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Demonstrative Induction and the Skeleton of
Inference

P.D. Magnus

October 9, 2008

This is the final author’s draft of a paper forthcoming in International Stud-
ies in the Philosophy of Science. Earlier versions were posted on the author’s
website fecundity.com under the title ‘Eliminating Induction’, first in De-
cember 2005.

P.D. Magnus is at the Department of Philosophy, University at Albany.

Abstract

It has been common wisdom for centuries that scientific inference
cannot be deductive; if it is inference at all, it must be a distinctive
kind of inductive inference. According to demonstrative theories of in-
duction, however, important scientific inferences are not inductive in
the sense of requiring ampliative inference rules at all. Rather, they
are deductive inferences with sufficiently strong premises. General
considerations about inferences suffice to show that there is no differ-
ence in justification between an inference construed demonstratively
or ampliatively. The inductive risk may be shouldered by premises
or rules, but it cannot be shirked. Demonstrative theories of induc-
tion might, nevertheless, better describe scientific practice. And there
may be good methodological reasons for constructing our inferences
one way rather than the other. By exploring the limits of these pos-
sible advantages, I argue that scientific inference is neither of essence
deductive nor of essence inductive.
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1. Introduction

According to some accounts, scientific inference often needs nothing more
than deductive rules. Statements of the phenomena, along with constraints
on permissible theories, are sufficient to deductively entail a single correct
theory. Inferences of this kind are called demonstrative inductions, and I use
the phrase demonstrative theory of induction to indicate an account accord-
ing to which demonstrative inductions are centrally important in science.
Demonstrative theories of induction are offered by inter alia Bird (2006),
Dorling (1973), Kitcher (1993, ch. 7), Massimi (2004), and Norton (1993,
1994, 1995).

In what follows, I begin by describing demonstrative theories (§1). I then
offer general considerations about inference to show that there is no logical
reason to prefer demonstrative theories over other ways of reconstructing
scientific inference (§§2–3). Although this places serious limits on demon-
strative theories, they might still succeed as descriptive or heuristic accounts
(§4). In the penultimate section, I extend these lessons from demonstrative
theories to other recent accounts of scientific inference (§5).

2. Demonstrative Theories of Induction

It is typical to say that scientific theory choice involves forming conclusions
that would not be licenced by good old deductive reasoning. Indeed, this is
often taken to be the starting place for any philosophical account of confir-
mation. Clark Glymour writes, “The aim of confirmation theory is to provide
a true account of the principles that guide scientific argument insofar as that
argument is not, and does not purport to be, of a deductive kind” (1980, 63).
Some philosophers have disagreed that there are any such principles to be
discovered. Following Hume, perhaps it is strictly a psychological process.
Following Popper, perhaps there is no such thing as confirmation. Regardless,
all of these approaches agree that confirmation of scientific theories would
require more than deductive principles. Induction and deduction must be
different things.

This point is closely connected to the so-called underdetermination of
theory by data. If phenomena are insufficient to deductively entail a single
scientific theory, then there are indefinitely many incompatible theories that
are consistent with the phenomena. It is common to say, as Laudan (1990)
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and Lipton (2004, ch. 1) do, that answering underdetermination requires ac-
knowledging that science involves non-deductive, ampliative inference rules.

The common wisdom is correct at least in this respect: We cannot start
with singular observation reports and derive scientific theories as deductive
consequences. Supposing that observation reports are the only permissible
premises, it follows that scientific inference cannot be deductive. Yet there
are accounts of scientific inference that permit richer premises and so make
scientific inference into a deductive affair. The terminology is somewhat
tangled: Deductive inferences are variously called demonstrative inductions,
deductions from phenomena, eliminative inductions, and Holmesian infer-
ence.

These are not ‘induction’ in the sense of ampliative inference. They are
deductive in the full-blooded sense that the conclusion is a valid consequence
of premises that scientists (fallibly) know to be true. For example: Taking
the invariance of the speed of light as an empirical fact and the theoretical
constraint that the laws of physics must the same in all reference inertial
reference frames, it is possible to derive the Lorentz transformations.1

In the Newtonian tradition, demonstrative inductions are called deduc-
tions from the phenomena. As Worrall (2000) notes, the premises of these
deductions include not only the phenomena (appropriately described) but
also theoretical constraints.

