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ABSTRACT 

 Salivary gland development in embryonic mouse occurs through the process of branching 

morphogenesis and differentiation to ultimately give rise to a fully functional, saliva-secreting 

adult gland. During branching morphogenesis, epithelial cells establish an apical and basal pole 

which determines the ultimate direction in which salivary fluid and proteins are secreted. Exactly 

how salivary tissue polarity is determined on a cellular and glandular level is not fully 

understood. Rac1, a member of the Rho GTPase family, is an intracellular signal transducer that 

has been shown in other cell types to regulate cell polarization. Rac1 is also important for the 

organization of apical adherens junction (e.g. E-cadherin) and tight junction (ZO-1, claudin-3) 

proteins. I hypothesized that Rac1 and its upstream activator, Tiam1, are required for salivary 

gland polarization. Previous data from our laboratory showed that chemical inhibitors of Rac1, 

NSC23766 and EHT1864, significantly inhibited growth and branching morphogenesis of 

embryonic E13 mouse submandibular salivary glands. Further, Rac1 inhibition also resulted in 

mislocalization of basement membrane matrix proteins to the apical side along with 

mislocalization of apical proteins, PAR3 and PAR6, to the basal side, hinting at a role for Rac1 

during salivary gland branching morphogenesis and polarization. In this study, I found that 

inappropriate deposition of basement membrane proteins to the apical side was not due to 

aberrant endocytic vesicle trafficking upon Rac1 inhibition. I also confirmed that mislocalization 

and decreased expression of PAR proteins 3 and 6 and PKC zeta occurred with Rac1 inhibition, 

implicating Rac1 in mediating polarity since Rac1 inhibition deregulated the PAR, the master 

polarity regulator proteins. Further, I showed that the Rac1-specific guanine exchange factor 

(GEF), Tiam1, previously shown to be required for salivary gland branching morphogenesis, was 

not only strongly expressed by salivary gland cells, and localized basally, but it also decreased 
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with Rac1 inhibition suggesting  a positive feedback loop with Rac1. The results of my study 

provide novel functions for Rac1 GTPase in the development and polarization of salivary glands 

and will eventually help us to understand the role of Rac1 in salivary gland disease conditions 

such as Sjögren‟s syndrome in which Rac1 expression is known to be deregulated.   
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MATERIALS AND METHODS 

Materials  

Antibodies used were anti-Tiam1(Santa Cruz Biotechnology, sc-872), anti ZO-1 (Invitrogen, 33-

9100), anti-claudin-3 (Invitrogen, 34-1700), anti-E-cadherin (BD Biosciences, 610182), anti-

laminin-111 (Invitrogen), anti-collagen IV-(Millipore, AB756P), anti-PARD3 (Abcam, ab4840), 

anti-PAR6 (Abcam, ab45394),  anti-integrin α6 (BD Biosciences, 555734), anti-PKC zeta 

(Santacruz Biotechnology, sc-7262), anti-PAR1b (Santa Cruz Biotech, sc-46607), DAPI and 

Rhodamine-phalloidin was from Molecular Probes. Phenylarsine oxide (PAO) was obtained 

from Invitrogen and (dissolved in DMSO). NSC23766 (Calbiochem) and EHT1864 (Sigma) 

were dissolved in DMEM-F12 phenol-red free media at a stock concentration of 10 mM.  

Cell lines 

SIMS, Sca-9, (adult mouse submandibular salivary gland ductal epithelial cells) and SMGC10 

(adult rat submandibular salivary gland acinar epithelial cells) were cultured as previously 

described (Daley et al., 2009; Laoide et al., 1996; Quissell et al., 1997). All cells were grown at 

37˚C in a humidified incubator in 95% air/5% CO2. 

Embryonic submandibular salivary gland culture 

The day of discovery of a vaginal plug was determined as embryonic day 0 (E0). Timed pregnant 

adult female CD-1 mice (Charles River) were euthanized following protocols approved by the 

UAlbany IACUC committee, dissected, and their embryos are harvested at embryonic day 13 

(E13). The submandibular salivary glands (SMGs) were removed from the embryos with a sterile 
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scalpel and fine forceps under a dissecting microscope. Whole SMGs were cultured as 

previously described (Daley et al., 2009). The SMGs were placed on porous Nucleopore Track-

Etch membranes (0.1 µm) floating on 200 μl of DMEM/F12 medium supplemented with 150 

μg/ml Vitamin C, 50 μg/ml Transferrin and 1X penicillin/streptomycin in 50 mm Mattek glass-

bottom microwell dishes. Where indicated in the figures, Rac1 pharmaceutical inhibitors 

NSC23766 (25-100 µm) and EHT1864 (5-10 µm) were dissolved in DMEM:F12 media and 

added directly to the media under the glands. All plates were incubated at 37˚C in a humidified 

incubator in 95% air/5% CO2 for the indicated time points. Brightfield images were captured 

using a Nikon TS-100 microscope with a digital camera at 4x magnification at the initial time 

point (2 hours) and every 24 hours thereafter. 

Immunofluorescence staining and Confocal microscopy 

Immunostaining was performed essentially as described (Larsen et al., 2003). SMGs or cells 

were prepared for immunostaining by fixation in 4% paraformaldehyde with 5% sucrose in 1 x 

phosphate buffered saline (PBS) for 20-30 minutes, washed in 1x PBS, 0.5% Tween-20 (1x PBS-

Tween), then permeabilized with 0.1% Triton X-100 in 1x PBS for 15-20 minutes, washed in 1x 

PBS-Tween, and finally, blocked with 20% donkey serum in PBS-Tween containing 1 drop of 

M.O.M. blocking reagent (Vector Laboratories) for at least 1 hour. The SMGs or cells were 

incubated with primary antibodies (1:100) in a 200µl volume overnight at 4˚C with gentle 

shaking. The samples were washed 4x for 10 minutes in 1x PBS-Tween. They were then 

incubated with cyanine dye-conjugated secondary antibodies (1:200) for 2 hours at room 

temperature in 200 µl volumes in the dark with gentle shaking. Nuclei were stained with DAPI 

added to the secondary Ab solution at a dilution of 1:5,000. Actin was stained with Rhodamine-
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phalloidin added to the secondary antibody solution at a dilution of 1:300. The samples were 

washed 4x for 10 minutes in 1x PBS-Tween. SMGs were mounted on glass slides with 70 µm 

Secure-Seal imaging spacers in 35 μL of mounting solution (Biomedia Gel Mount/PPD at a 

1:100 ratio) and imaged on a Leica SP5 confocal microscope at 20X or 63X magnification. All 

confocal imaging was done by Dr. Sharon Sequeira from the Larsen laboratory. All confocal 

images within a given experiment were captured using the same laser intensity settings and the 

same gain settings so that intensities of each signal could be compared. 

