |  |  |
| 273.0848                         | 0.0386         | 288.3648 | 0.0110         | 305.3149 | 0.0330         | 329.1050 | 0.0222         |  |  |  |
| 273.1548                         | 0.0522         | 289.1048 | 0.0245         | 306.1649 | 0.0084         | 329.3150 | 0.4817         |  |  |  |
| 273.2446                         | 0.8553         | 289.2348 | 0.3351         | 306.2749 | 0.6021         | 330.2350 | 0.0486         |  |  |  |
| 274.1548                         | 0.0014         | 289.3250 | 0.0303         | 307.2749 | 0.2479         | 330.3350 | 3.4693         |  |  |  |
| 274.2648                         | 1.0049         | 289.4048 | 0.1170         | 308.3315 | 0.2897         | 331.2950 | 0.6087         |  |  |  |
| 274.4148                         | 0.0412         | 289.4748 | 0.0420         | 309.2849 | 0.5339         | 332.2150 | 0.0746         |  |  |  |
| 275.1046                         | 0.0160         | 290.1748 | 0.0664         | 309.3549 | 0.1157         | 332.2950 | 0.2325         |  |  |  |
| 275.2648                         | 0.6973         | 290.2748 | 0.1985         | 310.2449 | 1.3228         | 332.3550 | 0.0222         |  |  |  |
| 276.1648                         | 0.0488         | 290.4048 | 0.0231         | 311.2749 | 1.1855         | 333.1750 | 0.0199         |  |  |  |
| 276.2748                         | 0.1863         | 291.1948 | 0.2955         | 312.2749 | 0.8454         | 333.2350 | 0.0862         |  |  |  |

| spectrum appears in Figure 3.4D. |                |          |                |          |                |          |                |  |  |  |  |
|----------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| L. virosa seed                   |                |          |                |          |                |          |                |  |  |  |  |
| m/z.                             | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |
| 333.3450                         | 0.1215         | 355.3550 | 0.5252         | 371.4052 | 0.3662         | 382.4351 | 0.1030         |  |  |  |  |
| 334.1550                         | 0.0140         | 356.0750 | 0.1442         | 371.5852 | 0.1852         | 383.3651 | 4.2288         |  |  |  |  |
| 334.2350                         | 0.0184         | 356.2850 | 0.2860         | 371.6750 | 0.1478         | 384.3751 | 1.0820         |  |  |  |  |
| 334.3350                         | 0.1613         | 356.3550 | 0.4785         | 371.7551 | 0.0817         | 385.2151 | 0.0064         |  |  |  |  |
| 335.3249                         | 0.1085         | 357.0750 | 0.0740         | 371.8352 | 0.0032         | 385.3151 | 0.5033         |  |  |  |  |
| 336.1849                         | 0.0444         | 357.2050 | 0.0525         | 372.1152 | 1.4614         | 386.3351 | 0.5182         |  |  |  |  |
| 336.3251                         | 0.5641         | 357.2950 | 0.5199         | 372.3152 | 1.2691         | 386.4053 | 0.0472         |  |  |  |  |
| 336.4749                         | 0.0545         | 357.3850 | 0.0626         | 372.4152 | 0.3084         | 387.3353 | 0.1470         |  |  |  |  |
| 337.2651                         | 1.1002         | 358.2152 | 0.0224         | 372.4902 | 0.0773         | 388.1351 | 0.0687         |  |  |  |  |
| 338.3449                         | 18.1445        | 358.3650 | 2.4126         | 372.6450 | 0.1643         | 388.2653 | 0.1900         |  |  |  |  |
| 338.6049                         | 0.1250         | 359.2952 | 0.1074         | 372.8352 | 0.1250         | 388.3451 | 0.0735         |  |  |  |  |
| 339.1849                         | 0.0068         | 359.3850 | 0.4905         | 372.9152 | 0.0953         | 388.4351 | 0.0700         |  |  |  |  |
| 339.3251                         | 3.9656         | 359.5150 | 0.0558         | 373.1052 | 0.8292         | 388.5351 | 0.0696         |  |  |  |  |
| 340.3449                         | 0.9387         | 359.5850 | 0.0143         | 373.2452 | 0.2489         | 389.1553 | 0.0367         |  |  |  |  |
| 341.3149                         | 0.6624         | 360.1550 | 0.2342         | 373.3152 | 0.4699         | 389.2653 | 0.3830         |  |  |  |  |
| 342.3149                         | 0.5524         | 360.3150 | 0.3286         | 373.4052 | 0.1135         | 389.3453 | 0.0884         |  |  |  |  |
| 343.1649                         | 0.0486         | 361.2352 | 0.1254         | 374.0952 | 0.1607         | 390.1353 | 0.0431         |  |  |  |  |
| 343.2351                         | 0.0136         | 361.3250 | 0.1946         | 374.2652 | 0.0633         | 390.3351 | 0.1149         |  |  |  |  |
| 343.3351                         | 0.2860         | 362.2650 | 0.0432         | 374.3252 | 0.2950         | 391.2951 | 1.0438         |  |  |  |  |
| 344.1751                         | 0.0217         | 362.3750 | 0.1342         | 375.1052 | 0.0680         | 392.2853 | 0.3458         |  |  |  |  |
| 344.2651                         | 0.2152         | 363.1752 | 0.0169         | 375.3152 | 0.1159         | 393.3451 | 0.4353         |  |  |  |  |
| 345.2749                         | 0.3502         | 363.2452 | 0.0721         | 376.3351 | 0.1018         | 393.4453 | 0.0445         |  |  |  |  |
| 346.2749                         | 0.2233         | 364.1952 | 0.0125         | 377.1851 | 0.0147         | 394.3353 | 0.1727         |  |  |  |  |
| 347.2851                         | 0.1854         | 364.2550 | 0.0749         | 377.3351 | 0.3204         | 395.1953 | 0.0096         |  |  |  |  |
| 348.2949                         | 0.3159         | 365.2750 | 0.2648         | 377.4251 | 0.0224         | 395.3653 | 4.9364         |  |  |  |  |
| 349.3351                         | 0.1685         | 365.4150 | 0.3829         | 377.5251 | 0.0264         | 396.3753 | 1.9697         |  |  |  |  |
| 350.3151                         | 0.0408         | 366.4150 | 0.4124         | 378.2651 | 0.1658         | 397.2152 | 0.0194         |  |  |  |  |
| 350.3751                         | 0.0802         | 367.3352 | 0.4369         | 378.3351 | 0.0163         | 397.3852 | 17.0081        |  |  |  |  |
| 351.3351                         | 0.1835         | 368.2052 | 0.0096         | 379.3451 | 0.4523         | 398.2152 | 0.0745         |  |  |  |  |
| 352.1751                         | 0.0103         | 368.3350 | 0.1702         | 380.3451 | 0.0816         | 398.3950 | 4.5322         |  |  |  |  |
| 352.3251                         | 0.4378         | 369.3452 | 0.9785         | 381.1951 | 0.0103         | 398.5452 | 0.1894         |  |  |  |  |
| 353.2651                         | 0.4942         | 369.4852 | 0.0323         | 381.2851 | 0.0088         | 399.2252 | 0.0779         |  |  |  |  |
| 354.3351                         | 0.8405         | 369.5650 | 0.0308         | 381.3451 | 0.3558         | 399.3652 | 1.6337         |  |  |  |  |
| 355.0751                         | 0.2852         | 370.3352 | 0.8348         | 381.4153 | 0.0499         | 400.2352 | 0.0071         |  |  |  |  |
| 355.1950                         | 0.0512         | 371.1052 | 3.7514         | 382.2951 | 0.0572         | 400.3552 | 0.1364         |  |  |  |  |
| 355.2950                         | 1.3045         | 371.3152 | 0.8282         | 382.3551 | 0.2075         | 400.4452 | 0.9943         |  |  |  |  |

| spectrum appears in Figure 5.4D. |                |          |                |          |                |          |                |  |  |  |
|----------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| L. virosa seed                   |                |          |                |          |                |          |                |  |  |  |
| m/z                              | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 401.3252                         | 0.1489         | 419.3253 | 0.3355         | 446.3854 | 0.9481         | 474.3855 | 0.1975         |  |  |  |
| 401.4652                         | 0.2059         | 420.3153 | 0.0313         | 447.3854 | 0.8980         | 474.4655 | 0.0698         |  |  |  |
| 402.3352                         | 0.3177         | 421.3453 | 0.1152         | 448.3854 | 0.2111         | 475.3855 | 0.1635         |  |  |  |
| 403.3652                         | 0.1856         | 422.3453 | 0.0499         | 449.3954 | 0.0657         | 476.4055 | 0.1655         |  |  |  |
| 404.1552                         | 0.0219         | 422.4851 | 0.0160         | 449.4354 | 0.0660         | 476.4955 | 0.0126         |  |  |  |
| 404.2952                         | 0.0830         | 423.3753 | 0.3373         | 451.4254 | 0.2394         | 477.4355 | 0.0258         |  |  |  |
| 404.3752                         | 0.0471         | 424.3753 | 0.4178         | 452.4854 | 0.0194         | 478.4355 | 0.0365         |  |  |  |
| 405.3752                         | 0.3408         | 424.4753 | 0.0081         | 453.3554 | 0.0315         | 479.3754 | 0.0466         |  |  |  |
| 406.2852                         | 0.0580         | 425.3753 | 2.3606         | 453.4654 | 0.1399         | 479.4854 | 0.1236         |  |  |  |
| 406.3854                         | 0.0370         | 426.3853 | 0.8463         | 455.3556 | 0.0255         | 480.4954 | 0.0792         |  |  |  |
| 407.2652                         | 0.0132         | 426.4653 | 0.0379         | 455.4354 | 0.1551         | 481.3954 | 0.0194         |  |  |  |
| 407.3652                         | 0.6501         | 427.3953 | 4.2791         | 456.3754 | 0.0050         | 481.4956 | 0.0715         |  |  |  |
| 407.4652                         | 0.0153         | 428.3955 | 1.9093         | 457.3754 | 0.1336         | 482.4756 | 0.0643         |  |  |  |
| 408.3752                         | 0.5062         | 429.3853 | 2.9241         | 458.3853 | 0.0625         | 482.5256 | 0.0158         |  |  |  |
| 408.4554                         | 0.0757         | 430.3853 | 1.5907         | 459.3855 | 0.2057         | 483.3856 | 0.4545         |  |  |  |
| 409.3852                         | 7.0897         | 431.3853 | 2.9249         | 459.4855 | 0.0093         | 484.3956 | 0.0392         |  |  |  |
| 410.2252                         | 0.0118         | 432.1853 | 0.0097         | 460.4155 | 0.0576         | 485.4056 | 0.0500         |  |  |  |
| 410.3854                         | 1.6805         | 432.3153 | 0.0068         | 461.3755 | 0.2428         | 486.4556 | 0.1469         |  |  |  |
| 411.3852                         | 3.5408         | 432.3955 | 1.1194         | 461.4255 | 0.0422         | 487.3854 | 0.0430         |  |  |  |
| 411.6254                         | 0.1282         | 433.3253 | 0.0789         | 462.1355 | 0.0408         | 488.3956 | 0.0366         |  |  |  |
| 411.6954                         | 0.1572         | 433.4003 | 0.2070         | 463.3855 | 0.3834         | 488.4656 | 0.0184         |  |  |  |
| 412.2954                         | 0.0090         | 434.3955 | 0.0704         | 464.3855 | 0.0369         | 489.3756 | 0.0955         |  |  |  |
| 412.3852                         | 1.0362         | 435.3553 | 0.0811         | 465.3955 | 0.0780         | 491.3756 | 0.0820         |  |  |  |
| 413.3754                         | 10.1016        | 436.3353 | 0.0349         | 465.4855 | 0.0732         | 491.4856 | 0.0393         |  |  |  |
| 414.3854                         | 3.3966         | 437.3455 | 0.0088         | 466.4055 | 0.0054         | 493.3856 | 0.0256         |  |  |  |
| 414.6152                         | 0.1360         | 438.3552 | 0.0937         | 466.5055 | 0.0382         | 493.5156 | 0.0673         |  |  |  |
| 415.3004                         | 0.0122         | 438.4852 | 0.0264         | 467.3955 | 0.4958         | 494.3656 | 0.0184         |  |  |  |
| 415.3754                         | 1.1633         | 439.3652 | 0.2579         | 467.4655 | 0.1120         | 495.2656 | 0.0074         |  |  |  |
| 416.2354                         | 0.0122         | 440.3654 | 0.1251         | 468.3955 | 0.1082         | 495.3856 | 0.0385         |  |  |  |
| 416.3652                         | 0.4947         | 441.3754 | 0.4230         | 468.4955 | 0.0518         | 495.4456 | 0.0648         |  |  |  |
| 416.4452                         | 0.0514         | 442.3054 | 0.0587         | 469.4055 | 0.7123         | 498.5356 | 0.0354         |  |  |  |
| 417.3753                         | 0.3076         | 442.3854 | 0.2462         | 470.4155 | 0.2670         | 499.4256 | 0.0059         |  |  |  |
| 417.4553                         | 0.0708         | 442.4554 | 0.1999         | 470.5055 | 0.0224         | 500.4255 | 0.0609         |  |  |  |
| 418.2953                         | 0.0110         | 443.3854 | 0.5035         | 471.3855 | 0.0262         | 502.4155 | 0.0713         |  |  |  |
| 418.3653                         | 0.1620         | 444.4054 | 0.4396         | 471.4955 | 0.0227         | 503.4155 | 0.2490         |  |  |  |
| 418.4553                         | 0.0271         | 445.3754 | 0.8157         | 472.3855 | 0.0280         | 504.4555 | 0.0610         |  |  |  |