So-called eliminative induction is a variety of demonstrative induction.
This is the sort of inference that Sherlock Holmes recommends to Watson:
“[W]hen all other contingencies fail, whatever remains, however improbable,
must be the truth” (Doyle 1905, 926). Bird (2006, 11) advocates eliminative
induction under the moniker Holmesian inference. Mystery stories are often
structured to facilitate this sort of inference. There is a list of suspects,
one of whom must have committed the crime. If all but one suspect can
be exonerated, then the remaining suspect must be guilty. This inference is,
properly speaking, deductive. Holmes knows that some set T contains all the
possible accounts of the crime. He determines that each t ∈ T is false except
for one. By disjunctive syllogism, he concludes that the remaining element
must be true. Holmesian inference cannot be used to justify the premises
that the members of T exhaust the possible explanations or that particular
members of T are false, on pain of regress. The premises will typically be
known by other means. Where the premises are known, scientific inference
may be deductive.

In what follows, I will use the phrase ‘demonstrative theory of induction’
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to indicate accounts according to which demonstrative inductions are cen-
trally important in science. Borrowing a term from Norton (2003), I’ll call the
extra premises supplied by demonstrative inductions ‘material postulates.’

3. Everybody Needs Rules

In this section, I begin with two observations about inference systems and
then apply them to the issue at hand.

Observation 1: If two proof systems licence the same inferences,
then they are equivalent.

The business of a proof system is to licence inferences. Given true premises,
a deductive system only leads to true conclusions. If two proof systems lead
from the same premises to the same conclusions, then choosing between them
is a practical rather than a logical matter.

This is most obvious in cases where it is possible to construct a translation
manual that converts valid proofs in one system into valid proofs in the
other. They agree on which inferences are legitimate and which are not, so
they are merely different formulations of the same logic. Of course, there
may be practical reasons to prefer one logic over the other. Perhaps proofs
in one system are longer or less intuitive than proofs the another. When
economy and simplicity vary between two equivalent formal systems, we work
in whichever most readily does what we want.

The logical force of a proof system is constituted by the inferences it
licences or censures. For any deductive system, this amounts to a set con-
taining all of the premise-conclusion sequences that the system recognizes as
valid. Proof systems that identify the same arguments as valid may differ
on the number of steps required to get from some specified premises to a
specified conclusion, on what intermediate conclusions must be derived, on
what axioms (if any) must be invoked— but those are differences in imple-
mentation, not in logical force. A system of inductive inference does not
identify arguments as ‘valid’, but is still similarly associated with a set of
premise-conclusion sequences it licences. If two systems licence the same set
of arguments, they have the same logical force.2

Observation 2: Any proof system must involve rules of inference,
but there is no specific requirement as to what those rules must
be.
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A deductive proof system cannot yield any conclusions if it is constructed
entirely of axioms. This is one lesson of Lewis Carroll’s What the Tortoise
Said to Achilles (1895). To put it in modern symbolism, the Tortoise grants
to Achilles that P and (P ⊃ Q) are true. Yet how are we to move from
these premises to the conclusion, Q? The Tortoise insists that we should
only accept the inference if we accept another axiom: [P&(P ⊃ Q)] ⊃ Q.
And so on.

The Tortoise insists that the proof is only complete when the rule of
inference itself is written down as a line of the proof; indeed, he insists
that each specific instance of the schema be written down. The regress
results because— in each abortive attempt to apply the rule— a further
instance of the general rule is required to move from the latest conditional to
the conclusion. There is a distinction between axioms (which one is always
warranted in writing down) and rules of inference (which one may apply
without writing down).3 We must have some rules of inference. However, we
have a choice as to what weight will be carried by axioms and what weight
will be carried by rules of inference.

In a natural deduction system, there are no axioms but a wealth of rules:
an introduction and elimination rule for each logical operator. This approach
has definite virtues; it illustrates the meaning of the operators and highlights
the unified structure of the deductive system. In other systems, there are
lists of axioms and only a few rules of inference. Sometimes only a rule like
modus ponens is provided. Of course, there is nothing unique about modus
ponens— it is just a traditional and perspicuous choice. Such a rule-poor
but axiom-rich proof system is provably equivalent to a rule-rich natural
deduction proof system; i.e., it is possible to construct a translation manual
to turn any proof in one system into a proof in the other. The rules in
the natural deduction system can do all the work done by axioms in the
axiomatic system. So, by Observation 1, they are different expressions of the
same logic. The choice between them could only be motivated by practical,
extra-logical factors such as pedagogical clarity or formal elegance.