Western blot analysis 

SMGs or cells were lysed by adding ice-cold RIPA buffer (including complete protease inhibitor 

cocktail and phos-STOP phosphatase inhibitor cocktail, Roche) (~10 μL/gland) on ice, vortexing 

every 5 minutes for 20 minutes and sonicating briefly with a probe sonicator. Cell debris was 

cleared by centrifugation at high speed (16,000 g) for 20 minutes. Protein concentration of the 

supernatants was assayed using 2-3 μL of obtained protein lysates using a Micro BCA assay kit 

(Pierce). Approximately 3-10 μg of protein was loaded per lane on 4-20% NuPAGE Bis-Tris 

SDS-PAGE Gels (Invitrogen). Proteins on the gels were electrophoresed for 1 hour and 30 

minutes at a constant 150 volts, transferred to a PVDF membrane for 1 hour and 30 minutes at 

30 volts on ice, blocked in 5% non-fat dry milk in TBS-Tween, washed (4X for 15 mins) then 

incubated in primary antibodies (1:500 - 1:1000 in 1% milk-TBS-T) overnight at 4˚C on a rotary 

shaker. Blots were washed the next day (4X for 15 mins), incubated in HRP-conjugated 

secondary antibodies (1:2,000 dilutions in 1% milk-TBS-T) for 2 hours at room temperature on a 

rotary shaker, then developed with ECL or SuperSignal chemiluminescent dection agent (Pierce) 

for 3 minutes and imaged on a film developer using X-Ray film. X-rays were scanned and 
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densitometric quantification of blots was done using ImageJ software (NIH) and graphed using 

MS-Excel. GAPDH, a house keeping gene, is used as a loading control (Barber et al., 2005).  On 

same PVDF membrane, whole blot would be cut into smaller blots to separate the size of 

GAPDH and size of protein that was looked for. These sliced membranes were blotted with their 

specific primary antibodies. Protein expression of protein in question was found by dividing the 

densitometry of protein in question by that of GAPDH. Statistics performed using GraphPad 

(Prism 5.0) software.   
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Chapter 1. The role of Rac1 signaling in branching morphogenesis during salivary gland 

development. 

INTRODUCTION 

Salivary gland development 

In order for complex ordered structures such as mammalian organs to be formed, many 

organs undergo the process of branching morphogenesis in which different types of cells and 

molecular programs have to interact. Several organs like the salivary glands, pancreas, lungs, 

kidneys and mammary glands initiate branching morphogenesis early during embryonic 

development (Tucker, 2007). The submandibular salivary gland (SMG) is one of three major 

salivary glands and is responsible for secreting the majority of salivary fluid produced in 

mammals.  In the developing mouse embryonic submandibular gland (SMG), branching 

morphogenesis occurs when the oral epithelium thickens and a single bud grows on a stalk into 

mesenchymal connective tissue at around embryonic day 12 (E12). Clefts, or indentations in the 

basement membrane, start to form in the epithelial bud resulting in 3-5 epithelial buds at E13 

with corresponding ducts. The gland undergoes repeated rounds of clefting and proliferation, 

duct elongation, and lumen formation until it forms a highly branched structure by E18. 

Concomitantly with changes in morphogenesis, the SMG also undergoes tissue polarization 

(development of apical and basal surfaces) and eventually cellular differentiation (saliva protein 

and fluid secretion). The hollow, single cell layer, secretory end pieces or „acini‟ of the 

submandibular gland secrete the fluid and mucus components of saliva, which in humans can 

equal 1-1.5L per day, along with numerous salivary proteins, antibodies and enzymes. Together, 

these serve to lubricate the oral cavity, facilitate swallowing, aid in digestion and protect teeth 
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from dental cavities as well as the oral mucosa from microbial growth and diseases. The acinar 

secretions are carried into the mouth via tubular interconnected ducts made up of ductal cells 

which further modify the ionic concentrations of saliva (Patel et al., 2006). These early 

morphogenetic events are closely recapitulated in ex vivo-grown SMG cultures (Figure 1), 

which can therefore be used to study the molecular and signaling pathways controlling SMG 

branching morphogenesis. 

Rac GTPase expression, signaling, and function  

The small GTPase protein, Rac, is a key member of the Rho GTPase family of signaling 

proteins. There are three different Rac isoforms - Rac1, 2 and 3. Rac1 is ubiquitously expressed 

and its deficiency results in embryonic lethality in mice by E9.5, even before the salivary glands 

develop (Sugihara et al., 1998). Lack of Rac2 expression allows normal development but results 

in hematopoietic cell defects. Rac3 is highly expressed in the brain (Wennerberg and Der, 2004). 

Microarray data from the salivary gland  mRNA database (available at sgmap.nidcr.nih.gov) 

shows that all three isoforms are expressed early in SMG development with Rac1 mRNA 

showing highest expression (Figure 2A) around E13-E17stages, which is, coincidentally, when 

SMG morphogenesis occurs. Further, Western blot analysis for total Rac 1/2/3 protein levels at 

different days of development confirms Rac protein expression in the SMGs (Figure 2B, C). 

Although there is abrupt disappearance of Rac protein expression at E17, this might be due to 

post transcriptional regulation of the protein. Nevertheless, Rac can be studied in SMGs because 

it is expressed. Whether Rac functions in mammalian SMG development is currently unknown; 

however, it was shown that Drosophila larval salivary glands fail to develop normally or migrate 

posteriorly compared to wild type flies if the Rac1 gene is knocked out (Pirraglia et al., 2006), 

suggesting that Rac1 plays an important role in salivary gland development. 



2hr 24hr 48hr 96hr

E13  Glands (ex vivo)

SMG

SLG

Acini

DuctEpithelium

Mesenchyme

Figure 1. Embryonic mouse salivary glands continue to undergo branching

morphogenesis in culture. Brightfield microscopic images of submandibular (SMG)

and sublingual (SLG) salivary glands isolated from mouse embryos on embryonic day

13 (E13) and cultured for the indicated times. Glands show significant cell

proliferation, bud clefting, and duct elongation during branching morphogenesis.

Mesenchyme condenses around the epithelial cells as branching progresses. Epithelial

cells eventually differentiate to form acini, which secrete saliva, and ducts that modify

and transport the saliva into the oral cavity.
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Rac1/2/3

GAPDH

(A)

(B)

Figure 2. Rac GTPase is abundantly expressed during early SMG development.

(A) Graph of Rac mRNA levels from the online salivary gland developmental

expression database (http://sgmap.nidcr.nih.gov) shows all three Rac isoforms are

expressed in SMG development with Rac1 showing highest expression at E13 -E17

stages. (B) Western blots for total Rac (1/2/3) protein from SMG lysates at different

days of development. GAPDH was used as loading control. Panel B was performed by

Dr. Sharon Sequeira, Larsen Lab. (C) Densitometric quantification of the Western blot

in Figure 2B with Rac normalized to GAPDH.
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Rac1 acts as a „molecular switch‟ by existing in either an “ON” or activated conformation 

when it is bound to GTP or an “OFF” or inactivated conformation when it is bound to GDP 

(Figure 3). Activation of Rac is regulated by GEFs (guanine exchange factors) such as the Rac-

specific GEF, T-lymphoma invasion and metastasis 1(Tiam1), while GTP hydrolysis and 

consequently Rac deactivation is promoted by GTPase -activating proteins (GAPs), such as α1-

Chimaerin and β2-Chimaerin (Caloca et al., 2003; Marland et al., 2011). Rac1 regulates multiple 

cellular functions including cell-cell and cell-matrix adhesions, actin cytoskeleton organization, 

transcription, cell proliferation (Bosco et al., 2009), polarity (Iden and Collard, 2008), cell 

migration (Ridley, 2001), and endocytic trafficking (Ridley, 2006). Interestingly, all of these 

functions are also a part of branching morphogenesis but whether and how Rac1 may play a role 

in mammalian salivary branching morphogenesis is not known. 

