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A CENTRE-STABLE MANIFOLD

FOR THE FOCUSSING CUBIC NLS IN R1+3

MARIUS BECEANU

Abstract. Consider the focussing cubic nonlinear Schrödinger equation in
R
3:

iψt +∆ψ = −|ψ|2ψ. (0.1)

It admits special solutions of the form eitαφ, where φ ∈ S(R3) is a positive
(φ > 0) solution of

−∆φ+ αφ = φ3. (0.2)

The space of all such solutions, together with those obtained from them by
rescaling and applying phase and Galilean coordinate changes, called standing
waves, is the 8-dimensional manifold that consists of functions of the form
ei(v·+Γ)φ(· − y, α).

We prove that any solution starting sufficiently close to a standing wave in
the Σ =W 1,2(R3)∩|x|−1L2(R3) norm and situated on a certain codimension-
one local Lipschitz manifold exists globally in time and converges to a point
on the manifold of standing waves.

Furthermore, we show that N is invariant under the Hamiltonian flow,
locally in time, and is a centre-stable manifold in the sense of Bates, Jones
[BatJon].

The proof is based on the modulation method introduced by Soffer and We-
instein for the L2-subcritical case and adapted by Schlag to the L2-supercritical
case. An important part of the proof is the Keel-Tao endpoint Strichartz esti-
mate in R

3 for the nonselfadjoint Schrödinger operator obtained by linearizing
(0.1) around a standing wave solution.

1. Introduction

1.1. Main result. For a parameter path π = (vk, Dk, α,Γ) such that ‖π̇‖∞ +
‖〈t〉π̇(t)‖1 <∞, define the nonuniformly moving soliton W (π(t)) by

W (π(t))(x) = eiθ(t,x)φ(x− y(t), α(t))

θ(t, x) = v(t)x−
∫ t

0

(|v(s)|2 − α(s)) ds + γ(t)

y(t) = 2

∫ t

0

v(s) ds+D(t)

γ(t) = Γ(t)− (v(t) − v(∞))D(∞) +

∫ ∞

t

2sv̇(s)v(∞) ds.

(1.1)

Theorem 1.1 (Main result). There exists a local codimension-one Lipschitz man-
ifold N in Σ = H1 ∩ |x|−1L2, containing the 8-dimensional manifold of standing
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2 M. BECEANU

waves, such that equation (0.1) has a global dispersive solution Ψ if we start with
initial data Ψ(0) on the manifold N .

Furthermore, the solution depends Lipschitz continuously on the initial data and
decomposes into a moving soliton and a dispersive term: Ψ =W (π(t))+R(t), with

‖π̇‖∞ + ‖〈t〉π̇(t)‖1 ≤ C‖Ψ(0)−W (π(0))‖Σ (1.2)

and

‖R‖L∞

t L2
x∩L2

tL
6
x∩〈t〉−1/2L2

tL
6+∞

x
≤ C‖Ψ(0)−W (π(0))‖Σ. (1.3)

The dispersive term scatters: R(t) = eit∆f0 + oL2(1), for some f0 ∈ L2.
Moreover, for a solution Ψ of initial data Ψ(0) ∈ N , one has that Ψ(t) ∈ Σ for

all t and ψ(t) ∈ N for sufficiently small t.
Finally, N is a centre-stable manifold for this equation in the sense of Bates,

Jones [BatJon].

1.2. Background. Consider the focussing nonlinear cubic Schrödinger equation
(0.1). It admits a particular class of solutions of the form eitαφ, where φ = φ(·, α) ∈
S, φ > 0, are solutions of (0.2).

These solutions exist for all time and are periodic. Positive, smooth solutions
φ to (0.2) are called ground states and solutions to (0.1) obtained from eitαφ by
Galilean coordinate changes, phase changes, or scaling are called standing waves.
All these transformations are symmetries of the equation, subsumed by the following
formula:

G(t)(f(x, t)) = ei(Γ+vx−t|v|2)f(α1/2x− 2tv −D,αt). (1.4)

A natural question is whether standing waves are stable under small perturba-
tions.

From a physical point of view, the NLS equation in R3 with cubic nonlinearity
and the focussing sign (0.2) describes, to a first approximation, the self-focussing
of optical beams due to the nonlinear increase of the refraction index. As such, the
equation appeared for the first time in the physical literature in 1965, in [Kel].

1.3. Known stability results in other cases. Concerning the general NLS prob-
lem, more results have been obtained in the defocussing case or for L2-subcritical
and L2-critical power nonlinearities in the focussing case. A few negative results
have been established as well.

Cazenave and Lions [CazLio] and Weinstein [Wei1], [Wei2] used the method
of modulation to prove the orbital stability of standing waves in the focussing L2-
subcritical case. Asymptotic stability results have been first obtained by Soffer, We-
instein [SofWei1], [SofWei2], then by Pillet, Wayne, [PilWay], Buslaev, Perel-
man [BusPer1], [BusPer2], [BusPer3], Cuccagna [Cuc], Rodnianski, Schlag,
Soffer, [RoScSo1], [RoScSo2], Schlag [Sch], and Krieger, Schlag [KriSch1]. Gril-
lakis, Shatah, and Strauss [GrShSt1], [GrShSt2] developed a general theory of
stability of solitary waves for Hamiltonian evolution equations, which, when applied
to the Schrödinger equation, shows the dichotomy between the L2-subcritical and
critical or supercritical cases.

If the nonlinearity is L2-critical or supercritical and focussing, negative energy
〈x〉−1H1 initial data leads to solutions that blow up in finite time, due to the virial
identity (see Glassey [Gla]). For weakening the condition on initial data and for
a survey of this topic see [SulSul] and [Caz]. Berestycki, Cazenave [BerCaz]
showed that blow-up can occur for arbitrarily small perturbations of ground states.
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Recent results concerning the blowup of the critical and supercritical equation in-
clude Merle, Raphael [MerRap] and Krieger, Schlag [KriSch2].

In 1993, Merle [Mer] showed in the L2-critical case the existence of a minimal
blow-up mass for H1 solutions, equal to that of the standing wave solution, such
that any solution with smaller mass has global existence and dispersive behavior.
A comparable result was achieved in 2006 by Kenig, Merle [KenMer] for the Ḣ1-
critical equation.

A similar statement is possible concerning the cubic nonlinearity studied here
(which is Ḣ1/2-critical). The present paper does not address this question, but is
a first step in that direction.

1.4. The theory of Bates and Jones. In 1989, Bates, Jones [BatJon] proved
that the space of solutions decomposes into an unstable and a centre-stable mani-
fold, for a large class of semilinear equations. As far as it concerns this paper, their
result is the following: consider a Banach space X and the semilinear equation

ut = Au+ f(u), (1.5)

under the assumptions

H1 A : X → X is a closed, densely defined linear operator that generates a C0

group.
H2 The spectrum of A decomposes into σ(A) = σs(A)∪σc(A)∪σu(A) situated

in the left half-plane, on the imaginary axis, and in the right half-plane
respectively and σs(A) and σu(A) are bounded.

H3 The nonlinearity f is locally Lipschitz, f(0) = 0, and ∀ǫ > 0 there exists a
neighborhood of 0 on which f has Lipschitz constant ǫ.

Furthermore, let Xu, Xc, and Xs be the A-invariant subspaces corresponding to
σu, σc, and respectively σs and let Sc(t) be the evolution generated by A on Xc.
Bates and Jones further assume that

C1-2 dimXu, dimXs <∞.
C3 ∀ρ > 0 ∃M > 0 such that ‖Sc(t)‖ ≤Meρ|t|.

Let Φ be the flow associated to the nonlinear equation. We callN ⊂ U t-invariant
if, whenever Φ(s)v ∈ U for s ∈ [0, t], Φ(s)v ∈ N for s ∈ [0, t].

LetWu be the set of u for which Φ(t)u ∈ U for all t < 0 and decays exponentially
as t→ −∞. Also, consider the natural direct sum projection πcs on Xc ⊕Xs.

Definition 1. A centre-stable manifold N ⊂ U is a Lipschitz manifold with the
property that N is t-invariant relative to U , πcs(N ) contains a neighborhood of 0
in Xc ⊕Xs, and N ∩Wu = {0}.

The result of [BatJon] is then

Theorem 1.2. Under assumptions H1-H3 and C1-C3, there exists an open neigh-
borhood U of 0 such that Wu is a Lipschitz manifold which is tangent to Xu at 0
and there exists a centre-stable manifold W cs ⊂ U which is tangent to Xcs.

Gesztesy, Jones, Latushkin, Stanislavova [GeJoLaSt] proved in 2000 that the
abstract Theorem 1.2 applies to the semilinear Schrödinger equation. More pre-
cisely, their main result was that

Theorem 1.3. Given the equation

iut −∆u− f(x, |u|2)u− βu = 0 (1.6)
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and assuming that

(1) H1 f is C3 and all derivatives are bounded on U ×R3, where U is a neigh-
borhood of 0;

(2) H2 f(x, 0) → 0 exponentially as x→ ∞;
(3) H3 β < 0;
(4) H4 u0 is an exponentially decaying stationary solution to the equation (stand-

ing wave);

then there exists a neighborhood of u0 that decomposes into a centre-stable and an
unstable manifold.

While providing an interesting answer to the problem, the main drawback of this
approach is that one cannot infer the global in time behavior of the solutions on the
centre-stable manifold. Indeed, once a solution leaves the specified neighborhood
of 0, one cannot say anything more about it, not even concerning its existence.

1.5. The result of Schlag. In [Sch], Schlag extended the method of modulation
to the L2-supercritical case and proved that in the neighborhood of each ground
state of equation (0.1) there exists a codimension-one Lipschitz submanifold of
H1(R3)∩W 1,1(R3) such that initial data on the submanifold lead to global solutions.

The method used in [Sch] and applied in the current paper with some enhance-
ments is the following: write the solution to equation (0.1) as Ψ = W + R, where
W = eiθφ(x − y, α) is a nonlinearly moving standing wave, determined by the pa-
rameter path π = (Γ, D, α, v) as in (2.4), while R is an error term that needs to

be controlled. One obtains the nonlinear Schrödinger equation (2.8) in Z =

(
R

R

)
,

with the nonselfadjoint Hamiltonian

Hπ
Z =

(
∆+ 2|W (π)|2 W (π)2

−W (π)2 −∆− 2|W (π)|2
)

(1.7)

and localized quadratic and nonlocalized cubic nonlinear terms on the right-hand
side.

The spectrum of the Hamiltonian determines the properties of the equation.
Following an appropriate transformation, it becomes real-valued and takes the form

H =

(
∆+ 2φ(·, α)2 − α φ(·, α)2

−φ(·, α)2 −∆− 2φ(·, α)2 + α

)
. (1.8)

For the rest of this paper, we make the following standard spectral assumption:

Assumption 1. H has no embedded eigenvalues in the interior of its essential
spectrum for any α > 0.

Such assumptions are routinely made in the proof of asymptotic stability results,
as for example in [BusPer1], [Cuc], [RoScSo2].

Even though Assumption 1 is expected to be true, it has not been proved to
hold. Nevertheless, the assumption is most likely true generically, in the sense that
embedded eigenvalues should, as a rule, vanish under perturbations by turning into
resonances in the upper-half plane (by Fermi’s rule), see [CucPelVou]. Thus,
even if Assumption 1 fails in some particular case, one should be able to reinstate
it by means of perturbations.
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Under this assumption, we completely describe the spectrum of H following
[Sch], with the proof delayed until the next section. It consists of an absolutely con-
tinuous part (−∞,−α]∪ [α,∞) supported on the real axis, a generalized eigenspace
at 0 with 4 eigenvectors and 4 generalized eigenvectors. To each disconnected com-
ponent of the spectrum there corresponds a Riesz projection (namely Pc, Proot, and
Pim = P+ + P− respectively) given by a Cauchy integral.

In the course of the proof, Schlag used the method of modulation. The necessity
for it arises because the projection of the solution onto the generalized eigenspace of
the Hamiltonian at zero does not disperse or satisfy Strichartz estimates. Physically,
this corresponds to the fact that a nonzero displacement of the solution Ψ relative
to the soliton W does not go away in time and that even a small relative velocity
can lead to a large displacement in finite time. Since the right-hand side terms of
the equation keep introducing small perturbations, one constantly needs to adjust
the soliton path in order to eliminate them from the generalized zero eigenspace.

One of the main contributions of Schlag [Sch] was adapting the modulation
method to the L2-supercritical case. In this case, the main difficulty lies in deal-
ing with the unstable mode of the equation, which corresponds to the imaginary
eigenvalue iσ of H. To address this, [Sch] showed that the solution of the lin-
earized equation does not grow exponentially in time if and only if the initial data
Z(0) is on a certain codimension-one manifold, tangent to Ker(P+(0)). This choice
eliminates the effect of the unstable eigenvalue.

In this manner, Schlag [Sch] proved global existence and decay properties for
the linearized equation with H1∩W 1,1 initial data on a codimension-one manifold.
A fixed point argument allowed him to go back to the nonlinear equation.

The main result of [Sch] states the following:

Theorem 1.4. Impose the spectral Assumption 1 and fix α0 > 0. Then there
exist a small δ > 0 and a Lipschitz manifold N of size δ inside W 1,2 ∩W 1,1, of
codimension one, so that φ(·, α0) ∈ N , with the following property: for any choice
of initial data ψ(0) ∈ N , the NLS equation (0.1) has a global H1 solution ψ(t) for
t ≥ 0. Moreover,

ψ(t) =W (t, ·) +R(t) (1.9)

where W as in (2.4) is governed by a path π(t) of parameters so that |π(t) −
(0, 0, 0, α0)| ≤ δ and which converges to some terminal vector π(∞) such that
supt≥0 |π(t)− π(∞)| ≤ Cδ. Finally,

‖R(t)‖H1 ≤ Cδ, ‖R(t)‖∞ ≤ Cδt−3/2 (1.10)

for all t > 0, and there is scattering:

R(t) = eit∆f0 + oL2(1) as t→ ∞ (1.11)

for some f0 ∈ L2(R3).

The main problem here is that the H1∩W 1,1 space is not preserved by the flow.
Starting with a function ψ(0) ∈ N of finite H1 ∩ W 1,1 norm at t = 0 as initial
data, there is no guarantee that ψ(t) will still have finite W 1,1 norm for any t 6= 0.
Therefore, the question whether the manifold N is invariant under the Hamiltonian
flow does not make sense in this context. One can replace the W 1,2(R3)∩W 1,1(R3)
norm with the stronger invariant Σ5/2+ǫ = H5/2+ǫ ∩ |x|−5/2−ǫL2 norm, but this
weakens the result considerably.
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Another example of the same phenomenon, in the case of the wave equation, is
given by Krieger, Schlag [KriSch3]. For a more general survey of this topic, see
[Sch2].