| speculum appears in Figure 3.4D. |                |          |                |          |                |          |                |
|----------------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|
| L. virosa seed                   |                |          |                |          |                |          |                |
| m/z                              | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |
| 505.3955                         | 0.0977         | 548.4657 | 0.0361         | 589.5959 | 0.0135         | 631.5059 | 0.0420         |
| 505.4955                         | 0.0446         | 549.4959 | 0.0073         | 591.4961 | 0.0298         | 632.5361 | 0.0257         |
| 505.5755                         | 0.0101         | 550.5657 | 0.0418         | 591.5859 | 0.0227         | 633.5161 | 0.0518         |
| 507.5155                         | 0.1378         | 551.5057 | 0.1453         | 592.5759 | 0.0246         | 633.5961 | 0.0135         |
| 508.5257                         | 0.0545         | 552.4959 | 0.0082         | 593.5159 | 0.0245         | 633.6961 | 0.0054         |
| 509.5257                         | 0.0918         | 552.5857 | 0.0404         | 594.5159 | 0.0918         | 634.5461 | 1.7415         |
| 510.5357                         | 0.0543         | 554.4957 | 0.0082         | 597.5259 | 0.0508         | 635.5461 | 0.6117         |
| 511.4357                         | 0.0126         | 554.5659 | 0.0440         | 598.4561 | 0.0272         | 635.7061 | 0.0395         |
| 514.4157                         | 0.0200         | 557.4459 | 0.0054         | 598.5959 | 0.0168         | 636.5661 | 0.4370         |
| 515.4257                         | 0.0751         | 557.5359 | 0.0109         | 599.5061 | 2.3412         | 637.5661 | 0.0948         |
| 516.4257                         | 0.1099         | 558.4457 | 0.0082         | 600.5061 | 0.7886         | 638.5761 | 0.1805         |
| 517.4457                         | 0.0152         | 559.4459 | 0.0086         | 601.5259 | 1.0807         | 638.6861 | 0.0245         |
| 518.4357                         | 0.0397         | 559.5459 | 0.0283         | 601.8059 | 0.0116         | 639.5661 | 0.0507         |
| 519.4057                         | 0.0177         | 561.4957 | 0.0821         | 602.5261 | 0.3889         | 640.5661 | 0.0082         |
| 519.4957                         | 0.3701         | 561.5658 | 0.0455         | 602.6261 | 0.0077         | 647.4762 | 0.0484         |
| 521.5256                         | 0.0962         | 562.5158 | 0.0708         | 603.5360 | 0.5177         | 647.6360 | 0.0050         |
| 522.4256                         | 0.0068         | 563.5358 | 0.0295         | 604.5458 | 0.1782         | 648.5160 | 0.0077         |
| 525.4256                         | 0.0152         | 564.5458 | 0.0168         | 605.5460 | 0.0800         | 649.5960 | 0.0054         |
| 526.4156                         | 0.0402         | 566.5358 | 0.0269         | 606.5360 | 0.0270         | 650.5460 | 0.1688         |
| 526.5658                         | 0.0379         | 567.5358 | 0.0135         | 606.6260 | 0.0126         | 650.6060 | 0.0122         |
| 527.5256                         | 0.0282         | 569.5660 | 0.0101         | 608.5260 | 0.0059         | 650.6862 | 0.0762         |
| 528.4256                         | 0.0283         | 570.5458 | 0.0172         | 610.5460 | 0.6705         | 651.5462 | 0.0260         |
| 531.4756                         | 0.0888         | 573.4558 | 0.0077         | 611.5360 | 0.1410         | 652.5462 | 0.0244         |
| 532.4158                         | 0.0109         | 573.5758 | 0.0135         | 612.5460 | 0.0182         | 654.5662 | 0.0082         |
| 533.4407                         | 0.0619         | 575.5060 | 1.4509         | 613.5060 | 0.0059         | 659.5262 | 0.0050         |
| 533.5258                         | 0.0910         | 576.5158 | 0.5056         | 615.5060 | 0.6503         | 662.5662 | 0.0054         |
| 534.4858                         | 0.0704         | 577.5258 | 0.4546         | 615.6460 | 0.0161         | 663.4662 | 0.0093         |
| 535.5358                         | 0.0822         | 578.5260 | 0.1378         | 616.5160 | 0.3225         | 666.6461 | 0.0064         |
| 536.5358                         | 0.0405         | 579.5260 | 0.1093         | 617.5160 | 1.8979         | 675.6761 | 0.5756         |
| 537.5058                         | 0.1291         | 580.6060 | 0.0143         | 618.5260 | 0.6217         | 676.5261 | 0.0082         |
| 538.5058                         | 0.0409         | 582.5159 | 0.0064         | 618.6762 | 0.0162         | 676.6763 | 0.2871         |
| 539.4958                         | 0.0168         | 583.5859 | 0.0109         | 619.5360 | 0.2569         | 678.5961 | 0.0636         |
| 541.5057                         | 0.0101         | 584.5759 | 0.0101         | 619.7560 | 0.0367         | 678.7263 | 0.0059         |
| 544.5257                         | 0.0454         | 586.5559 | 0.0109         | 620.5360 | 0.0283         | 679.5963 | 0.0050         |
| 545.4757                         | 0.0194         | 588.5059 | 0.0059         | 620.6660 | 0.0068         | 680.5963 | 0.0068         |
| 547.4657                         | 0.0431         | 589.4759 | 0.0230         | 621.6660 | 0.0172         | 692.6462 | 0.0145         |
| speed and appeals in Figure 5.12. |                |          |                |          |                |           |                |  |  |  |  |
|-----------------------------------|----------------|----------|----------------|----------|----------------|-----------|----------------|--|--|--|--|
| L. virosa seed                    |                |          |                |          |                |           |                |  |  |  |  |
| m/z                               | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z       | Rel. Int.<br>% |  |  |  |  |
| 693.6164                          | 0.0235         | 755.6265 | 0.0068         | 876.7869 | 0.0869         | 902.7970  | 0.0773         |  |  |  |  |
| 694.6064                          | 0.0511         | 756.6265 | 0.0054         | 876.9069 | 0.0077         | 912.7569  | 0.2745         |  |  |  |  |
| 695.6264                          | 0.0054         | 768.5766 | 0.0064         | 877.7269 | 0.4592         | 914.7771  | 0.1289         |  |  |  |  |
| 696.6562                          | 0.0064         | 769.6066 | 0.0082         | 878.0569 | 0.0118         | 930.8371  | 0.0104         |  |  |  |  |
| 706.5863                          | 0.0450         | 770.6064 | 0.0064         | 878.7369 | 0.3892         | 954.8371  | 0.0129         |  |  |  |  |
| 708.5863                          | 0.0064         | 771.6364 | 0.0222         | 878.9070 | 0.0118         | 956.8473  | 0.0348         |  |  |  |  |
| 709.5963                          | 0.0091         | 781.6166 | 0.0077         | 879.0569 | 0.0346         | 969.7873  | 0.1040         |  |  |  |  |
| 710.6063                          | 0.0068         | 782.6766 | 0.0054         | 879.7369 | 1.8300         | 970.7773  | 0.0376         |  |  |  |  |
| 711.6063                          | 0.0054         | 788.6167 | 0.0220         | 880.7371 | 1.0044         | 974.7874  | 0.0238         |  |  |  |  |
| 712.6063                          | 0.0140         | 792.6067 | 0.0045         | 881.7469 | 0.9173         | 978.7674  | 0.0064         |  |  |  |  |
| 725.6065                          | 0.0059         | 848.7569 | 0.0209         | 882.7471 | 0.3511         | 997.8173  | 0.0237         |  |  |  |  |
| 727.5744                          | 0.0050         | 853.7170 | 0.1275         | 883.7571 | 0.2824         | 998.8173  | 0.0059         |  |  |  |  |
| 728.5964                          | 0.0233         | 854.7268 | 0.1162         | 884.7571 | 0.1815         | 1000.7873 | 0.0285         |  |  |  |  |
| 729.5964                          | 0.0152         | 855.7368 | 0.7408         | 885.7771 | 0.0728         | 1003.8073 | 0.0091         |  |  |  |  |
| 744.6166                          | 0.0168         | 856.7468 | 0.4346         | 886.7871 | 0.0253         | 1007.8273 | 0.0544         |  |  |  |  |
| 750.6863                          | 0.2286         | 857.7568 | 0.2758         | 895.7370 | 0.1255         | 1014.7875 | 0.0702         |  |  |  |  |
| 750.8165                          | 0.0145         | 858.7570 | 0.0719         | 896.7570 | 1.3694         | 1015.7774 | 0.0691         |  |  |  |  |
| 751.6863                          | 0.0872         | 859.7668 | 0.0073         | 897.7570 | 0.9361         | 1016.7974 | 0.0961         |  |  |  |  |
| 752.6065                          | 0.0327         | 872.7669 | 0.6344         | 898.7670 | 1.1901         | 1017.8074 | 0.0369         |  |  |  |  |
| 752.6765                          | 0.0161         | 873.7669 | 0.3907         | 899.7770 | 0.4842         |           |                |  |  |  |  |
| 753.6165                          | 0.0297         | 874.7669 | 0.3742         | 900.7970 | 0.3825         |           |                |  |  |  |  |
| 754.6465                          | 0.0077         | 875.7769 | 0.1459         | 901.7970 | 0.1233         |           |                |  |  |  |  |

|         | L. virosa powder |          |                |          |                |          |                |  |  |  |  |  |
|---------|------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|--|
| m/z     | Rel. Int.<br>%   | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |  |
| 67.0540 | 0.0915           | 97.9941  | 0.2566         | 117.1642 | 0.0362         | 136.1343 | 2.3151         |  |  |  |  |  |
| 68.0538 | 0.4620           | 98.0841  | 6.2641         | 117.2442 | 0.1103         | 136.2843 | 0.6641         |  |  |  |  |  |
| 68.9640 | 0.4710           | 99.0541  | 15.8119        | 118.0842 | 2.3742         | 136.4043 | 0.3367         |  |  |  |  |  |
| 69.0440 | 5.4648           | 99.1841  | 0.0519         | 118.2042 | 0.4227         | 137.0743 | 0.1747         |  |  |  |  |  |
| 69.9240 | 0.0029           | 100.0041 | 0.1701         | 120.0742 | 0.6884         | 137.1243 | 2.3634         |  |  |  |  |  |
| 70.0640 | 3.2572           | 100.0841 | 8.2065         | 120.2042 | 0.0841         | 137.2143 | 0.3179         |  |  |  |  |  |
| 71.0640 | 1.1877           | 100.2341 | 0.1697         | 121.0842 | 0.0192         | 138.0843 | 0.0664         |  |  |  |  |  |
| 72.0840 | 5.6395           | 101.0641 | 2.5728         | 122.0742 | 1.0414         | 138.1643 | 1.3218         |  |  |  |  |  |
| 72.2040 | 0.3040           | 101.1841 | 0.0332         | 123.0942 | 4.5710         | 139.0054 | 0.2113         |  |  |  |  |  |
| 74.0640 | 8.3488           | 102.0741 | 5.5849         | 123.2942 | 0.4476         | 139.1043 | 2.6977         |  |  |  |  |  |
| 75.0440 | 0.0020           | 103.0541 | 0.9896         | 124.0642 | 0.0472         | 139.2243 | 0.0130         |  |  |  |  |  |
| 76.0640 | 0.0155           | 104.0741 | 0.2199         | 125.0942 | 2.5435         | 139.2643 | 1.2109         |  |  |  |  |  |
| 78.0440 | 0.0671           | 105.0641 | 0.5438         | 125.2144 | 0.3534         | 140.0043 | 0.0355         |  |  |  |  |  |
| 79.0440 | 0.2900           | 106.0641 | 1.6841         | 126.0642 | 2.9513         | 140.0843 | 2.7948         |  |  |  |  |  |
| 79.1242 | 0.0331           | 108.0640 | 0.6365         | 126.1542 | 4.0776         | 140.2543 | 0.2015         |  |  |  |  |  |
| 80.0540 | 3.1414           | 109.0340 | 0.6567         | 127.0442 | 14.8742        | 140.3143 | 0.5514         |  |  |  |  |  |
| 81.0540 | 3.3352           | 109.0942 | 6.2717         | 127.1142 | 5.9727         | 141.1043 | 4.5154         |  |  |  |  |  |
| 81.1442 | 0.0270           | 109.2042 | 0.2047         | 127.2342 | 0.5952         | 142.1043 | 2.2199         |  |  |  |  |  |
| 82.0642 | 0.6916           | 110.0742 | 4.6543         | 127.9777 | 0.0120         | 142.1843 | 1.1046         |  |  |  |  |  |
| 82.9442 | 0.0481           | 110.2142 | 0.8173         | 128.0844 | 6.6791         | 143.0343 | 0.2813         |  |  |  |  |  |
| 83.0840 | 1.1460           | 111.0540 | 0.2933         | 128.1843 | 0.4707         | 143.0943 | 3.5541         |  |  |  |  |  |
| 84.0640 | 2.2921           | 111.1140 | 6.8019         | 128.2243 | 0.3157         | 144.0843 | 2.5015         |  |  |  |  |  |
| 85.0342 | 9.5262           | 111.2342 | 0.5365         | 128.9841 | 0.0072         | 144.1743 | 0.6760         |  |  |  |  |  |
| 85.0942 | 0.6394           | 112.0742 | 1.0677         | 129.0641 | 10.5962        | 144.2443 | 0.0047         |  |  |  |  |  |
| 86.0740 | 3.7819           | 112.1542 | 3.5187         | 129.1391 | 2.1749         | 145.0543 | 28.6853        |  |  |  |  |  |
| 86.1742 | 0.1469           | 113.0542 | 1.0723         | 129.2141 | 0.1228         | 145.1243 | 0.5454         |  |  |  |  |  |
| 88.0741 | 1.4994           | 114.0842 | 9.4677         | 130.0643 | 4.2342         | 145.2243 | 0.2195         |  |  |  |  |  |
| 88.2041 | 0.1557           | 114.2242 | 1.8811         | 130.1543 | 2.1852         | 146.0843 | 2.9081         |  |  |  |  |  |
| 92.0641 | 0.1778           | 115.0542 | 0.8270         | 130.2343 | 0.2943         | 146.2443 | 0.3198         |  |  |  |  |  |
| 93.0641 | 0.2584           | 115.1040 | 2.2004         | 132.1041 | 0.7041         | 147.0743 | 1.0618         |  |  |  |  |  |
| 94.0641 | 2.1646           | 115.2442 | 0.2651         | 134.0843 | 0.4504         | 148.0745 | 0.3290         |  |  |  |  |  |
| 94.1741 | 0.1985           | 115.9642 | 0.0477         | 134.2543 | 0.0341         | 148.1544 | 0.7813         |  |  |  |  |  |
| 95.0841 | 5.0377           | 116.0742 | 7.6371         | 135.1043 | 19.8757        | 149.0165 | 4.3787         |  |  |  |  |  |
| 96.0541 | 3.9080           | 116.1442 | 1.1872         | 135.2443 | 0.0227         | 149.1142 | 0.8283         |  |  |  |  |  |
| 97.0341 | 4.6933           | 116.2242 | 0.5568         | 135.9943 | 1.1585         | 150.0942 | 2.1242         |  |  |  |  |  |
| 97.0941 | 1.0223           | 117.0642 | 13.4530        | 136.0643 | 1.5342         | 150.2342 | 0.8167         |  |  |  |  |  |

