2019

The Stock Cove Site: A Large Dorset Seal-Hunting Encampment on the Coast of Southeastern Newfoundland

Christopher B. Wolff
University at Albany, State University of New York, cwolff@albany.edu

Donald H. Holly Jr.
Eastern Illinois University, dholly@eiu.edu

John C. Erwin
Provincial Archaeology Office of Newfoundland and Labrador, jcerwin@gov.nl.ca

Tatiana Nomokonova
University of Saskatchewan, tan204@mail.usask.ca

Lindsay Swinarton

The University at Albany community has made this article openly available.
Please share how this access benefits you.

Follow this and additional works at: https://scholarsarchive.library.albany.edu/cas_anthro_scholar

Part of the Archaeological Anthropology Commons, and the Environmental Studies Commons

Recommended Citation

Wolff, Christopher B.; Holly, Donald H. Jr.; Erwin, John C.; Nomokonova, Tatiana; and Swinarton, Lindsay, "The Stock Cove Site: A Large Dorset Seal-Hunting Encampment on the Coast of Southeastern Newfoundland" (2019). *Anthropology Faculty Scholarship.* 18.
https://scholarsarchive.library.albany.edu/cas_anthro_scholar/18

This work is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 4.0 International License.

Rights Statement

This Article is brought to you for free and open access by the Anthropology at Scholars Archive. It has been accepted for inclusion in Anthropology Faculty Scholarship by an authorized administrator of Scholars Archive. Please see Terms of Use. For more information, please contact scholarsarchive@albany.edu.
Abstract. The Stock Cove site (CkAl-3) is a large, deeply-stratified, multi-component site located in southeastern Newfoundland. The richest strata at the site, which have yielded thousands of artifacts and multiple overlapping house features, provide evidence of a substantial Dorset presence. Earlier researchers proposed that the Stock Cove site additionally contained the Province’s only Dorset longhouse, which this paper disputes. The high frequency of sea mammal hunting implements, identified faunal remains, as well as the site’s location, all suggest that coastal and marine resources figured prominently in the Dorset’s food economy at Stock Cove. Faunal remains further suggest that the biogeography of the region when the Dorset were living at the site, particularly the distribution of migratory harp seals, may have differed significantly from historic
distributions. The recovery of harp seal remains on the site has broad implications for understanding Dorset colonization and abandonment of the island, as well as the appropriateness of using historic biogeographic data to interpret prehistoric economies.

Christopher B. Wolff: Department of Anthropology, 1400 Washington Avenue, Arts and Sciences Building, Room 105, University at Albany, Albany, NY, 12222; cwolff@albany.edu

Donald H. Holly, Jr., Department of Sociology, Anthropology, and Criminology; Eastern Illinois University, Charleston, IL, 61920; and Department of Archaeology, Memorial University of Newfoundland; dhholly@eiu.edu

John C. Erwin: Provincial Archaeology Office, 2nd Floor, West Block, Confederation Building, St. John’s, NL, A1B 4J6; johnerwin@gov.nl.ca

Tatiana Nomokonova: Department of Anthropology, University at Alberta, Tory Building, 13-15 HM, Edmonton, AB, T6G 2HA; tatiana.nomokonova@gmail.com

Lindsay Swinarton: Département d'Histoire, Université Laval, Quebec, QC, G1V0A6; swinarton@hotmail.com.
Introduction

Our understanding of Dorset human-environment interaction and settlement on the island of Newfoundland has long been dominated by archaeological perspectives gleaned from the investigation of large habitation and hunting sites on the island’s northwest coast, which were geared toward intercepting migratory harp seal herds. Large Dorset settlements, however, are also found in Trinity Bay in southeastern Newfoundland (LeBlanc 2003, 2010; Robbins 1982, 1985; Wolff et al. 2010; Wolff et al. 2014; Wolff and Urban 2014). Indeed, one of these sites, Stock Cove (CkAl-3), which is situated upon a narrow isthmus separating the Avalon Peninsula from the remainder of the island of Newfoundland (Figure 1), now appears to be one of the largest Dorset sites on the island, with perhaps the densest Dorset artifact deposits anywhere on the island, and some of the deepest stratigraphy of any pre-contact site in the entire Province.

Interpretations of Dorset site function and seasonality on the island of Newfoundland have often relied on historic environmental data, particularly the distribution of historic harp seal herds as they were observed by European settlers and, more recently, marine biologists (e.g. Sergeant 1991). Robbins (1982, 1985), for instance, suggested that Stock Cove was primarily a communal caribou hunting site–subsidized by opportunistic hunting of harbor seals–based, in part, on the relative dearth of harp seals observed in Trinity Bay in the historic period. While recognizing that the distribution of harp seals may have been different in the past, Robbins (1985:97) posits that “Spring harp seal hunting likely did not figure prominently in Dorset subsistence at Stock
Cove…”, and that he preferred “to exclude this possibility until it has been demonstrated.”

In the absence of historic data to support large harp seal populations in the area, Robbins’ (1985:108-111) surmised that caribou hunting instead figured prominently in the Dorset food economy at Stock Cove and that the Dorset may have even chosen the site so as to intercept migrating caribou crossing the isthmus on which the site is situated. It now appears, however, that the biogeography of the northwest Atlantic region has changed significantly since the Dorset were in Trinity Bay, some 1500 years ago (e.g. deVernal and Hillaire-Marcel 2000; Rochon et al. 1999; Rosenberg et al. 2005; Solignac et al. 2004). These changes are also evident in the archaeological record at Stock Cove.

Our recent excavations at Stock Cove have yielded harp seal remains, suggesting that the harp seal-focused economy that has been identified at Dorset sites in northern and western Newfoundland, like Phillip’s Garden (Hodgetts 2005; Renouf 1993; Renouf and Bell 2008; Wells 2012), may have extended to southeast coast of the island too. It would also suggest that the environment—and critically—the distribution of harp seal herds, was different when the Dorset were at Stock Cove. This paper presents recent evidence for Dorset economic practices at Stock Cove, discusses the nature of the occupation of the site and related environmental proxy data, reassesses previous evidence for caribou hunting at Stock Cove, revisits Robbins’ (1982, 1985) suggestion that Stock Cove contained what would be the only Dorset longhouse in the Province of Newfoundland and Labrador, and explores the social significance of Stock Cove in light of this new information.
A Brief History of Dorset Research in Newfoundland

Research on the Dorset occupation of the island of Newfoundland began in the late 1920s and early 30s with field surveys by Diamond Jenness and William John Wintemberg on the Northern Peninsula (see Jenness 1929, 1930, 1933; Wintemberg 1939, 1940). This work revealed evidence for a “Cape Dorset” type Arctic tradition and laid the foundation for subsequent research by Elmer Harp, Urve Linnamae, Priscilla Renouf, and their students, which continues to this day (e.g. Harp 1951, 1964, 1976; Hodgetts 2005; Linnamae 1975; Renouf 1993, 2003, 2011; Renouf et al. 2000; Renouf and Bell 2008; Wells 2012).