1.6. Current paper. The result of this paper represents an improvement over
that of Schlag [Sch], in that it holds in the H1/2 ∩ L4/3−ǫ norm, which is strictly
weaker than the invariant Σ = H1 ∩ |x|−1L2 space, a somewhat natural choice for
equation (0.1). In this space, the question concerning the manifold’s invariance
under the flow becomes meaningful and it turns out that the answer is affirmative.

This paper follows the method of proof of [Sch] (namely the method of modu-
lation, adapted to the L2-supercritical case), but some important details differ.

The choice of H1/2 for initial data is sharp and corresponds to the fact that the
equation is Ḣ1/2-critical. It is possible only due to Keel-Tao endpoint Strichartz
estimates for the linearized Hamiltonian. The endpoint corresponds exactly to
using half a derivative to bound the nonlocalized cubic right-hand side term of the
linearized equation.

The L4/3−ǫ condition on the initial data leads to a t−1 decay in L2 in time of
the solution that compensates for the possibility of linear growth in the modula-
tion equations. This problem arises because of the generalized eigenspace of the
Hamiltonian at 0.

This L2 in time decay bound is not sharp. We expect that, due to the oscillatory
nature of the integrand, further improvements are achievable by using conditionally
convergent integrals, instead of absolutely converging ones as in the current paper.

1.7. Linear estimates. The first dispersive estimates concerning NLS with non-
selfadjoint Hamiltonians are present in [BusPer1].

More recently, Erdogan, Schlag [Erdsch] considered Hamiltonians of the form
H = H0 + V , where

H0 =

(
−∆+ µ 0

0 ∆− µ

)
, V =

(
−U −W
W U

)
. (1.12)

They made the following assumptions: that −σ3V is a positive matrix, that L− =
−∆ + µ + U +W ≥ 0, that U and W have polynomial decay, and the spectral

Assumption 1. Here σ3 denotes the Pauli matrix

(
1 0
0 −1

)
.

Under these conditions, Erdogan, Schlag [Erdsch] proved the L2 boundedness
of the evolution eitH for |V | ≤ C〈x〉−1−ǫ. In [Sch], Schlag proved the L1 → L∞

dispersive estimate and Strichartz nonendpoint estimates, for 〈x〉−3−ǫ potential
decay and under the further assumption that the edges of the spectrum are neither
eigenvalues nor resonances. Erdogan, Schlag [Erdsch] obtained corresponding
results for nonselfadjoint Hamiltonians in the presence of a resonance or eigenvalues
at the edges of the essential spectrum, if the potential decays like 〈x〉−10−ǫ. Yajima
[Yaj] proved independenty the same result, assuming less decay on V .

This paper establishes the following Keel-Tao endpoint Strichartz estimates for
a nonselfadjoint Hamiltonian of the form (1.12):

Corollary 1.5. Suppose that H = H0 + V , where

H0 =

(
−∆+ µ 0

0 ∆− µ

)
, V =

(
−U −W
W U

)
, (1.13)
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that −σ3V is a positive matrix, that L− = −∆ + µ + U + W ≥ 0, that |V | ≤
C〈x〉−7/2−, that the spectral Assumption 1 holds, and that the edges of the spectrum
±µ are neither eigenvalues nor resonances.

Then the evolution eitHPc satisfies the following Strichartz-type estimates:

‖eitHPcf‖Lq
tL

r
x

≤ C‖f‖2,∥∥∥
∫
e−isHPcF (s) ds

∥∥∥
2

≤ C‖F‖
Lq′

t Lr′
x

,
∥∥∥
∫

s<t

eitHe−isH∗

PcF ds
∥∥∥
Lq

tL
r
x

≤ C‖F‖
Lq̃′

t Lr̃′
x
,

∥∥∥
∫

s<t

ei(t−s)HPcF ds
∥∥∥
Lq

tL
r
x

≤ C‖F‖
Lq̃′

t Lr̃′
x
.

(1.14)

for any sharply admissible (q, r) (that is, such that 2 ≤ q, r ≤ ∞,
1

q
+

3

2r
=

3

4
) and

(q̃, r̃). The same estimates hold after swapping H and H∗.

Note that Corollary 1.5 is not an immediate consequence of [KeeTao], because

eitHe−isH∗ 6= ei(t−s)H.
The exact rate of decay of V does not matter for the purpose of this paper,

since we deal only with exponentially decaying potentials. However, it is important
to have the endpoint Strichartz estimate for two reasons. Firstly, by linearizing
the equation one obtains small localized linear terms on the right-hand side and
it is useful to be able to bound their contribution using the L2

t → L2
t endpoint

Strichartz estimate. Secondly, as mentioned before, the sharp estimate allows one
to use exactly half a derivative in handling the nonlocalized cubic terms on the
right-hand side.

The difficulty in the proof lies in the fact that H is not selfadjoint, so the usual
L1 → L∞ dispersive estimate does not imply the endpoint estimate Corollary 1.5.
Therefore, we use the following strengthened version of it:

Proposition 1.6. Under the assumptions of Corollary 1.5,

‖eitHPce
−isH∗

P ∗
c ‖1→∞ ≤ C|t− s|−3/2. (1.15)

The proof of this statement is a generalization of the one given in [Sch] for the
usual dispersive estimate. The argument uses the spectral representation of the
evolution from that paper and the finite Born sum expansion of the resolvent for
both the operator and its adjoint.

Once established, the estimate (1.15), together with the L2 theory of [Erdsch],
makes possible to apply the methods of [KeeTao], leading to Corollary 1.5.

Now we return to the nonlinear problem. Without loss of generality, take any
standing wave W (0) and transform it, by means of a symmetry transformation G0,
into a positive ground state φ(·, α0) of equation (0.1). Then let P+(0) and Proot(0)
be the Riesz projections onto the eigenspace corresponding to the eigenvalue iσ
of positive imaginary part and respectively onto the generalized zero eigenspace of
the linearized Hamiltonian H (1.8) at time 0. Furthermore, let f+(0), f̃+(0), and
ηF (0), ξF (0) be the normalized eigenvectors of H and H∗ at iσ and the generalized
eigenvectors ofH andH∗ at 0, respectively. All are exponentially decaying Schwartz
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functions and

P+(0) = 〈·, f̃+(0)〉f+(0), Proot =
∑

F

〈·, ξF (0)〉ηF (0). (1.16)

In the sequel we use the notation Lp∩q = Lp ∩ Lq and Lp+q = Lp + Lq.
Following these preparations, we state a more technical result from which the

main theorem follows almost immediately. For simplicity, we first state it in the
case when the initial data is in the neighborhood of a positive ground state and its
projection on the generalized zero eigenspace vanishes.

Theorem 1.7. Assume that W (0) = φ(·, α0) is a positive ground state of equation
(0.2). For 1 ≤ q < 4/3, let Sδ be given by

Sδ =
{
R0 ∈ H1/2(R3)∩Lq(R3) | ‖R0‖H1/2∩Lq < δ, (P+(0)+Proot(0))

(
R0

R0

)
= 0

}
.

(1.17)
Then, for some small δ, there exists a map F : Sδ → H1/2(R3) ∩ Lq(R3), whose
range is spanned by a Schwartz function, given by

F(R0) = h(R0)f
+(0) =

(
F1

F2

)
(1.18)

such that

(1) ‖F(R0)‖ ≤ C‖R0‖2H1/2∩Lq

(2) ‖F(R1
0)−F(R2

0)‖ ≤ Cδ‖R1
0 −R2

0‖H1/2∩Lq

and, for every R0 ∈ S(δ), the equation (0.1) having Ψ(R0)(0) =W (0)+R0+F1(R0)
as initial data admits a global solution Ψ(R0). Moreover, the solution Ψ(R0) has
the following properties:

(1) Ψ(R0) depends Lipschitz continuously on R0,

‖Ψ(R1
0)−Ψ(R2

0)‖〈t〉1/2−ǫL2
t 〈x〉L

6+∞

x
≤ C‖R1

0 −R2
0‖2. (1.19)

(2) There exists a parameter path π with π(0) = (0, 0, 0, α0) and ‖tπ̇(t)‖1 +
‖π̇‖1∩∞ < ∞ such that Ψ(R0) stays close to W (π) for all time t ≥ 0:
Ψ(R0) =W (π) +R, where

‖R‖
L∞

t H
1/2
x ∩L2

tW
1/2,6
x ∩〈t〉−1/2−ǫL2

tL
6+∞

x
≤ δ (1.20)

and one has scattering: for some f0 in L2,

R(t) = eit∆f0 + oL2(1). (1.21)

The map R0 7→ Ψ(R0)(0) = W (0) + R0 + F1(R0) takes Sδ to a codimension-
nine submanifold N9 of H1/2 ∩ Lq. Indeed, the map is Lipschitz bicontinuous for
sufficiently small δ and Sδ is an open set in a codimension-nine linear space.

Since we want to extend this result to more general standing waves instead of
just ground states, we conjugate everything by means of symmetry transforma-
tions. Also note that the codimension-nine manifold N9 provided by Theorem 1.7

becomes, after applying symmetry transformations, a codimension-one submani-
fold. These observations are summarized in the following corollary:
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Corollary 1.8. Consider any standing wave W (0). Under the same assumptions
as in Theorem 1.7, there exists a codimension-one Lipschitz manifold NLq∩H1/2 in
Lq ∩H1/2(R3), 1 ≤ q < 4/3, given locally by

NLq∩H1/2 =
⋃

g

g(N9), (1.22)

whose tangent space at W (0) is Ker(P+(0)), such that for initial data Ψ(0) on the
manifold NLq∩H1/2 the equation has a global dispersive solution Ψ, with the same
properties as in Theorem 1.7, but with respect to some more general standing wave
g(W (0)), such that |g| ≤ C‖R0‖Lq∩H1/2 , instead of simply W (0).

A straightforward consequence is that the same result holds in the strictly
stronger norm of Σ1 = H1 ∩ |x|−1L2, which has the advantage of being locally
invariant under the flow. Furthermore, in this topology one can identify N as the
centre-stable manifold of [BatJon], from the previous discussion. This leads to the
main Theorem 1.1, stated on the first page.

We remark that Σ1 can be replaced in this statement with any invariant Σs =
Hs ∩ |x|−sL2 space, for s > 3/4, this being the minimal requirement so that Σs ⊂
Lq ∩H1/2 for some q < 4/3.

Acknowledgment: I would like to thank Professor Wilhelm Schlag for his sug-
gestions and for his very careful reading of this paper.

2. Proof of the Nonlinear Results

2.1. Formulation of the problem. We aim to prove that there exists a codimension-
one submanifold ofH1/2∩L4/3−ǫ on which the focussing cubic nonlinear Schrödinger
equation (0.1) has global solutions. Throughout this section we employ the Keel-
Tao endpoint Strichartz estimates of Section 3.

In the L2-subcritical case, Cazenave, Lions [CazLio] and Weinstein [Wei2]
proved that stability occurs for any solution that starts in a sufficiently small
neighborhood of the standing wave manifold. However, the presence of an un-
stable eigenstate of the linearization precludes one from achieving such a result
in the L2-supercritical case and Berestycki, Lions [BerLio] prove that arbitrarily
small perturbations of the ground state may lead to blowup in finite time. The
best that one can hope for is the existence of a codimension-one manifold on which
the evolution does not lead to blowup. This is indeed the result proved by Schlag
[Sch] and improved here.

Let φ = φ(·, α) be the radially symmetric ground state (meaning φ > 0) of the
semilinear Schrödinger operator corresponding to energy α > 0, that is a solution
of (0.2). The existence of such solutions to equation (0.2) was proved by Berestycki
and Lions in [BerLio], who further showed that they are infinitely differentiable
and exponentially decaying. Uniqueness was established by Coffman [Cof] for (0.2)
and Kwong [Kwo] and McLeod, Serrin [McLSer] for more general nonlinearities.

In the particular case of the cubic nonlinearity, the equation (0.2) and its solu-
tions have the scaling invariance φ(x, α) = α1/2φ(α1/2x, 1).

Note that eitαφ(x, α) is a 1-parameter family of periodic solutions for equation
(0.1). Starting from it, one can obtain more solutions by taking advantage of the
symmetries of equation (0.1). Applying the following family of transformations

G(t)(f(x, t)) = ei(Γ+vx−t|v|2)α1/2f(α1/2x− 2tv −D,αt) (2.1)
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to eitφ(·, 1), the result is a wider 8-parameter family of solutions to (0.1)

G(t)(eitφ(x, 1)) = ei(Γ+vx−t|v|2+αt)α1/2φ(α1/2x− 2tv −D, 1) (2.2)

or, after reparametrizing,

G(t)(eitφ(x, 1)) = ei(Γ+vx−t|v|2+αt)φ(x − 2tv −D,α), (2.3)

which we call standing waves.
Here G is composed of a Galilean coordinate change, with six degrees of free-

dom corresponding to v and D, a phase change represented by Γ, and a rescaling
embodied by α. Henceforth we call such G as in (2.1) symmetry transformations,
since they correspond to the symmetries of equation (0.1).

In the sequel we consider the pairs made of a function and its conjugate instead
of just the function alone. For example, by a standing wave we will also mean the

pair

(G(t)(eitφ(x, 1))
G(t)(eitφ(x, 1))

)
. There is an obvious correspondence between the pair and

its first component, as long as the components are conjugate to one another. All
the column two-vectors that apear in this paper will have this property, related to

the fact that the vector form of equation (0.1) is

(
0 1
1 0

)
-invariant.

The question arises whether standing waves are stable under small perturbations.
We seek perturbed solutions of the form ψ =W (π) +R with small R, where

W (π(t))(x) = eiθ(t,x)φ(x − y(t), α(t))

θ(t, x) = v(t)x −
∫ t

0

(|v(s)|2 − α(s)) ds + γ(t)

y(t) = 2

∫ t

0

v(s) ds+D(t).

(2.4)

W (π) represents a moving soliton governed by the parameter path π = (Γ, α,Di, vi).
We look for solutions ψ that remain close to the 8-dimensional manifold of solitons
for all positive times t > 0, hence to a moving soliton like W (π).