Tiam1 signaling and function 

Tiam1 is a Rac-specific GEF which promotes the exchange of GDP for GTP, thus 

converting Rac1 to its active form. In epithelial cells, Tiam1 stimulates actin nucleation to create 

lamellipodia and filopodia (Georgiou and Baum, 2010). In keratinocytes, Tiam1 controls 

polarization of migratory cells (Pegtel et al., 2007). Microarray data from the online salivary 

gland mRNA database (available at sgmap.nidcr.nih.gov) shows that Tiam1 mRNA is expressed 

during SMG development (data not shown). Even though Tiam1 contributes to the activity of 

Rac1and functions in cell migration, polarization, and actin cytoskeleton organization, its 

function in salivary gland cells is not known. I therefore hypothesized that Tiam1-mediated 

activation of Rac1signaling is required for embryonic mouse salivary gland branching 

morphogenesis. 



GTPase -activating 
proteins

Inactive or 
“OFF” Conformation

Rac 1

GDP

Active or 
“ON” Conformation

Rac 1

GTP

(Tiam1)
Guanine exchange factor

Polarization

Figure 3. Rac1 GTPase activity is regulated by a ‘molecular switch’ mechanism.

Rac1 is activated or in an “ON” or conformation when it is bound to GTP or an “OFF”

or inactivated conformation when it is bound to GDP. Activation of Rac is regulated

by GEFs (guanine exchange factors) such as the Rac-specific GEF, Tiam1 (T-

lymphoma invasion and metastasis), while GTP hydrolysis and consequently Rac

deactivation is promoted by GAPs (GTPase-activating proteins). Activated Rac has

been shown in non-salivary cell types to regulate functions such as cell-cell adhesion

and polarization and endocytic protein trafficking within cells.

Cell-cell adhesion Endocytic trafficking
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Inhibition of Rac1 and Tiam1 signaling 

 To study Rac signaling, commercially available, structurally distinct chemical inhibitors 

of Rac, NSC23766 and EHT1864, were used for the experiments described in this thesis. 

NSC23766 (Gao et al., 2004) was shown to  act by binding to the GTP site of Rac and inhibit 

GEF interaction thus maintaining Rac in an “OFF” or “inactive” conformation. EHT1864 

(Shutes et al., 2007) binds to the GTP binding region of Rac and destabilizes the binding of GTP 

to Rac, thus inactivating the protein. NSC2377 is Rac1 GTPase-specific whereas EHT1864 not 

only bind to Rac1 but to other isoforms of Rac. Concentrations to be used for each Rac inhibitors 

were determined by dose curve done by Dr. Sharon Sequiera. IC50 of NSC23766 was about 

50µM and effective dose was known be around 50µM to 100 µM. IC50 of EHT1864 was much 

lower than NSC23766. EHT1864 is about 10-fold more potent than NSC23766 (Desire et al., 

2005). It was previously determined in the lab the concentration of inhibition used throughout 

the experiment inhibits the Rac without affecting the total levels of Rac expression and without 

affecting other Rho GTPase family activity. E13 mouse SMGs were isolated and cultured ex vivo 

in the presence or absence of each of these inhibitors to test the effects of inhibition of Rac 

signaling on processes involved in SMG branching morphogenesis. Since no chemical inhibitors 

specific for Tiam1 inhibition are commercially available, we used siRNA techniques to 

knockdown Tiam1 expression in E13 SMGs and tested the effect on SMG branching. 
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RESULTS 

Pharmaceutical inhibitors of Rac activity block SMG branching morphogenesis 

I first tested whether Rac1 activity was required for embryonic SMG branching morphogenesis. 

E13 glands were treated with two different pharmaceutical Rac-specific inhibitors, NSC23766 

and EHT 1864, for 24 hours. For Rac1 to be activated, the catalytic domain of the GEF interacts 

with Rac1 to facilitate GTP binding to Rac1. These small molecule inhibitors target this 

interaction specifically, causing Rac1 to remain in its inactive conformation (Gao et al., 2004; 

Shutes et al., 2007). When the glands were treated with each of the two inhibitors, branching 

decreased within 24 hours of treatment (Figure 4A). Morphometric analysis was performed by 

counting the number of buds at 2 hours and again at 24 hours and dividing the latter by the 

former to find the fold change in the number of buds (Figure 4B). We found that both inhibitors 

decreased branching morphogenesis and this was statistically significant (*p<0.05, using 

ANOVA). Thus, I concluded that Rac activation is crucial for branching and overall growth in 

the embryonic SMGs. These inhibitors were not toxic to the glands but only deactivated Rac for 

the period of treatment because washout experiments (not shown here) previously performed by 

Dr. Sequeira indicate that glands initially treated with NSC23766 and EHT1864 with inhibited 

morphologies expected as in Figure 4, were capable of significant recovery following removal of 

the inhibitor for an additional 48 hours. 
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Figure 4. Pharmacological inhibition of Rac1 blocks SMG branching

morphogenesis. (A) Brightfield microscopic images of live mock control-treated E13

SMGs or treated with inhibitors NSC23766 and EHT1864 for 24 hours shows

decreased branching with inhibitors. (B) Quantification of the number of buds

(normalized to 2 hrs) reveals significant decrease in branching in the presence of both

Rac1 inhibitors, *p<0.05 using one-way ANOVA, bars are mean SEM of two

independent experiments.
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Tiam1 is expressed in salivary gland cells and is located basally.  

The Rac-specific GEF, Tiam1, can activate Rac and initiate downstream signaling (Munro, 2006). 

Tiam1 function has not been studied in salivary glands. The online salivary gland mRNA 

database indicates that Tiam1 mRNA is highly expressed during E11.5 to E16, so we tested 

expression and localization of Tiam1 protein by immunostaining and confocal imaging in SIMS 

cells (Figure 5) and primary E13 SMGs (Figure 6). In SIMS cells and other cells capable of 

achieving apical-basal polarization, ZO-1 is an apical tight junction protein.  Therefore, ZO-1 

was used to label the apical membrane to allow evaluation of the location of Tiam1 on either the 

apical or basal cell surfaces. We found that Tiam1 localized largely in the cytoplasm but the 

localization was more intense on the basal sides both in the cells (Figure 5) and in the SMGs 

(Figure 6).  In addition, we also observed that Tiam1 staining intensity seemed to decrease with 

Rac inhibition (Figure 5B, 5C, 6). This was further confirmed using Western blotting analysis for 

Tiam1 levels (Figure 7). Previous data by Dr. Sequeira using siRNA to knockdown Tiam1 

showed that SMG branching morphogenesis is significantly decreased when Tiam1 expression is 

decreased. Therefore, Tiam1 is not only expressed during but is also required for SMG branching 

morphogenesis. Since Rac1 and Tiam1 are important to branching morphogenesis, their role in 

other functions, such as cell-cell adhesion and polarization that are also a component of 

branching morphogenesis, can be tested.  
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cytoplasm but is more highly

localized at the basal cell surface. (A)

Confocal images of untreated control

SIMS cells stained for ZO-1 (cyan) as

an apical marker or Tiam1 (red) (B)

NSC23766-treated SIMs cells cultured

for 6 hours in serum-free media (C)
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confocal z-stack series of images.