Research on the island has long focused on understanding regional diversity in Dorset archaeological assemblages. Linnamae (1975) was one of the first to investigate this. Comparing “Newfoundland Dorset” assemblages with contemporaneous Dorset groups in the Arctic, where they are often referred to as “Middle Dorset,” Linnamae concluded that differences in the Newfoundland assemblages could be attributed to the island’s subarctic environment, although during much of the period of Dorset occupation of the island (ca. 200 BCE to CE 800) environmental conditions in Newfoundland more closely resembled the Arctic than Subarctic. At about the same time, archaeologists working in Labrador (Fitzhugh 1972) and on the island of Newfoundland (Carignan 1975) began to recognize regional variants within Dorset lithic technology on the island that differed significantly from those in the Arctic and from each other. Fitzhugh (1980:26) went further and suggested that the Newfoundland patterns developed in situ from earlier Paleoeskimo populations (heretofore referred to as “Sivullirmiut,” a term we
prefer over “Paleoeskimo,” that roughly translates to “ancient ones” in some dialects of Inuktitut (following Hodgetts and Wells 2016), while adopting a few new traits from farther north; however, others (e.g. Tuck 1982:214) pointed to a chronological gap which appeared to separate Early Sivullirmiut occupations (Pre-Dorset and Groswater) in Newfoundland and Labrador from later Dorset ones. That gap has since narrowed, but largely researchers continue to view them as distinct cultures representing separate migrations rather than a continuum.

The archaeological faunal record has also provided reason to believe that the Dorset of Labrador, and particularly Newfoundland, had a more specialized economy than Dorset groups living in the High Arctic, one that focused on seal hunting. Specifically, harp seals (*Pagophilus groenlandicus*), whose seasonal migrations bring them into Newfoundland and Labrador coastal waters in large numbers, may have been a pulling factor that brought them south into the eastern Subarctic. While some have pointed out that there is evidence that High Arctic Dorset groups participated in a mixed terrestrial-marine economy that included seasonal procurement of caribou, avifauna, and fish, as well as other marine resources (e.g. Howse 2008; Milne 2012), the majority of Dorset sites appear to be oriented towards coastal and ice-edge resources (Darwent 2011; Murray 1999). These resources appear to become even more important to the Newfoundland and Labrador Dorset where faunal evidence suggests that seals, and particularly harp seals, are overwhelmingly the focus of their subsistence activity, although much of that evidence comes from the west coast of Newfoundland (e.g. Hodgetts 2005; Hodgetts et al. 2003; Renouf 1993) where a unique preservation
environment existed. Elsewhere in the eastern Subarctic, organic preservation is generally poor due to pervasive acidic soils and the cryoturbation processes in the region.

Early Research at Stock Cove

Early investigations at Stock Cove were a broad continuation of research into Dorset regional variation. Drawing on material recovered from his excavations at Stock Cove and other collections on the island, Robbins (1982, 1985) made the case that there were three distinct regional Dorset technological traditions on the island, which he referred to as the “western expression,” “northeastern expression,” and the “southern expression” (Robbins 1985:139-140)—with Stock Cove belonging to the latter. Robbins (1985:139-141) ascribed regional differences in Dorset assemblages to ecological variation, which generally corresponded with the historical distribution of various seal species and caribou on the island. Robbins further suggested that decreased interaction between these regions and the mainland played a role in the development of these expressions (1985:142), although he did not speculate as to why this may have occurred. Robbins’ (1985) work on Dorset regional variation was very influential, and indeed it continues to inform and inspire archaeological interpretation of Dorset technological traditions on the island (see LeBlanc 2000, 2010).

Robbins’ work at the site was important in other ways too. Robbins noted a rectangular distribution of large flagstones at the bottom of his excavation units which he interpreted as the floor of a single Dorset longhouse (Robbins 1985:39-40). This was a remarkable discovery, as it would be the first and only such dwelling to be identified in
the Province of Newfoundland and Labrador. Robbins’ claims for a Dorset longhouse, however, are difficult to assess today, given that artifact and debitage distribution plots, which might have demonstrated communal activities, were never published.

As part of our reassessment of the site, we obtained Robbins’ original artifact record forms from The Rooms Provincial Museum in St. John’s and compiled the provenience data from these forms in an effort to recreate Robbins’ *in situ* artifact distributions. We then plotted these over Robbins’ (1985) original plan view. The resulting map, dense with plotted artifacts (see Figure 2), leaves little doubt as to the richness of the Dorset component of the site, but it fails to confirm the identification of a longhouse. If anything it challenges this assessment, as there is no clear artifact distribution that correlates with a single architectural feature. Rather, based on our excavation experience at the site, we are inclined to think that the flagstones in Robbins’ plan represent overlapping—and likely cannibalized—structural features from a millennium of Dorset activity at the site.

Following Robbins’ work, the only other field research to be conducted at Stock Cove prior to our project was a 2006 survey conducted by Laurie McLean on behalf of the Provincial Archaeology Office of Newfoundland and Labrador. McLean revisited the site in the interest of assessing how it has been impacted by continuing coastal erosion and storm events. McLean noted substantial and active erosion of the site along its coastal margins due to wave action and storm surges to the degree that he was able to fill half a bucket in very little time with artifacts that had spilled out onto the beach. He stated that he could have easily filled three or four more bucket with artifacts if he so
desired (McLean 2006:2). McLean’s grim observation remains true today. Each time we return to Stock Cove we document damage to the site wrought by shoreline erosion.

Recent Research at Stock Cove

Our research at Stock Cove began in the summer of 2008 when Wolff and a small crew conducted test excavations across the main area of the site (Figure 3) to evaluate its research potential as part of a proposed historical ecology research project focusing on the island of Newfoundland and its prehistoric inhabitants (Wolff et al. 2009). These initial investigations involved shovel test pits (n=21) of about 50 x 50 cm approximately every ten meters along four parallel transects roughly paralleling the shoreline. The test units were excavated to depths of 20 to 60 centimeters, depending on the presence of relic beach cobbles, which occasionally prohibited deeper probing. The results of the test excavations indicated that the site extended well beyond Robbins’ original excavation area and that there were significant and extensive cultural deposits in the area. The majority of the cultural material found during these investigations—totaling 147 formal tools, approximately 5000 pieces of debitage, and a small collection of bone and shell—are believed to be associated with the Dorset occupation, but earlier Sivullirmiut (Groswater) and Amerindian (Maritime Archaic) artifacts, as well as more recent Amerindian (Little Passage/Beothuk) and European materials, were also recovered.