2.2. Setting up the contraction scheme. Assume that all the parameters de-
scribing W (π), namely γ, α, Di, and vi, have limits as t→ ∞, denoted γ(∞) etc..
It is more convenient in the sequel to consider an alternative to γ, namely a new
parameter Γ such that

Γ̇ = γ̇ + v̇(2tv(∞) +D(∞)), (2.5)

more precisely Γ(t) = γ(t) + (v(t)− v(∞))D(∞) −
∫∞

t
2sv̇(s)v(∞) ds.

Henceforth, we assume that

‖π̇‖∞ + ‖〈t〉π̇(t)‖1 <∞, (2.6)

where π(t) = (vk(t), Dk(t), α(t),Γ(t)). Note that γ can be recovered from π and
that ‖γ̇‖1 <∞ under our assumption; also γ(∞) = Γ(∞).
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For F ∈ {vk, Dk, α,Γ}, denote by ξZF the following family of vectors:

ξZDk
(t) =

(
eiθ(x,t)xkφ(x − y(t), α(t))

e−iθ(x,t)xkφ(x − y(t), α(t))

)

ξZvk(t) =

(
ieiθ(x,t)∂kφ(x− y(t), α(t))

−ie−iθ(x,t)∂kφ(x − y(t), α(t))

)

ξZΓ (t) =

(
ieiθ(x,t)∂αφ(x − y(t), α(t))

−ie−iθ(x,t)∂αφ(x − y(t), α(t))

)

ξZα (t) =

(
eiθ(x,t)φ(x − y(t), α(t))

e−iθ(x,t)φ(x− y(t), α(t))

)
.

(2.7)

Also let ηZF = −iσ3ξZF =
( −i 0

0 i

)
ξZF .

Their immediate importance is that ηZF (t) span the tangent space of the 8-

dimensional standing wave manifold at

(
W (π(t))

W (π(t))

)
, for each individual t ≥ 0,

and ξZF (t) form a dual basis with respect to the usual dot product.
From another perspective, note that if v = D = γ = 0 andW is a positive ground

state of the equation, then ηZF span the generalized eigenspace of the linearized
Hamiltonian H (1.8) at zero and ξZF fulfill the same function for its adjoint H∗.
However, the property of being an eigenvector is not preserved under symmetry
transformations, so this characterization is no longer true whenW is a more general
standing wave instead of a positive ground state.

The following lemma exhibits the equation satisfied by the error term R:

Lemma 2.1. Ψ = W (π) + R is a solution of equation (0.1) if and only if Z =(
z1 = R
z2 = R

)
is a solution to

i∂tZ +HZ
πZ = −iπ̇∂π

( W (π)

W (π)

)
+NZ(Z, π), (2.8)

where

HZ
π =

( ∆+ 2|W (π)|2 W (π)2

−W (π)2 −∆− 2|W (π)|2
)
, (2.9)

ω̇∂π

(
W (π)

W (π)

)
=v̇ω

(
ieiθxφ(x − y, α)

−ie−iθxφ(x − y, α)

)
+ γ̇ω

(
ieiθφ(x − y, α)

−ie−iθφ(x − y, α)

)
+

+ α̇ω

(
eiθ∂αφ(x − y, α)
e−iθ∂αφ(x − y, α)

)
+ Ḋω

(
−eiθ∇φ(x − y, α)
−e−iθ∇φ(x − y, α)

)

=α̇ωηZΓ − γ̇ωηZα −
∑

k

(Ḋω
k η

Z
vk

+ v̇ωk η
Z
Dk

)

(2.10)

(with θ = θ(x, t), α = α(t), y = y(t)) and

NZ(Z, π) =

(
−2|z1|2W (π) −W (π)z21 − |z1|2z1
2|z2|2W (π) +W (π)z22 + |z2|2z2

)
. (2.11)

We wrote π̇∂πW (π) in a more general form that becomes convenient when lin-
earizing the equation. In the linearized equation, the family of vectors ηF depends
on one path and the coefficients v̇ etc. depend on another.
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Proof. By direct computation. Ψ =W (π) +R satisfies equation (0.1),

i∂t(W +R) + ∆(W +R) = −|W +R|2(W +R)

= −|W |2W − 2|W |2R−W 2R − 2W |R|2 − 2WR2 − |R|2R, (2.12)

while W (π) fulfills the identity

i∂tW (π) + ∆W (π) = −|W (π)|2W (π) + iπ̇∂πW (π). (2.13)

Subtracting the two relations, one has that

i∂tR+∆R = −2|W |2R−W 2R− 2W |R|2 − 2WR2 − |R|2R− iπ̇∂πW (π). (2.14)

Joining this equation with its conjugate, one obtains exactly (2.8). �

Consider the following linearized version of equation (2.8), in which we partly
replace π and Z with the auxiliary functions π0 and Z0:

iZt +HZ
π0Z = −iπ̇∂π

(
W (π0)

W (π0)

)
+NZ(Z0, π0). (2.15)

We choose W (π) such that at each time t it satisfies the orthogonality condition

〈Z(t), ξZF (t)〉 = 0, (2.16)

which leads to a system of modulation equations for the path π. If the standing
wave W (π) is a positive ground state of the equation, this simply means that
ProotZ(t) = 0, that is the projection of Z(t) onto the generalized eigenspace at 0 of
the Hamiltonian H (1.8) is 0. Otherwise, the condition takes a more complicated
meaning.

If we try to approximate HZ
π0 by a constant Hamiltonian in order to solve equa-

tion (2.8), the problem is that the potential moves with nonzero velocity along the
path described by π. Thus, we need to change the reference frame to one that
moves with the same speed as HZ

π0 . However, since HZ
π0 does not move with con-

stant speed, we have (in order to avoid gradient terms in the equation) to choose
a reference frame moving at the constant speed that best approximates the speed
of HZ

π0 . The same considerations apply to the phase of HZ
π0 . Therefore, we need to

determine the uniform movement path that best approximates π0.
Define the following limit values associated to any path π:

Γ∞ = γ(∞)−
∫ ∞

0

(v2(∞)− v2(s)− α(∞) + α(s)) ds

v∞ = v(∞)

D∞ = D(∞) − 2

∫ ∞

0

(v(∞) − v(s)) ds

α∞ = α(∞)

φ∞ = φ(·, α∞).

(2.17)

Given some parameter path π such that ‖π̇‖1∩∞+‖tπ̇‖1 <∞, one can distinguish
a symmetry transformation (as in (2.1)) Gπ associated to π,

Gπ(t)(f(x)) = e−iθ∞(t,x+y∞(t))f(x+ y∞(t)), (2.18)
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where

y∞(t) = 2tv∞ +D∞

θ∞(t, x) = Γ∞ + v∞x− t(|v∞|2 − α∞).
(2.19)

Also consider the corresponding transformation for column two-vectors,

gπ(t)

(
u1
u2

)
=

(Gπ(t)u1
Gπ(t)u2

)
. (2.20)

Note that Gπ and gπ only depend on the terminal values D∞, v∞, Γ∞, and α∞.
For future reference, let

ρ∞(t, x) = θ(t, x + y∞)− θ∞(t, x+ y∞). (2.21)

GπW (π) is close to a constant ground state φ(·, α) and it turns out that the best
uniformly moving approximation to π is provided by the constant path (Γ∞, α∞, D∞, v∞).

Therefore, we apply the transformation gπ0 to the linearized equation (2.15). In
this context it is natural to introduce the families of functions

ηα(t) =

(
−ieiρ∞φ(x + y∞ − y, α)
ie−iρ∞φ(x+ y∞ − y, α)

)
= gπ0(t)ηZα (t)

ηΓ(t) =

(
eiρ∞∂αφ(x + y∞ − y, α)
e−iρ∞∂αφ(x + y∞ − y, α)

)
= gπ0(t)ηZΓ (t)

ηvk(t) =

(
eiρ∞∂kφ(x+ y∞ − y, α)
e−iρ∞∂kφ(x + y∞ − y, α)

)
= gπ0(t)ηZvk(t)

ηDk
(t) =

(
−ixkeiρ∞φ(x+ y∞ − y, α)
ixke

−iρ∞φ(x + y∞ − y, α)

)
= gπ0(t)ηZDk

(t)− (y∞)kgπ0(t)ηZα (t)

(2.22)
(where ρ∞ = ρ∞(x, t), y∞ = y∞(t), y = y(t), α = α(t)) and

ξF (t) = iσ3ηF (t) =

{
gπ0(t)ξZF (t), for F ∈ {α,Γ, vk}
gπ0(t)ξZDk

(t)− (y∞)kgπ0(t)ξZα (t), for F = Dk.
(2.23)

We made a change in the definitions of ηDk
and ξDk

so that these functions would
be uniformly bounded in time, instead of linearly increasing as they would have
been if we had just applied the symmetry transformation gπ0 . The two families ηF
and ξF span the generalized 0 eigenspaces of H and H∗ respectively, if W (π(0t)) is
a standing wave. Furthermore, ηF span the tangent space of the eight-dimensional

standing wave manifold at gπ0(t)

(
W (π0(t))

W (π0(t))

)
at each individual t ≥ 0.

Lemma 2.2. (Z, π) is a solution of equation (2.15) if and only if U = gπ0Z and
π satisfy

iUt +Hπ0U = −iπ̇∂πgπ0

(
W (π0)

W (π0)

)
+N(U0, π0) + Vπ0U, (2.24)

where U0 = gπ0Z0 and we used the notations

Hπ0(x) =

(
∆+ 2φ2∞(x)− α∞ φ2∞(x)

−φ2∞(x) −∆− 2φ2∞(x) + α∞

)
, (2.25)

Vπ0 =

(
2(φ2∞(x)− φ2(x+ y∞ − y, α)) φ2∞(x) − e2iρ∞φ2(x+ y∞ − y, α)

−φ2∞(x) + e−2iρ∞φ2(x+ y∞ − y, α) −2(φ2∞(x)− φ2(x+ y∞ − y, α))

)
,

(2.26)
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ω̇∂πgπ

(
W (π)

W (π)

)
= α̇ωηΓ − γ̇ωηα −

∑

k

(Ḋω
k ηvk + v̇ωk ηDk

), (2.27)

and

N(U, π) =

(
−2|u1|2eiρ∞φ(x+ y∞ − y)− u21e

−iρ∞φ(x + y∞ − y)− |u1|2u1
2|u2|2e−iρ∞φ(x + y∞ − y) + u22e

−iρ∞φ(x + y∞ − y) + |u2|2u2

)
.

(2.28)

Here U =

(
u1
u2

)
is a C2-valued function and π, π0, ω are paths. We wrote the

term π̇∂πgπ0

(
W (π0)

W (π0)

)
in a more general form, in order to exhibit its dependence

on two paths, π and π0. We also recall the notations ρ∞ = ρ∞(x, t), y∞ = y∞(t),
y = y(t), α = α(t), φ∞ = φ(·, α∞.

Henceforth, ρ∞, y, y∞, φ, and φ∞ will refer to quantities derived from π0.
Let H = Hπ0 + Vπ0 . H is the Hamiltonian of equation (2.24), but we split it

into a constant part Hπ0 and an error term Vπ0 .

Proof. Firstly, we compute the following commutators:

[∂t, gπ] =
(
− (|v∞|2 + α∞)iσ3 + 2v∞∇

)
gπ (2.29)

and

[∆σ3, gπ] =
(
− |v∞|2σ3 − 2v∞i∇

)
gπ. (2.30)

Plugging Z = g
−1
π0 U and Z0 = g

−1
π0 U0 into (2.15), we then have

g
−1
π0 (iUt +∆σ3U) + [i∂t +∆σ3, g

−1
π0 ]U =

=

(
2|W |2 W 2

−W 2 −2|W |2
)
g
−1
π0 U − iπ̇∂π

(
W (π0)

W (π0)

)
+NZ(g−1

π0 U
0, π0). (2.31)

Therefore, applying gπ0 to this equation and taking into account the fact that

gπ0

(
2|W |2 W 2

−W 2 −2|W |2
)
g
−1
π0 =

=

(
2φ2(x+ y∞ − y, α) e2iρ∞φ2(x+ y∞ − y, α)

−e−2iρ∞φ2(x+ y∞ − y, α) −2φ2(x+ y∞ − y, α)

)
(2.32)

and

gπ0([i∂t +∆σ3, g
−1
π0 ]) = −[i∂t +∆σ3, gπ0 ]g−1

π0 = −α∞σ3 (2.33)

we obtain

iUt +∆σ3U − α∞σ3U =

=

(
2φ2(x+ y∞ − y, α) e2iρ∞φ2(x+ y∞ − y, α)

−e−2iρ∞φ2(x+ y∞ − y, α) −2φ2(x+ y∞ − y, α)

)
U−

− iπ̇∂πgπ0W (π0) + gπ0NZ(g−π0U0, π0).

(2.34)

However, by definition

∆σ3U−α∞σ3U−
(

2φ2(x+ y∞ − y, α) e2iρ∞φ2(x+ y∞ − y, α)
−e−2iρ∞φ2(x+ y∞ − y, α) −2φ2(x + y∞ − y, α)

)
U = HU.

(2.35)



Focussing Cubic NLS in 3D 15

Note that

π̇∂πgπ0

(
W (π0)

W (π0)

)
= α̇gπ0ηZΓ − γ̇gπ0ηZα −

∑

k

(Ḋkgπ0ηZvk + v̇kgπ0ηZDk
). (2.36)

Here the important fact is that

∑

k

v̇kgπ0ηZDk
+ γ̇gπ0ηZα =

=
∑

k

v̇k

(
−i(x+ y∞)eiρ∞φ(x + y∞ − y, α)
i(x+ y∞)e−iρ∞φ(x+ y∞ − y, α)

)
+ γ̇

(
−ieiρ∞φ(x + y∞ − y, α)
ie−iρ∞φ(x + y∞ − y, α)

)

=
∑

k

v̇k

(
−ixeiρ∞φ(x + y∞ − y, α)
ixe−iρ∞φ(x+ y∞ − y, α)

)
+ Γ̇

(
−ieiρ∞φ(x + y∞ − y, α)
ie−iρ∞φ(x + y∞ − y, α)

)
.

(2.37)

Finally, a simple computation shows that

gπ0NZ(g−1
π0 U

0, π0) = N(U0, π0) (2.38)

and thus we have retrieved all the terms of equation (2.24). �

In the next three lemmas we examine in more detail the properties of ξF and
ηF .