|          | L. virosa powder |          |                |          |                |          |                |  |  |  |  |
|----------|------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z      | Rel. Int.<br>%   | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |
| 150.3142 | 0.0318           | 170.1643 | 1.0740         | 189.0356 | 0.2109         | 205.1946 | 0.0473         |  |  |  |  |
| 151.2342 | 5.9926           | 170.3143 | 0.0149         | 189.1345 | 0.9584         | 206.1146 | 0.6728         |  |  |  |  |
| 152.1144 | 0.2165           | 171.1543 | 33.2692        | 189.2345 | 0.0255         | 206.2044 | 0.2891         |  |  |  |  |
| 153.0844 | 4.3892           | 171.3143 | 0.4829         | 190.1244 | 2.5187         | 207.0746 | 0.6066         |  |  |  |  |
| 154.0844 | 0.3157           | 172.1243 | 7.0894         | 190.2244 | 0.4915         | 207.3046 | 0.0299         |  |  |  |  |
| 154.1544 | 2.2351           | 173.1143 | 3.6570         | 191.3244 | 0.0654         | 208.1146 | 0.4433         |  |  |  |  |
| 155.1044 | 5.3609           | 174.1143 | 2.8777         | 192.1044 | 0.0811         | 208.2096 | 0.8612         |  |  |  |  |
| 156.1042 | 3.2174           | 174.2843 | 0.0621         | 192.1644 | 0.9445         | 210.1046 | 0.0282         |  |  |  |  |
| 156.1744 | 0.9642           | 176.0945 | 0.0657         | 193.0844 | 0.0456         | 210.3596 | 0.1543         |  |  |  |  |
| 156.2744 | 0.5567           | 176.1694 | 0.0908         | 193.1544 | 0.1277         | 211.0245 | 0.2206         |  |  |  |  |
| 157.0544 | 0.0462           | 178.0945 | 0.1185         | 194.0944 | 1.2371         | 211.1345 | 2.6155         |  |  |  |  |
| 157.1242 | 3.4598           | 178.1694 | 0.2802         | 194.1944 | 1.2889         | 212.1045 | 0.1301         |  |  |  |  |
| 157.2644 | 0.5598           | 178.2443 | 0.0040         | 195.0946 | 2.4652         | 212.3345 | 0.6170         |  |  |  |  |
| 158.1044 | 3.0021           | 179.0845 | 0.3235         | 195.2744 | 1.1218         | 213.1145 | 0.5372         |  |  |  |  |
| 158.1844 | 0.1198           | 179.2145 | 0.0106         | 196.0946 | 0.3105         | 213.2095 | 0.8921         |  |  |  |  |
| 159.0544 | 0.3477           | 180.0845 | 8.8305         | 196.2794 | 0.0547         | 214.1245 | 1.0257         |  |  |  |  |
| 159.1244 | 2.5621           | 180.1645 | 0.2723         | 197.1144 | 1.3704         | 214.2545 | 2.4861         |  |  |  |  |
| 160.0944 | 2.2209           | 180.2345 | 0.0125         | 197.3344 | 0.0384         | 215.1145 | 0.6371         |  |  |  |  |
| 160.2342 | 0.0206           | 181.0032 | 0.0081         | 198.1044 | 8.9061         | 215.1895 | 1.7869         |  |  |  |  |
| 161.0844 | 1.6153           | 181.1045 | 0.8706         | 198.1746 | 3.5736         | 215.3245 | 0.0135         |  |  |  |  |
| 162.0844 | 3.5243           | 181.1945 | 0.0840         | 199.1044 | 0.2343         | 215.3545 | 0.4016         |  |  |  |  |
| 162.2244 | 0.4874           | 182.0143 | 0.0027         | 199.1744 | 9.1603         | 216.1245 | 0.3635         |  |  |  |  |
| 163.0644 | 8.2385           | 182.1045 | 0.2127         | 199.3844 | 0.0674         | 216.1945 | 2.0783         |  |  |  |  |
| 163.1344 | 6.5624           | 182.1943 | 0.1335         | 199.4046 | 0.1613         | 216.3345 | 0.0325         |  |  |  |  |
| 164.0844 | 0.4276           | 183.0945 | 1.5358         | 200.1244 | 0.3302         | 217.0770 | 2.4858         |  |  |  |  |
| 164.1644 | 1.7637           | 183.1945 | 2.7084         | 200.1844 | 3.3628         | 217.1745 | 2.9858         |  |  |  |  |
| 165.0844 | 0.2261           | 184.1145 | 1.1974         | 201.0394 | 0.4223         | 217.3645 | 0.8181         |  |  |  |  |
| 165.2744 | 0.1096           | 184.2045 | 2.4425         | 201.1444 | 1.7380         | 218.1345 | 2.2751         |  |  |  |  |
| 166.0944 | 0.3801           | 185.0245 | 0.1628         | 201.3044 | 0.1467         | 220.1145 | 0.0340         |  |  |  |  |
| 167.0944 | 2.4698           | 185.1145 | 3.6448         | 202.1244 | 1.7004         | 220.1745 | 0.0959         |  |  |  |  |
| 167.2544 | 0.2911           | 185.2145 | 1.5164         | 202.2846 | 0.8399         | 220.3347 | 0.0591         |  |  |  |  |
| 168.0944 | 0.0058           | 186.1145 | 3.2468         | 203.1144 | 0.0459         | 221.1845 | 0.0321         |  |  |  |  |
| 168.2544 | 2.1989           | 187.1245 | 2.1398         | 203.1746 | 22.0089        | 222.1245 | 0.1270         |  |  |  |  |
| 168.9844 | 0.0874           | 188.0945 | 0.3213         | 203.3346 | 0.8323         | 222.2045 | 1.2910         |  |  |  |  |
| 169.1144 | 3.6983           | 188.1645 | 1.1772         | 204.1146 | 0.1390         | 224.1147 | 0.0359         |  |  |  |  |
| 170.0943 | 2.4136           | 188.2445 | 0.4694         | 204.1844 | 4.0136         | 224.2545 | 0.4063         |  |  |  |  |

|          | <i>L. virosa</i> powder |          |                |          |                |          |                |  |  |  |  |
|----------|-------------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z      | Rel. Int.<br>%          | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |
| 225.0447 | 1.1568                  | 243.2498 | 0.0809         | 261.1147 | 0.5003         | 277.2148 | 1.6860         |  |  |  |  |
| 225.2547 | 0.0587                  | 243.4048 | 0.5856         | 261.2247 | 1.4938         | 277.2948 | 2.0614         |  |  |  |  |
| 226.1247 | 0.3069                  | 244.1148 | 0.1387         | 261.4647 | 0.5656         | 277.4548 | 0.3536         |  |  |  |  |
| 227.1347 | 1.6651                  | 244.1946 | 3.1816         | 262.1847 | 1.3696         | 277.5248 | 0.2529         |  |  |  |  |
| 227.4147 | 0.0075                  | 245.1246 | 0.0574         | 262.2547 | 0.0279         | 278.1248 | 0.1581         |  |  |  |  |
| 228.1247 | 0.0314                  | 245.2246 | 1.1086         | 263.3849 | 0.0076         | 278.2148 | 1.3752         |  |  |  |  |
| 228.1947 | 27.5222                 | 246.1148 | 0.1883         | 264.1249 | 0.0222         | 278.2948 | 1.5125         |  |  |  |  |
| 229.1047 | 0.8987                  | 246.2446 | 1.1992         | 264.2447 | 1.3023         | 279.1546 | 0.4129         |  |  |  |  |
| 229.2045 | 5.8131                  | 247.1246 | 0.5395         | 265.1547 | 0.0049         | 279.2348 | 0.1519         |  |  |  |  |
| 230.1047 | 0.1623                  | 247.2248 | 1.9699         | 266.1447 | 0.1156         | 279.4048 | 0.3631         |  |  |  |  |
| 230.1847 | 2.8125                  | 248.1346 | 0.3397         | 266.2547 | 0.1739         | 280.1448 | 0.3302         |  |  |  |  |
| 230.3547 | 0.6247                  | 248.2548 | 1.7239         | 267.2647 | 3.9819         | 280.2446 | 2.7823         |  |  |  |  |
| 231.1247 | 0.8107                  | 248.3297 | 0.3061         | 268.1149 | 0.0314         | 281.1448 | 0.0402         |  |  |  |  |
| 231.2147 | 1.7005                  | 248.4046 | 0.4735         | 268.2847 | 1.7926         | 281.2448 | 2.6025         |  |  |  |  |
| 231.3247 | 0.8422                  | 249.0646 | 0.6628         | 269.2147 | 0.0137         | 282.1548 | 0.1692         |  |  |  |  |
| 232.1346 | 0.2082                  | 249.3148 | 0.0077         | 270.3849 | 0.1377         | 282.2648 | 13.1777        |  |  |  |  |
| 232.2346 | 2.4554                  | 250.1548 | 1.0621         | 271.0847 | 5.0152         | 282.5246 | 0.1280         |  |  |  |  |
| 233.1346 | 18.0193                 | 251.1048 | 0.0068         | 271.1597 | 0.0236         | 285.1048 | 0.5223         |  |  |  |  |
| 233.2246 | 2.6695                  | 252.1247 | 0.0489         | 271.2347 | 3.1545         | 286.1348 | 0.0734         |  |  |  |  |
| 234.1346 | 1.2020                  | 252.1847 | 0.3838         | 272.0547 | 0.2299         | 286.2148 | 0.0167         |  |  |  |  |
| 234.2046 | 2.7630                  | 252.2647 | 0.1634         | 272.1349 | 0.2412         | 286.2748 | 0.9119         |  |  |  |  |
| 234.3546 | 0.9191                  | 254.3047 | 0.0042         | 272.2547 | 3.4675         | 287.0648 | 0.0342         |  |  |  |  |
| 235.1746 | 0.0885                  | 255.0847 | 0.1250         | 272.4649 | 0.5774         | 287.1248 | 0.0937         |  |  |  |  |
| 236.1046 | 0.0264                  | 255.1347 | 0.0893         | 273.0848 | 0.1204         | 287.2248 | 2.4615         |  |  |  |  |
| 236.1746 | 1.9959                  | 255.2247 | 2.5163         | 273.1548 | 0.0186         | 287.4748 | 0.2100         |  |  |  |  |
| 237.1146 | 0.4275                  | 257.0847 | 0.2615         | 273.2446 | 5.6209         | 288.1348 | 0.0746         |  |  |  |  |
| 237.1846 | 0.2096                  | 257.2447 | 9.9473         | 274.1248 | 0.0445         | 288.2448 | 3.8648         |  |  |  |  |
| 238.1146 | 0.1309                  | 258.0947 | 0.0089         | 274.1548 | 0.0397         | 289.1048 | 0.6532         |  |  |  |  |
| 238.1946 | 0.4585                  | 258.2547 | 2.6433         | 274.2648 | 3.7285         | 289.2348 | 2.1219         |  |  |  |  |
| 238.3846 | 0.5329                  | 258.4347 | 0.6130         | 274.4148 | 1.4711         | 289.4048 | 0.8519         |  |  |  |  |
| 241.1046 | 0.0459                  | 259.1047 | 0.5426         | 275.1046 | 0.3641         | 289.4748 | 0.4913         |  |  |  |  |
| 241.1846 | 8.6071                  | 259.1947 | 35.7501        | 275.2648 | 2.0026         | 290.1748 | 0.0942         |  |  |  |  |
| 242.1048 | 0.1500                  | 259.4247 | 1.5590         | 276.0946 | 0.0630         | 290.2748 | 2.1742         |  |  |  |  |
| 242.1846 | 2.3154                  | 260.1147 | 0.4097         | 276.1648 | 0.1175         | 290.4048 | 0.0871         |  |  |  |  |
| 243.1046 | 1.3866                  | 260.1947 | 2.2763         | 276.2748 | 2.8756         | 291.0948 | 0.3923         |  |  |  |  |
| 243.1648 | 1.7026                  | 260.2547 | 3.3113         | 277.1146 | 6.0978         | 291.1948 | 0.1675         |  |  |  |  |

| <i>L. virosa</i> powder |           |          |           |          |           |                 |           |  |  |  |
|-------------------------|-----------|----------|-----------|----------|-----------|-----------------|-----------|--|--|--|
| m/7                     | Rel. Int. | m/7      | Rel. Int. | m/7      | Rel. Int. | m/7             | Rel. Int. |  |  |  |
| 110/2                   | %         | 111/2    | %         | 111/2    | %         | <i>III/ L</i> , | %         |  |  |  |
| 291.2750                | 1.7280    | 307.3449 | 0.8436    | 325.1150 | 0.0444    | 346.2749        | 0.0031    |  |  |  |
| 291.4148                | 0.7274    | 308.1360 | 0.0050    | 325.2850 | 0.0694    | 347.1649        | 0.0150    |  |  |  |
| 292.1148                | 0.1638    | 308.2349 | 0.0196    | 326.2950 | 0.2372    | 347.2851        | 0.2987    |  |  |  |
| 292.3148                | 2.0515    | 308.3315 | 1.5356    | 327.2850 | 2.0289    | 347.3651        | 0.6749    |  |  |  |
| 293.2947                | 0.0807    | 309.2849 | 0.0576    | 328.3248 | 3.3759    | 348.1851        | 0.0270    |  |  |  |
| 294.1098                | 0.0396    | 310.1349 | 0.0071    | 329.3150 | 2.6834    | 348.2949        | 0.1023    |  |  |  |
| 294.2147                | 0.0983    | 310.2449 | 1.5672    | 330.3350 | 0.3957    | 348.3751        | 1.3721    |  |  |  |
| 294.2949                | 1.7419    | 311.2749 | 5.1238    | 331.0950 | 0.1064    | 349.1101        | 0.0055    |  |  |  |
| 295.2347                | 0.1168    | 313.2749 | 0.0336    | 331.2950 | 1.3020    | 349.2151        | 0.0039    |  |  |  |
| 296.1649                | 0.0283    | 315.1148 | 0.0417    | 332.0950 | 0.0149    | 349.3351        | 1.0818    |  |  |  |
| 296.2549                | 1.0873    | 315.2248 | 0.0233    | 332.2150 | 0.0132    | 350.1649        | 0.0438    |  |  |  |
| 296.4747                | 0.3819    | 315.2998 | 0.6644    | 332.2950 | 0.0243    | 350.3151        | 0.0154    |  |  |  |
| 296.5247                | 0.1557    | 315.4448 | 0.2121    | 332.3550 | 1.5637    | 350.3751        | 1.2643    |  |  |  |
| 298.4049                | 0.5163    | 316.1150 | 0.0200    | 333.0950 | 0.0294    | 351.3351        | 0.5729    |  |  |  |
| 298.5049                | 0.1334    | 316.2250 | 0.0130    | 333.1750 | 0.0206    | 352.3251        | 0.4637    |  |  |  |
| 299.0949                | 0.0159    | 316.3048 | 1.5519    | 333.3450 | 1.0215    | 353.3451        | 0.2913    |  |  |  |
| 299.1949                | 0.0115    | 317.1250 | 0.0247    | 334.1550 | 0.0571    | 354.3351        | 3.5432    |  |  |  |
| 299.2749                | 0.8752    | 317.2348 | 0.0344    | 334.2350 | 0.0119    | 355.0751        | 0.4677    |  |  |  |
| 300.4249                | 0.0801    | 317.3150 | 1.5713    | 334.3350 | 1.6722    | 355.3550        | 2.5497    |  |  |  |
| 301.0949                | 0.0246    | 318.1048 | 0.0191    | 335.2049 | 0.0519    | 356.0750        | 0.0175    |  |  |  |
| 302.1449                | 0.0712    | 318.2950 | 1.9470    | 335.3249 | 0.7825    | 356.3550        | 0.8802    |  |  |  |
| 302.3049                | 1.7430    | 319.2348 | 0.0317    | 336.1849 | 0.0238    | 357.2950        | 0.0310    |  |  |  |
| 302.4149                | 0.1651    | 319.3050 | 1.2376    | 336.3251 | 3.2954    | 357.3850        | 0.0114    |  |  |  |
| 303.1249                | 0.1238    | 319.4450 | 0.7633    | 336.4749 | 0.6791    | 358.3650        | 0.9279    |  |  |  |
| 303.2249                | 0.0362    | 320.1648 | 0.0375    | 337.3451 | 0.8876    | 359.1350        | 0.0018    |  |  |  |
| 303.3049                | 2.0692    | 320.2350 | 0.0146    | 338.1951 | 0.0057    | 359.2250        | 0.0029    |  |  |  |
| 304.1549                | 0.0495    | 320.3148 | 1.9561    | 338.3449 | 53.2644   | 359.2952        | 0.0107    |  |  |  |
| 304.2349                | 3.5304    | 321.1550 | 0.0139    | 338.6049 | 0.7691    | 359.5150        | 0.0137    |  |  |  |
| 305.1549                | 0.1393    | 321.2350 | 0.0265    | 339.1049 | 0.0492    | 359.5850        | 0.0060    |  |  |  |
| 305.2349                | 0.1282    | 321.3150 | 0.8125    | 339.3251 | 10.1331   | 360.1550        | 0.1885    |  |  |  |
| 305.3149                | 1.7211    | 322.1748 | 0.0410    | 340.3449 | 2.2717    | 360.3150        | 0.3934    |  |  |  |
| 306.1649                | 0.1250    | 322.2450 | 0.0303    | 341.3149 | 2.6261    | 361.1550        | 0.0293    |  |  |  |
| 306.2749                | 1.0713    | 322.3248 | 1.2630    | 342.3149 | 2.0742    | 361.3250        | 1.1148    |  |  |  |
| 306.3549                | 1.5869    | 323.2548 | 0.1519    | 343.1649 | 0.0072    | 362.1652        | 0.0503    |  |  |  |
| 307.1149                | 0.0054    | 324.1750 | 0.1000    | 343.3351 | 0.1662    | 362.2650        | 0.0137    |  |  |  |
| 307.2749                | 0.3757    | 324.2650 | 0.4614    | 344.3951 | 0.2594    | 362.3750        | 0.8417    |  |  |  |