The 2008 fieldwork also suggested that the stratigraphy of the site was more complex and deeper than most pre-contact sites in the Province—and this was before the true depth of cultural material and the nature of the site’s stratigraphy was fully
understood. It was immediately apparent that the site’s depositional history consisted of a series of pre-contact settlements interdigitated with storm surges and colluvial processes that both eroded and, in some instances, protected underlying strata by redepositing cobble stones from the beach and colluvium from the surrounding steep hillsides to the north and west of the main site area (Holly et al. 2015). Though the latter processes served to shield the site from surface erosion associated with terrestrial precipitation, they failed to safeguard the site from wave action and storm surges along the active beachfront.

The incredibly rich and densely-packed Dorset record of occupation at Stock Cove became the focus of our field research. Our objectives for these strata were to: 1) identify Dorset architecture at the site, especially any evidence of Dorset longhouses, 2) understand Dorset subsistence strategies and environmental conditions at the time of the Dorset occupation, and 3) assess the overall size of the site. Because identifiable bone fragments were recovered from the Dorset levels of the 2008 test excavations, we hoped that faunal preservation would be adequate to allow us to test the idea posed by Robbins (1985) that, in this part of the island—well away from observed harp seal aggregations—the Dorset relied on a broader range of marine resources, and significantly, caribou.

To address these questions, we opened twelve, one-meter square excavation units in the western area of the site where 2008 testing had indicated very deep deposits and some faunal preservation (Wolff et al. 2010)(Figure 3). We also excavated an exploratory single square meter unit near the center of the site. Although we had initially planned to open a number of additional units, the high volume of artifacts and massive amounts ofdebitage that we recovered precluded further excavation. Moreover, we excavated an
additional twenty one-meter square units further east in the central area of the site (Figure 3), primarily below Robbins’ excavation area. The location for these twenty units was selected to investigate the early Sivullirmiut and Archaic occupation of the site to learn more about the cultural history of the site without collecting substantial additional Dorset materials that had already been removed and studied by Robbins; however, we still collected large numbers of Dorset artifacts (n=1011; Table 1) from those units that will be included in the research presented here.

In addition to our excavations in the main area of the site, we also investigated the wooded hillsides surrounding the site. To our surprise, test excavations in this area yielded some diagnostic Dorset artifacts, including endblades, and other material thought to be associated with the Dorset occupation of the site. Our discoveries here indicated that the site was far larger than we—or anyone else—had thought, and it raised the question of what people were doing in the hillsides so far from the center of camp, a matter that we will address below. For now, our best estimates are that the site covers an area of approximately 5,000 m², although much of that area contains only evidence of short-term activity and ephemeral deposits. The main concentration of the site covers an area of roughly 800 m² (Figure 4). A true estimation of the site’s extent is complicated by the nearby site of Stock Cove West (CkAl-10) that has a clearly different ancestral Beothuk and post-European contact component (Holly et al. 2010; Holly et al. 2011), but perhaps has a peripheral Dorset component that was associated with the main Stock Cove site (CkAl-3).

In addition to excavation, in 2012, Wolff, and geophysicist Thomas Urban, conducted a geophysical survey at Stock Cove in an attempt to locate and identify buried
architectural features (Wolff and Urban 2014). The results of that study proved fruitful. Through a combination of ground-penetrating radar (GPR) and magnetometry, Wolff and Urban identified at least nine features at various depths (Figure 5). Most of these were circular, architecturally resembling typical Dorset dwellings on the island and mainland Labrador (Renouf 2003), and occurred at the expected depth range of the Dorset strata based on previous excavations, confirming our view that the site not only had dense artifact deposits, but also contains evidence of significant architectural features.

Unfortunately, the incredibly complex nature of the Dorset occupation made it difficult to clearly reconcile the 2012 geophysical results with excavation evidence. It appears that, while there does not seem to be any substantial disturbance of the stratigraphic integrity of the deposits, Dorset architectural features were likely dismantled and reused over the centuries that the site was occupied, resulting in a palimpsest of flagstone and cobblestone features (Figure 6). There also appeared to be some localized mixing of cultural material, probably from tree root disturbance.

Despite these challenges, in the western block (2009-2013) of our excavations we tentatively identified what appeared to be the partial remains of a Dorset semi-subterranean, circular or sub-rectangular house. We also discovered what may be an axial feature, a common element in Dorset architecture on the island, that bisects their houses, often separating sleeping areas from other domestic activity space, and is thought to have some ideological significance (see Lemoine 2003; Renouf 2003). Our interpretations of these features stem from the confounding irregular and overlapping distribution of stones in the area, the result of what were likely multiple reoccupations and, as mentioned above, reuse of earlier structural material over the course of the Dorset occupation.
In the eastern-central units (2016-2017) we found similar deposits underlying Robbins’ units. At the base of his excavation, and below it, was a palimpsest of irregularly placed flagstones and large cobblestones. This supported our suspicions, which were based on our map of the distribution of Robbins’ artifacts within his hypothetical longhouse (Figure 2), that—rather than a single longhouse—what Robbins excavated was a series of overlapping smaller structures, the earliest perhaps associated with the date of 1560 ± 60 B.P. (Beta-4064) he received from the lowest level of his excavation. Our excavations produced a series of 13 AMS dates from the Dorset strata, some from just below Robbins’ excavation area (see Figure 7 for provenience of dates). The Dorset dates range from roughly 1228 cal B.P. (Beta-362901) to 1608 cal. B.P. (UGAMS-28000)(Figure 8), although the calibration curve during this period oscillates somewhat and the older dates could be as much as 1800 cal. B.P. Currently, all evidence suggests that around 2700 cal BP the earliest Sivullirmiut people first occupied Stock Cove, but a more sustained occupation began approximately 2300 cal. B.P. and lasted approximately 200 years. The radiocarbon dates suggest this was followed by a hiatus of between 500-700 years; however, this may be biased by our focus on dating the Dorset levels and we suspect, based on the stratigraphy of the site that, if there was an abandonment of the site it was for a much shorter period. Stratigraphically, there seems to be overlap in the early Sivullirmiut material and the subsequent Dorset occupation. This transition will be the focus of future research at Stock Cove. Regarding the Dorset occupation, it appears that by at least 1600 years ago they settled at the site and continued to live there for over 400 years, and possibly as much as 600 years.
Lithic and Inorganic Assemblage

Across the portion of the site that was not previously excavated by Robbins, the upper approximately 20 cm closest to surface yielded evidence of late prehistoric Amerindian (ancestral Beothuk) activity and some European artifacts (Holly et al. 2010; Wolff et al. 2009; Wolff et al. 2010; Wolff et al. 2014). European artifacts were limited to a shard of bottle glass, a handful of rusty nails and other unidentifiable, corroded iron objects, and a variety of ballast flint, all recovered near the surface of the site. It is currently unclear if some of the obviously flaked examples of the ballast flint were the result of Europeans manufacturing gun flints or Beothuk use of discarded ballast stone (see Holly et al. 2015).