Tiam1 is intensely stained at the basal

surfaces in control cells and this is
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Figure 6. Tiam1 is expressed in SMGs more intensely to the basal cell

surface. Confocal images (left, 20x magnification, right, 63x

magnification) of 24 hour-inhibitor treated SMGs stained for Tiam1 (red),

indicating that Tiam1 is expressed in the cytoplasm and along cell

membranes of SMGs and localizes basal side of the gland (arrowheads).

Basal and overall expression of Tiam1 is decreased in Rac-inhibited

glands. Dashed white line outlines the basal edges of the buds.
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Figure 7. Tiam1 expression decreases upon Rac inhibition. (A)

Western blot of control untreated or Rac inhibitor-treated SMG lysates

(24 hours) shows the Tiam1 protein band. GAPDH was used as loading

control (B) Densitometric quantification of the western blots in (A),

normalized to GAPDH levels, shows decreased expression of Tiam1 with

Rac inhibition.
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DISCUSSION 

The mammalian salivary gland attains a highly branched structure by undergoing the 

process of branching morphogenesis. This process is essential for maximal production and 

unidirectional secretion of saliva. It is therefore important to study the molecules that mediate 

salivary gland branching morphogenesis. In this study we found a role for the GTPase Rac1 and 

its upstream activator, Tiam1, in submandibular salivary gland branching morphogenesis. 

Rac1 is required for branching morphogenesis because the glands treated with Rac 

inhibitors showed a significant decrease in bud growth, consequently affecting branching 

morphogenesis. In past literature, it has been shown that Rac1 plays a role in many functions that 

are also a part of branching morphogenesis. Not only is Rac1 important for those functions but 

also for branching morphogenesis. Therefore, Rac1 may control some of these cellular activities 

during branching morphogenesis. 

Because Tiam1 is a specific upstream activator of Rac, Tiam1 was studied to understand 

its potential effect on Rac-mediated control of SMG branching. We found that Tiam1 was highly 

expressed in developing SMGs and localized in the cytoplasm with more intense staining on the 

basal cell surfaces in both cells and in whole SMGs. In line with our findings, recent studies have 

suggested that Tiam1 might associate with basal integrins to drive cell motility (O'Toole et al., 

2011) which is required for SMG branching (Larsen et al., 2006). Surprisingly, although Tiam1 

is a GEF that acts as an upstream activator of Rac, when we inhibited Rac, we found that Tiam1 

levels were lowered, suggesting a positive feedback loop from Rac to Tiam1. Thus we speculate 

that Rac activation might be maintained through this loop given its critical role in SMG 

branching. Consistent with this hypothesis, we have previously observed that siRNA knockdown 
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of Tiam1 significantly decreased branching morphogenesis by about 40% (Sequiera, S. and 

Larsen, M., unpublished data). Taken together, our results suggest a novel and indispensable role 

for Rac1-Tiam1 mediated signaling in salivary gland branching morphogenesis. 
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Chapter 2. The role of Rac1 in tissue polarity during salivary gland development. 

INTRODUCTION 

Salivary gland tissue polarization 

In the developing salivary glands, early establishment of apico-basal cell polarity is 

critical for unidirectional secretion of saliva during later stages of development. Moreover, as a 

consequence of salivary tissue polarization aid in this process,  asymmetric distributions of 

signaling molecules and cell-cell adhesion molecules occur (Fukata et al., 2003). Apically 

localized adherens junction (AJs) and tight junction complexes (TJs) are key molecules involved 

in the establishment of SMG polarization. E-cadherin is AJ proteins and ZO-1 and claudin-3 are 

TJ proteins among many others. TJs not only serve to maintain a barrier between the apical and 

basolateral cellular plasma membrane but also regulate paracellular permeability which is 

maintained by polarized salivary epithelial cells, which is characteristic of an exocrine tissue 

(Lourenco et al., 2007; Maria et al., 2008; Tran et al., 2005). Salivary epithelial cells also derive 

important polarization and signaling cues from the basal extracellular matrix (ECM) produced by 

the mesenchymal cells and can themselves produce, secrete basally, and respond to basement 

membrane (BM) proteins (a specialized type of extracellular matrix) (Figure 8) (O'Brien et al., 

2001). The BM matrix layer is composed of laminins, collagen IV, fibronectin and heparan 

sulfate proteoglycans (HSPGs) (Sequeira et al., 2010), which not only provide signaling cues to 

direct salivary epithelium but also provide a structural scaffold. BM is important for cleft 

formation during branching morphogenesis (Daley et al., 2009; Sakai et al., 2003). Importantly, 

deregulated expression and synthesis of BM proteins is a characteristic feature of salivary gland 

diseases such Sjogren‟s syndrome and adenoid cystic carcinomas (Shirasuna et al., 1993).  
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Figure 8. Tissue polarization results in asymmetric apico-basal division of

membrane proteins. (A) In the developing salivary gland, there is no hollow lumen,

but an apical side is developing in the center of the gland (purple). In the acinar units

of developing salivary glands, the cell membrane surface that is facing the central

hollow lumen (L) is the apical side and the opposite face is the basal side, adjacent to

the basement membrane (green). (B) At the cellular level, tight junctions and

adherens junctions proteins are asymmetrically divided, separating the apical side of

the cell membrane from the basal side, outside of which basement membrane and

extracellular matrix proteins are secreted. The red arrow represents the direction of

saliva and protein secretion.

L

30



31 

 

PAR complex proteins are master polarity regulators 

 It is known that cells can sense spatial cues from the extracellular matrix and activate 

intracellular Rho GTPase-mediated signaling pathways to propagate polarizing signals (O'Brien 

et al., 2001). The partition-defective (PAR) family is a group of proteins that are not only 

essential for asymmetric cell division but also they themselves are asymmetrically localized 

within the cell (Kemphues et al., 1988). In polarized mammalian epithelial cells, PAR3 and 

PAR6 are localized to the junctional complexes that divide the apical and basolateral surface, 

whereas PAR1b localizes to the basolateral surface (Bohm et al., 1997; Cohen et al., 2004). This 

apico-basal localization function of PAR proteins is required for overall polarization of the cell 

(Munro, 2006). PAR proteins do not work alone but instead work in complexes. Atypical PKC 

proteins (aPKC) bind to PAR3 and PAR6 to form a complex that accumulates at opposite poles 

to PAR1b. This antagonistic interaction between PAR-aPKC systems establishes complementary 

membrane domains, asymmetric distribution, and asymmetry of cellular functions (Suzuki and 

Ohno, 2006). 