|          | <i>L. virosa</i> powder |          |                |          |                |          |                |  |  |  |  |
|----------|-------------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z      | Rel. Int.<br>%          | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |
| 363.1752 | 0.0469                  | 376.3351 | 0.3383         | 393.4453 | 0.0168         | 410.3854 | 0.0175         |  |  |  |  |
| 363.2452 | 0.0331                  | 376.5751 | 0.0747         | 394.1853 | 0.0350         | 411.1952 | 0.0646         |  |  |  |  |
| 364.1952 | 0.0447                  | 377.1851 | 0.0122         | 394.2653 | 0.0112         | 411.3852 | 0.2234         |  |  |  |  |
| 364.2550 | 0.0328                  | 377.3351 | 0.0587         | 394.3353 | 0.0257         | 411.6254 | 0.0080         |  |  |  |  |
| 365.1752 | 0.0022                  | 377.4251 | 0.0332         | 395.3653 | 0.0031         | 411.6954 | 0.0148         |  |  |  |  |
| 365.2750 | 0.2324                  | 377.5251 | 0.0049         | 396.3753 | 0.0282         | 412.2052 | 0.0487         |  |  |  |  |
| 365.4150 | 0.0603                  | 378.1851 | 0.0049         | 397.3852 | 0.0691         | 412.3852 | 0.0253         |  |  |  |  |
| 366.1952 | 0.0207                  | 378.2651 | 0.0395         | 398.2152 | 0.0023         | 413.3754 | 0.0060         |  |  |  |  |
| 366.4150 | 1.2805                  | 379.1751 | 0.0032         | 398.3950 | 0.0173         | 414.3854 | 0.0069         |  |  |  |  |
| 367.3352 | 0.3030                  | 379.2651 | 0.0127         | 399.3652 | 1.2099         | 415.3754 | 0.0506         |  |  |  |  |
| 368.3350 | 0.1465                  | 379.3451 | 0.2909         | 400.3552 | 0.2718         | 416.3652 | 0.1988         |  |  |  |  |
| 369.3452 | 2.7462                  | 380.2051 | 0.0317         | 400.4452 | 0.0325         | 418.2253 | 0.0679         |  |  |  |  |
| 369.4252 | 0.0479                  | 380.3451 | 0.0298         | 401.2252 | 1.6649         | 418.3653 | 0.0150         |  |  |  |  |
| 369.4852 | 0.0326                  | 381.3451 | 0.0180         | 401.3252 | 0.2220         | 419.1853 | 0.4211         |  |  |  |  |
| 369.5650 | 0.0570                  | 382.2951 | 0.0076         | 403.1952 | 0.0783         | 419.3253 | 1.6768         |  |  |  |  |
| 370.3352 | 0.7905                  | 382.3551 | 0.0212         | 403.2952 | 0.0531         | 420.2553 | 0.0260         |  |  |  |  |
| 371.1052 | 3.2860                  | 382.4351 | 0.0174         | 404.1552 | 0.0163         | 420.3153 | 0.5109         |  |  |  |  |
| 371.3152 | 30.6043                 | 383.2951 | 0.0015         | 404.2952 | 0.0311         | 421.3453 | 0.0297         |  |  |  |  |
| 371.5852 | 0.8122                  | 383.3651 | 0.2566         | 404.3752 | 0.0398         | 421.4653 | 0.0206         |  |  |  |  |
| 371.6750 | 0.0670                  | 383.4453 | 0.0160         | 405.1952 | 0.0109         | 422.2053 | 0.0209         |  |  |  |  |
| 371.7551 | 0.0449                  | 384.1251 | 0.0038         | 405.2752 | 0.4303         | 422.3453 | 0.0483         |  |  |  |  |
| 371.8352 | 0.0326                  | 384.2751 | 0.0046         | 405.3752 | 0.1585         | 422.4851 | 0.0134         |  |  |  |  |
| 372.1152 | 2.9842                  | 384.3051 | 0.0387         | 405.4552 | 0.0199         | 423.1753 | 0.0153         |  |  |  |  |
| 372.3152 | 4.9478                  | 384.3751 | 0.0230         | 406.1952 | 0.0271         | 423.2753 | 0.0031         |  |  |  |  |
| 372.6450 | 0.0067                  | 385.4851 | 0.0191         | 406.2852 | 1.2038         | 423.3753 | 0.0042         |  |  |  |  |
| 372.8352 | 0.1967                  | 387.2253 | 0.0431         | 406.3854 | 0.4040         | 424.2053 | 0.0014         |  |  |  |  |
| 372.9152 | 0.1263                  | 387.3353 | 0.1400         | 407.2652 | 0.0171         | 424.3753 | 0.0183         |  |  |  |  |
| 373.1052 | 1.0132                  | 387.6051 | 0.0129         | 407.3652 | 0.0105         | 425.3753 | 0.0125         |  |  |  |  |
| 373.3152 | 0.2508                  | 388.1351 | 0.3787         | 408.1952 | 0.0022         | 427.3953 | 0.0480         |  |  |  |  |
| 374.0952 | 0.0944                  | 390.3351 | 0.0099         | 408.3752 | 0.0331         | 427.4753 | 0.0114         |  |  |  |  |
| 374.3252 | 0.0420                  | 391.1753 | 0.0613         | 408.4554 | 0.0026         | 428.3955 | 0.0124         |  |  |  |  |
| 375.1052 | 0.1677                  | 391.2951 | 1.5858         | 409.2052 | 0.0076         | 428.4953 | 0.0092         |  |  |  |  |
| 375.2452 | 0.0190                  | 391.4851 | 0.2506         | 409.2752 | 0.0148         | 429.3853 | 0.0351         |  |  |  |  |
| 375.3152 | 0.3113                  | 392.2853 | 0.8783         | 409.3852 | 0.0398         | 429.4853 | 0.0040         |  |  |  |  |
| 376.1451 | 0.1222                  | 393.1853 | 0.0452         | 409.4654 | 0.0202         | 430.3853 | 0.0018         |  |  |  |  |
| 376.2551 | 0.0031                  | 393.3451 | 0.4208         | 410.2252 | 0.0260         | 431.2253 | 0.0069         |  |  |  |  |

| <i>L. virosa</i> powder |                |          |                |          |                |          |                |  |  |  |
|-------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|
| m/z                     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |
| 431.3053                | 0.0069         | 453.3554 | 0.0176         | 481.4956 | 0.0031         | 519.1457 | 1.1493         |  |  |  |
| 431.4753                | 0.0044         | 453.4654 | 0.0095         | 482.2154 | 0.0062         | 525.4256 | 0.0040         |  |  |  |
| 433.4753                | 0.0031         | 454.2154 | 0.0040         | 482.3354 | 0.0068         | 528.4256 | 0.0092         |  |  |  |
| 434.2653                | 0.0198         | 454.3454 | 0.0060         | 483.3856 | 0.0680         | 531.4058 | 0.0038         |  |  |  |
| 434.3955                | 0.0153         | 455.3556 | 0.0236         | 484.2254 | 0.0038         | 532.4158 | 0.0350         |  |  |  |
| 435.2253                | 0.1315         | 457.3754 | 0.0130         | 484.3956 | 0.0114         | 533.5258 | 0.0035         |  |  |  |
| 435.3553                | 0.0929         | 458.3853 | 0.0044         | 486.3854 | 0.1166         | 534.4858 | 0.0035         |  |  |  |
| 435.4655                | 0.0165         | 459.4855 | 0.0029         | 487.3854 | 0.0324         | 536.1858 | 4.0692         |  |  |  |
| 436.3353                | 0.0224         | 460.4155 | 0.1035         | 487.5256 | 0.0016         | 536.3158 | 0.0018         |  |  |  |
| 437.1955                | 0.0130         | 460.4955 | 0.0114         | 488.3956 | 0.0187         | 536.3858 | 0.0246         |  |  |  |
| 438.2154                | 0.0026         | 461.4255 | 0.0517         | 488.4656 | 0.0183         | 536.5358 | 0.0287         |  |  |  |
| 438.3552                | 0.0170         | 462.1355 | 0.3658         | 489.1956 | 0.0064         | 536.6058 | 0.0231         |  |  |  |
| 439.3652                | 0.0137         | 462.2055 | 0.0059         | 489.3756 | 0.0180         | 537.1858 | 1.4782         |  |  |  |
| 439.4554                | 0.0114         | 463.3855 | 0.0031         | 491.2156 | 0.0073         | 537.3958 | 0.1598         |  |  |  |
| 441.2154                | 0.0048         | 464.2255 | 0.0053         | 491.3756 | 0.0018         | 537.5058 | 0.1397         |  |  |  |
| 441.3754                | 0.0147         | 464.3855 | 0.0086         | 492.2256 | 0.0017         | 537.6158 | 0.0121         |  |  |  |
| 442.3854                | 0.0145         | 465.3955 | 0.0144         | 493.3056 | 0.0035         | 538.1758 | 1.0425         |  |  |  |
| 443.3854                | 0.0373         | 465.4855 | 0.0029         | 493.3856 | 0.0038         | 538.3158 | 0.0176         |  |  |  |
| 443.4754                | 0.0212         | 466.2355 | 0.0040         | 495.2656 | 0.0018         | 538.3858 | 0.1126         |  |  |  |
| 444.4054                | 0.0092         | 466.3355 | 0.0136         | 495.3856 | 0.0143         | 538.5058 | 0.0153         |  |  |  |
| 445.1154                | 0.7059         | 467.3955 | 0.0251         | 495.4456 | 0.0038         | 539.3658 | 0.0128         |  |  |  |
| 445.3754                | 0.0174         | 468.3955 | 0.0099         | 496.3256 | 0.0026         | 545.4757 | 0.0033         |  |  |  |
| 446.3854                | 0.0149         | 469.1855 | 0.0047         | 497.3956 | 0.0017         | 548.4657 | 0.0297         |  |  |  |
| 447.2254                | 0.0071         | 469.4055 | 0.0284         | 499.2156 | 0.0408         | 552.3859 | 0.0092         |  |  |  |
| 448.2054                | 0.0160         | 470.4155 | 0.0133         | 499.4256 | 0.0054         | 553.3957 | 0.0468         |  |  |  |
| 448.3254                | 0.0107         | 473.3755 | 0.0017         | 500.4255 | 0.0073         | 553.4957 | 0.0079         |  |  |  |
| 448.3854                | 0.0123         | 474.3855 | 0.0214         | 502.4155 | 0.0628         | 554.2359 | 0.0035         |  |  |  |
| 449.2154                | 0.0169         | 474.4655 | 0.0107         | 503.4155 | 0.0130         | 554.4057 | 0.0169         |  |  |  |
| 449.3254                | 0.0044         | 475.3855 | 0.0034         | 505.3955 | 0.0057         | 555.4559 | 0.0046         |  |  |  |
| 449.3954                | 0.0233         | 476.4955 | 0.0026         | 509.5257 | 0.0015         | 557.2457 | 0.0374         |  |  |  |
| 449.5154                | 0.0084         | 479.2956 | 0.0099         | 510.5357 | 0.0029         | 559.4459 | 0.0026         |  |  |  |
| 450.2154                | 0.7481         | 479.3754 | 0.0107         | 511.4357 | 0.0226         | 565.5258 | 0.0220         |  |  |  |
| 450.3454                | 0.1015         | 479.4854 | 0.0033         | 515.4257 | 0.0040         | 568.3858 | 0.0029         |  |  |  |
| 450.5154                | 0.0060         | 480.2454 | 0.0016         | 516.4257 | 0.0076         | 569.3858 | 0.0046         |  |  |  |
| 451.3454                | 0.0478         | 481.3254 | 0.0157         | 517.4457 | 0.0031         | 569.4958 | 0.0029         |  |  |  |
| 451.4254                | 0.0577         | 481.3954 | 0.0051         | 518.4357 | 0.0135         | 570.4058 | 0.0053         |  |  |  |

| L. virosa powder |                |          |                |          |                |           |                |  |  |  |  |
|------------------|----------------|----------|----------------|----------|----------------|-----------|----------------|--|--|--|--|
| m/z              | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z       | Rel. Int.<br>% |  |  |  |  |
| 571.4458         | 0.0035         | 663.6262 | 0.0137         | 676.6763 | 0.1398         | 1000.7873 | 0.0033         |  |  |  |  |
| 586.3959         | 0.0035         | 664.5662 | 0.0046         | 677.7063 | 0.0349         |           |                |  |  |  |  |
| 612.3560         | 0.0092         | 673.6463 | 0.0026         | 680.5963 | 0.0029         |           |                |  |  |  |  |
| 627.3361         | 0.0170         | 675.6761 | 0.3560         | 708.6463 | 0.1592         |           |                |  |  |  |  |