The roughly 20-30 cm immediately below the ancestral Beothuk material contains almost exclusively Dorset material, and the 10-20 cm below that is a mix of Dorset and Groswater materials, often without clear delineation in the stratigraphy. There appears to be some slight stratigraphic mixing due to bioturbation, and probably cryoturbation processes, as well as ancient wave action and erosion; however, there does not seem to be significant taphonomic disturbance or stratigraphic reversals in the site. A high-resolution geomorphological study of the site is the focus of our ongoing research. In all, we recovered 1970 formal Dorset artifacts (Table 1) and over 20,000 pieces of debitage and debris belonging to their occupation.

Our excavations yielded a remarkable number of Dorset harpoon endblades (n=584), with the highest concentration in Robbins’ units and our 2016-2017 units underlying his excavations, although our excavations elsewhere also uncovered dense
deposits of these artifacts (see Table 1). The majority of the endblades (~80%) were manufactured from what is referred to as Trinity Bay chert, a fine-grained material that originally is a medium to dark gray chert that develops a chalky white patina over time. Though not for a lack of effort (Wolff et al. 2014), the source of this material has yet to be discovered; however, we suspect that it is nearby, given the sheer amount of the material that is found on Dorset sites in southern Trinity Bay, its decreasing frequency with distance from southern Trinity Bay, and the fact that we find very large nodules of primary debitage as well as large flake cores at Stock Cove. Of the over 10,000 pieces of debitage and debris we have examined so far, 94.59% (97.16% of total weight) of the identified specimens from the lowest Dorset levels (Level E from 2009/2013 units) and 92.65% (94.28% of total weight) from the upper Dorset levels (Level D from 2009/2013) are Trinity Bay chert. Interestingly, despite the slightly greater percentages of Trinity Bay chert in the lower levels, the remaining raw materials appear to be more diverse in their origin than subsequent occupations. This suggests that the earlier Dorset occupants of the site may have come from, frequented, or interacted with, different areas of the island, raising important questions of varying mobility and settlement strategies through time that may be illuminated through our ongoing analysis of the raw materials recovered from Stock Cove.

Unfortunately, the debitage from Robbins’ work was not systematically analyzed, and because much of the site was not screened during that time, there are inherent problems in using his debitage for a larger comparative study. That said, our debitage continues to be a part of our study and will be disseminated when completed. For now, our analyses of the debitage thus far have identified all stages of lithic manufacturing
during the Dorset occupation of the site and, in particular, Trinity Bay chert is the dominant raw material in all production stages.

One of the most poorly understood aspects of Trinity Bay chert is its apparent “weathered” condition, a colloquial description for the diagenesis that accounts for the white chalky patina that is visible on the surface and that penetrates the material to a varying depth, which we believe is time dependent (Figure 9). Although the time it takes for this to occur, and causes of the weathering are not currently understood, we think that the weathered state of the stone was critical to the manufacturing process of the Dorset lithic assemblage, and in particular, to the production of endblades. Dorset endblade manufacture in Trinity Bay is unique in the Dorset world, insofar as they are fully ground and often serrated after they are pressure flaked (Figure 10). Through this manufacturing process endblades are functionally complete after the initial pressure flaking, and as such, are practically no different than any other finished Dorset endblade; however, the subsequent, and seemingly functionally unnecessary, procedure of grinding removes all of the flake scars and gives the finished specimens their unique form that is exclusive to the Trinity Bay region. Interestingly, the grinding is done in a manner that gives them, or at least preserves, a cross-sectional profile that mimics the signature tip-fluting of Middle Dorset endblades across the Eastern Arctic (Plumet and Lebel 1997). The final step for many of the endblades at Stock Cove, and elsewhere in the southern end of Trinity Bay (LeBlanc 2000, 2010), is that their lateral margins are finely serrated (Figure 10). These stylistic features constitute what Robbins’ (1985) called the “southern expression” of the Dorset technological tradition.
Our excavations also produced a significant number of non-hunting artifacts (n=1379), including microblades and scrapers made of quartz crystal and chert, as well as chert and rhyolite bifaces, knives, and cores (Table 1). This diversity suggests a broad range of activities occurred at the site.

Finally, The paucity of oil lamp fragments and lamp stands in the Dorset strata of Stock Cove may confirm the greater reliance of wood and its local availability and lesser need for lamps to light and heat their structures; however, at least one lamp fragment was recovered in 2013 and because few clear architectural features have been excavated, the low frequency of lamps is possibly due to sampling bias.

Faunal and Organic Assemblage

Thousands of mostly highly-fragmented faunal remains (NISP=3299) were recovered from the Dorset stratum. The bulk of faunal material was collected from a discrete, roughly linear arrangement, slightly less than one meter long extending NE-SW across two units in the 2009-2013 block in the western part of the site. This feature may have been the entryway to a dwelling; however, the interpretation of entryway remains untested, although further excavation to the south could potentially address this hypothesis if it reveals that the feature extends in that direction. While there are other explanations for the feature (e.g. maintenance activity), its delineation and orientation are the only deposits consistent with what we would expect in an entry passage that we were able to find.
Most of the faunal remains we recovered were in extremely poor condition. The vast majority of them were fragments of less than one centimeter and many were calcined and rendered by fire into tiny pebbles of unidentifiable bone. Significant effort was made by Nomokonova and Swinarton—both are zooarchaeologists with a great deal of experience in identifying sea mammal and caribou bone in Arctic and Subarctic contexts—to differentiate between marine and terrestrial samples; yet, despite their expertise, only 18 specimens could be identified to the species level. Of these, 11 (MNI=5) are harp seal (*Pagophilus groenlandicus*), one is bearded seal (*Phoca barbatus*), three (MNI=1) are beaver (*Castor canadensis*), one is cod (*Gadus morhua*), and two (MNI=1) are caribou (*Rangifer tarandus*). In addition, 210 other bones (6.3%) were assigned to the family Phocidae and seven specimens (0.2%) to the suborder Pinnipedia. Of the 235 faunal specimens that could be confidently identified to at least the class level, pinnipeds dominated, making up 97.4% (NISP=229) of that assemblage (Wolff et al. 2011). The abundance of identified pinniped bones, along with the high frequency of harpoon endblades, suggests that seal hunting was the primary focus of Dorset subsistence activities at Stock Cove. The high frequency of tools often associated with the butchering and rendering of sea mammals (e.g. scrapers, knives, and microblades), and the dark, greasy nature of much of the soil matrix at the site, would appear to indicate they were also processed on site.