An inductive inference system will licence more inferences than a deduc-
tive system. Just like a deductive system, however, an inductive system must
have some rules of inference. A demonstrative theory of induction describes
a system of inference that includes all the rules and axioms of some deduc-
tive proof system plus a rich collection of topic-specific, contingent, local
premises. Following Norton (2003), call these material postulates. They play
the rôle of further axioms, sentences which may be introduced in derivations
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so as to yield conclusions.
Just as the work done by axioms may be done by rules, the work done

by material postulates may be done by ampliative rules. Such ampliative
rules are often called material inference principles. Formally, there is no
reason why deductive work must be done by new axioms rather than by
new rules. So too, there is no reason why inductive work must be done
by material postulates rather than by material inferences principles. The
two approaches are inferentially equivalent, so a demonstrative theory of
induction is a representational choice rather than something forced on us by
the nature of scientific inference.

4. Your Enthymeme is My Risky Inference

In this section, I begin with two more observations about inference systems.
They provide a different path to the conclusion of the previous section.

Observation 3: Any putatively ampliative argument can be re-
construed as a deductive argument.

Any deductively invalid argument may be construed as an enthymeme, a
valid argument with suppressed premises. Trivially, one can add as a premise
the conditional that has the conjunction of the argument’s premises as its
antecedent and the argument’s conclusion as its consequent. If we think
that the premises of an ampliative argument justify belief in its conclusion,
then we should accept at least a cautiously stated premise to that effect. It
is typically possible to construct more plausible, less trivial formulations of
such a premise, although there is no general algorithm for doing so.

This observation was familiar even before the heyday of Newtonian deduc-
tions from phenomena. In the Port-Royal Logic, Arnauld and Nicole claim
that enthymemes are more common than explicit deductive arguments. The
suppression of premises in discourse, they say, “flatters the vanity of one’s lis-
teners by leaving something to their intelligence and, by abbreviating speech,
it makes it stronger and livelier” ([1683] 1996, 176).

Observation 4: Any deductive argument with less-than-certain
premises can be reconstrued as an ampliative argument in which
the uncertainty is explicitly acknowledged.
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Scientific facts may be described in a more or less cautious way, with what
Pinch (1985) calls greater or lesser degrees of externality. ‘The needle points
to 11’ is a low externality report. ‘The speed of light is invariant’— treated
as “an empirical fact of experience” (Dorling 1995, 98)— is a high external-
ity report. Higher externality reports, when questioned, can be treated as
inferences from lower externality reports. Those inferences will typically be
ampliative.4

Demonstrative inductions take high externality reports and theoretical
constraints as premises. Formulated in this way, they are deductive. By
making the argument for the high externality premises explicit, the argu-
ments can be reconstrued as ampliative inferences from lower externality
premises.5

Holding the low externality reports fixed, scientific inference may be
treated as involving ampliative inference up to a point and then deductive
inference. The same inference may be treated as involving ampliative in-
ferences all the way, provided we accept ampliative rules of the right form.
It may even be treated as a hodgepodge of ampliative and deductive rules
applied higgledy-piggledy, given different ampliative rules. Each of these re-
constructions requires some ampliative rule or rules. It may be that some set
of ampliative rules will be more intuitive or more elegant, but the competitors
can be cooked up so as to licence the same inferences.

By Observation 1, it follows that there is no logical difference between the
different treatments. Although any scientific inference that can be construed
as deductive may also be construed as non-deductive, this difference does
not immediately ground a disagreement about the logic of science. We only
disagree about the logic of science if we disagree about which conclusions are
justified when.

5. The Aim of Demonstrative Theories

What do these arguments mean for demonstrative theories of induction?
Their fate depends on what they are meant to show.

5.1. Theories of Induction as Descriptions

Demonstrative theories might be descriptive accounts. When I am construct-
ing a deductive proof, I know whether I am working in an axiomatic system
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or a natural deduction system. In much the same way, even though a proof
system that exploits demonstrative inductions and one that does not can be
inferentially equivalent, scientists use some system or other when drawing an
inference. Just as an observer can look at the chalkboard and determine the
sort of proof system I am using, we can look at scientific practice to see what
system scientists have employed.6 The historical record may be mixed, am-
biguous, or incomplete, but it is legitimate to ask: Did scientists actually use
demonstrative induction in this or that case? Advocates of demonstrative
theories have shown that, at least in some cases, the answer is ‘yes.’ (See esp.
Bonk (1997), Dorling (1973), Kitcher (1993, ch. 7), and Massimi (2004).)