Lemma 2.3. ηF and ξF are biorthogonal, in the sense that

〈ηα, ξG〉 = − 1
2α

−1‖φ‖22 for G = Γ and 0 otherwise
〈ηΓ, ξG〉 = 1

2α
−1‖φ‖22 for G = α and 0 otherwise

〈ηvk , ξG〉 = −2‖φ‖22 for G = Dk and 0 otherwise
〈ηDk

, ξG〉 = 2‖φ‖22 for G = vk and 0 otherwise.

(2.39)

Note that all these functions are related to π0, not to π.

Proof. By direct computation. Most of the integrals cancel simply as the product
of even and odd functions. The only nontrivial computation is that

〈ηFα , ξFΓ 〉 =
∫

R3

2φ(x, α)∂αφ(x, α) dx = ∂α‖φ(·, α)‖22 = −1

2
α−1‖φ(·, α)‖2. (2.40)

�

Let

E =

(
−|v(t)− v∞|2 − 2i(v(t)− v∞)∇ 0

0 |v(t)− v∞|2 − 2i(v(t)− v∞)∇

)
(2.41)

and H = Hπ0 + Vπ0 .

Lemma 2.4.

H∗ξα = Eξα
H∗ξΓ = −2iξα + EξΓ
H∗ξvk = Eξvk
H∗ξDk

= −2iξvk + EξDk
.

(2.42)



16 M. BECEANU

Proof. By direct computation.
For t = ∞ we note that ξF actually become generalized eigenvectors for H∗, be-

cause the symmetry transformation gπ0 was chosen so that gπ0

(
W (π0)

W (π0)

)
becomes

a ground state in the limit. Otherwise, there is a small error term. �

Lemma 2.5. If U is a solution of (2.24), π satisfies the modulation equations

α̇ = 2α‖φ‖−2
2 (−∂t〈U, ξα〉+ 〈U, ξ̇α〉 − i〈U,Eξα〉 − i〈N(U0, π0), ξα〉)

Γ̇ = 2α‖φ‖−2
2 (−∂t〈U, ξΓ〉+ 2i〈U, ξα〉+ 〈U, ξ̇Γ〉 − i〈U,EξΓ〉 − i〈N(U0, π0), ξΓ〉)

v̇k = ‖φ‖−2
2 (−∂t〈U, ξvk〉+ 〈U, ξ̇vk〉 − i〈U,Eξvk〉 − i〈N(U0, π0), ξvk〉)

Ḋk = ‖φ‖−2
2 (−∂t〈U, ξDk

〉+ 2i〈U, ξvk〉+ 〈U, ξ̇Dk
〉 − i〈U,EξDk

〉 − i〈N(U0, π0), ξDk
〉).

(2.43)

Proof. Consider the Schrödinger equation (2.24) and take its dot product with ξF
for each F :

i〈Ut, ξF 〉+ 〈U,H∗ξF 〉 = −i〈π̇∂πgπ0

(
W (π0)

W (π0)

)
, ξF 〉+ 〈N(U0, π0), ξF 〉. (2.44)

Write 〈Ut, ξF 〉 = ∂t〈U, ξF 〉− 〈U, ξ̇F 〉. Lemma (2.42) helps evaluate the second term
and the identity (2.27) and Lemma 2.3 help evaluate the third term, leading to
the equations (2.43) above. �

We restate the orthogonality condition (2.16) for U in the form

〈U(t), ξF (t)〉 = 0 for F ∈ {α,Γ, vk, Dk}, (2.45)

for every t ≥ 0, which is equivalent to condition (2.16) on Z. Indeed, they follow
from one another by applying the unitary transformations gπ0(t).

Let

Lπ0U =
∑

F∈{α,Γ,vi,Di}

‖φ‖−2
2 (〈U, ξ̇F 〉 − i〈U,EξF 〉)ηF (2.46)

and

Nπ0(U0, π0) = −
∑

F∈{α,Γ,vi,Di}

‖φ‖−2
2 i〈N(U0, π0), ξF 〉ηF . (2.47)

The modulation equations can then be rewritten as

− iπ̇∂πgπ0W (π0) = Lπ0U +Nπ0(U0, π0). (2.48)

Lπ0U represents the part that is linear in U and Nπ0(U0, π0) represents the non-
linear part 〈N(U0, π0), ξF 〉.

Note that the orthogonality condition for all times t is equivalent to the modu-
lation equations (2.48) together with the orthogonality condition at time 0.

Next, we estimate a few useful quantities that appear in the right-hand side
terms of the equations. Let

ν(T ) = ‖〈t〉π̇(t)‖L1(T,∞) + ‖π̇‖L∞(T,∞) (2.49)

and likewise ν0 for π0. We still assume that ‖π̇‖1∩∞+‖tπ̇‖1 ≤ ν(0) <∞ is bounded
and we justify this assumption later.

Now we state very general estimates that are used in the proof:
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Lemma 2.6. For any path π,
∫ ∞

T

|v(t)− v∞| dt ≤ ‖tv̇(t)‖L1(T,∞) ≤ ν(T ),

T |v(T )− v∞| ≤ ‖tv̇(t)‖L1(T,∞) ≤ ν(T ),
∫ ∞

T

|v(t)− v∞|2 dt ≤ ‖v̇(t)‖L1(T,∞)‖tv̇(t)‖L1(T,∞) ≤ ν2(T ),

∫ ∞

T

t|v(t)− v∞|2 dt ≤ ‖tv̇(t)‖2L1(T,∞) ≤ ν2(T ).

(2.50)

Proof. All of these estimates are straightforward. �

Then, there are some more specific estimates that we need:

Lemma 2.7.

|ρ̇∞| ≤|Γ̇|+ |x||v̇|+ (|v|+ |v∞|)|v − v∞|+ |α− α∞|
|∇ρ∞| ≤|v − v∞|

|ẏ − ẏ∞| ≤|Ḋ|+ 2|v − v∞|
|ξ̇F + iEξF | ≤|Γ̇|+ |Ḋ|+ (1 + |x|)|v̇|+ |v − v∞|+ |α̇|+

+ |α− α∞|
‖Vπ0‖1+∞→1∩∞ ≤(|y − y∞|+ |ρ∞|+ |α− α∞|) ≤ ν0(t)

‖∇Vπ0‖1+∞→1∩∞ ≤|v − v∞| ≤ ν0(t)

‖Lπ0‖1+∞→1∩∞ ≤C‖〈·, ξ̇F 〉 − i〈·, EξF 〉‖
≤C(|ẏ − ẏ∞|+ |ρ̇∞|+ |α̇|) ≤ ν0(t)

‖∇Lπ0U(t)‖1∩∞ ≤C|〈U(t), ξ̇F 〉 − i〈U,EξF 〉|(1 + |v − v∞|).

(2.51)

Proof.

ρ∞(t) = θ(t, x+ y∞)− θ∞(t, x+ y∞)

= (v(t)− v(∞))(x+ 2tv(∞) +D(∞))−
∫ t

0

(|v(s)|2 − |v(∞)|2 − α(s) + α(∞)) ds+

+ γ(t)− Γ∞

= (v(t)− v(∞))(x+2tv(∞) +D(∞)) +

∫ ∞

t

(|v(s)|2 − |v(∞)|2 −α(s) +α(∞)) ds+

+ γ(t)− Γ(∞). (2.52)

Therefore,

ρ̇∞(t) = v̇(t)x− (|v(t)|2 − |v(∞)|2) + α(t) − α(∞) + Γ̇(t). (2.53)

Finally, note that

ξ̇F =iρ̇σ3ξF + (ẏ∞ − ẏ)∇ξF + α̇∂αξF

=i(v̇(t)x− |v(t)|2 + |v(∞)|2 + α(t)− α(∞) + Γ̇(t))σ3ξF+

+ 2(v(∞)− v(t))∇ξF + α̇∂αξF ,

(2.54)
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so

ξ̇F + iEξF =i(v̇(t)x− |v(t)|2 + |v(∞)|2 + α(t)− α(∞) + Γ̇(t))σ3ξF+

+ i|v(t)− v∞|2σ3ξF + α̇∂αξF

=i(v̇(t)x+ 2v∞(v − v∞) + α(t)− α(∞) + Γ̇(t))σ3ξF + α̇∂αξF .

(2.55)

The other formulae follow by straightforward computations. �

2.3. Spectrum of the Hamiltonian. Without loss of generality, we perform a
symmetry transformation in the nonlinear equation (0.1) and assume that the
initial data is in the neighborhood of a positive ground state of the equation
W (π(0)) = φ(·, α) instead of a more general standing wave. This is possible because
standing waves are, by definition, an orbit of the action of symmetry transforma-
tions. Even though symmetry transformations change the spectrum, the informa-
tion gained in the manner is still useful in the general case.

Consider the operators

H =

(
−∆+ α− 2φ2(·, α) −φ2(·, α)

φ2(·, α) ∆− α+ 2φ2(·, α)

)
= H0 + V. (2.56)

By rescaling, one sees that all these operators have the same spectrum up to dilation
and similar spectral properties.

We restate the known facts about the spectrum of H. As proved by Buslaev,
Perelman [BusPer1] and also Rodnianski, Schlag, Soffer in [RoScSo2], under
fairly general assumptions, σ(H) ⊂ R ∪ iR and is symmetric with respect to the
coordinate axes and all eigenvalues are simple with the possible exception of 0.
Furthermore, by Weyl’s criterion σess(H) = (−∞,−α] ∪ [α,+∞).

Grillakis, Shatah, Strauss [GrShSt1] and Schlag [Sch] showed that there is
only one pair of conjugate imaginary eigenvalues ±iσ and that the corresponding
eigenvectors decay exponentially. For the decay see Hundertmark, Lee [HunLee].
The pair of conjugate imaginary eigenvalues±iσ reflects the L2-supercritical nature
of the problem.

The generalized eigenspace at 0 arises due to the symmetries of the equation,
which is invariant under Galilean coordinate changes, phase changes, and scaling.
It is relatively easy to see that each of these symmetries gives rise to a generalized
eigenvalue of the Hamiltonian H at 0, but proving the converse is much harder and
was done by Weinstein in [Wei1], [Wei2].

Schlag [Sch] showed, using ideas of Perelman [Per], that if the operators

L± = −∆+ α− φ2(·, α) ∓ 2φ2(·, α) (2.57)

that arise by conjugating H with

(
1 i
1 −i

)
have no eigenvalue in (0, α] and no reso-

nance at α, it implies that the real discrete spectrum of H is {0} and that the edges
±α are neither eigenvalues nor resonances. A paper of Demanet, Schlag [DemSch]
proved numerically that the scalar operators meet these conditions. Therefore,
there are no eigenvalues in [−α, α] and ±α are neither eigenvalues nor resonances
for H.

Furthermore, the method of Agmon [Agm], adapted to the matrix case, en-
abled Erdogan, Schlag [Erdsch] and independently [CucPelVou] to prove that
any resonances embedded in the interior of the essential spectrum (that is, in
(−∞,−α) ∪ (α,∞)) have to be eigenvalues, under very general assumptions.
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Under the spectral Assumption 1 we now have a complete description of the
spectrum of H. It consists of a pair of conjugate purely imaginary eigenvalues, a
generalized eigenspace at 0, and the essential spectrum (−∞,−α] ∪ [α,∞).

It helps in the proof to exhibit the discrete eigenspaces of H. Denote by f± and
f̃± the normalized eigenfunctions of H and respectively H∗ corresponding to the
±iσ eigenvalues. Also observe that ηF are the generalized eigenfunctions at zero of
H and ξF fulfill the same role for H∗.

Furthermore, now we can express the Riesz projections, following Schlag [Sch],
as

Pim = P+ + P−, P± = 〈·, f̃±〉f±, (2.58)

Proot = 〈·, ξα〉ηΓ + 〈·, ξΓ〉ηα +
∑

k

(〈·, ξvk〉ηDk
+ 〈·, ξDk

〉ηvk), (2.59)

and
Pc = 1− Pim − Proot. (2.60)

Even though we do not have an explicit form of the imaginary eigenvectors, Schlag
[Sch] proved that f±, in the L2 norm, and σ are locally Lipschitz continuous as a
function of α and that f± are exponentially decaying.

Concerning the continuous spectrum, the absence of embedded eigenvalues, fol-
lowing the spectral Assumption 1, permitted Erdogan, Schlag [Erdsch] to state
the limiting absorbtion principle in the following form:

Lemma 2.8. Assume that the thresholds of the spectrum of H = H0 + V (1.8)
are regular, meaning that the operators 1 + (H0 − (±α ± i0))−1V are invertible
from the weighted Sobolev space 〈x〉1+ǫL2 to itself for any ǫ > 0. Then there exists
0 < α′ < α such that

sup
|λ|≥α′,ǫ>0

|λ|1/2‖(H− (λ ± iǫ))−1‖〈x〉−1−ǫL2→〈x〉1+ǫL2 <∞ (2.61)

and
sup

|λ|≥α′,ǫ>0
ℓ=1,2

‖∂ℓλ(H− (λ± iǫ))−1‖〈x〉−1−ℓ−ǫL2→〈x〉1+ℓ+ǫL2 <∞ (2.62)

if |V | ≤ C〈x〉−7/2−ǫ.

The fact that the thresholds are neither eigenvalues nor resonances implies their
regularity.

2.4. Proof of the main result.

Proof. To recapitulate, we are interested in finding solutions to equation (0.1),
starting from initial data in a neighborhood of the soliton W (0), which remain
close to stationary solutions for all times. Furthermore, we take W (0) to be a
positive ground state of the equation.

We prove that, to a first approximation,
{
R0 | (P+ + Proot)

(
R0

R0

)
= 0

}
is

the stable submanifold. Quadratic corrections are needed, as the statement of
Theorem 1.7 makes clear.

Let, for some δ ≤ 1, 1 ≤ q < 4/3, small ǫ > 0,

Xδ =
{
(U, π) |π(0) = (0, 0, 0, α), ‖〈t〉π̇(t)‖1 + ‖π̇‖∞ ≤ δ,

‖U‖
L2

tW
1/2,6
x ∩L∞

t H
1/2
x

+ ‖U‖〈t〉1−2/q+ǫL2
tL

6+∞

x
≤ δ

}
.

(2.63)
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Let β = 2/q − 1− ǫ. Note that, for U(x, t) = gπ0(t)Z(x, t), one has (U, π) ∈ Xδ

if and only if (Z, π) ∈ Xδ, since gπ0(t) is an isometry. In the sequel we deal with
both U and Z, as necessary.