Rac -PAR protein interactions  

Recently, connections between PAR complex and Rho GTPase proteins have been 

emerging. The asymmetric cytoskeletal organization of the apical PAR complex can occur 

through microtubule organization controlled by T-lymphoma invasion and metastasis (Tiam1) 

via atypical PKC (aPKC) (Bryant et al, 2008; Malliri et al, 2004). PAR3 can also directly bind 

the Rac GEF, Tiam1 to regulate cell–cell junctions. PAR proteins thus interact with Rac 

signaling by first binding to Tiam1. When Tiam1 is recruited to PAR3, this can lead to activation 

of Rac. The GTP-bound active form of Rac then specifically interacts with PAR6 to activate 
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aPKC (Munro, 2006). Thus there are reciprocal interactions between the Rac and PAR proteins 

and between Tiam1 and PAR proteins, suggesting that Rac1 and Tiam1 are important for cell 

polarization (Figure 9). 

Previous studies in our laboratory suggested a possible role for Rac1 signaling in mouse 

embryonic SMG branching morphogenesis and polarization. Chemical inhibitors, NSC23766 

and EHT1864, which blocked Rac1 activity, altered apico-basal distribution of apical adherens 

and tight junction complex proteins and distribution of basement membrane matrix proteins (S. 

S., and M. L., data not shown).  

Based on this preliminary data, I hypothesized that Rac1 signaling is required for the 

establishment and maintenance of polarity as well as the apical distribution of adherens 

junctions, tight junctions, and the basal secretion of basement membrane (BM) matrix proteins. I 

further hypothesized that Rac1‟s role in basal polarity and altered deposition of BM proteins may 

be due to aberrant endocytosis or interaction with PAR proteins when its activity is inhibited. To 

test these hypotheses, I proposed to investigate the following: 1) determine if Rac inhibition 

causes any mislocalization or decreased expression of adherens, tight junctions, and BM matrix 

proteins, 2) analyze whether Rac inhibition causes aberrant endocytic trafficking of basal BM 

matrix proteins to the apical surface, and 3) test if Rac inhibition disrupted PAR protein 

localization and possibly expression in SMGs. 
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Figure 9. Model depicting interaction between the PAR polarity complex and

Tiam1-mediated activation of Rac1. The apical PAR complex is localized to the

apical membrane and restricts PAR1b localization to the basolateral side of the cell

membrane. PAR complex proteins can regulate Rac activation and signaling by first

binding to Tiam1. When Tiam1 is recruited to PAR3, this can lead to activation of

Rac1. The GTP-bound active form of Rac1 then specifically interacts with PAR6 to

activate aPKC.
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RESULTS 

Apical tight junction (TJ) and adherens junction (AJ) complex formation requires Rac1 

activity. 

Previous literature has defined a role for Rac in establishing cell-cell adhesions (Bosco et al., 

2009). Cell-cell adhesion occurs via the formation of tight (TJ) and adherens (AJ) junction 

complexes between cells at the apical cell membranes. Previous data by Dr. Sequeira and an 

undergraduate student, Daniel Leonard, identified alterations in the expression and localization 

of cell-cell adhesion proteins, such as claudin-3, ZO-1 and E-cadherin, upon Rac inhibition 

(Sequiera, S., Leonard, D., Larsen, M., unpublished data). In this study, I confirmed these results 

by immunostaining mouse salivary epithelial cells (SIMS) for the TJ proteins, claudin-3 and ZO-

1 (Figure 10) and the AJ protein, E-cadherin (Figure 11). In control cells, these markers clearly 

outline the cell membranes more strongly on the apical side, as expected, and are low or diffuse 

on the basal side (Figure 10A, 11A). In contrast, we found that inhibition of Rac with NSC23766 

(100µM for 24 hours), results in more diffuse or missing membrane staining patterns of claudin-

3, ZO-1, and E-cadherin on the apical side along with a less intense staining intensity (Figure 

10B, 11B). This effect was also observed with EHT1864 (10µM for 24 hours) (Figure 10C, 11C), 

as ZO-1 was also mislocalized to the basal side of the cell (Figure 10C). Together, this data 

suggests that Rac activity is required for apical positioning of cell-cell adhesion molecules.  

Basal basement membrane matrix protein secretion requires Rac1 activity. 

Previous data in the Larsen lab has indicated that Rac inhibition can affect basement membrane 

(BM) protein secretion (Sequiera, S., unpublished data). Whole mount immunocytochemistry 

and confocal imaging of primary SMGs for the ECM and BM proteins, laminin-111 and  
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Figure 10. Rac inhibition alters apical

markers (TJ) in cells (A) Confocal

images of apical-most and basal-most

sections from z-stacks of control SIMS

cells stained for apical ZO-1 and

claudin-3 or (B) NSC23766-treated (6

hours) or (C) EHT1864-treated (6

hours) SIMS cells indicates that more

organized and highly expressed ZO-1

and claudin-3 staining at the apical side

is partially lost upon Rac inhibition
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is from a different region of cells.
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collagen IV (Figure 12) shows that, in untreated SMGs, these BM proteins are secreted towards 

the basal side, along the outside of the buds as normally expected. However, in Rac-inhibited 

glands, these proteins were relocated to the apical side and showed decreased basal expression 

compared to untreated glands. Thus, these results suggest that Rac inhibition alters basal 

secretion and localization of BM proteins. 

Basal matrix protein deposition is not altered due to aberrant endocytosis upon Rac 

inhibition.  

BM proteins are suggested to be trafficked to the basal cell surfaces via endocytosis (Denef et al, 

2008). To test the hypothesis that Rac inhibition causes aberrant endocytic trafficking of basal 

BM matrix proteins to the apical surface, we immunostained E13 mouse embryonic 

submandibular glands (SMGs) for laminin-111 and collagen IV. When SMGs were treated with 

Rac inhibitor, NSC23766 (100 µM), basal matrix protein deposition was altered. Collagen IV, a 

BM protein that is localized basally in the control gland, was aberrantly distributed and localized 

at the apical side of the cell in NSC23766-treated glands (Figure 13). Treatment of the glands 

with phenylarsine oxide (PAO), an endocytosis inhibitor, for 10 hours did not significantly alter 

matrix protein secretion. This was also true for glands treated with a combination of NSC and 

PAO (1µM) for 10 hours. Thus, even when endocytosis was inhibited, basal matrix protein was 

localized in the apical side. These results suggested that aberrant apical basement membrane 

matrix distribution is not due to altered endocytic vesicular trafficking of basement membrane 

proteins upon Rac inhibition. 
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Figure 12. Rac inhibition affects basal secretion and localization of basement

membrane (BM) matrix proteins. Confocal images of SMGs immunostained for

laminin-111 (red) and collagen IV (cyan) in untreated SMG and NSC23766-treated

(100µM) for 24 hours shows strong basal localization of BM proteins (arrows) at the

outer edges of buds in control glands but reduced localization at the basal side and

highly aberrant localization of BM proteins to the apical side (arrowheads) and

around interior cells of the buds in Rac inhibitor-treated glands.
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Figure 13. Aberrant apical basement membrane matrix distribution is not due to

altered endocytic vesicular trafficking of basement membrane proteins upon Rac

inhibition. Top panel of confocal images shows E13 SMGs stained for BM proteins

laminin-111 and collagen IV localized to the basal surface of the buds. Treatment with

NSC23766 (100µM) causes redistribution to the apical surfaces within buds.