5.2. Theories of Induction as Advice

Demonstrative theories might be practical recommendations; cf. Dorling
(1995) and Norton (1995). Just as different deductive systems may be more
intuitive or more elegant, demonstrative inductions may have practical ad-
vantages over other types of inference. In mundane cases, like those con-
structed in mystery stories, eliminative induction is a useful inference strat-
egy.

Even Worrall (2000), who has mixed feelings about demonstrative in-
ductions, admits that they can be heuristically powerful. He has suggested a
principled way in which to regiment the use of ampliative and deductive rules
(Worrall 2002). On the ampliative side, he advocates a heuristic ‘use novelty’
account. If a phenomenon was not taken into consideration when construct-
ing a theory and the theory predicts the phenomenon, then observation of the
phenomenon supports the theory. Kepler’s laws of planetary motion were not
included as a presupposition of Newton’s theory of gravitation, but they can
be derived from it along with some background assumptions. Even though
Kepler’s laws were already known, they provided some support for Newton’s
theory. (Regarding the heuristic account, see e.g. Worrall 1989.) On the
deductive side, there are demonstrative inductions. The precise value of the
gravitational constant, for example, is not a shocking prediction of Newton’s
theory of gravitation but something to be derived from careful observation.

The difference, Worrall suggests, is that the deductive work can only
begin once the ampliative work is done:

The judgment of support in the “deduction from the phenomena”
cases is ineliminably conditional, an ineliminably intra-paradigm
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or intra-research programme judgement. Given that a general
framework, or research programme, is already accepted, then the
data give. . . not just some support for the scientific theory, but
conclusive support. (2002, 203, emphasis in original)

This suggestion makes sense of some cases. For example, Bonk (1997) de-
scribes a nineteenth-century deduction that gravitation must be an inverse
square law and a 1920s deduction of the quantization of energy. In these
cases, the theoretical constraints effectively specified a theory with free pa-
rameters; the demonstrative inductions provided a precise way of fixing the
parameters given the data, without further assumptions. Demonstrative in-
duction served as “a convenient computational technique for fine tuning a
given theoretical model, with little confirmational impact” (Bonk 1997, 68).
The demonstrations did not justify believing a theory, but rather facilitated
inferences within a theory. It is important to note that Worrall’s suggestion
is not merely meant to show that demonstrative inductions are sometimes
but not always useful in science. Rather it is meant to show exactly when
they are useful and when they are not. Two reasons suffice to show that
Worrall’s criterion of demarcation is unsatisfactory.

First, the heuristic account of confirmation tells us when a theory is
incrementally confirmed but has no detachment rule. It does not tell us
when sufficient confirmation has accumulated to actually accept a theory.
Nor does it provide any way of measuring the degree of confirmation or the
extent to which we can rely on the theory. As such, there is no rule that tells
us when to adopt a paradigm or research programme and, as such, when to
shift from ampliative to deductive inference. A given conclusion might be the
product of demonstrative induction for scientists who have already made the
leap to a new paradigm but the product of ampliative inference for scientists
who have not. The demonstrative induction is “ineliminably conditional”
and Worrall’s criteria do not tell us when to accept the antecedent of that
conditional. As a descriptive matter, one might claim that scientists do begin
to accept demonstrative inductions when they come to believe (rather than
merely entertain) the premises. Regardless, if demonstrative theories are to
serve as practical recommendations rather than as mere descriptions, then it
is insufficient it is insufficient to note that scientists might and sometimes do
offer demonstrative inductions— one must say when and how it is appropriate
to do so.