We define a mapping Φ that takes the pair (Z0, π0) to the solution (Z, π) of the
linearized equation (2.15) corresponding to the initial data

Z(0) =

(
R0

R0

)
+ hf+(0),

π(0) =(0, 0, 0, α),

(2.64)

where h and aF (0) will be chosen later depending on R0, so that Z fulfills the
orthogonality condition (2.45) and is globally bounded in time. The first condition
can be equivalently formulated in terms of U ,

U(0) = gπ0(0)
((

R0

R0

)
+ hf+(0)

)
. (2.65)

Further note that, by interpolation between L2 and H1, for δ < 1

‖U(0)‖Lq∩H1/2 ≤ C(‖R0‖Lq∩H1/2 + |h|). (2.66)

Now we run a fixed point argument, showing that Φ is a contraction in Xδ for
small δ. This is achieved in two steps, by proving firstly that Φ takes Xδ to itself
and secondly that it is distance-decreasing in a weaker metric.

2.5. Stability. Here we prove that if δ ≤ 1 is sufficiently small and (Z0, π0) ∈ Xδ,
then Φ(Z0, π0) = (Z, π) ∈ Xδ.

Since g is an isometry, this is equivalent to proving that if (U0, π0) ∈ Xδ, then
the solution (U, π) of (2.24) is in Xδ, for small δ. It is more convenient to prove
the statement for U than for Z.

Note that, after making δ as small as needed, α(t) always belongs to a fixed
compact set centered at its initial value and therefore all the Sobolev norms of
φ(·, α(t)) and f±, f̃± are uniformly bounded.

Replace π̇ on the right-hand side of (2.24) by its expression given by (2.27) and
assume the orthogonality condition 〈U(t), ξF (t)〉 = 0 in order to obtain the system
of equations

iUt +Hπ0U = Lπ0U + Vπ0U +N(U0, π0) +Nπ0(U0, π0)

Ḟ = 2α0‖φ0‖−2
2 (〈U, ξ̇F0〉 − i〈U,E0ξF0〉 − i〈N(U0, π0), ξF0〉), F ∈ {α,Γ}

Ḟ = ‖φ0‖−2
2 (〈U, ξ̇F0〉 − i〈U,E0ξF0〉 − i〈N(U0, π0), ξF0〉), F ∈ {Dk, vk}.

(2.67)

Here we made the replacement −iπ̇gπ0∂π0

(
W (π0)

W (π0)

)
= Lπ0U + Nπ0(U0, π0) by

virtue of the modulation equations (2.43), (2.48). Lπ0U represents the part that
is linear in U and Nπ0(U0, π0) represents the nonlinear part 〈N(U0, π0), ξF0〉.

The initial data is given by condition (2.64).
The orthogonality condition at time 0 is true by definition, regardless of the value

of R0 ∈ Sδ and h, because

(
R0

R0

)
⊥ ξF (0) and, due to the spectral decomposition,

f+(0) ⊥ ξF (0) too, for F ∈ {vk, Dk, α,Γ}.
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Global existence of the solution U to the linearized equation (2.67) follows by a
standard fixed point argument. Introduce a second auxiliary function U1 and write
the equation as

iUt +Hπ0U = Vπ0U1 + Lπ0U1 +N(U0, π0) +Nπ0(U0, π0). (2.68)

Note that ‖eitHπ0‖2→2 ≤ Ceσ|t|.
For any T1 consider a small time interval [T1, T2] of length at most 1. Assume

that ‖U1‖L∞(T1,T2;L2
x)

≤ r. One has that

‖U‖L∞(T1,T2;L2
x)

≤

≤‖U(T1)‖2 +
∫ T2

T1

eσ(t−T1)‖RHS(t)‖2 dt

≤‖U(T1)‖2 + C(T2 − T1)(‖Lπ0 + Vπ0‖L2
x→L2

x
‖U1‖L∞(T1,T2;L2

x)
+

+ ‖N(U0, π0) +Nπ0(U0, π0)‖L∞

t L2
x
) ≤ r,

(2.69)

if r is chosen such that r ≥ C(‖U(T1)‖2 + δ). Likewise, subtracting two copies of

the equation, with two solutions U and Ũ corresponding to auxiliary functions U1

and Ũ1, one obtains

‖U − Ũ‖L∞(T1,T2;L2
x)

≤ C(T2−T1)‖Lπ0 +Vπ0‖L2
x→L2

x
‖U1− Ũ1‖L∞(T1,T2;L2

x)
. (2.70)

Thus, if T2 − T1 is sufficiently small, the mapping that associates U to U1 is a
contraction in the set {U1 | ‖U1‖L∞(T1,T2;L2

x)
≤ r}. If r is sufficiently large the set

is stable under the mapping.
One obtains a fixed point that is a solution to (2.67) on (T1, T2), but the length

T2 −T1 for which this happens does not depend on the initial data. Therefore, one
can iterate and obtain a global in time solution U of (2.67).

Next, we prove that the global solution U is in Xδ and thus globally bounded
for some unique value of the parameter h.

The operator Hπ0 induces the time-independent decomposition 1 = Pc+Proot+
Pim on L2(R3) corresponding to the decomposition of its spectrum into the abso-
lutely continuous part, the generalized eigenspace at zero, and the imaginary eigen-
values, respectively. Since the range and cokernel of Proot and Pim are spanned
by finitely many Schwartz functions, they are bounded from Lp to Lq, for any
1 ≤ p, q ≤ ∞. Therefore Pc = 1 − Proot − Pim is bounded on Lp, 1 ≤ p ≤ ∞, and
one can write

ProotU(t) =
∑

F

aF (t)ηF (∞), PimU(t) = b+(t)f+ + b−(t)f−. (2.71)

We will bound each projection ProotU , PimU , and PcU , as well as∇ProotU , ∇PimU ,
and ∇PcU (six estimates in total).

One can bound the zero generalized eigenspace component in a straightforward
manner. Expanding the orthogonality condition 〈U(t), ξF0 (t)〉 = 0, one has for
every G that

0 =
∑

F

aF (t)〈ηF (∞), ξG(t)〉+ 〈(Pim + Pc)U(t), ξG(t)〉. (2.72)

Since |ξG0(t) − ξG0(∞)| ≤ C(|ρ∞| + |y − y∞|) ≤ Cδ and the matrix with entries
〈ηF (∞), ξG(∞)〉 is invertible, the matrix with entries 〈ηF0(∞), ξG0(t)〉 is invertible
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with bounded norm for small δ. Therefore, by solving the system (2.72) one obtains
that

‖ProotU(t)‖1∩∞ ≤ C‖(Pc + Pim)U(t)‖1+∞. (2.73)

Since the range of Proot is spanned by Schwartz functions, the same holds with
derivatives or weights:

‖∇ProotU(t)‖1∩∞ ≤ C‖(Pc + Pim)U(t)‖1+∞. (2.74)

As for the other two components of U , one has that

i∂tPcU +Hπ0PcU = Pc(Lπ0(U) + Vπ0U +N(U0, π0) +Nπ0(U0, π0)) (2.75)

and

i∂tPimU +Hπ0PimU = Pim(Lπ0(U) + Vπ0U +N(U0, π0) +Nπ0(U0, π0)). (2.76)

Using the explicit form (2.71) of PimU(t) = b−(t)f
−+ b+(t)f

+, the correspond-
ing equation (2.76) becomes

∂t

(
b−
b+

)
+

(
σ 0
0 −σ

)(
b−
b+

)
=

(
N−

N+

)
, (2.77)

where |N±(t)| ≤ ‖Pim(Lπ0(U) + Vπ0U + N(U0, π0)(t) + Nπ0(U0, π0))‖1+∞. Here
±iσ are the imaginary eigenvalues of Hπ0 , as in our discussion of its spectrum in
Section 2.3.

Now we state a standard elementary lemma, see [Sch]. It characterizes the
unique bounded solution of the two-dimensional ODE (2.77).

Lemma 2.9. Consider the equation

ẋ−
(
σ 0
0 −σ

)
x = f(t), (2.78)

where f ∈ L1∩∞. Then x is bounded on [0,∞) if and only if

0 = x1(0) +

∫ ∞

0

e−tσf1(t) dt. (2.79)

In this case,

x1(t) = −
∫ ∞

t

e(t−s)σf1(s) ds, x2(t) = e−tσx2(0) +

∫ t

0

e−(t−s)σf2(s) ds (2.80)

for all t ≥ 0.

Proof. Any solution will be a linear combination of the exponentially increasing and
the exponentially decaying ones and we want to make sure that the exponentially
increasing one is absent. It is always true that

x1(t) = etσ
(
x1(0) +

∫ t

0

e−sσf1(s) ds
)
, x2(t) = e−tσx2(0) +

∫ t

0

e−(t−s)σf2(s) ds.

(2.81)
Thus, if x1 is to remain bounded, the expression between parantheses must converge
to 0, hence (2.79). Conversely, if (2.79) holds, then

x1(t) = −
∫ ∞

t

e(t−s)σf1(s) ds (2.82)

tends to 0. �
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Consequently, equation (2.77) has a bounded solution if and only if

0 = b+(0) +

∫ ∞

0

e−tσN+(t) dt. (2.83)

Now we establish the relation between b+(0) and h. The initial assignment (2.65)
implies that

b+(0) = 〈U(0), f̃+〉

=
〈
gπ0(0)

(
R0

R0

)
+ hgπ0(0)f+(0), f̃+

〉

=
〈(

R0

R0

)
, (gπ0(0)−1f̃+)− f̃+(0)

〉
+ h

(
1 + 〈(gπ0f+(0))− f+, f̃+〉

)
.

(2.84)

Taking into account the fact that

‖(gπ0f+)− f+(0)‖〈x〉L2
x
≤ ‖(gπ0f+)− f+‖〈x〉L2

x
+ ‖f+− f+(0)‖〈x〉L2

x
≤ Cδ, (2.85)

it follows that if (2.83) holds then, for sufficiently small δ, one can solve equation
(2.84) for h and

|h| ≤ C(|b+(0)|+ δ‖R0‖1+∞). (2.86)

Clearly, condition (2.83) is then fulfilled by a suitable choice of h. U is globally
bounded by the definition (2.63) of Xδ, which implies the boundedness of each
component, in particular Uim. Proceeding henceforth under this assumption, we
get

|b+(0)| ≤ C‖N+‖(L1
t+L∞

t )(L1
x+L∞

x ) ≤ Cδ‖U‖L∞

t L2
x∩L2

tL
6
x
+ Cδ2, (2.87)

|h| ≤ Cδ(‖R0‖1+∞ + ‖U‖L∞

t L2
x∩L2

tL
6
x
) + Cδ2. (2.88)

Note that σ depends Lipschitz continuously on α. Then σ belongs to a compact
subset of (0,∞), because α belongs to a compact subset of (0,∞). In this case,
since f± are Schwartz functions, one has that

‖P+U(t)‖1∩∞∩H1 ≤C
( ∫ 2t

t

e(t−s)σ‖RHS(s)‖1+∞ ds+

∫ ∞

2t

e(t−s)σ‖RHS(s)‖1+∞ ds
)

≤C
( ∫ 2t

t

e(t−s)‖RHS(s)‖1+∞ ds+ e−tσ(δ‖U‖L2
tL

6
x
+ δ2)

)
.

(2.89)
We deal with the two expressions separately. The latter poses no problem, due to
the exponential decay. As for the former, we bound it in 〈t〉−βL2

tL
1∩∞
x ∩H1

x (the
precise norm in x does not matter, due to these being Schwartz functions) by means
of the bilinear estimate

∣∣∣
∫∫

t<s<2t

〈t〉β〈s〉−βet−sg(t)f(s) ds dt
∣∣∣ ≤ ‖f‖2‖g‖2. (2.90)

Indeed, note that 〈t〉β〈s〉−β is bounded from above and the conclusion follows after
a dyadic decomposition. The estimate implies that

∥∥∥
∫ 2t

t

e(t−s)‖RHS(s)‖1+∞ ds
∥∥∥
〈t〉−βL2

tL
1∩∞

x

≤ C‖RHS‖〈t〉−βL2
tL

1∩∞

x
. (2.91)
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The pointwise in time norm is easier to bound, since
∫ 2t

t

e(t−s)‖RHS(s)‖1+∞ ds ≤ C max
s∈[t,2t]

‖RHS(s)‖1+∞ ≤ C(δ‖U‖L∞

t L2
x
+ δ2).

(2.92)
The same works for P−U , where we also have to take into account the contribution
of the initial data. This leads to

‖PimU‖L∞

t L2
x∩L2

tL
6
x
+ ‖∇PimU‖L∞

t L2
x∩L2

tL
6
x
≤

≤ C(‖U(0)‖1+∞ + δ‖U‖L∞

t L2
x∩L2

tL
6
x
+ δ2). (2.93)

and

‖〈t〉βPimU‖L2
tL

1∩∞

x
≤ C(‖U(0)‖1+∞ + δ‖U‖〈t〉−βL2

tL
6+∞

x
+ δ2). (2.94)

Now we turn to PcU , the projection on the continuous spectrum. One has, by
Lemmas 2.6 and 2.7, that

‖N(π0, U)‖
L2

tL
6/5
x

≤ C(‖U‖L∞

t L6
x
‖U‖L∞

t L2
x
‖U‖L2

tL
6
x
+ ‖U‖L∞

t L2
x
‖U‖L2

tL
6
x
)

‖Vπ0U‖
L2

tL
6/5
x

≤ Cν0(1 + ν0)‖U(t)‖L2
tL

6
x

‖Lπ0U‖
L2

tL
6/5
x

+ ‖∇Lπ0U‖
L2

tL
6/5
x

≤ Cν0(1 + ν0)‖U‖L2
tL

6
x

‖Nπ0(U, π0)‖
L2

tL
6/5
x

+ ‖∇Nπ0(U, π0)‖
L2

tL
6/5
x

≤
≤ C(‖U‖L∞

t L6
x
‖U‖L∞

t L2
x
‖U‖L2

tL
6
x
+ ‖U‖L∞

t L2
x
‖U‖L2

tL
6
x
).

(2.95)

We recall that, by the definition (2.63) of Xδ, ν
0 ≤ δ.

Applying endpoint Strichartz estimates to equation (2.75) yields that

‖PcU‖L2
tL

6
x∩L∞

t L2
x
≤ C(‖U(0)‖2 + ‖Pc(Lπ0(U) + Vπ0U +N(U0, π0))‖

L2
tL

6/5
x +L1

tL
2
x
)

≤ C(‖U(0)‖2 + δ‖U‖L∞

t L2
x∩L2

tL
6
x
) + Cδ2.