|         | L. virosa tincture |          |                |          |                |          |                |  |  |  |  |
|---------|--------------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z.    | Rel. Int.<br>%     | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |  |  |  |  |
| 55.0539 | 0.4970             | 85.0342  | 22.8336        | 102.0741 | 0.2782         | 123.0942 | 1.2548         |  |  |  |  |
| 57.0539 | 0.4844             | 85.0942  | 0.0360         | 103.0541 | 2.3055         | 124.0642 | 1.6116         |  |  |  |  |
| 58.0639 | 0.0058             | 85.1642  | 0.0139         | 103.1443 | 0.1964         | 124.1844 | 0.0395         |  |  |  |  |
| 59.0541 | 2.9723             | 86.0740  | 16.7892        | 104.0741 | 16.3730        | 125.0942 | 2.8790         |  |  |  |  |
| 60.0541 | 0.2543             | 86.1742  | 0.2899         | 104.1443 | 0.5671         | 125.2144 | 0.0237         |  |  |  |  |
| 60.1541 | 0.0254             | 87.0539  | 6.7747         | 104.2343 | 0.1046         | 126.0642 | 15.3962        |  |  |  |  |
| 61.0339 | 3.4185             | 87.1641  | 0.0636         | 105.0641 | 0.4006         | 127.0442 | 50.7053        |  |  |  |  |
| 61.1041 | 0.0059             | 88.0741  | 0.1885         | 105.1843 | 0.0056         | 127.1142 | 0.2813         |  |  |  |  |
| 62.0639 | 1.9033             | 89.0641  | 0.8807         | 106.0641 | 0.1486         | 127.2342 | 0.1648         |  |  |  |  |
| 65.0541 | 13.2232            | 90.0641  | 3.2696         | 107.0841 | 0.0470         | 127.9777 | 0.0231         |  |  |  |  |
| 66.0441 | 0.1654             | 90.1641  | 0.0320         | 108.0640 | 2.6654         | 128.0844 | 5.4905         |  |  |  |  |
| 67.0540 | 0.0403             | 91.0541  | 0.6253         | 108.1542 | 0.1048         | 128.2243 | 0.0726         |  |  |  |  |
| 68.0538 | 0.1585             | 91.1241  | 0.0054         | 109.0340 | 7.2498         | 128.9841 | 0.0105         |  |  |  |  |
| 69.0440 | 3.8341             | 92.0641  | 0.0074         | 109.0942 | 0.5405         | 129.0641 | 3.8215         |  |  |  |  |
| 70.0640 | 14.3307            | 93.0641  | 86.2202        | 110.0742 | 4.0597         | 130.0643 | 15.8839        |  |  |  |  |
| 70.1340 | 0.7894             | 93.1341  | 3.0504         | 110.2142 | 0.0543         | 130.2343 | 0.1916         |  |  |  |  |
| 71.0640 | 2.1893             | 94.0641  | 4.0943         | 111.0540 | 11.0583        | 131.0643 | 1.9277         |  |  |  |  |
| 72.0140 | 0.0267             | 94.1741  | 0.2941         | 111.1140 | 0.2617         | 131.2243 | 0.1562         |  |  |  |  |
| 72.0840 | 20.6334            | 95.0241  | 0.2574         | 111.2342 | 0.0097         | 132.1041 | 4.8741         |  |  |  |  |
| 72.1540 | 0.1622             | 95.0841  | 0.2603         | 112.0742 | 12.3242        | 133.0643 | 0.6116         |  |  |  |  |
| 72.2040 | 0.2536             | 96.0541  | 5.1887         | 113.0542 | 2.9993         | 133.2543 | 0.0168         |  |  |  |  |
| 73.0640 | 3.1015             | 96.1291  | 0.0432         | 114.0842 | 2.4637         | 134.0843 | 1.2902         |  |  |  |  |
| 74.0640 | 0.4162             | 97.0341  | 16.6866        | 114.2242 | 0.0584         | 134.1943 | 0.0557         |  |  |  |  |
| 74.1340 | 0.0252             | 97.0941  | 0.7141         | 115.0542 | 1.5215         | 134.2543 | 0.0969         |  |  |  |  |
| 75.0440 | 3.4158             | 97.1741  | 0.0155         | 115.1040 | 0.2458         | 135.1043 | 0.4114         |  |  |  |  |
| 75.1140 | 7.0032             | 97.2241  | 0.0086         | 115.2442 | 0.0391         | 136.0643 | 10.5194        |  |  |  |  |
| 76.0640 | 0.9824             | 97.2841  | 0.0019         | 116.0742 | 63.9511        | 136.2143 | 0.2406         |  |  |  |  |
| 77.0440 | 0.0316             | 97.9941  | 0.1586         | 116.2242 | 0.7743         | 136.4043 | 0.0165         |  |  |  |  |
| 78.0440 | 0.0026             | 98.0841  | 2.1062         | 117.0642 | 16.1067        | 137.0743 | 4.9197         |  |  |  |  |
| 79.0440 | 1.0473             | 99.0541  | 81.1174        | 117.2442 | 0.1261         | 137.1243 | 0.2140         |  |  |  |  |
| 80.0540 | 0.7430             | 99.1841  | 0.3019         | 118.0842 | 6.2852         | 137.2143 | 0.0054         |  |  |  |  |
| 81.0540 | 7.5924             | 100.0841 | 2.3445         | 118.2042 | 0.1919         | 137.2843 | 0.0278         |  |  |  |  |
| 82.0642 | 0.3183             | 100.2341 | 0.0189         | 120.0742 | 0.2514         | 138.0843 | 1.2663         |  |  |  |  |
| 83.0240 | 0.0551             | 100.9841 | 0.0811         | 120.2042 | 0.0112         | 139.0054 | 0.6395         |  |  |  |  |
| 83.0840 | 0.1352             | 101.0641 | 1.7797         | 121.0842 | 0.2578         | 139.1043 | 0.8009         |  |  |  |  |
| 84.0640 | 8.9980             | 101.1841 | 0.0114         | 122.0742 | 0.4051         | 139.2243 | 0.0094         |  |  |  |  |

| <i>L. virosa</i> tincture |           |          |           |          |           |          |           |  |  |  |
|---------------------------|-----------|----------|-----------|----------|-----------|----------|-----------|--|--|--|
| m/7                       | Rel. Int. | m/7      | Rel. Int. | m/7      | Rel. Int. | m/7      | Rel. Int. |  |  |  |
| 110/2                     | %         | nu 2,    | %         | 111/2    | %         | 111/2    | %         |  |  |  |
| 139.2643                  | 0.0214    | 158.9742 | 0.0024    | 185.1145 | 0.9730    | 204.1146 | 0.9465    |  |  |  |
| 140.0843                  | 2.7978    | 159.1244 | 0.2238    | 186.1145 | 1.8957    | 205.1046 | 0.8544    |  |  |  |
| 140.3143                  | 0.0168    | 160.0944 | 2.2477    | 186.9945 | 0.0024    | 205.1946 | 0.0475    |  |  |  |
| 141.1043                  | 0.5322    | 161.0844 | 0.0580    | 187.1245 | 0.3647    | 205.2646 | 0.0152    |  |  |  |
| 142.1043                  | 6.0176    | 162.0844 | 3.4184    | 188.0945 | 2.7316    | 205.3346 | 0.0291    |  |  |  |
| 142.1843                  | 0.4240    | 162.2244 | 0.1010    | 189.0356 | 0.2187    | 206.1146 | 2.0027    |  |  |  |
| 143.0343                  | 1.1083    | 163.0644 | 13.9876   | 189.1345 | 0.5880    | 207.0746 | 1.5373    |  |  |  |
| 143.0943                  | 3.1876    | 163.1344 | 0.2104    | 189.2345 | 0.0800    | 207.1546 | 1.1181    |  |  |  |
| 144.0843                  | 4.2536    | 164.0844 | 1.2235    | 189.3145 | 0.0570    | 208.1146 | 1.1963    |  |  |  |
| 144.1743                  | 0.0418    | 165.0844 | 1.0008    | 190.1244 | 1.5002    | 208.2096 | 0.0159    |  |  |  |
| 144.2443                  | 0.0164    | 165.1794 | 0.0708    | 190.2244 | 0.0881    | 209.1346 | 1.0262    |  |  |  |
| 145.0543                  | 28.9691   | 165.2744 | 0.0123    | 191.0678 | 1.7260    | 209.2746 | 0.0321    |  |  |  |
| 145.1243                  | 4.0350    | 166.0944 | 2.8014    | 191.1644 | 1.8296    | 210.1046 | 1.1305    |  |  |  |
| 145.2243                  | 0.1484    | 167.0944 | 1.4094    | 191.3244 | 0.1389    | 210.3596 | 0.0095    |  |  |  |
| 145.9868                  | 0.0102    | 167.2544 | 0.0635    | 192.1044 | 1.6900    | 211.1345 | 1.0502    |  |  |  |
| 146.0843                  | 4.2452    | 168.0944 | 1.6169    | 192.1644 | 0.6455    | 211.3145 | 0.0054    |  |  |  |
| 146.9943                  | 0.0084    | 168.2544 | 0.1018    | 193.0844 | 0.6471    | 212.1045 | 4.4881    |  |  |  |
| 147.0743                  | 1.8850    | 169.1144 | 0.0483    | 193.1544 | 0.0039    | 212.3345 | 0.0524    |  |  |  |
| 148.0745                  | 0.4206    | 170.0943 | 3.7552    | 194.0944 | 1.6141    | 213.1145 | 0.9010    |  |  |  |
| 149.0165                  | 0.0610    | 172.1243 | 2.6222    | 195.0946 | 0.9444    | 213.7345 | 0.0022    |  |  |  |
| 149.1142                  | 0.1607    | 173.1143 | 3.1302    | 196.0946 | 2.2276    | 214.0245 | 0.0019    |  |  |  |
| 150.0942                  | 1.5240    | 174.1143 | 1.6024    | 196.2794 | 0.0480    | 214.1245 | 2.0795    |  |  |  |
| 150.1542                  | 0.0340    | 175.1245 | 0.4022    | 197.1144 | 2.4647    | 215.1145 | 1.6819    |  |  |  |
| 150.2342                  | 0.0134    | 176.0945 | 1.2612    | 197.3344 | 0.0277    | 215.3245 | 0.0261    |  |  |  |
| 150.3142                  | 0.0069    | 177.0645 | 0.5933    | 198.1044 | 9.3761    | 215.3545 | 0.0237    |  |  |  |
| 151.0044                  | 0.0056    | 177.1443 | 0.1084    | 199.1044 | 0.9456    | 216.1245 | 9.5868    |  |  |  |
| 151.1042                  | 0.6425    | 178.0945 | 1.9071    | 199.1744 | 0.4416    | 216.3345 | 0.0822    |  |  |  |
| 152.1144                  | 3.4801    | 179.0845 | 0.7912    | 200.1244 | 4.8005    | 217.0770 | 0.9010    |  |  |  |
| 153.0844                  | 2.6211    | 180.0845 | 19.8471   | 201.0394 | 0.4178    | 217.1745 | 0.0869    |  |  |  |
| 154.0844                  | 3.2666    | 181.0032 | 0.0025    | 201.1444 | 1.0689    | 217.3645 | 0.0047    |  |  |  |
| 155.1044                  | 1.7963    | 181.1045 | 3.5200    | 201.3044 | 0.1424    | 218.0445 | 0.0021    |  |  |  |
| 156.1042                  | 3.3575    | 182.1045 | 9.8869    | 202.1244 | 2.6696    | 218.1345 | 4.8940    |  |  |  |
| 156.2744                  | 0.0504    | 182.9989 | 0.0045    | 202.2846 | 0.0892    | 219.1045 | 0.7868    |  |  |  |
| 157.1242                  | 0.2044    | 183.0945 | 2.3289    | 203.1144 | 0.1272    | 220.1145 | 0.9025    |  |  |  |
| 157.2644                  | 0.0204    | 184.0145 | 0.0020    | 203.1746 | 0.0621    | 220.3347 | 0.0774    |  |  |  |
| 158.1044                  | 4.2224    | 184.1145 | 2.8952    | 203.3346 | 0.0104    | 221.1845 | 0.2926    |  |  |  |

| L. virosa tincture |                |          |                |          |                |          |                |  |  |  |  |
|--------------------|----------------|----------|----------------|----------|----------------|----------|----------------|--|--|--|--|
| m/z                | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |  |  |  |  |
| 222.1245           | 0.7629         | 245.2246 | 0.1427         | 264.1249 | 0.5123         | 282.5246 | 0.0261         |  |  |  |  |
| 222.2947           | 0.0134         | 246.1148 | 1.3738         | 264.2447 | 0.1793         | 283.1848 | 0.1427         |  |  |  |  |
| 223.1247           | 0.7918         | 247.1246 | 0.6773         | 265.1547 | 0.3205         | 283.2648 | 0.4041         |  |  |  |  |
| 224.1147           | 1.5595         | 247.2248 | 0.0549         | 265.2449 | 0.0721         | 284.1548 | 0.4406         |  |  |  |  |
| 225.0447           | 0.3430         | 248.1346 | 1.9632         | 266.1447 | 1.3533         | 284.2648 | 0.0547         |  |  |  |  |
| 225.1447           | 0.8333         | 248.3297 | 0.0639         | 267.1547 | 0.2002         | 285.1048 | 0.2574         |  |  |  |  |
| 226.1247           | 0.9862         | 248.4046 | 0.0652         | 268.1149 | 4.9999         | 285.2748 | 0.1330         |  |  |  |  |
| 227.1347           | 0.4804         | 249.1646 | 0.2998         | 269.1347 | 0.7403         | 285.4148 | 0.0106         |  |  |  |  |
| 228.1247           | 0.4862         | 249.3148 | 0.0038         | 269.2147 | 0.2204         | 286.1348 | 0.3635         |  |  |  |  |
| 229.1047           | 0.6309         | 250.1548 | 0.6875         | 270.1247 | 0.9246         | 286.2748 | 0.0347         |  |  |  |  |
| 230.1047           | 4.2047         | 251.1648 | 0.4516         | 270.3849 | 0.0085         | 287.0648 | 0.0128         |  |  |  |  |
| 230.3547           | 0.0095         | 252.1247 | 0.9141         | 271.0847 | 1.7881         | 287.1248 | 0.3079         |  |  |  |  |
| 231.1247           | 0.4258         | 253.1047 | 0.8273         | 271.2347 | 0.1512         | 287.2248 | 0.0422         |  |  |  |  |
| 231.2147           | 0.0088         | 253.1847 | 0.3170         | 272.1349 | 0.8805         | 287.3048 | 0.0094         |  |  |  |  |
| 231.3247           | 0.0450         | 254.1145 | 1.0812         | 272.2547 | 0.0181         | 287.4748 | 0.0049         |  |  |  |  |
| 232.1346           | 2.4978         | 254.3047 | 0.0601         | 272.4649 | 0.0088         | 288.1348 | 1.0782         |  |  |  |  |
| 233.1346           | 0.5801         | 254.3547 | 0.0384         | 273.1548 | 0.1092         | 288.2448 | 0.1757         |  |  |  |  |
| 234.1346           | 5.4924         | 255.1347 | 0.0771         | 274.1248 | 0.4592         | 289.1048 | 1.5971         |  |  |  |  |
| 234.3546           | 0.0984         | 255.2247 | 0.0215         | 274.1548 | 0.0022         | 289.2348 | 0.2652         |  |  |  |  |
| 235.0846           | 0.7656         | 256.1447 | 0.7706         | 274.2648 | 0.0170         | 289.4748 | 0.0078         |  |  |  |  |
| 235.1746           | 0.2178         | 256.3447 | 0.0083         | 274.4148 | 0.0156         | 290.1748 | 0.9671         |  |  |  |  |
| 236.1046           | 1.1032         | 257.1647 | 0.0174         | 275.2046 | 0.3360         | 290.4048 | 0.0055         |  |  |  |  |
| 237.1146           | 0.5688         | 257.2447 | 0.0153         | 275.3848 | 0.0104         | 291.1948 | 0.4795         |  |  |  |  |
| 237.1846           | 0.0131         | 258.1647 | 0.3976         | 276.1648 | 0.7560         | 291.4148 | 0.0714         |  |  |  |  |
| 238.1146           | 0.9690         | 258.2547 | 0.0406         | 277.2148 | 1.9076         | 292.1148 | 0.4337         |  |  |  |  |
| 238.3846           | 0.0083         | 258.4347 | 0.0052         | 277.4548 | 0.0490         | 293.2148 | 0.8491         |  |  |  |  |
| 239.1446           | 0.3185         | 259.1047 | 0.1996         | 277.5248 | 0.0314         | 294.1098 | 0.3192         |  |  |  |  |
| 240.1246           | 0.8302         | 259.1947 | 0.0564         | 278.1248 | 1.1789         | 294.2147 | 0.2425         |  |  |  |  |
| 241.1046           | 0.2199         | 260.1147 | 1.1505         | 279.1546 | 0.2077         | 295.2347 | 1.1662         |  |  |  |  |
| 241.1846           | 0.2945         | 260.2547 | 0.0559         | 279.2348 | 2.5207         | 296.1649 | 0.5884         |  |  |  |  |
| 242.1048           | 0.8377         | 261.1147 | 1.2422         | 280.1448 | 0.6817         | 296.2549 | 0.4288         |  |  |  |  |
| 242.2846           | 0.0018         | 261.2247 | 0.0272         | 280.2446 | 0.5291         | 296.4747 | 0.0249         |  |  |  |  |
| 243.1046           | 1.1077         | 261.4647 | 0.0095         | 281.1448 | 0.0939         | 296.5247 | 0.0140         |  |  |  |  |
| 243.4048           | 0.0012         | 262.1847 | 1.1012         | 281.2448 | 2.0730         | 297.2449 | 1.9047         |  |  |  |  |
| 244.1148           | 0.6675         | 263.1347 | 0.4322         | 282.1548 | 0.5165         | 298.1649 | 0.1813         |  |  |  |  |
| 245.1246           | 0.5666         | 263.2347 | 0.7366         | 282.2648 | 0.5706         | 298.2749 | 0.6465         |  |  |  |  |