The presence of harp and bearded seal bones suggest that ecological conditions in southern Trinity Bay were different during the Dorset occupation than they have been in more recent times, a matter that is discussed in more detail below. The vast majority of the identified seal bone came from stratigraphically secure Dorset deposits, although a
handful of unspecified seal bones were recovered from a stratigraphic interface level in the upper stratum of the site that also contained ancestral Beothuk materials. The two caribou bone fragments and the cod bone were found in strata that contained Beothuk material, which suggests they are not likely associated with Dorset subsistence activity.

In addition to the faunal remains, which offer some indication of environmental conditions at the time of the Dorset occupation, bulk samples of the soil matrix from each cultural stratum were collected by Frédéric Dussault for an archaeoentomological dissertation research project focusing on the utility of using beetle remains for reconstructing the paleoenvironments. Dussault’s analysis suggests that the Dorset were living in terrestrial conditions similar to those found at the site today—a mixed forest, with lots of ground moisture, abundant vegetation litter, and a limited grassy meadow area (Dussault unpublished report 2016). We should note, however, that the assignment of some beetle remains to discrete Dorset strata is equivocal. A single beetle carapace of a species identified by Dussault (2016 pers. comm.) as *Olyrhynchus sulcatus* returned a date of 40 ± 25 B.P. (UGAMS-24854), despite its provenience from a significantly buried Dorset stratum. This result suggests that it is possible that beetles can move vertically through the matrix at Stock Cove, perhaps along tree roots, and, therefore, may not be reliable indicators of past environments.

Discussion

Perhaps no other people who lived at Stock Cove were as committed to the sea as the Dorset. The mass production of marine-hunting technology, particularly harpoon
endblades, underscores a tremendous investment of time toward that part of their economy, eclipsing other technology related to subsistence. The fact that the vast majority of that technology was produced from a local chert also suggests that most of that hunting was likely done along the shores of the Trinity Bay region; however, the dominance of marine mammals in the Dorset faunal assemblage from Stock Cove (Wolff et al. 2010; Swinarton unpublished report 2013) is perhaps the clearest indication of their focus on coastal and marine resources.

The presence of harp and bearded seal bones in the Stock Cove faunal assemblage suggests that the Dorset occupied the site during the spring when harp seals frequent Newfoundland waters, and when there is still significant sea ice present, which both species rely upon. The relatively high frequency of harp seal bone fragments among the identified species in the assemblage, and the likelihood that many of the other fragments are in the same size class and order of harp seals, would also seem to suggest that harp seals were more abundant in southern Trinity Bay at the time of the Dorset occupation than they are known to have been historically (Sergeant 1991). Moreover, as ice-dependent species, the presence of harp and bearded seal at Stock Cove could mean that the distribution of sea ice in the region was also different than known historically. Indeed, environmental proxy data, such as dinocyst concentrations from ocean cores (Solignac et al. 2004; Solignac et al. 2011) and Chironomid (midge) remains from pond cores (Rosenberg et al. 2005) point to chronological and geographical variability in Newfoundland’s ecosystems, with some evidence to suggest that the waters surrounding the island were significantly colder during the peak of Dorset occupation of Stock Cove (Solignac et al. 2011:547). Such colder conditions would have had the effect of extending
sea ice, and critically, harp seal herds deep into Trinity Bay. Thus, the distribution of the sea ice that harp seals rely upon could have been more available in the southeast during that time, making that species and other Arctic species (e.g. bearded seal) more accessible in that region than they are known in the historical period. Perhaps this would explain how the Dorset were able to maintain a substantial population at Stock Cove for centuries with what appears to have been a seal-focused economy.

We think it is unlikely that less gregarious seal species, such as ringed and harbor seals, could have supported such a large encampment of Dorset at Stock Cove. We also do not think that the Dorset were at the site to intercept caribou migrating through the narrow Avalon Isthmus. In fact, the few caribou bones that were recovered at Stock Cove were found at the interface with the ancestral Beothuk occupation, and thus their cultural affiliation cannot be determined. Even if these remains are associated with the Dorset, there are very few of them, and plausibly they were taken at the end of the Dorset’s tenure at Stock Cove—not during their peak occupation of the site. If they are Dorset in origin, maybe we are seeing a last ditch effort at economic diversification before the Dorset were compelled to abandon the site.

Unfortunately, the highly-fragmented nature of the rest of the faunal remains recovered from the site make macroscopic identification of the majority of the bones impossible. Perhaps a sampling strategy that utilizes ancient DNA or zooarchaeology by mass spectrometry (ZooMS) could offer better results and may be part of future efforts and funding, but currently we can only speculate about the majority of the small, unidentifiable bone fragments (Table 2). It is quite possible that their fragmentary and calcined nature is the result of humans crushing and cooking bones to obtain marrow and
bone mash. This kind of processing has been noted within a “nothing is wasted” mentality associated with some ancestral Inuit sites and in modern Inuit hunting practices in Greenland (Pasda and Odgaard 2011). It may also be the result of the crushing and mashing up of bone as has been noted elsewhere (although not at Dorset sites) in the eastern Subarctic (see e.g. Holly et al. 2018; Prince 2007; Speth and Spielmann 1983; Spiess 1979), either for subsistence or ceremony. These practices are most often associated with the processing of caribou bone, which would be consistent with Dorset efforts to expand and extend food supplies at the end of their tenure of the site, perhaps at a time of food stress, or even possibly due to an ideological ethical imperative; however, the preservation context at the site is also very poor making such assessments equivocal. Future excavation and analyses may be able to address these challenges, particularly if they sample the interiors of structures as well as possible external midden and processing areas.

Dorset settlement data at Stock Cove is comprised of a cluster of dwelling structures in the main site area, with broad evidence for activity in the surrounding hillsides and relic beach ridges. At least a dozen possible subsurface architectural features were documented in our geophysical survey (Wolff and Urban 2014), some of which have since been ground-truthed with test excavation (Wolff and Holly 2017). Most of those features are at depths that suggest they are Dorset in origin. They appear to be single-family, circular, semi-subterranean house pits ranging between 3 and 5.5 meters in diameter.

In the most intensely occupied portions of the site, Dorset architectural features are difficult to delineate from one another because they plausibly represent a palimpsest
of circular and axial stone arrangements. Our reinvestigation of Robbins’ hypothesized “longhouse” structure has led us to conclude that it is more likely a series of overlapping single dwelling structures that happen to be situated between two parallel relic gravel berms that were naturally created by wave action. Robbins’ had previously interpreted these berms as cultural features that delineated the longhouse margins and represented the work of heaping up gravel to hold down the edges of tent coverings (Robbins 1985:40). Our mapping of Robbins’ artifacts using his provenience data, however, does not match artifact distribution patterns associated with Dorset longhouses elsewhere (see Damkjar 2000). At Stock Cove, artifacts extend across the gravel berms, with no indication of any patterned containment within a single structure (Figure 2). Even Robbins (1985:43-44) seems to have had some reservations about his interpretation, acknowledging, for instance, that the flagstones from the longhouse had likely been moved and reused over centuries of occupation.