Second, separating confirmation of a paradigm from intra-paradigm infer-
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ence requires individuating paradigms. This is a notoriously difficult prob-
lem. As Kitcher argues, “the game of finding paradigms. . . in the actual
course of events becomes highly arbitrary and often unprofitable” (1993,
89). The problem is little easier if we replace ‘paradigm’ with ‘research pro-
gramme’ or ‘theory.’ Any inference within a broad theory may be redescribed
as the adoption of a narrower theory against a background of other theories.
For this reason, underdetermination arguments are often pitched as argu-
ments about total sciences rather than arguments about specific theories; cf.
Magnus (2005).7

Without some criterion for when to employ demonstrative induction and
when to employ ampliative rules, demonstrative theories as practical rec-
ommendations are importantly incomplete. Many case studies show that
scientists have profitably used demonstrative inductions in the past, and so
one might infer that scientists will profitably do so in the future. The result-
ing demonstrative theory is rather weak, however. We infer by an ampliative
rule that demonstrative inductions are useful, but we can only say where
they have been useful in retrospect.

5.3. Theories of Induction as Justifications

Demonstrative theories might claim that demonstrative inductions provide
greater justification for scientific theories. For example, authors such as Nor-
ton (1993) and Massimi (2004) have claimed that demonstrative inductions
resolve the problem of underdetermination; scientists are able to draw deduc-
tive conclusions from phenomena (described at a high level of externality)
and background constraints on theory. Massimi suggests that “a demystifica-
tion of the problem of underdetermination” results from acknowledging that
“the theory that comes to be chosen is derived from the salient phenomena
with the help of the salient theoretical constraints” (2004, 266). As any-
one must admit, the justificatory burden is passed off to the high-externality
descriptions and theoretical commitments. If these in turn are justified by
another demonstrative induction, then more premises are required and a
regress ensues.8

When scientists do accept the reports of phenomena and theoretical con-
straints that serve as premises of a demonstrative induction, reason demands
that they accept the conclusion. As a psychological matter, this may explain
why scientists do not worry that their theory choice is underdetermined.
Demonstrative induction “makes the phenomenon of underdetermination, so
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beloved by philosophers, invisible to working scientists” (Worrall 2002, 200).
The demonstrative induction also provides a kind of justification for the the-
ory choice: Given the beliefs that scientists have, they ought to accept the
conclusion.

Norton argues that this makes the regress acceptable. He writes, “It
merely describes the routine inductive explorations in science. Facts are
inductively grounded in other facts; and those in yet other facts; and so on.
. . . What remains an open question is exactly how the resulting chains. . .
will terminate and whether the terminations are troublesome” (2003, 668).
The regress stops with the premises that we actually accept, and that is OK.

Appealing to background theories in this way suffices to answer under-
determination worries; cf. Kitcher (1993) and Magnus (2005). To count as
a defence of demonstrative theories, however, it needs to be shown not only
that accepted background theories may resolve underdetermination— but
also that it is impossible for ampliative rules to fill that rôle. It seems prima
facie as if appealing to beliefs we find unproblematic is neither more nor less
secure than appealing to inferences we find unproblematic. Norton (2003,
667–668) insists that this is not so, but does not give much of an argument.

In favor of demonstrative theories, one might argue in this way: Scientists
are better at evaluating whether to believe explicit claims than they are at
evaluating whether to commit themselves to rules of inference. If that were
true, it would make demonstrative inductions more reliable than the parallel
inferences carried out with ampliative rules. This is a practical matter, but it
is also a matter of whether certain practices are apt to lead to truth or not—
and so it is a matter of justification. I have expressed this hypothetically
because I do not know whether there is this difference in reliability between
scientists’ assessments of premises and their assessments of rules. Norton and
others have an intuition that there is this difference, but something more than
an intuition is required— because, of course, their opposition does not share
their intuitions. Whether there is a psychological difference that makes us
better at assessing general premises than ampliative rules is a contingent
matter. Champions of demonstrative induction need more than the mere
suggestion or intimation of a difference. Moreover, if such a difference in
reliability is to ground a general defence of demonstrative inductions, then
the difference must be robust. It must obtain not only for some particular
group of scientists, but for most or all scientists. It must endure across
changes in methodology. I do not know of any evidence that there is such a
difference.
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Alternately, detractors of demonstrative induction might argue in this
way: A demonstrative induction typically requires both high-externality ob-
servation reports and premises that constrain the form of admissible theo-
ries. These latter constraints are non-empirical, and so (the argument goes)
expose us to more risk than an ampliative argument from the same observa-
tions to the same conclusion. Of course, the material postulates that figure
in demonstrative inductions are contingent and so involve some risk. How-
ever, ampliative rules will only be reliable in some subset of possible worlds—
simply put, that is what makes them ampliative and not deductive.9 The
rules, too, involve risk. Where we are led to the same conclusions, we accept
the same risk regardless of whether we are led there by material postulates
or inductive rules. If the detractor means to say that we have some greater
insight into which rules to trust than which premises, then again we are in
the realm of psychological speculation. An appeal to intuition will get them
no further than it gets champions of demonstrative induction.