| L. virosa tincture |         |          |         |          |         |          |         |  |  |  |
|--------------------|---------|----------|---------|----------|---------|----------|---------|--|--|--|
|                    | Rol Int |          | Rel Int |          | Rol Int |          | Rol Int |  |  |  |
| m/z                | %       | m/z      | %       | m/z      | %       | m/z      | %       |  |  |  |
| 298.4049           | 0.0210  | 314.1548 | 0.3399  | 330.2350 | 0.0432  | 345.1849 | 0.4377  |  |  |  |
| 298.5049           | 0.0827  | 314.2448 | 0.3708  | 330.3350 | 0.1805  | 346.1751 | 0.2806  |  |  |  |
| 299.0949           | 0.0163  | 315.1148 | 0.0390  | 331.2250 | 0.0786  | 347.1649 | 0.0719  |  |  |  |
| 299.1949           | 0.3376  | 315.2248 | 0.1870  | 331.2950 | 0.1893  | 347.2851 | 0.0616  |  |  |  |
| 299.2749           | 0.3447  | 315.4448 | 0.0140  | 332.2150 | 0.3155  | 348.1851 | 0.1655  |  |  |  |
| 300.0949           | 0.3432  | 316.1150 | 0.2008  | 332.2950 | 0.1298  | 348.2949 | 0.2035  |  |  |  |
| 300.1949           | 0.2421  | 316.2250 | 0.0766  | 332.3550 | 0.0219  | 349.2151 | 0.0859  |  |  |  |
| 300.2947           | 0.0254  | 316.3048 | 0.0080  | 333.0950 | 0.0346  | 349.3351 | 0.0210  |  |  |  |
| 300.3749           | 0.0175  | 317.1250 | 0.0673  | 333.1750 | 0.1030  | 350.1649 | 0.2781  |  |  |  |
| 300.4249           | 0.0522  | 317.2348 | 0.0463  | 333.2350 | 0.0036  | 350.3151 | 0.0619  |  |  |  |
| 301.0949           | 0.2466  | 318.1048 | 0.1187  | 333.3450 | 0.0014  | 350.3751 | 0.0322  |  |  |  |
| 301.2949           | 0.0018  | 318.2248 | 0.1028  | 334.1550 | 0.3051  | 351.1751 | 0.0947  |  |  |  |
| 302.1449           | 0.3641  | 319.2348 | 0.1312  | 334.3350 | 0.0291  | 352.1751 | 0.2430  |  |  |  |
| 302.3049           | 0.0325  | 319.4450 | 0.0098  | 335.2049 | 0.1908  | 352.2451 | 0.0178  |  |  |  |
| 302.4149           | 0.0077  | 320.1648 | 0.2574  | 336.1849 | 0.2791  | 352.3251 | 0.0096  |  |  |  |
| 303.1249           | 0.1556  | 321.1550 | 0.0322  | 336.4749 | 0.0144  | 353.1851 | 0.0947  |  |  |  |
| 303.3049           | 0.0034  | 321.2350 | 0.1311  | 337.2049 | 0.1807  | 353.2651 | 0.0817  |  |  |  |
| 304.1549           | 0.4068  | 322.1748 | 0.3484  | 338.1951 | 0.2028  | 354.1951 | 0.1371  |  |  |  |
| 304.2349           | 0.0582  | 322.2450 | 0.0373  | 338.2649 | 0.0656  | 354.2651 | 0.1633  |  |  |  |
| 304.3649           | 0.0045  | 323.1750 | 0.1827  | 338.3449 | 0.1823  | 354.3351 | 0.0161  |  |  |  |
| 305.1549           | 0.3228  | 323.2548 | 0.1528  | 338.4251 | 0.0060  | 355.1950 | 0.0372  |  |  |  |
| 305.2349           | 0.0088  | 324.1750 | 0.6387  | 338.4849 | 0.0065  | 355.2950 | 0.2003  |  |  |  |
| 306.1649           | 0.9700  | 324.2650 | 0.0437  | 338.6049 | 0.0286  | 356.1950 | 0.1296  |  |  |  |
| 306.2749           | 0.0922  | 325.1150 | 0.3213  | 339.1849 | 0.1121  | 356.2850 | 0.0841  |  |  |  |
| 307.1149           | 0.3207  | 325.1950 | 0.0627  | 339.3251 | 0.0167  | 356.3550 | 0.0024  |  |  |  |
| 307.1949           | 0.1688  | 325.2850 | 0.1976  | 340.2651 | 0.1544  | 357.2050 | 0.1242  |  |  |  |
| 307.2749           | 0.1466  | 326.1850 | 0.6579  | 340.3449 | 0.0145  | 357.2950 | 0.0945  |  |  |  |
| 308.1360           | 0.5117  | 326.2950 | 0.0718  | 341.1349 | 0.0300  | 357.3850 | 0.0208  |  |  |  |
| 308.2349           | 0.0016  | 327.1950 | 0.1386  | 341.2149 | 0.1150  | 358.2950 | 0.0049  |  |  |  |
| 309.2149           | 0.4180  | 327.2850 | 0.1775  | 341.3149 | 0.0885  | 358.3650 | 0.0773  |  |  |  |
| 309.2849           | 0.2916  | 328.1300 | 0.1257  | 342.1451 | 0.7480  | 359.2250 | 0.1942  |  |  |  |
| 310.1349           | 0.2021  | 328.2250 | 0.1661  | 343.1649 | 0.2582  | 359.2952 | 0.0034  |  |  |  |
| 310.2449           | 0.1673  | 328.3248 | 0.1081  | 343.2351 | 0.0365  | 359.3850 | 0.0020  |  |  |  |
| 311.2349           | 0.3547  | 329.2350 | 0.1032  | 343.3351 | 0.0731  | 359.5150 | 0.0098  |  |  |  |
| 312.1649           | 0.3177  | 329.3150 | 0.0449  | 344.1751 | 1.3761  | 360.1550 | 0.5086  |  |  |  |
| 313.2749           | 0.4723  | 330,1650 | 0.2162  | 344.3951 | 0.0700  | 360.3150 | 0.0369  |  |  |  |

| <i>L. virosa</i> tincture |                |          |                |          |                |          |                |
|---------------------------|----------------|----------|----------------|----------|----------------|----------|----------------|
| m/z                       | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z      | Rel. Int.<br>% |
| 361.1550                  | 0.0606         | 372.1152 | 0.0824         | 384.2751 | 0.0067         | 398.2952 | 0.0282         |
| 361.2352                  | 0.1699         | 372.2352 | 0.1118         | 384.3051 | 0.0548         | 398.4752 | 0.0083         |
| 361.3250                  | 0.0130         | 372.3152 | 0.5768         | 385.2151 | 0.1000         | 399.2252 | 0.0666         |
| 362.1652                  | 0.2301         | 372.8352 | 0.0036         | 385.3151 | 0.0309         | 399.3652 | 0.0126         |
| 362.2650                  | 0.1457         | 373.1752 | 0.1101         | 385.4851 | 0.0060         | 400.1552 | 0.0455         |
| 362.3750                  | 0.0376         | 373.2452 | 0.0031         | 386.2153 | 0.1523         | 400.2352 | 0.0766         |
| 363.1752                  | 0.1174         | 373.3152 | 0.0731         | 386.3351 | 0.1103         | 400.3552 | 0.0641         |
| 363.2452                  | 0.0402         | 373.4052 | 0.0024         | 387.2253 | 0.0486         | 401.2252 | 0.0842         |
| 364.1952                  | 0.1965         | 374.1652 | 0.1279         | 387.2853 | 0.0026         | 401.3252 | 0.1034         |
| 364.2550                  | 0.0742         | 374.2652 | 0.1659         | 387.3353 | 0.0030         | 401.4652 | 0.0102         |
| 365.1752                  | 0.0236         | 375.1752 | 0.0757         | 388.1351 | 0.1541         | 402.2252 | 0.0344         |
| 365.2750                  | 0.0905         | 375.2452 | 0.0015         | 388.2653 | 0.0946         | 402.3352 | 0.1680         |
| 365.4150                  | 0.0099         | 375.3152 | 0.0288         | 388.3451 | 0.1361         | 403.1952 | 0.0460         |
| 366.1952                  | 0.0864         | 376.1451 | 0.1067         | 388.4351 | 0.0241         | 403.2952 | 0.0182         |
| 366.2652                  | 0.0121         | 376.3351 | 0.0026         | 388.5351 | 0.0086         | 403.3652 | 0.0070         |
| 366.2950                  | 0.0779         | 377.1851 | 0.1477         | 389.2653 | 0.1310         | 404.1552 | 0.2877         |
| 367.2050                  | 0.0811         | 377.2551 | 0.0070         | 390.1353 | 0.0218         | 405.1952 | 0.0340         |
| 367.2750                  | 0.0361         | 377.4251 | 0.0193         | 390.2551 | 0.0717         | 405.2752 | 0.0566         |
| 367.3352                  | 0.0105         | 377.5251 | 0.0089         | 390.3351 | 0.0162         | 405.4552 | 0.0042         |
| 368.1252                  | 0.0599         | 378.1851 | 0.2553         | 391.2951 | 0.0170         | 406.1952 | 0.0895         |
| 368.2052                  | 0.1326         | 379.1751 | 0.0728         | 391.3901 | 0.0053         | 406.2852 | 0.0715         |
| 368.2652                  | 0.0186         | 379.2651 | 0.0115         | 392.1851 | 0.1687         | 406.3854 | 0.0101         |
| 368.3350                  | 0.0180         | 379.3451 | 0.0221         | 392.2853 | 0.0053         | 407.1754 | 0.0326         |
| 369.2150                  | 0.1349         | 380.2051 | 0.1621         | 393.1853 | 0.0440         | 407.2652 | 0.0448         |
| 369.3452                  | 0.0356         | 380.2851 | 0.0493         | 393.2652 | 0.0153         | 408.4554 | 0.0025         |
| 369.4252                  | 0.0015         | 381.1951 | 0.0993         | 393.3451 | 0.0313         | 409.2052 | 0.0396         |
| 369.4852                  | 0.0020         | 381.2851 | 0.0021         | 394.1853 | 0.1813         | 409.2752 | 0.0295         |
| 369.5650                  | 0.0069         | 381.4153 | 0.0040         | 394.2653 | 0.0387         | 409.3852 | 0.0730         |
| 370.2150                  | 0.2042         | 382.1951 | 0.0641         | 394.3353 | 0.0374         | 410.2252 | 0.1204         |
| 370.3352                  | 0.0998         | 382.2951 | 0.1433         | 395.1953 | 0.1061         | 410.3854 | 0.0166         |
| 371.1052                  | 0.0634         | 382.4351 | 0.0025         | 396.2053 | 0.1314         | 411.1952 | 0.0088         |
| 371.3152                  | 2.0783         | 383.1951 | 0.0528         | 396.2853 | 0.1452         | 411.2952 | 0.0460         |
| 371.5852                  | 0.0658         | 383.2951 | 0.0224         | 397.2152 | 0.0604         | 411.3852 | 0.0068         |
| 371.6750                  | 0.0327         | 383.3651 | 0.0034         | 397.2950 | 0.0448         | 412.1252 | 0.0026         |
| 371.7551                  | 0.0078         | 384.1251 | 0.0461         | 397.3852 | 0.0266         | 412.2052 | 0.0231         |
| 371.8352                  | 0.0012         | 384.2051 | 0.0440         | 398.2152 | 0.1365         | 412.2954 | 0.0840         |