Our research, nonetheless, supports Robbins’ (1985:44) overall assessment of the settlement that Stock Cove was much more than a “casual camp” and that it likely represented a semi-permanent residential area. Indeed, we would go much further and say that the richness of the Dorset strata in the main site area—with at least 90 formal artifacts recovered per square meter—represents centuries of repeated occupations.

The site is also far larger than Robbins or anyone else recognized. Our surveys and test excavations reveal that the Dorset were occasionally camping far behind the main site, well up into the now forested hillside—hundreds of meters from the shoreline and the more intensely occupied areas of the site. These sloping and terraced hillside locations are not ideal locations for camping today, nor would they have been any better
when the Dorset were there. Our test excavations in this area revealed extensive use by
the Dorset, but the ephemeral strata and shallow deposits encountered in our hillside test
excavations suggest that they were only used occasionally. One possibility is that these
areas were only occupied after the main area of the site was taken, and thus that the
hillside camps represent the camps of late (local) arrivals to Stock Cove when an
unusually large crowd was already on site. Alternatively, the hill-side occupations may
represent visitors from other parts of the island who either elected to camp there or were
compelled to do so by “locals” who claimed the main area of the site. In support of this
latter hypothesis, preliminary observations suggest that the tool typology and diversity of
raw materials from the hillside deposits are different than those found in the primary area
at Stock Cove. If supported with additional analyses, and the hillside occupations prove
contemporaneous with the main encampment, it would suggest that Stock Cove, like the
large Dorset site at Phillip’s Garden in Port au Choix, had some social significance too.

The Port au Choix area has yielded Dorset burials, among the very few known
from the entire North American Arctic (Brown 2011). There are also some indications of
ritual activity there, seemingly connected to the seal hunt (Holly 2013:86-88; Renouf
2000). And Port au Choix certainly seems to have served as an important gathering place
for the Dorset too (see Bell and Renouf 2008). Our excavations at Stock Cove have
produced four uniquely-shaped, chipped-stone artifacts that we believe to be effigies
(Figure 11). The use of effigies—many of which are representative of humans and bears as
we believe ours to be—by Dorset throughout much of their cultural range has been well
documented (Betts et al. 2015; Fitzhugh and Driscoll Engelstad 2017; Wells 2012).
While the majority of these are more realistic carvings manufactured from bone and
ivory, more stylistic forms have also been recognized, including some “flattened animal”
specimens that resemble the Stock Cove examples (see e.g. Wells 2012: Figures 7.41,
7.42, and 7.43). While there are other possible explanations for the odd-shaped objects,
there is no doubt that they were purposely manufactured into their current forms and
share similar characteristics as roughly contemporaneous objects that have been
interpreted as effigies elsewhere (see e.g. Fitzhugh and Driscoll Engelstad 2017: 378,
Figure 17.6), and are few in number. This suggests to us they are likely effigies, but they
may have had a unique function that we have not yet been able to determine.

We have also found a number of incredibly small endblades, which may have
functioned as either children’s “toys” or shamanistic props (Holly 2013:104-105; Park
2005), although Park and Mousseau (2003) have suggested that small Dorset harpoon
heads, and by extension endblades, could have been also used to hunt smaller animals
and that small size does not necessarily mean they were not used for hunting. We are
currently conducting a high-resolution metric study of the attributes of the large endblade
assemblage at Stock Cove, which many reveal more about possible functional variation.
Regardless of their function, the site was clearly connected to the manufacture of a
distinctive regional endblade tradition.

Stock Cove may have also functioned as a center for the distribution of Trinity
Bay chert through the region. And while speculative, people may have also come to the
site in part for its visual and acoustic aesthetic qualities. Situated in a deep cove,
surrounded by steep cliffs and hillsides, the site offers both a dramatic natural
amphitheater and an acoustic amplifier in the main area of the site and in nearby waters.
While at the site, it is obvious that it has acoustic properties that anyone spending any
time there would clearly observe, but this deserves more systematic study. A personal conversation by someone well out into the bay is easily overheard as it is funneled into the main site area. We have noted this makes whales surfacing, fish jumping, birds calling, and people approaching from water clearly audible, even at significant distances, particularly on foggy days, which occur frequently. From a slightly phenomenological perspective, we suspect these properties would have heightened the effect of singing and drumming on Stock Cove’s beach, but it may have also had the practical effect of alerting anyone at Stock Cove to the presence of visitors or marine resources. This may have played some part in why Stock Cove was likely an important social place for the Dorset.

Conclusions

The Stock Cove site shares a number of similarities to the long-term Dorset occupation at Phillip’s Garden on the west coast of Newfoundland, which had not previously been recognized. Harp seals were not only an important resource that attracted Dorset peoples to these sites, but their availability and abundance permitted a sustained and regular occupation that likely facilitated events and processes important to the social and cultural lives of the Dorset in the region, and perhaps beyond. As a regional gathering spot, we suggest that Stock Cove likely had important social functions similar to those proposed for Phillip’s Garden and that it probably played a critical role in the social construction and maintenance of a southeastern Dorset identity that Robbins’ (1985:139-140) identified as the “southern expression.” Stock Cove arguably served as a
critical location in southeastern Newfoundland for social gatherings, social organization, and cultural expression.

Furthermore, the faunal assemblage at Stock Cove, and regional environmental proxy data, indicate that colder, more icy conditions persisted in the Trinity Bay area during most of the Dorset occupation of that region, and that available resources at Stock Cove were not markedly different from other large Dorset aggregation sites around the island like Cape Ray, Port au Choix, and Fleur de Lys, where people are thought to have focused on harp seals. This suggests to us that the use of historical distributions of seal species, particularly harp seals, should be used with caution in the interpretation of site function and use in the prehistoric record of Newfoundland and Labrador. Indeed, archaeologists working in the region may be able to make significant contributions to our knowledge of the biogeography and the ecological history of the western North Atlantic.