Champions and detractors alike face a serious challenge.

6. Further Consequences

The points above regarding the relation between deductive rules and amplia-
tive rules hold mutatis mutandis between different sets of ampliative rules.
I want to briefly consider consequences of this for two other accounts of
induction.

First, consider Norton’s (2003) distinction between material and formal
theories of induction. A formal theory characterizes the correctness of an
inductive inference in terms of general, ampliative rules. A material theory
of induction treats induction as an inference relying on material postulates,
explicit premises about the kind of system in question.

He argues that there are no general conditions for the correctness of in-
ductive inference. For example: It is legitimate to infer the melting point of
pure gold from melting one sample of pure gold, but it is not legitimate to
infer the melting point of beach sand from melting one sample of beach sand.
Although the inferences are formally identical, one is about an element and
the other about a variable mixture. Thus, Norton concludes, induction re-
quires paying attention to facts and not merely to form: The correct account
of induction must be a material theory.

A material induction might not be strictly a demonstrative induction. For

12



example, inferring the melting point of gold might rely on a specific mate-
rial postulate like “Chemical elements are generally uniform in their physical
properties” (Norton 2003, 651, emphasis in original). Elements being gener-
ally uniform is not quite the same as their being all and always uniform. The
weasel-quantifier ‘generally’ means that an inference using this postulate will
not be deductive. (I would like to thank Norton for drawing my attention
to this point.) Nevertheless, the points made above about demonstrative
inductions may be profitably be applied here.

Norton’s contrast between formal theories (general, ampliative) and ma-
terial theories (local, deductive) conflates two separate questions. (1) Can all
inductions be corralled under one tent or must they be savvy to features of
the world, such as whether something is an element or a mixture? (2) Should
induction involve distinctive ampliative rules or not? Norton implicitly sug-
gests that taking the first horn of one of these questions means taking the
first horn of both, and similarly that taking the second horn of one of them
means taking the second horn of both.

Like a demonstrative induction, a material induction works because of
an inductive premise that supports a generalization (a material postulate)
rather than by an inductive rule (a material inference principle). As we have
seen, however, whether or not an inference involves ampliative rules is a
matter of how we reconstruct it. Norton’s argument against general theories
of induction addresses question 1; his conclusions about question 2 are a non
sequitur.

Perhaps Norton would readily admit as much, since nothing said here
poses problems for his answer to question 1. He may be right that mate-
rial postulates or principles need to be characterized in a domain-specific
way. The point here is only that this context sensitivity might be built into
content-sensitive rules or concrete premises with equivalent inductive risk.

Second, consider Lipton’s (2004) strategy of exploiting underdetermina-
tion: Begin with some inferences we accept, the rules of deduction, and some
acknowledged inductive rules. If the rules are insufficient to justify the infer-
ence, then we must be employing some further inductive rules. This allows us
to discover where unrecognized ampliative rules are at work. Lipton (2004,
5–7) attributes this strategy to Chomsky and Kuhn, and he himself uses it
himself in attempting to suss out inference to the best explanation.

This is unproblematic if we have all the premises of the inference explic-
itly formulated. Yet, as we have seen, the inferential gap may be filled by
suppressed premises as easily as by further rules. Since Lipton allows for
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previously acknowledged ampliative rules, the new premises need not be so
strong as to make the argument deductively valid. One might strengthen the
explicit premises so that the acknowledged rules are sufficient to licence the
inference, removing the impetus for adding further rules.10

Where there is sufficient evidence as to how scientists actually carried
out an inference, we can discover what their premises were and what rules
they employed; see §5.1., above. The point against Lipton’s method is the
converse of this. Where there is insufficient evidence as to how scientists
actually carried out an inference, we cannot discover whether their inference
relied on hidden premises or inexplicit rules.