| <i>L. virosa</i> tincture |                                                 |          |        |          |        |          |        |  |
|---------------------------|-------------------------------------------------|----------|--------|----------|--------|----------|--------|--|
| ,                         | , Rel. Int. , Rel. Int. , Rel. Int. , Rel. Int. |          |        |          |        |          |        |  |
| m/z                       | %                                               | m/z      | %      | m/z      | %      | m/z      | %      |  |
| 412.3852                  | 0.0170                                          | 425.3753 | 0.0102 | 439.2903 | 0.0149 | 458.2354 | 0.0777 |  |
| 413.2152                  | 0.0568                                          | 425.4553 | 0.0055 | 439.3652 | 0.0130 | 458.3853 | 0.0128 |  |
| 413.3052                  | 0.0173                                          | 426.3153 | 0.1520 | 439.4554 | 0.0013 | 459.1855 | 0.0037 |  |
| 414.2154                  | 0.0578                                          | 427.2253 | 0.0033 | 440.2054 | 0.0131 | 459.3053 | 0.0247 |  |
| 414.3154                  | 0.1205                                          | 427.2953 | 0.0237 | 441.2154 | 0.0070 | 460.3053 | 0.0652 |  |
| 414.3854                  | 0.0183                                          | 427.4753 | 0.0018 | 441.2954 | 0.0095 | 460.4955 | 0.0032 |  |
| 414.6152                  | 0.0046                                          | 428.2353 | 0.0238 | 441.3754 | 0.0034 | 461.3055 | 0.0222 |  |
| 415.1554                  | 0.0310                                          | 428.2953 | 0.1189 | 441.4754 | 0.0061 | 461.4255 | 0.0041 |  |
| 415.2254                  | 0.0721                                          | 428.4953 | 0.0150 | 442.3054 | 0.1555 | 462.2055 | 0.0441 |  |
| 415.3004                  | 0.0210                                          | 429.2353 | 0.0083 | 442.3854 | 0.1099 | 462.3053 | 0.0551 |  |
| 415.3754                  | 0.0167                                          | 429.3053 | 0.0338 | 443.2954 | 0.0282 | 463.3153 | 0.0124 |  |
| 416.2354                  | 0.0845                                          | 430.2353 | 0.0122 | 443.3854 | 0.0261 | 464.2255 | 0.0367 |  |
| 416.3652                  | 0.0670                                          | 430.3053 | 0.0481 | 444.2954 | 0.2452 | 464.3155 | 0.0020 |  |
| 417.1753                  | 0.0182                                          | 430.3853 | 0.0035 | 445.3054 | 0.0366 | 465.2255 | 0.0016 |  |
| 417.2553                  | 0.0015                                          | 431.2253 | 0.0102 | 445.4454 | 0.0032 | 465.3255 | 0.0064 |  |
| 417.3053                  | 0.0127                                          | 431.3053 | 0.0203 | 446.3054 | 0.1410 | 465.3955 | 0.0016 |  |
| 417.3753                  | 0.0031                                          | 431.3853 | 0.0088 | 447.3254 | 0.0264 | 466.2355 | 0.0435 |  |
| 417.4553                  | 0.0074                                          | 432.1853 | 0.0242 | 448.2054 | 0.0585 | 466.3355 | 0.0242 |  |
| 418.2253                  | 0.0979                                          | 432.3153 | 0.0856 | 448.3254 | 0.0016 | 466.5055 | 0.0041 |  |
| 418.2953                  | 0.0669                                          | 432.3955 | 0.0076 | 449.2154 | 0.0022 | 467.3255 | 0.0080 |  |
| 418.3653                  | 0.0013                                          | 433.2555 | 0.0526 | 449.3254 | 0.0095 | 467.3955 | 0.0020 |  |
| 418.4553                  | 0.0148                                          | 433.3253 | 0.0019 | 449.3954 | 0.0083 | 468.3955 | 0.0020 |  |
| 419.1853                  | 0.0066                                          | 434.1953 | 0.0213 | 450.2154 | 0.0733 | 469.3353 | 0.0076 |  |
| 419.3253                  | 0.0438                                          | 434.2653 | 0.0150 | 450.3454 | 0.0457 | 469.4055 | 0.0016 |  |
| 420.2553                  | 0.0287                                          | 434.3353 | 0.0279 | 450.5154 | 0.0057 | 470.4155 | 0.0111 |  |
| 420.3153                  | 0.0216                                          | 434.3955 | 0.0027 | 451.2254 | 0.0177 | 470.5055 | 0.0050 |  |
| 421.2753                  | 0.0511                                          | 435.2253 | 0.0516 | 451.3454 | 0.0138 | 471.2455 | 0.0142 |  |
| 422.2053                  | 0.0822                                          | 435.3553 | 0.0176 | 452.4854 | 0.0031 | 471.3255 | 0.0011 |  |
| 422.3453                  | 0.0474                                          | 435.4655 | 0.0013 | 453.3554 | 0.0124 | 471.3855 | 0.0063 |  |
| 422.4851                  | 0.0025                                          | 436.3353 | 0.0303 | 454.2154 | 0.0502 | 472.2555 | 0.0263 |  |
| 423.1753                  | 0.0399                                          | 437.1955 | 0.0313 | 454.4956 | 0.0074 | 472.3455 | 0.0351 |  |
| 423.2753                  | 0.0179                                          | 437.2753 | 0.0071 | 455.2856 | 0.0146 | 473.2255 | 0.0038 |  |
| 424.2653                  | 0.0850                                          | 437.3455 | 0.0011 | 455.3556 | 0.0033 | 473.3755 | 0.0040 |  |
| 424.3753                  | 0.0216                                          | 438.2154 | 0.0328 | 456.2854 | 0.0259 | 474.3855 | 0.1072 |  |
| 425.2053                  | 0.0115                                          | 438.3552 | 0.0119 | 457.2256 | 0.0024 | 475.3855 | 0.0106 |  |
| 425.2853                  | 0.0725                                          | 439.2154 | 0.0248 | 457.3054 | 0.0149 | 476.3155 | 0.0502 |  |

| <i>L. virosa</i> tincture |                                         |          |        |          |        |          |        |
|---------------------------|-----------------------------------------|----------|--------|----------|--------|----------|--------|
|                           | Rel. Int. Rel. Int. Rel. Int. Rel. Int. |          |        |          |        |          |        |
| m/z                       | %                                       | m/z      | %      | m/z      | %      | m/z      | %      |
| 476.4055                  | 0.0017                                  | 494.2256 | 0.0169 | 515.4257 | 0.0033 | 538.5058 | 0.0050 |
| 477.1957                  | 0.0151                                  | 494.3656 | 0.0126 | 516.3457 | 0.0128 | 539.3658 | 0.0035 |
| 477.2955                  | 0.0045                                  | 495.3056 | 0.0086 | 517.3257 | 0.0068 | 540.4358 | 0.0054 |
| 478.3255                  | 0.0162                                  | 496.3256 | 0.0070 | 518.3457 | 0.0057 | 541.3457 | 0.0051 |
| 478.4355                  | 0.0032                                  | 497.3256 | 0.0055 | 518.5157 | 0.0026 | 542.3357 | 0.0011 |
| 479.2154                  | 0.0116                                  | 498.3256 | 0.0327 | 519.3457 | 0.0061 | 542.4157 | 0.0032 |
| 479.2956                  | 0.0056                                  | 498.5356 | 0.0035 | 520.3356 | 0.0020 | 544.3857 | 0.0076 |
| 479.3754                  | 0.0110                                  | 499.2156 | 0.0054 | 521.2156 | 0.0036 | 545.3257 | 0.0059 |
| 480.2454                  | 0.0155                                  | 499.3256 | 0.0059 | 521.3356 | 0.0046 | 545.4057 | 0.0025 |
| 481.3254                  | 0.0091                                  | 500.3455 | 0.0210 | 521.4056 | 0.0028 | 546.2857 | 0.0046 |
| 482.2154                  | 0.0069                                  | 501.2257 | 0.0066 | 521.5256 | 0.0031 | 546.3157 | 0.0013 |
| 482.4756                  | 0.0011                                  | 501.3255 | 0.0028 | 522.2656 | 0.0023 | 546.4557 | 0.0037 |
| 482.5256                  | 0.0030                                  | 502.3355 | 0.0193 | 522.4256 | 0.0018 | 547.3357 | 0.0022 |
| 483.3156                  | 0.0117                                  | 502.4155 | 0.0093 | 523.2456 | 0.0068 | 547.4657 | 0.0022 |
| 483.5356                  | 0.0019                                  | 503.3255 | 0.0132 | 523.3256 | 0.0027 | 548.3459 | 0.0091 |
| 484.2254                  | 0.0298                                  | 503.4155 | 0.0017 | 525.3358 | 0.0062 | 549.2757 | 0.0033 |
| 484.3956                  | 0.0045                                  | 504.2857 | 0.0260 | 526.2056 | 0.0102 | 550.3757 | 0.0028 |
| 484.5456                  | 0.0047                                  | 504.4555 | 0.0059 | 526.4156 | 0.0048 | 550.5657 | 0.0024 |
| 485.3354                  | 0.0089                                  | 505.3255 | 0.0075 | 526.5658 | 0.0026 | 551.3759 | 0.0038 |
| 485.4056                  | 0.0016                                  | 506.2555 | 0.0365 | 527.2156 | 0.0026 | 552.3859 | 0.0085 |
| 486.2256                  | 0.0255                                  | 507.3155 | 0.0035 | 527.3456 | 0.0032 | 552.4959 | 0.0038 |
| 486.3254                  | 0.0018                                  | 507.5155 | 0.0022 | 527.4256 | 0.0024 | 552.5857 | 0.0020 |
| 486.3854                  | 0.1250                                  | 508.3557 | 0.0147 | 528.3458 | 0.0112 | 553.2157 | 0.0019 |
| 487.3854                  | 0.0396                                  | 508.5257 | 0.0027 | 529.2658 | 0.0052 | 553.3157 | 0.0021 |
| 487.5256                  | 0.0224                                  | 509.2255 | 0.0095 | 529.4156 | 0.0020 | 554.4957 | 0.0033 |
| 488.2556                  | 0.0178                                  | 509.3255 | 0.0067 | 531.3158 | 0.0041 | 555.3859 | 0.0028 |
| 488.3956                  | 0.0097                                  | 509.4055 | 0.0040 | 532.2258 | 0.0020 | 556.2459 | 0.0014 |
| 488.5456                  | 0.0058                                  | 509.5257 | 0.0025 | 532.3358 | 0.0093 | 556.3659 | 0.0061 |
| 489.1956                  | 0.0129                                  | 510.4157 | 0.0014 | 533.2707 | 0.0031 | 556.4359 | 0.0028 |
| 489.3756                  | 0.0075                                  | 511.3257 | 0.0080 | 533.5258 | 0.0016 | 558.3759 | 0.0059 |
| 490.3254                  | 0.0388                                  | 512.2057 | 0.0103 | 534.3656 | 0.0090 | 559.3359 | 0.0052 |
| 491.2156                  | 0.0132                                  | 512.5757 | 0.0019 | 535.4458 | 0.0015 | 560.3459 | 0.0061 |
| 491.3056                  | 0.0040                                  | 513.3357 | 0.0036 | 536.1858 | 0.0030 | 560.4159 | 0.0058 |
| 492.3356                  | 0.0124                                  | 514.3357 | 0.0203 | 536.3158 | 0.0027 | 561.2359 | 0.0022 |
| 493.3056                  | 0.0144                                  | 514.4157 | 0.0019 | 537.5058 | 0.0037 | 562.2558 | 0.0016 |
| 493.3856                  | 0.0106                                  | 515.2357 | 0.0045 | 538.3158 | 0.0129 | 562.3458 | 0.0040 |

| spectrum ap | spectrum appears in Figure 5.4B. |          |                |          |                |          |                |
|-------------|----------------------------------|----------|----------------|----------|----------------|----------|----------------|
|             | L. virosa tincture               |          |                |          |                |          |                |
| m/z         | Rel. Int.<br>%                   | m/z.     | Rel. Int.<br>% | m/z      | Rel. Int.<br>% | m/z.     | Rel. Int.<br>% |
| 562.4358    | 0.0035                           | 574.4460 | 0.0026         | 590.3959 | 0.0048         | 618.3960 | 0.0033         |
| 563.3558    | 0.0027                           | 575.4260 | 0.0031         | 594.3759 | 0.0027         | 618.5260 | 0.0019         |
| 564.2758    | 0.0038                           | 576.3458 | 0.0081         | 595.3559 | 0.0026         | 619.3860 | 0.0019         |
| 564.3558    | 0.0022                           | 577.3458 | 0.0019         | 599.5061 | 0.0021         | 620.3260 | 0.0027         |
| 566.3758    | 0.0031                           | 577.5258 | 0.0035         | 600.3861 | 0.0025         | 620.3960 | 0.0022         |
| 566.5358    | 0.0027                           | 578.3660 | 0.0024         | 601.5259 | 0.0025         | 624.4759 | 0.0017         |
| 567.3858    | 0.0031                           | 578.5260 | 0.0028         | 603.5360 | 0.0154         | 626.3359 | 0.0017         |
| 568.3858    | 0.0057                           | 584.3959 | 0.0036         | 604.5458 | 0.0100         | 632.4161 | 0.0025         |
| 570.4058    | 0.0035                           | 585.3859 | 0.0027         | 606.4060 | 0.0049         | 634.3261 | 0.0022         |
| 571.3958    | 0.0024                           | 586.3959 | 0.0048         | 608.3760 | 0.0026         | 634.4661 | 0.0016         |
| 572.3758    | 0.0055                           | 588.4059 | 0.0024         | 612.3560 | 0.0026         | 638.5761 | 0.0022         |
| 572.4458    | 0.0019                           | 589.3959 | 0.0019         | 617.5160 | 0.0032         |          |                |



**Figure A3.2** Identification result for *D. innoxia* seed analyzed by DART-HRMS in our laboratory. Panels A-C present three bar plots displaying the probabilities for identification of the family, genus and species levels acquired using the fused classifier; (D) Bar plot showing the probabilities associated with the identification of the family, genus, and species by the embedded classifiers (i.e., SVM, RF, K-NN and the fused classifier) in the hierarchical classification tree. DoPP identified the material as Solanceae, *Datura*, and *innoxia* with probabilities of 0.88, 0.72, and 0.65 for the averaged spectra of three DART-HRMS replicates.



**Figure A3.3** Identification result for *D. wrightii* seed analyzed by DART-HRMS in our laboratory. Panels A-C present three bar plots displaying the probabilities for identification of the family, genus and species levels respectively, acquired using the fused classifier; (D) Bar plot showing the probabilities associated with the identification of the family, genus, and species by the embedded classifiers (i.e., SVM, RF, K-NN and the fused classifier) in the hierarchical classification tree. DoPP identified the material as Solanceae, *Datura*, and *wrightii* with probabilities of 0.80, 0.82, and 0.48 for the averaged spectra of three DART-HRMS replicates.



**Figure A3.4** Identification result for *D. innoxia* seed analyzed by DART-HRMS in the ETEC laboratory. Panels A-C present three bar plots displaying the probabilities for identification of the family, genus and species levels acquired using the fused classifier; (D) Bar plot showing the probabilities associated with the identification of the family, genus, and species by the embedded classifiers (i.e., SVM, RF, K-NN and fused classifier) in the hierarchical classification tree. DoPP identified the material as Solanceae, *Datura*, and *innoxia* with probabilities of 0.86, 0.86, and 0.69 for the averaged spectra of three replicates.



**Figure A3.5** Identification result for *D. wrightii* seed analyzed by DART-HRMS in the ETEC laboratory. Panels A-C present three bar plots displaying the probabilities for identification of the family, genus and species levels acquired using the fused classifier; (D) Bar plot showing the probabilities associated with the identification of the family, genus, and species by the embedded classifiers (i.e., SVM, RF, K-NN and fused classifier) in the hierarchical classification tree. DoPP identified the material as Solanceae, *Datura*, and *wrightii* with probabilities of 0.68, 0.79, and 0.48 for the averaged spectra of three replicates.



**Figure A3.6** Identification result for *R. communis* castor oil (a species that is not represented in the database) analyzed by DART-HRMS. DoPP detected the material as an outlier and the sample is classified as "Not Detected".



**Figure A3.7** Identification result for plastic bag sample analyzed by DART-HRMS. DoPP detected the material as an outlier and presented the result as "Not Detected".