(2.96)
We now establish the H1/2 bounds for PcU . Note that the components of [∇,H]

are Schwartz functions and therefore ‖[∇,Hπ0 ]U‖
L2

tL
6/5
x

≤ C‖U‖L2
tL

6
x
. By trilinear

interpolation between

‖PcU‖L∞

t L2
x∩L2

tL
6
x
≤ C(‖U(0)‖2 + ‖i(PcU)t +HPcU‖

L1
tL

2
x+L2

tL
6/5
x

)

≤ C(‖U(0)‖2 + ‖RHS‖
L2

tL
6/5
x +L1

tL
2
x
)

(2.97)

and

‖PcU‖L∞

t H1
x∩L2

tW
1,6
x

≤ C(‖U(0)‖H1
x
+ ‖i(PcU)t +HPcU‖

L1
tH

1
x+L2

tW
1,6/5
x

)

≤ C(‖U(0)‖H1
x
+ ‖RHS‖

L2
tW

1,6/5
x +L1

tH
1
x
+ ‖U‖L2

tL
6
x
) (2.98)

it follows that

‖PcU‖
L∞

t H
1/2
x ∩L2

tW
1/2,6
x

≤ C(‖U(0)‖
H

1/2
x

+‖RHS‖
L2

tW
1/2,6/5
x +L1

tH
1/2
x

+‖U‖L2
tL

6
x
).

(2.99)

The fractional Sobolev spaces Hs and W s,p arise naturally by interpolation and
are given by Hs =W s,2, W s,p = (−∆+1)−s/2Lp. In the sequel we use the Sobolev
embeddings W 1/2,3 →֒ L6 and H1/2 →֒ L3.
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Now we examine each term on the right-hand side of (2.24). We use the fractional
Leibniz rule, as stated, for example, in [Tay, p. 105]:

‖f1f2f3‖W 1/2,6/5 ≤ C(
∑

i,j,k

‖fi‖W 1/2,3‖fj‖3‖fk‖6 +
∑

i,j,k

‖fi‖3‖fj‖3‖fk‖W 1/2,6)

≤ C(
∑

i,j,k

‖fi‖W 1/2,3‖fj‖3‖fk‖W 1/2,3 +
∑

i,j,k

‖fi‖3‖fj‖3‖fk‖W 1/2,6).

(2.100)
Making all the f ’s equal, one gets

‖U3‖
L2

tW
1/2,6/5
x

≤ C(‖U‖2
L4

tW
1/2,3
x

‖U‖L∞

t L3
x
+ ‖U‖

L2
tW

1/2,6
x

‖U‖2L∞

t L3
x
)

≤ C‖U‖3
L∞

t H
1/2
x ∩L2

tW
1/2,6
x

.
(2.101)

Thus, in estimating this cubic term we had to use both the Keel-Tao endpoint
Strichartz estimate and the critical half-derivative, which prevents us from doing
any better (that is, from lowering the number of derivatives).

The localized quadratic terms can be handled similarly with the help of (2.100),
the conclusion being

‖U2φ‖
L2

tW
1/2,6/5
x

≤ C(‖U‖2
L4

tW
1/2,3
x

‖φ‖L∞

t L3
x
+ ‖U‖

L2
tW

1/2,6
x

‖U‖L∞

t L3
x
‖φ‖L∞

t L3
x
)

≤ C‖U‖2
L∞

t H
1/2
x ∩L2

tW
1/2,6
x

.

(2.102)
As for the linear terms, a satisfactory estimate is

‖Vπ0U‖
W

1/2,6/5
x

≤ C(‖Vπ0‖3/2‖U‖W 1/2,6 + ‖Vπ0‖
W

1/2,3/2
x

‖U‖6), (2.103)

which implies that

‖Vπ0U‖
L2

tW
1/2,6/5
x

≤ C‖Vπ0‖
L∞

t W
1/2,3/2
x

‖U‖
L2

tW
1/2,6
x

. (2.104)

Therefore

‖PcU‖
L2

tW
1/2,6
x ∩L∞

t H
1/2
x

≤C(‖U(0)‖
H

1/2
x

+

+ δ‖U‖
L2

tW
1/2,6
x ∩L∞

t H
1/2
x

+ δ2 + ‖U‖L2
tL

6
x
).

(2.105)

Putting together estimates (2.73), (2.93), and (2.96), one has that

‖U‖L∞

t L2
x∩L2

tL
6
x
≤ C(‖U(0)‖2 + δ‖U‖L∞

t L2
x∩L2

tL
6
x
+ δ2), (2.106)

which for sufficiently small δ and ‖U(0)‖2 implies that

‖U‖L∞

t L2
x∩L2

tL
6
x
≤ C‖U(0)‖2 + Cδ2 ≤ δ. (2.107)

This proves, after considering (2.74), (2.93), and (2.105), that

‖U‖
L2

tW
1/2,6
x ∩L∞

t H
1/2
x

≤ C(‖U(0)‖
H

1/2
x

+ δ‖U‖
L2

tW
1/2,6
x ∩L∞

t H
1/2
x

+ δ2 + ‖U‖L2
tL

6
x
)

(2.108)
and therefore

‖U‖
L2

tW
1/2,6
x ∩L∞

t H
1/2
x

≤ C‖U(0)‖
H

1/2
x

+ Cδ2 ≤ δ. (2.109)

Lastly, for π the estimates (see Lemma 2.7)

‖〈U, ξ̇F 〉 − i〈U,EξF 〉 − i〈N(U0, π0), ξF 〉‖L1
t
≤

≤ ν0‖U‖L∞

t L6
x
+ ‖U0‖L∞

t L6
x
‖U0‖2L2

tL
6
x
+ ‖U0‖2L2

tL
6
x

(2.110)
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and

‖〈U, ξ̇F 〉 − i〈U,EξF 〉 − i〈N(U0, π0), ξF 〉‖L∞

t
≤

≤ ν0‖U‖L∞

t L6
x
+ ‖U0‖3L∞

t L6
x
+ ‖U0‖2L∞

t L6
x

(2.111)

lead by the modulation equations (2.43) to the straightforward inequality (where
we used ν0 ≤ δ)

‖π̇‖∞ + ‖π̇‖1 ≤C
∑

F

(‖〈U, ξ̇F 〉 − i〈U,EξF 〉 − i〈N(U0, π0), ξF 〉‖∞+

+ ‖〈U, ξ̇F 〉 − i〈U,EξF 〉 − i〈N(U0, π0), ξF 〉‖1)
≤Cδ‖U‖L∞

t L6
x
+ Cδ2 ≤ Cδ(‖U(0)‖W 1,2 + δ2) + Cδ2 ≤ Cδ2,

(2.112)
which, for small δ, proves some of the desired bounds on π.

Next we obtain decay estimates for U and π, which are necessary in order to
bound the quantities ρ∞(t) and y(t)− y∞. The important ingredient in the proof
is the evaluation of ‖〈t〉βU‖L2

tL
6+∞

x
by means of Lemma 3.7. Here it becomes

necessary to assume that the initial data U(0) is in Lq, q < 4/3, in addition to
being in H1/2. We make the choice of β = 2/q − 1− ǫ > 1/2.

The reason why we need decay is

‖〈t〉π̇(t)‖1 ≤
∫ ∞

0

〈t〉|〈U, ξ̇F 〉 − i〈U,EξF 〉 − i〈N(U0, π0), ξF 〉| dt

≤C
∫ ∞

0

〈t〉|π0(t)− π0(∞)|‖U(t)‖1+∞ + 〈t〉‖(U0)2(t)‖1+∞+

+ 〈t〉‖(U0)2(t)‖3/2+∞‖U0(t)‖3 dt
≤C(‖〈t〉1/2(π0(t)− π0(∞))‖L2

t
‖〈t〉1/2U(t)‖L2

tL
1+∞

x
+

+ ‖〈t〉1/2U0(t)‖2
L2

tL
1+∞

x
(1 + δ))

≤1

2
ν0 + C‖U(t)‖2

〈t〉−1/2L2
tL

1+∞

x
+ Cδ2.

(2.113)

This inequality is the means to prove that ν(t) stays bounded.
In order to apply Lemma 3.7 and bound this quantity, we evaluate the right-hand

side terms of (2.24), beginning with the worst:

‖V U‖
〈t〉−βL2

tL
1∩6/5
x

≤ Cδ‖U‖〈t〉−βL2
tL

6+∞

x
. (2.114)

Here we used the fact that ν0(t) is bounded. Exactly the same works for the other
linear term in U ,

‖Lπ0U‖
〈t〉−βL2

tL
1∩6/5
x

≤ Cδ‖U‖〈t〉−βL2
tL

6+∞

x
. (2.115)

The remaining terms, N(U0, π0) and Nπ0(U0, π0), work out in the same fashion,
provided that U is uniformly bounded in time, which it is. Special attention has to
be paid to the nonlocalized term, for which note that

‖(U0)3‖
〈t〉−βL2

tL
1∩6/5
x

≤C‖U0‖〈t〉−βL2
tL

6+∞

x
‖U0‖2L∞

t L2∩3
x

≤C‖U0‖〈t〉−βL2
tL

6+∞

x
δ2.

(2.116)
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This is another place where the Ḣ1/2-critical nature of the problem comes into play,
since Ḣ1/2 embeds in L3.

In conclusion, the nonlinear right-hand side terms have the same behaviour as
the linear ones:

‖N(U0, π0) +Nπ0(U0, π0)‖
〈t〉−βL2

tL
1∩6/5
x

≤ Cδ‖U0‖〈t〉−βL2
tL

6+∞

x
. (2.117)

After applying Lemma 3.7, the result is
∫ ∞

0

〈t〉4/q−2−2ǫ‖PcU(t)‖26+∞ dt ≤ C(‖U(0)‖2H1/2∩Lq + δ2‖U‖2
〈t〉1−2/q+ǫL2

tL
6+∞

x
+ δ4).

(2.118)
The hyperbolic part PimU decays just as fast by (2.94) and the projection on the
generalized 0 eigenspace ProotU is dominated by the other two components, so we
can add them both in for free. By making δ and the initial data small we obtain
the desired estimates

‖U‖〈t〉1−2/q+ǫL2
tL

6+∞

x
≤ δ and ‖〈t〉π̇‖1 ≤ Cδ2 ≤ δ. (2.119)

This finishes proving that the mapping Φ takes Xδ to itself, provided that δ and
the initial data are sufficiently small. Next, we need to show that Φ really is a
contraction within this set.

2.6. Contraction. Here we prove that Φ is a contraction on Xδ for small δ << 1.
Consider two solutions (Z1, π1) and (Z2, π2) of the linearized equation (2.67)

corresponding to two different pairs of auxiliary functions, (Z0
1 , π

0
1) and respec-

tively (Z0
2 , π

0
2). In our previous notation, we have that (Z1, π1) = Φ(Z0

1 , π
0
1) and

(Z2, π2) = Φ(Z0
2 , π

0
2).

Assume that (Z0
1 , π

0
1), (Z

0
2 , π

0
2) ∈ Xδ. Then, it follows from the first part of the

proof that the same holds for (Z1, π1) and (Z2, π2).
We perform the contraction in the following seminorm:

Y = {(Z, π) | ‖(Z, π)‖Y = ‖π̇‖L1∩∞∩〈t〉−βL2
t
+ ‖Z‖t1−βL2

tL
6+∞

x
<∞}. (2.120)

Here β = 2/q − 1− ǫ is the same as before and −β < −1/2, 1− β < 1/2.
It is straightforward to note that this seminorm defines a metric on Xδ because

the elements of Xδ have well-determined initial parameter values. Furthermore,
since the seminorm is weaker than the one that defines Xδ, it makes Xδ a complete
metric space.

We prove that the map Φ is a contraction on Xδ in this metric, more precisely

that ‖(Z1, π1)−(Z2, π2)‖Y ≤ 1

2
‖(Z0

1 , π
0
1)−(Z0

2 , π
0
2)‖Y , for some sufficiently small δ.

Since this result will be reused later in the proof, it is convenient to state it in
the form of a lemma:

Lemma 2.10. Consider (Z1, π1) = Φ(Z0
1 , π

0
1), (Z2, π2) = Φ(Z0

2 , π
0
2) solving the

linearized equation (2.15), such that (Z1, π1), (Z0
1 , π

0
1), (Z2, π2), (Z0

2 , π
0
2) ∈ Xδ,

π0
1(0) = π0

2(0) = (0, 0, 0, α0), and with initial data

Zi(0) =

(
Ri

0

Ri
0

)
+ hif

+(0) (2.121)

such that Ri
0 ⊥ f̃+(0), Ri

0 ⊥ ξF (0). Further assume the orthogonality conditions

〈Zi(t), ξ
Zi

F (t)〉 = 0 for all t ≥ 0 and F ∈ {vi, Di, α,Γ}, with ξZi pertaining to π0
i .
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Then, if δ is sufficiently small,

‖(Z1, π1)− (Z2, π2)‖Y ≤ C(δ‖(Z0
1 , π

0
1)− (Z0

2 , π
0
2)‖Y + ‖R1

0 −R2
0‖2). (2.122)

Proof. Subtract the two copies of equation (2.15) corresponding to Z1 and to Z2

from one another and introduce the new function U = gπ0
1
(Z1 − Z2). Then

iUt +Hπ0
1
U = Vπ0

1
U+

+gπ0
1
(−iπ̇1∂πW (π0

1)+iπ̇2∂πW (π0
2)+(HZ

π1
0
−HZ

π2
0
)Z1+N

Z(Z0
1 , π

0
1)−NZ(Z0

2 , π
0
2)),

(2.123)

with initial data

U(0) = gπ0(0)
((

R1
0

R1
0

)
−
(
R2

0

R2
0

)
+ (h1 − h2)f

+(0)
)
. (2.124)

It is worth noting that both paths start at the same point, so the operators HZ
π0
i

are the same and have the same eigenfunctions for i = 1, 2.
Henceforth, we shall use the names ξF , etc., in relation to π0

1 .
The vectors f+(0) and ξF (0) do not depend on the whole parameter paths π0

i ,
but only on the starting point W (0). We do not assume that R1

0 = R2
0, in order to

prove the Lipschitz continuity of Φ at the same time.
The modulation equations for Z are obtained from the orthogonality condition

for Z (2.16) and have the form, similar to (2.48),

− iπ̇∂πW (π0) = LZ
π0Z +NZ

π0(Z0, π0), (2.125)

where
LZ
π0Z =

∑

F∈{α,Γ,vi,Di}

‖φ‖−2
2 (〈Z, ξ̇ZF 〉 − i〈Z,EZξZF 〉)ηZF , (2.126)

NZ
π0(Z0, π0) = −

∑

F∈{α,Γ,vi,Di}

‖φ‖−2
2 i〈NZ(Z0, π0), ξZF 〉ηZF , (2.127)

and

EZ =

(
−|v(t)|2 − 2iv(t)∇ 0

0 |v(t)|2 − 2iv(t)∇

)
. (2.128)

Split equation (2.123) into three parts, corresponding to our decomposition of
the spectrum of Hπ0

1
into the absolutely continuous part, the generalized eigenspace

at 0, and the imaginary eigenvalues, respectively. Then, we estimate each compo-
nent separately.