Treatment with phenylarsine oxide (PAO), an endocytosis inhibitor (1µM), and the

Rac inhibitor, NSC23766, did not rescue this effect.
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Apical distribution of PAR6 polarity protein is altered upon Rac inhibition in SMGs. 

Knowing that both apical and basal proteins are mislocalized when Rac is inhibited and that 

these alterations were not dependent on aberrant endocytosis, we questioned whether salivary 

gland tissue polarity was affected, since polarity is characterized by asymmetric distribution of 

cellular proteins to the apical or basal membrane domains. Because PAR (partitioning-defective) 

proteins are master polarity regulators, the relationship between Rac1 and PAR proteins was 

tested. SMGs were immunostained for PAR6 and confocal images indicate that in control glands 

PAR6 proteins were enhanced on the apical cell membrane domains (Figure 14), as expected 

(Suzuki and Ohno, 2006).  However, when Rac1 was inhibited, we observed that PAR6 was 

redistributed and accumulated on the basal side of the cell membrane as well (Figure 14).  

Previous data by Dr. Sequeira showed that PAR3 showed the same mislocalized pattern when 

Rac is inhibited.  Together, these data suggest that Rac1 activity is required for correct apical 

deposition of PAR3 and PAR6 proteins and raised at the possibility that altered SMG polarity 

may be due to altered PAR protein deposition when Rac1 is inhibited.  

Apical distribution of PAR3 polarity protein is altered upon Rac inhibition in lungs. 

Because lungs start to develop earlier than salivary glands and go through polarization at an 

earlier stage than the salivary gland, PAR proteins localization upon Rac inhibition was also 

examined in the lungs.  Actin is an apical protein marker in polarizing epithelial cells and was 

used as an apical marker to compare with the location of PAR3. The lungs were immunostained 

for PAR3 and examined by confocal imaging. Confocal images indicate that in control glands 

PAR3 protein was located preferentially on the apical cell membrane domain (Figure 15) as 

expected.  However, when Rac1 was inhibited, we observed that this protein lost expression in  
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Figure 14. Apical distribution of PAR6 polarity proteins is altered upon Rac

inhibition in SMGs. Top panel shows confocal images through the equatorial plane

of control SMGs immunostained for PAR6 (red). Middle panel shows confocal images

of NSC23766-treated (100µM) SMGs, while the bottom panel shows confocal images

of EHT1864-treated (10µM) SMGs immuonstained as in the top panel. Instead of

localizing primarily at the apical cell surfaces as in control (arrowheads), PAR6

proteins were also expressed at the basal side (denoted by white dashed lines and

arrowheads) upon Rac inhibition.

Magnified view

41



Control 
Lung

NSC23766-
100µM

EHT1864-
10µM

PAR 3Actin

Figure 15. Apical distribution of PAR3 polarity proteins is altered upon Rac

inhibition in lungs. Top panels show confocal images through the equatorial plane of

control lungs immunostained for actin (red) as an apical marker or PAR3 (cyan). The

middle panels show confocal images of NSC23766-treated (100µM) lungs while the

bottom panels show confocal images of EHT1864-treated (10µM) lungs

immuonstained as in the top panel. Decreased PAR3 protein localization was observed

at the apical side (denoted by white colored overlay with Actin and PAR3) in

NSC23766-treated lungs, compared to the control. In EHT1864-treated lungs, some

apical PAR3 persisted in the reduced luminal space.
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apical side (Figure 15). In NSC23766-treated lungs, loss of apical localization of PAR3 was 

more apparent than in EHT1864-treated lungs. In EHT1864-treated lungs, there was loss of 

lumen. Together, this data indicates that Rac1 activity is required for localization of PAR3 in the 

lungs as well and is required for proper lumen structure. 

Apical distribution of PAR6 polarity proteins and basolateral distribution of integrin α6 

are altered upon Rac inhibition in lungs. 

The expression patterns of PAR6 and integrin a6 were examined in developing lungs in the 

presence and absence of Rac inhibition to identify Rac1-mediated effects on cell polarization. 

The lungs were immunostained for PAR6 and examined using confocal imaging. Confocal 

images indicate that in control lungs PAR6 protein was located on the apical cell membrane 

(Figure 16), as expected.  However, when Rac1 was inhibited, we observed that this protein lost 

its localization at the apical cell membrane domain (Figure 16). Confocal images of integrin α6 

indicate that in control lungs integrin α6 was located on the basolateral side of the cell membrane 

(Figure 16), as expected. However, when Rac1 was inhibited, we observed that this protein was 

relocated to the apical cell membrane domains (Figure 16). Confocal images of control lungs 

immunostained for integrin α6 demonstrated clearly organized single layers of epithelial cells 

surrounding the lumen, whereas in confocal images of Rac inhibited lungs immunostained for  

integrin α6, this organization was disrupted and luminal filling was observed (Figure 16). This 

indicated that Rac1 activity is required for correct deposition of PAR6 and integrin α6 and for the 

organized single cell layer structure of epithelial cells in the embryonic lungs. 
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Figure 16. Apical distribution of PAR6 polarity proteins and basolateral

distribution of integrin α6 are altered upon Rac inhibition in lungs. The top panel

shows confocal images through the equatorial plane of control lungs immunostained for

integrin α6 (red) as a basolateral marker or PAR6 (red). The middle panel shows

confocal images of NSC23766-treated (100µM) lungs while the bottom panel shows

confocal images of EHT1864-treated (10µM) lungs. Most strikingly, in the presence of

the Rac inhibitors, the cellular organization was changed from a single polarized layer to

a multiplayeed structure. Instead of localizing at the apical cell surfaces as in control

(arrowheads), PAR6 proteins lost its localization at the apical side (arrowheads) upon

Rac inhibition and was more broadly distributed. Instead of localizing at the basolateral

cell surfaces as in control (arrowheads), integrin α6 proteins were also detected at higher

levels on the apical side (arrowheads) upon Rac inhibition.
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Inhibition of Rac1 decreases the expression of PAR and PKC complex proteins in salivary 

epithelial cells. 