Acknowledgements

We’d like to thank all of the wonderful undergraduate and graduate students that have worked with us at Stock Cove over the years: Taylor Testa (SUNY-Plattsburgh); Ryan Holland, Brian Sparr, and Charles “Auto” Auteberry (Eastern Illinois University); Jessica Watson, Jessica Vavrasek, John Garbellano, and Kyle Lockhart (University at Albany); and Meghan Negrijn, Eric Tourigny, Frédéric Dussault, and Andréanne Couture (Memorial University). Our work at Stock Cove would have been impossible without the
support of the community of Sunnyside Newfoundland, especially our excellent boat
captain, Warrick Seaward, as well as Vikas and Susan Khaladkar, and Robert Snook. We
would also very much like to thank the Provincial Archaeology Office and the National
Science Foundation (Award #s 1011781, 1640962) for their support and funding. And
finally, Elaine Anton and Lori Temple, at the Rooms Provincial Museum, for the lab
space to work on the collections, and Rebecca Wolff for her support and excellent
proofreading skills.
References Cited

Bell, Trevor and M.A.P. Renouf
2008 The Domino Effect: Culture Change and Environmental Change in
Newfoundland, 1500-1100 cal BP. The Northern Review 28 (winter):72-94.

Betts, Matthew w, Mari Hardenberg, and Ian Stirling
2015 How Animals Create Human History: Relational Ecology and the Dorset–Polar

Brown, Stuart C.
2011 Aspects of Dorset Palaeoeskimo Mortuary Behaviour on the Northern Peninsula
of Newfoundland. In The Cultural Landscapes of Port au Choix. M.A.P. Renouf,

Carignan, Paul
Ottawa.

Damkjar, Eric, R.
2000 A Survey of Late Dorset Longhouses. In Identities and Cultural Contacts in the
Arctic. Martin Appelt, Joel Berglund, and Hans Christian Gulløv, eds., The
Danish National Museum and Danish Polar Center, 8:170-180.
Darwent, CHRISTYANN M.

de Vernal, Anne and Claude Hillaire-Marcel

Fitzhugh, William, W.

Fitzhugh, William W., and Bernadette Driscoll-Engelstad

Harp, Jr., Elmer

Hodgetts, Lisa

Hodgetts, Lisa, and Patricia Wells

2016 Priscilla Renouf Remembered: An Introduction to the Special Issue with a Note on Renaming the Palaeoeskimo Tradition. Arctic 69(5): i-vi.

Hodgetts, Lisa M., MA Priscilla Renouf, Maribeth S. Murray, Darlene McCuaig-Balkwill, and Lesley Howse

Holly, Jr., Donald H.

 Altamira Press.

Holly, Donald H., Paul Prince, and John C. Erwin

Holly, Jr., Donald H., Christopher B. Wolff and John C. Erwin

Howse, Lesley

Jenness, Diamond

LeBlanc, Sylvie

Linnamae, Urve

McLean, Laurie

2006 Report on a Brief Re-Visit to Stock Cove (CkAl-03), An Eroding Multi-Component Site In Trinity Bay, Newfoundland. On file at the Provincial Archaeology Office, St. John’s.

Milne, S. Brooke, Robert W. Park, and Douglas R. Stenton

Murray, Maribeth S.

1999 Local Heroes. The Long-Term Effects of Short-Term Prosperity - An Example from the Canadian Arctic. World Archaeology 30(3): 466–483.

Park, Robert A.

Pasda, Kerstin, and Ulla Odgaard

Plummet, Patrick and Serge Lebel

Prince, Paul

Renouf, M.A.P.

2000 Symbolism and Subsistence: Seals and Caribou at Port au Choix, Northwestern

Renouf, M.A.P. and Trevor Bell

Renouf, M.A.P., Trevor Bell, and Michael Teal

Robbins, Douglas

and Callum Thomson eds., Historic Resources Division, Government of Newfoundland and Labrador, Pp. 190-209.

1985 Stock Cove Trinity Bay: The Dorset Eskimo Occupation of Newfoundland from a Southeastern Perspective. Master’s Thesis, Department of Anthropology, Memorial University of Newfoundland.

Rochon, Andre, Anne de Vernal, Jean-Louise Turon, Jens Matthiessen, and Martin J. Head

Rosenberg, Sandra M., Ian R. Walker, and Joyce B. Macpherson

Sergeant, David E.

1991 Harp Seals, Man and Ice. Canadian Special Publication of Fisheries and Aquatic Sciences 114, Department of Fisheries and Oceans, Ottawa.

Solignac, Sandrine, Anne de Vernal, and Claude Hillaire-Marcel
2004 Holocene sea-surface conditions in the North Atlantic—Contrasted trends and regimes in the western and eastern sectors (Labrador Sea vs. Iceland Basin).

Spiess, Arthur E.

Speth, John D., and Katherine A. Spielmann

Tuck, James A.

Tuck, James A. and William W. Fitzhugh
1986 Palaeo-Eskimo Traditions of Newfoundland and Labrador: A Re-Appraisal.
 Palaeo-Eskimo Cultures in Newfoundland and Labrador. Reports in Archaeology
 No.1, Memorial University of Newfoundland.

Wells, Patricia
2012 Social Life and Technical Practice: An Analysis of the Osseous Tool Assemblage
 at the Dorset Palaeoeskimo Site of Phillip’s Garden, Newfoundland. Ph.D.
 Dissertation, Department of Archaeology, Memorial University of Newfoundland,
 St. John’s.

Wintemberg, William J.
1939 Eskimo Sites of the Dorset Culture in Newfoundland, Part I. American Antiquity,
 2: 83-103.

1940 Eskimo Sites of the Dorset Culture in Newfoundland, Part II. American Antiquity,

Wolff, Christopher B., and Donald H. Holly, Jr.
 and Labrador: Provincial Archaeology Office.

Wolff, Christopher B., Meghan Negrijn, Lindsay Swinarton, and Eric Tourigny

Wolff, Christopher B., John C. Erwin, and Donald H. Holly, Jr.

Wolff, Christopher B., John C. Erwin, Donald H. Holly, Jr., and Tatiana Nomokonova

Wolff, Christopher B., Donald H. Holly Jr., Frédéric Dussault, Andréanne Couture, and Taylor Testa
Wolff, Christopher B. and Thomas M. Urban

Figure Captions

Figure 1. Map of Newfoundland showing the main study site and other important sites mentioned in the text.

Figure 2. Plan map of Robbins’ excavations with plotted artifacts he and his crew recovered in the 1980s.

Figure 3. Map of the Stock Cove (CkAl-3) site. Excavation areas by year are labeled. Small white squares are test pit locations from 2008. Black line indicates main site area. Dotted black line in middle of the site approximates Robbins’ excavation units.

Figure 4. Satellite image of Stock Cove site. Dotted line indicates our current rough estimate of total site area and solid line indicates main site area.

Figure 5. Images of magnetic and shallow GPR results. The lower sensor magnetic data (top right and top left) detected a number of trends also manifest in the shallower GPR data (bottom row), indicating the likely age range of the features. The top center image is our hypothesized feature outlines, with possibly bilobate feature on its far left.