**Figure A3.8** Identification result for a *Salvia miltiorrhiza* tablet (a species that is not represented in the database) analyzed by DART-HRMS. Panels B-D present three bar plots displaying the probabilities for identification of the family, genus and species levels acquired using the fused classifier. While DoPP shows a computed result in each level, the material is suggested to be non-assigned based on the appearance of the pink background color, since the family probability is 0.31, which is lower than the computed threshold (0.45) for Rubiaceae class.



**Figure A3.9** (A) Identification result for a *D. wrightii* spectrum that was not corrected for background following analysis by DART-HRMS. Panels B-D present three bar plots displaying the probabilities for identification of the family, genus and species levels acquired using the fused classifier. While DoPP shows a computed result at each level, it nevertheless suggests that the sample is unclassified, which is indicated by the appearance of the pink background color. This is because the probability for the family classification is lower than the threshold of 0.45 for the Asteraceae class (with a value of 0.26).

| Measured<br>Mass | Molecular<br>Formula             | Compound              | Species                                                                                                                                                                                                                                                |
|------------------|----------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 47.0511          | $\left[C_{2}H_{6}O+H\right]^{+}$ | Dimethyl ether        | D. occulta, D. oliveri, D. spruceana, D maritima, D. cochininchensis,<br>D. maritima, D. occulta, D. melanoxylon, D. cearensis, D.<br>madagascariensis, D. melanoxylon, D. latifolia, D. cearensis, D.<br>stevensonii, D. normandii and D. decipularis |
| 57.0690          | $\left[C_4H_8+H\right]^+$        | Cyclobutane           | D. stevensonii and D. normandii                                                                                                                                                                                                                        |
| 59.0482          | $[C_3H_6O+H]^+$                  | Acetone               | D. baronii, D. cearensis, D. decipularis, D. stevensonii, D. cearensis,<br>D. tucurensis, D. spruceana, D. maritima, D. occulta, D.<br>madagascariensis, D. latifolia, D. melanoxylon, D. nigra, D.<br>normandii, D. purprascens, and D. retusa        |
| 59.0633          | $[C_2H_6N_2 + H]^+$              | Azomethane            | D. latifolia and D. retusa                                                                                                                                                                                                                             |
| 59.0928          | -                                | -                     | -                                                                                                                                                                                                                                                      |
| 59.1425          | -                                | -                     | -                                                                                                                                                                                                                                                      |
| 60.0644          | $C_2H_8N_2^+$                    | 1,2-Dimethylhydrazine | D. cochinchinensis and D. decipularis                                                                                                                                                                                                                  |
| 61.0636          | $[C_3H_8O+H]^+$                  | Isopropanol           | D. cochinchinensis                                                                                                                                                                                                                                     |
| 61.0761          | $\left[C_2H_8N_2+H\right]^+$     | 1,2-Dimethylhydrazine | D. cochinchinensis and D. decipularis                                                                                                                                                                                                                  |
| 65.0596          | -                                | _                     | -                                                                                                                                                                                                                                                      |
| 67.0713          | -                                | -                     | -                                                                                                                                                                                                                                                      |
| 69.0945          | -                                | -                     | -                                                                                                                                                                                                                                                      |
| 71.0863          | $[C_5H_{10} + H]^+$              | 1-Pentene             | D. madagascariensis and D. melanoxylon                                                                                                                                                                                                                 |
| 73.0654          | $\left[C_4H_8O+H\right]^+$       | Isobutyraldehyde      | D. cearensis, D. decipularis, and D. stevensonii                                                                                                                                                                                                       |
| 73.0900          | -                                | -                     | -                                                                                                                                                                                                                                                      |
| 74.0612          | $[C_3H_7NO + H]^+$               | Dimethylformamide     | D. baronii and D. occulta                                                                                                                                                                                                                              |
| 75.0310          | _                                |                       | -                                                                                                                                                                                                                                                      |

| Measured<br>Mass | Molecular<br>Formula        | Compound            | Species                                                                                                                                                                                                                                               |
|------------------|-----------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 75.0500          | $[C_{3}H_{6}O_{2} + H]^{+}$ | Acetol              | D. baronii, D. cearensis, D. cochinchinensis, D. decipularis, D.<br>stevensonii, D. tucurensis, D. spruceana, D. latifolia, D. maritima, D.<br>madagascariensis, D. melanoxylon, D. nigra, D. normandii, D.<br>oliveri, D. purprascens, and D. retusa |
| 76.0904          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 81.0717          | $[C_6H_8+H]^+$              | 1,4-Cyclohexadiene  | D. latifolia                                                                                                                                                                                                                                          |
| 83.0848          | $[C_6H_{10} + H]^+$         | (E,E)-2,4-Hexadiene | D. cearensis and D. decipularis                                                                                                                                                                                                                       |
| 83.1002          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 87.1684          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 89.0604          | $[C_4H_8O_2 + H]^+$         | Butyric Acid        | D. stevensonii                                                                                                                                                                                                                                        |
| 90.2040          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 91.0457          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 93.0355          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 93.0710          | $[C_7H_8+H]^+$              | Toluene             | D. baronii, D. cearensis, D. decipularis, D. tucurensis, D. spruceana,<br>D. maritima, D. cochinchinensis, D. oliveri, D. occulta, D.<br>madagascariensis, D. latifolia, D. melanoxylon, D. normandii, D.<br>purprascens, D. retusa and D. nigra      |
| 93.0893          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 93.1108          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 93.1259          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 93.1364          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 94.0671          | -                           | -                   | -                                                                                                                                                                                                                                                     |
| 97.0289          | $[C_5H_4O_2 + H]^+$         | 3-Furaldehyde       | D. baronii, D. cearensis, D. stevensonii, D. tucurensis, D. spruceana,<br>D. maritima, D. cochinchinensis, D. oliveri, D. occulta, D.                                                                                                                 |

| Measured<br>Mass | Molecular<br>Formula         | Compound              | Species                                                                                                                                                                                                                                              |
|------------------|------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                              |                       | madagascariensis, D. latifolia, D. melanoxylon, D. normandii, D. purprascens, D. retusa, D. nigra and D. decipularis                                                                                                                                 |
| 97.0768          | -                            | -                     | -                                                                                                                                                                                                                                                    |
| 101.0602         | -                            | -                     | -                                                                                                                                                                                                                                                    |
| 103.0740         | $[C_5H_{10}O_2 + H]^+$       | Pentanoic Acid        | D. spruceana, D. madagascariensis, D. baronii, D. latifolia, D. melanoxylon and D. nigra                                                                                                                                                             |
| 107.0482         | $[C_7H_6O+H]^+$              | Benzaldehyde          | D. baronii, D. cearensis, D. decipularis, D. stevensonii, D. tucurensis,<br>D. spruceana, D. maritima, D. cochinchinensis, D. oliveri, D.<br>madagascariensis, D. latifolia, D. melanoxylon, D. normandii, D.<br>purprascens, D. retusa and D. nigra |
| 109.1102         | -                            | -                     | -                                                                                                                                                                                                                                                    |
| 117.0358         | -                            | -                     | -                                                                                                                                                                                                                                                    |
| 117.0460         | -                            | -                     | -                                                                                                                                                                                                                                                    |
| 117.0856         | -                            | -                     | -                                                                                                                                                                                                                                                    |
| 127.0365         | $\left[C_6H_6O_3+H\right]^+$ | Maltol                | D. occulta, D. madagascariensis, D. baronii, D. latifolia, D.<br>normandii, D. retusa and D. nigra                                                                                                                                                   |
| 127.1223         | -                            | -                     | -                                                                                                                                                                                                                                                    |
| 128.1142         | -                            | -                     | -                                                                                                                                                                                                                                                    |
| 133.0632         | $[C_9H_8O + H]^+$            | (E)-Cinnamaldehyde    | D. baronii, D. cearensis, D. decipularis, D. stevensonii, D. tucurensis,<br>D. spruceana, D. maritima, D. cochinchinensis, D. oliveri, D. occulta,<br>D. madagascariensis, D. latifolia, D. melanoxylon, D. normandii, D.<br>retusa and D. nigra     |
| 133.0735         | $[C_8H_8N_2+H]^+$            | 5-Methylbenzimidazole | D. madagascariensis and D. occulta                                                                                                                                                                                                                   |
| 133.1972         | -                            | -                     | -                                                                                                                                                                                                                                                    |
| 133.2250         | -                            | _                     | -                                                                                                                                                                                                                                                    |

| Measured | Molecular                                       | Compound                        | Species                                                                                                                                                                                   |
|----------|-------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 125 0075 | Formula                                         |                                 |                                                                                                                                                                                           |
| 135.0975 | -                                               | -                               | -                                                                                                                                                                                         |
| 135.2767 | -                                               | -                               | -                                                                                                                                                                                         |
| 130.0283 | -                                               | -                               | -                                                                                                                                                                                         |
| 137.1189 | -                                               | -                               | -                                                                                                                                                                                         |
| 15/.1/1/ | -                                               | -                               | -<br>D baronii D cearensis D stevensonii D tucurensis D spruceana                                                                                                                         |
| 140.0446 | C <sub>7</sub> H <sub>8</sub> O <sub>3</sub> +* | 3-Methoxycatechol               | D. maritima, D. cochinchinensis, D. oliveri, D. occulta, D.<br>madagascariensis, D. latifolia, D. melanoxylon. D. normandii, and D.<br>retusa                                             |
| 141.1643 | -                                               | -                               | -                                                                                                                                                                                         |
| 149.0441 | _                                               | -                               | -                                                                                                                                                                                         |
| 149.1239 | -                                               | -                               | -                                                                                                                                                                                         |
| 149.1350 | -                                               | -                               | -                                                                                                                                                                                         |
| 151.1430 | _                                               | -                               | -                                                                                                                                                                                         |
| 157.1264 | $[C_9H_{16}O_2 + H]^+$                          | trans-3-Methyl-4-<br>octanolide | D. stevensonii, D. tucurensis, D. maritima, D. melanoxylon, D. purpascens, and D. nigra                                                                                                   |
| 158.1294 | $C_9H_{18}O_2^+$                                | Nonanoic acid                   | D. stevensonii, D. tucurensis, D. cearensis, D. spruceana, D.<br>maritima, D. cochinchinensis, D. occulta, D. madagascariensis, D.<br>latifolia, D. melanoxylon, D. baronii and D. retusa |
| 159.1244 | -                                               | -                               | -                                                                                                                                                                                         |
| 163.1281 | -                                               | -                               | -                                                                                                                                                                                         |
| 167.0929 | -                                               | -                               | -                                                                                                                                                                                         |
| 167.1136 | -                                               | -                               | -                                                                                                                                                                                         |
| 167.1785 | -                                               | -                               | -                                                                                                                                                                                         |
| 167.2440 | -                                               | -                               | -                                                                                                                                                                                         |

| Measured | Molecular               | Compound       | Species                                                                                                                            |
|----------|-------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| Mass     | Formula                 | Compound       | Species                                                                                                                            |
| 169.1297 | -                       | -              | -                                                                                                                                  |
| 169.1437 | -                       | -              | -                                                                                                                                  |
| 171.1521 | -                       | _              | -                                                                                                                                  |
| 172.1404 | -                       | _              | -                                                                                                                                  |
| 174.1593 | -                       |                | -                                                                                                                                  |
| 175.0952 | -                       | _              | -                                                                                                                                  |
| 177.1127 | -                       | _              | -                                                                                                                                  |
| 177.2715 | -                       | _              | -                                                                                                                                  |
| 178.1723 | -                       | _              | -                                                                                                                                  |
| 185.1574 | -                       | _              | -                                                                                                                                  |
| 188.1585 | -                       | _              | -                                                                                                                                  |
| 191.0655 | -                       | _              | -                                                                                                                                  |
| 191.1789 | -                       | _              | -                                                                                                                                  |
| 194.0935 | -                       |                | -                                                                                                                                  |
| 195.1384 | -                       | _              | -                                                                                                                                  |
| 195.1652 | -                       | -              | -                                                                                                                                  |
| 195.1759 | $[C_{13}H_{22}O + H]^+$ | Geranylacetone | D. decipularis and D. latifolia                                                                                                    |
| 199.3238 | -                       | _              | -                                                                                                                                  |
| 205.1950 | $[C_{15}H_{24} + H]^+$  | β-Bisabolene   | D. cearensis, D. decipularis, D. stevensonii, D. tucurensis, D. baronii,<br>D. madagascariensis, D. melanoxylon and D. purprascens |
| 205.2799 | -                       | _              | -                                                                                                                                  |
| 208.1097 | -                       | -              | -                                                                                                                                  |
| 221.1921 | $[C_{15}H_{24}O+H]^+$   | Humulenol II   | D. cearensis and D. baronii                                                                                                        |
| 221.2777 | -                       |                | -                                                                                                                                  |

| Measured | Molecular              | Compound   | Species                                                                                                                                                                                                                      |
|----------|------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mass     | Formula                |            |                                                                                                                                                                                                                              |
| 222.1846 | -                      | -          | -                                                                                                                                                                                                                            |
| 222.2238 | -                      | -          | -                                                                                                                                                                                                                            |
| 223.0606 | -                      | -          | -                                                                                                                                                                                                                            |
| 225.1225 | -                      | -          | _                                                                                                                                                                                                                            |
| 227.2774 | $[C_{16}H_{34} + H]^+$ | Hexadecane | D. decipularis, D. stevensonii, D. cearensis, D. tucurensis, D.<br>spruceana, D. maritima, D. cochinchinensis, D. oliveri, D.<br>madagascariensis, D. latifolia, D. baronii, D. melanoxylon, D.<br>purprascens, and D. nigra |
| 233.1612 | -                      | -          | -                                                                                                                                                                                                                            |
| 233.1755 | -                      | -          | -                                                                                                                                                                                                                            |
| 258.1060 | -                      | -          | -                                                                                                                                                                                                                            |
| 277.2295 | -                      | -          | _                                                                                                                                                                                                                            |
| 277.3491 | -                      | -          | _                                                                                                                                                                                                                            |
| 277.5766 | -                      | _          | -                                                                                                                                                                                                                            |
| 278.3430 | -                      | _          | -                                                                                                                                                                                                                            |
| 279.2224 | -                      | -          | -                                                                                                                                                                                                                            |
| 294.3706 | -                      | _          | -                                                                                                                                                                                                                            |
| 294.5362 | -                      | _          | -                                                                                                                                                                                                                            |
| 313.2388 | -                      | _          | _                                                                                                                                                                                                                            |
| 371.1072 | -                      | -          | -                                                                                                                                                                                                                            |
| 371.1186 | -                      | -          | _                                                                                                                                                                                                                            |
| 371.3912 | -                      | -          | -                                                                                                                                                                                                                            |
| 371.4867 | -                      | -          | -                                                                                                                                                                                                                            |
| 372.1120 | -                      | -          | _                                                                                                                                                                                                                            |



**Figure A4.1** Head-to-tail plots showing the comparison of the EI mass spectral fragmentation pattern of isopropanol (bottom) from the NIST mass spectral library to that of the EI mass spectrum from *D. cochinchinensis* (top).



**Figure A4.2** Head-to-tail plots showing the comparison of the EI mass spectral fragmentation pattern of 3-Furaldehydel (bottom) from the NIST mass spectral library to that of the EI mass spectrum from *D. nigra* (top).