To test whether Rac1 inhibition also affects the expression of Par and PKC complex proteins in 

salivary epithelial cells, I performed Western blot analysis in both Sca9 and SMGC10 salivary 

epithelial cells treated with increasing concentration of Rac1 inhibitors (Figure 17A and C). In 

SMGC10 cell lines, PAR3 and PAR6 protein expression decreased as NSC23766 or EHT1864 

concentrations increased. In Sca-9 cell lines PKC zeta protein expression decreased as Rac 

inhibitor concentration increased, as shown by the normalized graphs of these Western blots 

(Figure 17B and D). There was an apparent decrease in the amount of PAR proteins and PKC 

zeta in the presence of NSC23766 and EHT1864.  

Inhibition of Rac1 decreases the expression of PAR and PKC complex proteins in whole 

salivary glands. 

Protein levels of PAR-PKC proteins were also examined in intact embryonic salivary glands. 

Western blot analysis in E13 embryonic salivary submandibular glands treated with Rac1 

inhibitors (Figure 18A and B) showed that PAR3 and PAR6 protein expression was decreased in 

NSC23766- or EHT1864-treated glands, consistent with data from cell lines. This suggests that 

Rac1 activity is required for PAR and PKC complex protein levels in developing salivary glands. 
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Figure 17. Inhibition of Rac1 decreases the expression of PAR3, PAR6 and

aPKC complex proteins in salivary epithelial cells. (A) Western blot of SMGC10

cell line for PAR3, PAR6, and PKC zeta with and without Rac inhibition for 6 hours

in two doses. (B) Densitometric quantification of the Western blots in A. (C) Western

blot of Sca-9 cell line for PAR3, PAR6, and PKC zeta with and without Rac

inhibition in two doses. (D) Densitometric quantification of the Western blot in C.

Treatment with Rac inhibitor decreased the levels of all PAR proteins with the

exception of PAR3 when SMGC10 cells are treated with the EHT inhibitor. All

protein levels were normalized to GAPDH levels as loading control.
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Figure 18. Inhibition of Rac1 decreases the expression of PAR3 and PAR6

proteins in embryonic SMG organ cultures. (A) Western blot of E13 SMG

untreated or treated with 100µM NSC23766 or 10µM EHT1864 for 24 hours, using

anti-PAR3 or anti-PAR6 antibodies. (B) Densitometric quantification of the Western

blots in (A). All protein levels were normalized to GAPDH levels as loading control.
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Basolateral distribution of Par1b polarity proteins remains unchanged with Rac inhibition. 

Since the apical PAR3/PAR6/aPKC complex can restrict PAR1b to the basolateral side of  the 

cell (Suzuki and Ohno, 2006) to maintain apico-basal asymmetry, we also tested whether PAR1b 

localization was affected by Rac1 inhibition. Confocal images of SMGs immunostained for 

PAR1b indicated a basolateral membrane localization especially evident in the outer polarized 

columnar layer of cells. This localization persisted even when Rac was inhibited by NSC23766 

and EHT1864 (Figure 19). This suggests that Rac1 inhibition might only affect polarity through 

regulation of PAR3/PAR6/aPKC complex but not via regulation of PAR1b.  

Inhibition of Rac1 does not affect the expression of PAR1b in salivary glands. 

Protein levels of PAR1b were also examined in intact salivary glands treated with Rac inhibitors, 

using Western blot analysis (Figure 20A). There seems to be two bands for PAR1b, which may 

be alternatively spliced forms. Treatment of SMGs with NSC23766 or EHT1864 did not affect 

PAR1b protein expression compared to the untreated SMGs. Levels were quantified and are 

depicted by the normalized graphs of Western blots (Figure 20B). This data indicates that Rac1 

inhibition does not affect the protein levels of PAR1b, and is consistent with the idea that Rac1 

inhibition may affect polarity through the apical PAR3/PAR6/aPKC complex but not via the 

basal PAR1b protein. 
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Figure 19. Basolateral distribution of PAR1b polarity protein is not affected by

Rac inhibition. The top panels show confocal images through the equatorial plane of

control E13 SMGs immunostained for PAR1b (cyan). The middle panels show confocal

images of NSC23766-treated (100µM) SMGs for 24hrs, while the bottom panels show

confocal images of EHT1864-treated (10µM) SMGs.
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Western blot of SMG for PAR1b, both with and without Rac inhibition for 24 hours
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DISCUSSION 

While undergoing branching morphogenesis, salivary gland epithelial cells concomitantly 

attain apico-basal polarity. Polarity is also essential for unidirectional secretion of salivary 

proteins and fluid towards the apical lumen within acinar units of the adult gland. It is therefore 

important to study the molecules that mediate salivary gland apico-basal polarization to 

understand how salivary glands attain their function. In this study we identified a role for the 

GTPase Rac1, in polarization. 

Previous research has pointed to a role for Rac1 in polarization of non-salivary gland cell 

types (Chen and Macara, 2005; Ewald et al., 2008; O'Brien et al., 2001; Pegtel et al., 2007). We 

found that Rac inhibition in both primary salivary gland embryonic tissue and immortalized 

salivary epithelial cell lines caused mislocalization of normally apical adherens (E-cadherin) and 

tight junction (ZO-1 and claudin-3) proteins. Expression of these proteins was reduced apically 

or presented at the basal side in inhibitor-treated cells. This led us to conclude that Rac1 is 

required for formation of cell-cell adhesion complexes and also for their localization.  

Basement membrane proteins are located basally because they function to anchor an 

epithelial cell layer, separate the epithelial tissue from the connective tissue compartment, and 

provide growth and differentiation signals to the epithelium (Sequeira et al., 2010).  In Madin-

Darby canine kidney (MDCK) epithelial cysts, Rac1 was required for laminin-111 organization 

into BM and polarity establishment (O'Brien et al., 2001).  We report here that, in mammalian 

mouse embryonic salivary gland, normal basal secretion of BM proteins was affected, leading to 

apically-deposited matrix proteins in the NSC23766- treated SMGs. These data are consistent 

with a function for Rac1 in basal localization of BM proteins.  

BM protein secretion on the basal side of epithelial cells is thought to occur via 
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endocytosis, where by proteins are engulfed and deposited(Denef et al., 2008; Sorrosal et al., 

2010). I hypothesized that one mechanism for relocation of BM matrix proteins to the apical side 

when Rac signaling was inhibited might be through endocytosis. If this was the case, when 

endocytosis was blocked through chemical inhibition with phenylarsine oxide, a potent 

endocytosis inhibitor, then we would expect that this altered deposition would be rescued and 

BM proteins would not be trafficked to the apical side. However, we observed that treatment 

with NSC23766 and PAO together did not rescue the apical deposition. Therefore, it can be 

concluded that aberrant apical deposition of BM matrix proteins did not involve endocytosis. 

Rac1 has previously been shown to be an activator of the PAR3/PAR6/aPKC polarity 

complex, and Rac can bind PAR6 to activate aPKC (Munro, 2006). Because Rac activates the 

PAR proteins which are responsible for establishing polarity to account for the asymmetrical 

distribution of apical and basal membrane domains, a mechanism that might explain the aberrant 

deposition of BM/ECM proteins to the apical side could involve Rac-mediated effects on the 

levels of  PAR protein complex proteins or their localization (Munro, 2006). Indeed, our results 

showed that Rac inhibition affected both PAR protein localization and protein levels since PAR3 

and PAR6, which are known to be located in the apical side, were localized on the basal side 

upon Rac inhibition. This loss of apical position of PAR3 and PAR6 was also shown in 

NSC23766-treated lungs. This apical localization was not obvious in EHT1864-treated lungs. 