7. Conclusion

For any set of conclusions, there is no difference (in terms of risk) between
committing myself to a risky rule that warrants all and only those conclu-
sions and committing myself to risky premises that deductively entail all and
only those conclusions. The equivalence between demonstrative and non-
demonstrative theories of induction means that they expose us to the same
degree of risk. There may be legitimate practical reasons when constructing
or reconstructing scientific inferences to construe them as deductive or as
ampliative. Nevertheless, the scientific inferences could in principle be con-
strued the other way and so are neither essentially deductive nor essentially
ampliative.

Massimi claims that “the advantage of [demonstrative induction] over
[ampliative] inductive methodologies consists in confining the ‘inductive risk’
to the phenomenal premises. . . without spreading it throughout the skeleton
of the. . . inference” (2004, 263). It is sound advice to lift with your legs and
not with your back. It might similarly be sound advice to lift with the muscle
of premises rather than the skeleton of inference, but the weight is the same
in either case.
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Notes

1Of course, scientific inferences are not generally offered as deductive.
Einstein did not present the derivation as a demonstrative induction (Dor-
ling 1995, §2). This is no mark against demonstrative theories, as accounts
of how scientific inference should be understood and not of how it was un-
derstood by scientists; “inductions are reconfigured as deductive inferences
with suppressed premises” (Norton 2003, 652, my emphasis). In the final
section, I return to the issue of whether demonstrative theories are meant to
be descriptive or normative.

2One might worry that the observation equivocates between two kinds of
equivalence. Logical systems that share the same set of valid inferences are
semantically equivalent. Proof systems that are intertranslatable are proof-
theoretically equivalent. For sound and complete proof systems, however,
this distinction does not matter. Most examples of demonstrative inductions
are not fully formalized, but there is no reason to think that they could not
be formalized in a language with a sound and complete proof theory. As
such, we can ignore this complication in what follows.

3Wittgenstein makes a similar point when he observes that there must
be a way of following a rule that is not an explicit interpretation of the rule
(1953, §201); the Tortoise’s trick is to insist that the rule must be interpreted
explicitly for each instance before it can be followed. Stroud (1979, 195) also
notes the affinity between Carroll and Wittgenstein.

4The distinction between high and low externality is similar to the dis-
tinction between observational and theoretical language. Although the latter
might be more familiar to philosophers, it has the unfortunate effect of sug-
gesting a binary distinction rather than a matter of degree. Even allowing
that a report might be ‘more or less observational’, the distinction suggests
a continuum with pure observation at one end and pure theory at the other
and so creates unnecessary difficulties. For example, van Fraassen (1980)
argues that the distinction between theoretical and observational language is
a category mistake. No such charge can be leveled at the distinction between
high and low externality reports.
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5The high externality claim might be derived from background theory;
e.g., the constancy of the speed of light may be derived from Maxwell’s
equations. But then the claim is a theoretical constraint rather than an
observation report.

6Motivated by Quinean worries about meaning and translation, one might
argue that there is no fact of the matter as to which of two equivalent proof
systems an observed agent is using— and so that demonstrative theories of
induction necessarily fail as description accounts. I have nothing helpful to
say about the nature of translation here, but it suffices to note that such a
Quinean argument would provide an independent route to the conclusion I
argue for below. That line of argument would offer no help to champions of
demonstrative induction.

7Of course, it is sometimes possible to fruitfully distinguish between theo-
ries and research programmes; e.g. Schell and Magnus (2007). For Worrall’s
criterion to be general, however, it must always or almost always be possible.

8Bain (1999) provides an illustrative example by reconstructing an argu-
ment by Steven Weinberg. Briefly, the argument is that “local quantum field
theory is the only way to reconcile the principles of quantum mechanics with
special relativity and Cluster Decomposition” (Bain 1999, 6). Bain thinks
that this answers a specific kind of underdetermination worry by showing
that there is no other theory that has all of these virtues (Bain 1999, 12).
Yet underdetermination arguments typically turn on ‘empirical equivalence’,
not equivalence with respect to strongly stated theoretical desiderata. An
anti-realist who does not believe the principles of quantum mechanics will
not believe their deductive consequences either. Weinberg’s argument thus
presumes a great deal of physical theory that could only be established by
(partly) ampliative means. The ampliative support for some of the premises
may be pushed back, but the contingency and inductive risk do not go away.

9A systematic discussion of what ampliative rules must assume about the
world is given in Kelley (1996).

10The resolution of this issue will depend ultimately on what counts as
evidence. It is no surprise that Bird (2006) begins his discussion by accepting
a specific account of evidence.
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