The ranges of projections on the generalized eigenspace at 0 and on the imaginary
eigenspace are spanned by finitely many Schwartz functions,

ProotU(t) =
∑

F

aF (t)ηF (∞), PimU(t) = b+(t)f+ + b−(t)f−. (2.129)

Firstly, we deal with ProotU . Both Z1 and Z2 satisfy orthogonality conditions
of the form 〈Zi(t), ξ

Zi

F (t)〉 = 0. Applying the transformation g and taking the
difference, one has that

〈U, ξF 〉 = 〈Z2, ξ
Z2

F − ξZ1

F 〉 (2.130)

and therefore

〈Z2(t), ξ
Z2

F (t)−ξZ1

F (t)〉 =
∑

F

aF (t)〈ηF (∞), ξG(t)〉+〈(Pim+Pc)U(t), ξG(t)〉. (2.131)
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The matrix with entries 〈ηF (∞), ξG(t)〉 is invertible with bounded norm. Hence,
the following holds:

‖ProotU(t)‖1∩∞ ≤ C
[
‖(Pc + Pim)U(t)‖1+∞ + ‖Z2(t)‖1+∞

(
|π0

1(t)− π0
2(t)|+

+

∫ t

0

|π0
1(s)− π0

2(s)| ds
)]
. (2.132)

An immediate consequence is that

‖ProotU(0)‖1∩∞ ≤ C
[∥∥∥

(
R1

0

R1
0

)
−
(
R2

0

R2
0

)∥∥∥
1+∞

+ |h1 − h2|+ δ‖π1 − π2‖∞
]
. (2.133)

The last term is not strictly necessary here, since the two parameter paths start at
the same point. We still include it, in order to keep the argument general.

Note that

‖(‖Z2(t)‖1+∞|
∫ t

0

π0
1(s)− π0

2(s) ds|)‖〈t〉1−βL2
t
≤

≤ C‖Z2‖〈t〉1−2/qL2
tL

2+∞

x
‖π0

1 − π0
2‖∞ ≤ Cδ‖π̇0

1 − π̇0
2‖1. (2.134)

Therefore

‖ProotU‖〈t〉1−βL2
tL

6+∞

x
≤ C(‖(Pc + Pim)U(t)‖〈t〉1−βL2

tL
6+∞

x
+ δ‖π̇0

1 − π̇0
2‖1∩∞).

(2.135)
Now we evaluate the terms on the right-hand side of equation (2.123), in order

to bound the two remaining components, PimU and PcU . Since ProotU grows like
t2−2/q−ǫ < 1/2 in L2 in time, we prove that the other two components have the
same growth rate in L2 in time.

We evaluate the projection on the countinuous spectrum. Just as in the stabil-
ity part of the proof, Lemma 3.7 leads to the required weighted estimate. From
equation (2.123) we have that

‖PcU‖〈t〉1−βL2
tL

6+∞

x
≤ C(‖U(0)‖2 + ‖RHS‖

〈t〉1−βL2
tL

1∩6/5
x

). (2.136)

Thus, if we can establish the bound for the right-hand side of the equation, we
then retrieve it for PcU .

Observe that

‖Vπ0
1
U‖

〈t〉1−βL2
tL

1∩6/5
x

≤Cδ‖U‖〈t〉1−βL2
tL

6+∞

x
;

‖(LZ
π0
1
− LZ

π0
2
)Z2‖〈t〉1−βL2

tL
1∩6/5
x

≤C‖dπ0‖Y ‖Z2‖〈t〉−βL2
tL

6+∞

x

≤C‖dπ0‖Y δ; (2.137)

‖gπ0
1
LZ
π0
1
U‖

〈t〉1−βL2
tL

1∩6/5
x

≤δ‖U‖〈t〉1−βL2
tL

6+∞

x
;

‖(HZ
π1
0
−HZ

π2
0
)Z1‖〈t〉1−βL2

tL
1∩6/5
x

≤C‖dπ0 − dπ0(∞)‖∞‖Z1‖〈t〉−βL2
tL

6+∞

x

≤C‖dπ̇0‖1∩∞δ,
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as well as
‖NZ(Z0

1 , π
0
1)−NZ(Z0

1 , π
0
2)‖〈t〉1−βL2

tL
1∩6/5
x

≤
≤ C‖π0

1 − π0
2‖∞‖Z0

1‖〈t〉−βL2
tL

1∩6/5
x

‖Z0
1‖L∞

t L2
x

≤ C‖π̇0
1 − π̇0

2‖1∩∞δ
2;

‖NZ(Z0
1 , π

0
2)−NZ(Z0

2 , π
0
2)‖〈t〉1−βL2

tL
1∩6/5
x

≤
≤C‖Z0

1 − Z0
2‖〈t〉1−βL2

tL
6+∞

x
(δ2 + δ);

‖NZ
π0
1
(Z0

1 , π
0
1)−NZ

π0
2
(Z0

2 , π
0
2)‖〈t〉1−βL2

tL
1∩6/5
x

≤
≤‖NZ

π0
1
(Z0

1 , π
0
1)−NZ

π0
2
(Z0

1 , π
0
1)‖〈t〉1−βL2

tL
1∩6/5
x

+

+ ‖NZ
π0
2
(Z0

1 , π
0
1)−NZ

π0
2
(Z0

1 , π
0
2)‖〈t〉1−βL2

tL
1∩6/5
x

+

+ ‖NZ
π0
2
(Z0

1 , π
0
2)−NZ

π0
2
(Z0

2 , π
0
2)‖〈t〉1−βL2

tL
1∩6/5
x

≤Cδ(‖π̇0
1 − π̇0

2‖1 + ‖Z0
1 − Z0

2‖〈t〉1−βL2
tL

6+∞

x
).

(2.138)

We again used the Ḣ1/2-critical nature of the equation and the Keel-Tao endpoint
Strichartz estimate, in the next-to-last inequality, concerning unlocalized terms,
under the following guise:

‖(Z0
i )

2(t)‖
L

3/2∩∞

x
≤ C‖Z0

i (t)‖2H1/2
x

≤ Cδ2. (2.139)

After examining each term, the overall conclusion is that

‖RHS‖
〈t〉1−βL2

tL
1∩6/5
x

≤ Cδ(‖U‖〈t〉1−βL2
tL

16+∞

x
+ ‖π̇0

1 − π̇0
2‖1∩∞+

+ ‖Z0
1 − Z0

2‖〈t〉1−βL2
tL

6+∞

x
)

(2.140)

and thus

‖PcU‖〈t〉1−βL2
tL

6+∞

x
≤

≤ C(‖U(0)‖2 + δ‖U‖t1/10L∞

t L3+∞

x
+ δ‖(dU0, dπ0)‖Y ). (2.141)

Next, we bound PimU . Note that ‖PimU(t)‖2 ≤ ‖Z1‖L∞

t L2
x
+ ‖Z2‖L∞

t L2
x
≤ Cδ,

so PimU is a bounded solution to a hyperbolic ODE system. Therefore, by yet
another application of Lemma 2.9,

0 = 〈U(0), f̃+〉+
∫ ∞

0

e−tσN+(t) dt. (2.142)

where ±iσ are the imaginary eigenvalues of Hπ0
1
. Thus

〈U(0), f+
∞〉 ≤C‖N+‖〈t〉1−βL2

tL
1∩6/5
x

≤ C‖RHS‖
〈t〉1−βL2

tL
1∩6/5
x

≤Cδ(‖U‖〈t〉1−βL2
tL

6+∞

x
+ ‖(Z0

1 − Z0
2 , π

0
1 − π0

2)‖Y )
(2.143)

and, by the same reasoning as in the stability proof (see 2.94),

‖PimU‖〈t〉1−βL2
tL

6+∞

x
≤

≤ C(‖U(0)‖1+∞ + δ‖U‖〈t〉1−βL2
tL

6+∞

x
+ δ‖(U0

1 − U0
2 , π

0
1 − π0

2)‖Y ). (2.144)

Note σ belongs to a compact subset of (0,∞), because α belongs to a compact
subset of (0,∞), so the constants are independent of σ.
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Now we deal with the initial data U(0):

‖U(0)‖p ≤ C
(∥∥∥

(
R1

0

R1
0

)
−
(
R2

0

R2
0

)∥∥∥
p
+ |h1 − h2|

)
. (2.145)

Furthermore, subtracting the two copies of (2.84) from one another, one has

b1+(0)− b2+(0) = 〈gπ0(0)(Z1(0)− Z2(0)), f̃
+〉

=
〈
gπ0

((
R1

0

R1
0

)
−
(
R2

0

R2
0

)
+ (h1 − h2)f

+(0)
)
, f̃+

〉

=
〈(

R1
0

R1
0

)
−
(
R2

0

R2
0

)
, f̃+ − g

−1
π0 f̃

+(0)
〉
+ (h1 − h2)(1 + 〈(gπ0f+(0))− f+, f̃+〉)

(2.146)

and thus, for small δ, by (2.143)

|h1 − h2| ≤ C
(
|b1+(0)− b2+(0)|+ δ

∥∥∥
(
R1

0

R1
0

)
−
(
R2

0

R2
0

)∥∥∥
1∩∞

)

≤ Cδ(‖U‖〈t〉1−βL2
tL

6+∞

x
+ ‖(Z0

1 − Z0
2 , π

0
1 − π0

2)‖Y + ‖R1
0 −R2

0‖1∩∞).

(2.147)
By (2.133) it follows that, for small δ,

‖U(0)‖p ≤ C
(
‖R1

0 −R2
0‖p + δ‖U‖〈t〉1−βL2

tL
6+∞

x
+ δ‖(Z0

1 −Z0
2 , π

0
1 −π0

2)‖Y
)
. (2.148)

Putting (2.135), (2.144), and (2.141) together, one has that

‖U‖〈t〉1−βL2
tL

6+∞

x
≤

≤ C
(
δ‖U‖〈t〉1−βL2

tL
6+∞

x
+ δ‖(Z0

1 , π
0
1)− (Z0

2 , π
0
2)‖Y + ‖R1

0 −R2
0‖2

)
, (2.149)

whence, for small δ,

‖U‖〈t〉1−βL2
tL

6+∞

x
≤ Cδ‖(Z0

1 − Z0
2 , π

0
1 − π0

2)‖Y + C‖R1
0 −R2

0‖2. (2.150)

In studying the difference π1 − π2, we switch back to using U1 and U2 instead of
Z1 and Z2. The reason why this is possible is that

‖U1 − U2‖〈t〉1−βL2
t 〈x〉L

6+∞

x
= ‖gπ0

1
Z1 − gπ0

2
Z2‖〈t〉1−βL2

t 〈x〉L
6+∞

x

≤ ‖gπ0
1
Z1 − gπ0

2
Z1‖〈t〉1−βL2

t 〈x〉L
6+∞

x
+ ‖gπ0

2
Z1 − gπ0

2
Z2‖〈t〉1−βL2

t 〈x〉L
6+∞

x

≤ C‖π0
1 − π0

2‖∞‖〈t〉Z1‖〈t〉1−βL2
tL

6+∞

x
+ ‖Z1 − Z2‖t1−βL2

tL
6+∞

x

≤ max(C,Cδ)‖(Z1, π1)− (Z2, π2)‖Y .
(2.151)

To put it otherwise, this norm is sufficiently weak not to see such small symmetry
transformations. This helps us insofar as all the terms that appear in the modula-
tion equations are localized.

The modulation equations for π1 − π2 are of the form, derived from (2.43),

− iπ̇1

(
W (π0

1)

W (π0
1)

)
+ iπ̇2

(
W (π0

2)

W (π0
2)

)
= Lπ0

1
U1 − Lπ0

2
U2 +Nπ0

1
(U1

0 , π
1
0)−Nπ0

2
(U2

0 , π
2
0).

(2.152)
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Denoting for convenience dπ = π1 − π2, one has that

‖dπ̇‖L1
t
≤ ‖dπ̇‖〈t〉−βL2

t
≤‖Lπ0

1
U1 − Lπ0

2
U2‖〈t〉−βL2

tL
1+∞

x
+

+ ‖Nπ0
1
(U0

1 , π
0
1)−Nπ0

2
(U0

2 , π
0
2)‖〈t〉−βL2

tL
1+∞

x

+ C
∥∥∥π̇2

(
W (π0

1)

W (π0
1)

)
−
(
W (π0

2)

W (π0
2)

)∥∥∥
〈t〉−βL2

tL
1+∞

x

.

(2.153)

An important fact is that

‖Lπ0
1
(T )− Lπ0

2
(T )‖L1+∞

x →L1∩∞

x
≤

≤
∑

F∈{vi,Di}

∥∥‖φ1‖−2
2 (ξ̇1F − iEξ1F )⊗ η1F − ‖φ2‖−2

2 (ξ̇2F − iEZξ2F )⊗ η2F
∥∥
L1+∞

x →L1∩∞

x
+

∑

F∈{α,Γ}

∥∥2α1‖φ1‖−2
2 (ξ̇1F − iEξ1F )⊗ η1F − 2α2‖φ2‖−2

2 (ξ̇2F − iEZξ2F )⊗ η2F
∥∥
L1+∞

x →L1∩∞

x

≤C
(
(|π0

1(T )− π0
1(∞)| + |π0

2(T )− π0
2(∞)|)

( ∫ T

0

|dπ0(t)| dt+ |dπ0(T )|
)
+

+ |dπ0(T )− dπ0(∞)|+ |dπ̇0(T )− dπ̇0(∞)|
)

≤Cδ‖dπ0‖∞.
(2.154)

Indeed, despite the fact that the parameter paths converge to different final values,
the difference of these two operators decays in time.