However, we observed that EHT1864-treated lungs lost lumen structure. This difference in effect 

of inhibitors must be due to their distinct mechanisms of inhibition (Gao et al., 2004; Shutes et 

al., 2007). NSC23766 may inhibit Rac1 more specifically than EHT1864 since it targets the 

activity of GEF binding to the GTP site. Although we have no proof for this yet, we just see that 

they have different effects and that may be due to different GEFs being targeted. NSC23766 is a 
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more widely used inhibitor than EHT1864. Rac inhibition also resulted in disorganization of the 

outer epithelial cells in the lungs. Expression of PAR3, and Par 6, and PKC zeta were also 

decreased upon Rac inhibition. This data suggests that Rac1 is responsible for correct membrane 

distribution of these PAR proteins, and altered SMG polarity may be linked to the alteration in 

PAR proteins distribution pattern. Interestingly, we also found that Rac1 might be required for 

normal expression of PAR protein levels as well since PAR3, PAR6, and PKC zeta protein 

expression decreased with Rac inhibition. 

Because polarization is reported by others to be due to an antagonistic interaction 

between PAR3/PAR6/aPKC polarity complex (Suzuki and Ohno, 2006) and PAR1b, and PAR1b 

is located opposite of the complex, we believed it was important to study PAR1b with Rac 

inhibition. However, the results indicate that loss of polarization upon Rac inhibition cannot be 

mediated through PAR1b because normal PAR1b protein levels and localization at basolateral 

membrane domain persisted with Rac inhibition. This finding is interesting because it suggests 

that PAR 1b is not required for Rac-dependent basement membrane localization. Further studies 

will be required in this area. 

Taken together, this work has shown that Rac1 is required for maintaining the localization 

and maintaining protein levels of cell-cell adhesion molecules, BM proteins, and apical PAR 

complex proteins PAR3 and PAR6. Regulation of these PAR proteins may be responsible for the 

apical localization of the apical tight junction and adherens junction proteins and for the 

localization of BM proteins to the apical membrane. The regulation of PAR proteins was 

identified in embryonic salivary gland organ cultures. Importantly, this function for Rac1 in 

regulation of cell polarity is not restricted to salivary gland, since we found that Rac1 also 

regulates polarity in the developing lung. 
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CONCLUSIONS AND SIGNIFICANCE 

The findings from our study implicate Rac1 signaling as a critical requirement for 

mammalian SMG branching morphogenesis and tissue polarity (Figure 21). This work provided 

evidence that Tiam1-Rac1 signaling pathway is required for salivary gland branching 

morphogenesis. Rac1 is required for apical distribution of adherens and tight junction proteins 

and basal deposition of BM proteins. This regulation of polarity of Rac might be due to altered 

PAR protein localization and regulation of protein levels since we showed that Rac inhibition 

decreased the levels and the apical localization of the PAR3 and PAR6. Because it has been 

shown that Tiam1 directly interacts with PAR proteins in non-salivary cell types (Munro, 2006), 

this Rac-Par relationship might be mediated through Tiam1. In the future we will test if 

inhibition of Tiam1 alters PAR protein localization, and if PAR proteins can directly bind to 

Tiam1 or Rac1 in salivary gland cell extracts by performing co-immunoprecipitation experiments.  

Knowing the molecular mechanisms by which the GTPase Rac1 and its GEF, Tiam1, 

influence signaling pathways that drive normal salivary gland tissue polarity and development 

will help us gain a better understanding of how these proteins are misregulated in non-curable 

diseases such as Sjogren‟s syndrome and adenoid cystic carcinomas. Xerostomia, or dry mouth, 

that occurs from salivary gland diseases, radiation therapy for head and neck cancers, or as a side 

effect of certain medications, results in fissured tongue, caries and loss of teeth, thick and stringy 

saliva, and fungal infections (Aframian and Palmon, 2008). Since there is no cure for xerostomia 

and all of the current treatments are short-term, our future goal is to engineer an artificial salivary 

gland that might serve as an effective replacement tissue in patients suffering from the symptoms 

of xerostomia. Therefore, understanding how Rac1 signaling contributes to gland formation and 

polarization will bring us one step closer to understanding how differentiation and saliva 
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Figure 21. Rac is required for branching morphogenesis and tissue polarity in 

salivary gland development. The Tiam1-Rac1 signaling pathway is required for 

salivary gland branching morphogenesis. Rac1 is also required for apical distribution 

of adherens and tight junction proteins and basal secretion of BM matrix proteins, 

indicating that Rac modulates apical-basal polarity in the salivary gland. This 

regulation of polarity of Rac might be due to altered localization and expression of 

PAR proteins since decreased levels of PAR3 and PAR6 were detected, and they 

were mislocalized at basal surfaces. Because it has been shown that Tiam1 directly 

interacts with Par proteins in other studies, this Rac-PAR relationship might be 

mediated through Tiam1, but requires further investigation.

Rac 1Rac-GEF (Tiam 1)
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 secretion are achieved during organ formation and further aid in the design of therapies to 

promote gland function. 

FUTURE DIRECTIONS 

Although we found that Tiam1 is required for branching morphogenesis, how it does this 

is not fully understood. Since Rac is required for polarization and Tiam1 is the connector of the 

feedback loop between PAR3/PAR6/aPKC complex and Rac activation, we would like to find 

the link between Tiam1 and Par polarity complex signaling. Future experiments are aimed at 

inhibiting Tiam1 using siRNA and testing whether PAR protein localization and protein levels 

are similarly affected as observed with Rac1 inhibition. If Tiam1 interacts with PAR proteins and 

how Rac might affect this interaction can be tested using immunoprecipitation, to see if PAR 

proteins are pulled down with anti-Tiam1 antibodies, both with and without Rac inhibitors. 

Further experiments will be needed to determine the molecular domains required for any 

interactions that are identified and any post-translational modifications that may be required. It is 

also interesting that protein levels are reduced in the presence of Rac inhibition. This finding 

suggests that Rac1-mediated regulation of PAR proteins is complex and that either a 

transcriptional regulation or protein degradation mechanism is involved in addition to regulation 

of protein localization and complex formation. Understanding the complex regulation of PAR 

proteins by Rac1-mediated signaling in establishment of epithelial polarity will require further 

investigation. In addition, besides the experiments that showed the pharmaceutical inhibitors of 

Rac activity block SMG branching morphogenesis, Rac1‟s role in adheren, tight junction, and 

BM proteins, and inhibition of Rac1 mislocalizes PAR complex proteins, all other experiments 

were done only once. It is hard to make a concrete conclusion on one experiment. Therefore, it is 

crucial to repeat some experiments to gain statistical significance in the future. 
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