Figure 6: Base of excavation area of western blocks.

Figure 7: General provenience of Dorset dates at Stock Cove.

Figure 8. Schematic of calibrated AMS dates from the Sivullirmiut occupation levels at Stock Cove.

Figure 9. Photo of a recently broken piece of “Trinity Bay Chert” recovered on the beach at Stock Cove. Closeup detail of white patina that forms on the chert is in the box in the upper right corner.

Figure 10. Photo of harpoon endblades made from Trinity Bay Chert that have been fully ground on both surfaces and have had their lateral margins finely serrated.

Figure 11. Two of the chipped-stone Dorset period effigies recovered from the Stock Cove site. Both are made of Trinity Bay Chert.

Table Captions

Table 1. Frequencies of formal artifact types recovered from the Stock Cove site that have positively been identified as Dorset by year they were excavated.

Table 2. Faunal assemblage recovered from the Stock Cove site.
Figure 1. Map of Newfoundland showing the main study site and other important sites mentioned in the text.
Figure 2. Plan map of Robbins’ excavations with plotted artifacts he and his crew recovered in the 1980s.
Figure 3. Map of the Stock Cove (CkAl-3) site. Excavation areas by year are labeled. Small white squares are test pit locations from 2008. Black line indicates main site area. Dotted black line in middle of the site approximates Robbins’ excavation units.
Figure 4. Satellite image of Stock Cove site. Dotted line indicates our current rough estimate of total site area and solid line indicates main site area.
Figure 5. Images of magnetic and shallow GPR results. The lower sensor magnetic data (top right and top left) detected a number of trends also manifest in the shallower GPR data (bottom row), indicating the likely age range of the features. The top center image is our hypothesized feature outlines, with possibly bilobate feature on its far left.
Figure 6: Base of excavation area of western blocks.
Figure 7: General provenience of Dorset dates at Stock Cove.
Figure 8. Schematic of calibrated AMS dates from the Sivullirmiut occupation levels at Stock Cove.
Figure 9. Photo of a recently broken piece of “Trinity Bay Chert” recovered on the beach at Stock Cove. Closeup detail of white patina that forms on the chert is in the box in the upper right corner.
Figure 10. Photo of harpoon endblades made from Trinity Bay Chert that have been fully ground on both surfaces and have had their lateral margins finely serrated.
Figure 11. Two of the chipped-stone Dorset period effigies recovered from the Stock Cove site. Both are made of Trinity Bay Chert.
Table 1. Frequencies of formal artifact types recovered from the Stock Cove site that have positively been identified as Dorset by year they were excavated.

<table>
<thead>
<tr>
<th>Artifact Types</th>
<th>2008</th>
<th>2009</th>
<th>2013</th>
<th>2016</th>
<th>2017</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>endblades</td>
<td>13</td>
<td>41.9</td>
<td>80</td>
<td>18.9</td>
<td>155</td>
<td>30.7</td>
</tr>
<tr>
<td>microblades</td>
<td>12</td>
<td>38.7</td>
<td>118</td>
<td>27.9</td>
<td>163</td>
<td>32.3</td>
</tr>
<tr>
<td>cores</td>
<td>1</td>
<td>3.2</td>
<td>25</td>
<td>5.9</td>
<td>28</td>
<td>5.5</td>
</tr>
<tr>
<td>scrapers</td>
<td>0</td>
<td>0.0</td>
<td>26</td>
<td>6.1</td>
<td>16</td>
<td>3.2</td>
</tr>
<tr>
<td>wedges</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>0.2</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>lances</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>0.2</td>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>efligies</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>knives</td>
<td>0</td>
<td>0.0</td>
<td>0</td>
<td>0.0</td>
<td>8</td>
<td>1.6</td>
</tr>
<tr>
<td>quartz</td>
<td>0</td>
<td>0.0</td>
<td>58</td>
<td>13.7</td>
<td>1</td>
<td>0.2</td>
</tr>
<tr>
<td>bifaces</td>
<td>1</td>
<td>3.2</td>
<td>52</td>
<td>12.3</td>
<td>95</td>
<td>18.8</td>
</tr>
<tr>
<td>other</td>
<td>4</td>
<td>12.9</td>
<td>62</td>
<td>14.7</td>
<td>34</td>
<td>6.7</td>
</tr>
<tr>
<td>totals</td>
<td>31</td>
<td>423</td>
<td>505</td>
<td>497</td>
<td>514</td>
<td>1970</td>
</tr>
</tbody>
</table>

Table 2. Faunal assemblage recovered from the Stock Cove site.

<table>
<thead>
<tr>
<th>Taxa</th>
<th>Common Name</th>
<th>NISP</th>
<th>MNI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pagophilus groenlandicus</td>
<td>Harp seal</td>
<td>11 (0.3%)</td>
<td>5</td>
</tr>
<tr>
<td>Phoca barbatus</td>
<td>Bearded seal</td>
<td>1 (0.03%)</td>
<td>1</td>
</tr>
<tr>
<td>Pinnipedia-indeterminate</td>
<td>Larger seals (e.g. bearded)</td>
<td>7 (0.2%)</td>
<td>-</td>
</tr>
<tr>
<td>Phoca-indeterminate</td>
<td>Smaller seals (e.g. harp, harbor)</td>
<td>210 (6.3%)</td>
<td>-</td>
</tr>
<tr>
<td>Rangifer tarandus</td>
<td>Caribou</td>
<td>2 (0.06%)</td>
<td>1</td>
</tr>
<tr>
<td>Castor canadensis</td>
<td>Beaver</td>
<td>3 (0.09%)</td>
<td>1</td>
</tr>
<tr>
<td>Gadus morhua</td>
<td>Cod</td>
<td>1 (0.03%)</td>
<td>1</td>
</tr>
<tr>
<td>Sea mammals sp.</td>
<td>unidentified</td>
<td>169 (5.1%)</td>
<td>-</td>
</tr>
<tr>
<td>Terrestrial mammal sp.</td>
<td>unidentified</td>
<td>4 (0.1%)</td>
<td>-</td>
</tr>
<tr>
<td>Aves sp.</td>
<td>unidentified</td>
<td>2 (0.06%)</td>
<td>-</td>
</tr>
<tr>
<td>Mammals sp.</td>
<td>unidentified</td>
<td>1772 (53.7%)</td>
<td>-</td>
</tr>
<tr>
<td>Undifferentiated sp.</td>
<td>Mammal or bird</td>
<td>1115 (33.8%)</td>
<td>-</td>
</tr>
<tr>
<td>Gastropod sp.</td>
<td>Unidentified</td>
<td>2 (0.06%)</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>3299</td>
<td>9</td>
</tr>
</tbody>
</table>