Using the estimates

‖(Lπ0
1
− Lπ0

2
)U1‖〈t〉−βL2

tL
1∩∞

x
≤

≤C‖
(
(|π0

1(t)− π0
1(∞)|+ |π0

1(t)− π0
1(∞)|)

( ∫ t

0

|dπ0(s)| ds+ |dπ0(t)|
)
+

+ |dπ0(t)− dπ0(∞)|+ |dπ̇0(t)− dπ̇0(∞)|
)
U1(t)‖〈t〉−βL2

tL
1+∞

x

≤C‖π̇0
1 − π̇0

2‖1∩∞

(
‖t(π0

1(t)− π0
1(∞))‖L1∩∞

t
+ 1

)
‖U1‖〈t〉−βL2

tL
2+∞

x

≤Cδ‖dπ̇0‖1,

(2.155)

‖Lπ0
2
(U1 − U2)‖〈t〉−βL2

tL
1∩∞

x
≤

≤C
∥∥∥(|π2

0(t)− π2
0(∞)|+ |π̇2

0(t)|)‖U1(t)− U2‖L1+∞

x

∥∥∥
〈t〉−βL2

t

≤C‖U1 − U2‖〈t〉1−βL2
t 〈x〉L

6+∞

x
‖t(π2

0(t)− π2
0(∞))‖L1∩∞

t

≤Cδ‖U1 − U2‖〈t〉1−βL2
t 〈x〉L

6+∞

x
,

(2.156)

‖Nπ0
1
(U0

1 , π
0
1)−Nπ0

2
(U0

2 , π
0
2)‖〈t〉−βL2

tL
1∩∞

x
≤

≤‖Nπ0
1
(U0

1 , π
0
1)−Nπ0

2
(U0

1 , π
0
1)‖〈t〉−βL2

tL
1∩∞

x
+

+ ‖Nπ0
2
(U0

1 , π
0
1)−Nπ0

2
(U0

1 , π
0
2)‖〈t〉−βL2

tL
1∩∞

x
+

+ ‖Nπ0
2
(U0

1 , π
0
2)−Nπ0

2
(U0

2 , π
0
2)‖〈t〉−βL2

tL
1∩∞

x

≤Cδ(‖dπ̇‖1 + ‖U0
1 − U0

2 ‖〈t〉1−βL2
t 〈x〉L

6+∞

x
),

(2.157)
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and
∥∥∥π̇2

(
W (π0

1)

W (π0
1)

)
−
(
W (π0

2)

W (π0
2)

)∥∥∥
〈t〉−βL2

tL
1+∞

x

≤ Cδ‖dπ0‖∞ ≤ Cδ‖dπ̇0‖1, (2.158)

one gets the desired conclusion that

‖dπ̇‖1∩∞ ≤ Cδ(‖(Z0
1 − Z0

2 , π
0
1 − π0

2)‖Y + ‖U1 − U2‖〈t〉1−βL2
tL

6+∞

x
). (2.159)

Therefore,

‖(Z1 − Z2, π1 − π2)‖Y ≤ Cδ(‖(Z0
1 − Z0

2 , π
0
1 − π0

2)‖Y + ‖R1
0 −R2

0‖2) (2.160)

for sufficiently small δ. �

Since Φ is a contraction in a complete metric space, it has a fixed point
(
Z =

(
R
R

)
, π

)
∈ Xδ, such that R+W (π) is a global solution for (0.1).

2.7. Remaining bounds. The correction term F(R0) = h(R0)f
+Z

satisfies the
appropriate bounds since

|h(R0)| ≤ Cδ2 (2.161)

by (2.88) and (2.107), for ‖U(0)‖L4/3−ǫ∩H1/2 ≤ Cδ, and

|h(R1
0)− h(R2

0)| ≤ Cδ‖R1
0 −R2

0‖2 (2.162)

by (2.147) and (2.160). Same goes for the aF coefficients.
If we did not assume that R1

0 = R2
0 in (2.160), then it implies that Φ(R0) is a

Lipschitz function of R0. Indeed

‖(Z1, π1)− (Z2, π2)‖Y ≤ Cδ‖R1
0 −R2

0‖2 (2.163)

implies

‖R1 −R2‖〈t〉1−βL2
tL

6+∞

x
≤ Cδ‖R1

0 −R2
0‖2 (2.164)

and

‖W (π1)−W (π2)‖〈t〉1−βL2
t 〈x〉L

6+∞

x
≤ Cδ‖R1

0 −R2
0‖3/2∩2. (2.165)

Only the scattering is left to prove and it follows in a standard manner using the
Strichartz inequalities. Indeed, observe that

U1 =

∫ ∞

0

e−isHRHS(s) ds (2.166)

is in L2 and the integral converges in the L2 norm, because RHS is in L2
tL

6
x.

Therefore,

PcU(t)− eitHPc(U(0) + U1) = −eitHPc

∫ ∞

t

e−isHPcRHS(s) ds = oL2(1). (2.167)

The other two components of U , PimU and ProotU converge to zero in the L2 norm.
Indeed, they easily converge to zero in other norms and, being given by Schwartz
functions in the space variable, all of their Lebesgue norms are comparable. Thus
U behaves like eitHPc(U(0) + U1) + oL2(1).

Let H0(α∞) = (∆− α∞)σ3, where σ3 =

(
1 0
0 −1

)
. We want to establish that

L = lim
t→∞

eitH0(α∞)e−itHPc(U(0) + U1) (2.168)
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exists as a strong L2 limit. But, letting M =

(
2φ2∞ φ2∞
−φ2∞ −2φ2∞

)
= H−H0,

d

dt
eitH0(α∞)e−itHPc(U(0) + U1) = eitH0(α∞)Me−itH(U(0) + U1). (2.169)

In other words,

L = Pc(U(0) + U1) + lim
t→∞

∫ t

0

eitH0(α∞)Me−itHPc(U(0) + U1) dt. (2.170)

However, we note that

∥∥∥
∫ T2

T1

eitH0(α∞)Me−itHPc(U(0) + U1) dt
∥∥∥
2
≤C

∫ T2

T1

‖Me−itHPc(U(0) + U1)‖26/5 dt

≤C
∫ T2

T1

‖e−itHPc(U(0) + U1)‖26 dt

≤C‖U(0) + U1‖22.
(2.171)

Since this last integral is absolutely convergent, the initial one also converges.
Therefore L exists as a strong L2 limit and

U(t) = eitH0(α∞)L+ oL2(1). (2.172)

Switching back to Z(t) = g
−1
π (t)U(t), one has

Z(t) = g
−1
π (t)(eitH0(α∞)L+ oL2(1)) = eitH0(0)g

−1
π (0)L+ oL2(1), (2.173)

which finishes the proof of scattering. �

Proof of Corollary 1.8. Firstly, apply a symmetry transformation to the whole
equation in order to make W (0) = φ(·, α0) a positive ground state. The result
that holds for the transformed problem is also valid for the original one.

The previous Theorem 1.7 proves the existence of a codimension-nine Lipschitz
submanifold of Lq ∩H1/2, 1 ≤ q < 4/3, tangent to Sδ at W (0), made of initial data
Ψ(R0)(0), R0 ∈ Sδ, for global solutions of (0.1). Since the equation is invariant
under symmetry transformations, we let symmetry transformations act on this
submanifold and retrieve a larger set of good initial data. More precisely, let

NLq∩H1/2 =
⋃

G

{G(Ψ(R0)(0)) | R0 ∈ Sδ}. (2.174)

The action G(Ψ(R0)(0)) maps the product between an 8-dimensional manifold of
symmetry transformations and the codimension-nine submanifold into Lq ∩H1/2.
The matrix

〈 ∂g
∂G

(
W (0)

W (0)

)
, ξF (W (0))

〉
= 〈ηG(W (0)), ξF (W (0))〉, (2.175)

where F and G stand for parameters vk, Dk, α, and Γ is invertible by Lemma
2.3, which implies that the action of the symmetry transformations is transverse
to the codimension-nine manifold. Therefore, the range of the map is locally (in a
neighborhood of W (0)) a codimension-one submanifold of Lq ∩H1/2. �
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Proof of Theorem 1.1. The first new claim is that if a solution obtained by the
previous corollary has initial data Ψ(R0)(0) = W (0) + R0 + F1(R0) ∈ H1, then
Ψ(R0)(T ) is still in H

1 at any time T > 0.

Using the change of coordinates U = gπ(t)
((

Ψ(R0)(t)

Ψ(R0)(t)

)
−

(
W (π(t))

W (π(t))

))
, we

transform the equation in the same manner as in the proof of Theorem 1.7 to the
form (2.24). Taking derivatives, one has that

i∂t∇U +Hπ∇U = [Hπ ,∇]U +∇(VπU) +∇(LπU) +∇N(U, π) +∇(Nπ(π, U)).
(2.176)

This equation is linear in ∇U . By means of Strichartz estimates, for U ∈ Xδ we
obtain

‖∇U‖L2
tL

6
x∩L∞

t L2
x
≤C(‖∇U(0)‖2 + ‖RHS‖

L2
tL

6/5
x +L1

tL
2
x
)

≤C(‖∇U(0)‖2 + δ‖∇U‖L2
tL

6
x∩L∞

t L2
x
+ δ) ≤ C(‖∇U(0)‖2 + δ)

(2.177)
for sufficiently small δ. By approximating∇U(0) with functions of better regularity,
the bound is seen to hold everywhere in time, instead of almost everywhere. This
proves the statement.

Secondly, we prove that if a H1 solution has initial data Ψ(R0)(0) = W (0) +
R0 + F1(R0) ∈ |x|−1L2, then the property of being in |x|−1L2 is kept at any later
time T > 0. Using the same machinery as in the previous proof, we can reduce this
to showing that if |x|U(0) ∈ L2 in the equation

iUt +HπU = −iπ̇∂πgπ
(
W (π)

W (π)

)
+N(U, π) + VπU, (2.178)

then the property is preserved at time T > 0. However, xU satisfies an equation of
its own, namely

i(xU)t +Hπ0(xU) = 2∇σ3U − ixπ̇∂πgπ

(
W (π)

W (π)

)
+ xN(U, π) + xVπU. (2.179)

The local terms on the right-hand side are already bounded in Strichartz norms by
our knowledge about U . This leaves

‖∇σ3U‖L1(0,T ;L2
x)

≤ CT ‖∇U‖L∞

t L2
x

(2.180)

and

‖xU3‖
L1

tL
6/5
x

≤ C‖xU‖L∞

t L2
x
‖U‖2L2

tL
6
x
≤ Cδ‖xU‖L∞

t L2
x
. (2.181)

As expected, the gradient term grows linearly in time and we cannot do any better.
By a standard argument, for sufficiently small δ it follows that

‖xU(T )‖2 ≤ C(‖xU(0)‖2 + Tδ). (2.182)

Note that ‖∇U(0)‖2 ≤ C‖∇R0‖2 and likewise ‖xU(0)‖2 ≤ C‖xR0‖2. Thus the
solution stays for all times in the Σ space, but the norm may grow linearly in time.

The second claim was that the manifold of global solutions N is locally invariant
under the flow. Define the manifold as

N = {Ψ(0) |Ψ(0) ∈ NLq∩H1/2 , Ψ(0) = G(W (0) +R0 + F1(R0)),

for R0 with ‖R0 + F1(R0)‖Σ < δ0}
(2.183)
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with NLq∩H1/2 being the codimension-one submanifold from Corollary 1.8. The
only new condition pertains to the size of the initial data in Σ. Clearly N is still a
codimension-one submanifold of Σ.

Note that every globally bounded solution sufficiently close to the manifold of
standing waves must actually start on NLq∩H1/2 . We phrase this as the following
lemma:

Lemma 2.11. Consider a solution Ψ to equation (0.1) such that

(
Ψ
Ψ

)
= Z +

(
W (π)

W (π)

)
, Z(t) ⊥ ξZF (π(t)) for all t ≥ 0, and (Z, π) ∈ Xδ for some fixed, sufficiently

small δ. Further assume that ‖Z(0)‖Lq∩H1/2 ≤ Cδ for the same δ.
Then Ψ(0) ∈ NLq∩H1/2 .

Proof. One can perform small symmetry transformations in this situation, since
NLq∩H1/2 is invariant under them. Therefore assume, without loss of generality,

that W (π(0)) is a positive ground state, meaning π(0) = (0, 0, 0, α0). Let

(
R0

R0

)
=

(Pc(0) + P−(0))Z(0); then ‖R0‖Lq∩H1/2 ≤ Cδ.
Consider the global solution Ψ(R0), of initial data

Ψ(R0)(0) =W (π(0)) +R0 + F1(R0). (2.184)

It exists by Theorem 1.7 if δ is sufficiently small and it has the property that, for
some path π(R0) with π(R0)(0) = (0, 0, 0, α0),(

Ψ(R0)

Ψ(R0)

)
= Z(R0) +

(
W (π(R0))

W (π(R0))

)
, (Z(R0), π(R0)) ∈ Xδ, (2.185)

and Z(R0)(t) ⊥ ξZF (π(R0)(t)).
Thus the conditions of Lemma 2.10 are met and one can compare the global

solutions Ψ and Ψ(R0). The immediate result is that Ψ = Ψ(R0). However, Ψ(R0)
belongs to NLq∩H1/2 by construction, which finishes the proof. �

With the help of Lemma 2.11 it is straightforward to prove that N is locally in
time invariant. Indeed, consider the truncated solution Ψτ obtained by restricting
some global solution Ψ, Ψ(0) ∈ N , to the time interval [τ,∞). Keeping the same
notations, one has for every t

(
Ψ
Ψ

)
= Z +

(
W (π)

W (π)

)
, Z(t) ⊥ ξZF (π(t)), (Z, π) ∈ Xδ. (2.186)

Note that ‖Z(t)‖Σ grows at most linearly in time, so if the condition ‖Z(0)‖Σ < δ0
from the definition (2.183) of N is met then it still holds for τ close to 0. Assume
that δ0 is sufficiently small that by Hölder’s inequality

‖Z(t)‖L4/3∩H1/2 ≤ C‖Z(t)‖Σ < Cδ0. (2.187)

Therefore we can apply Lemma 2.11 and obtain that Ψ(τ) = Ψτ (0) ∈ NLq∩H1/2 .
Since ‖Z(τ)‖Σ < δ0, it follows that Ψ(τ) ∈ N .

The same proof cannot yield global in time invariance, because after a strictly
positive time the solution may escape the δ0-neighborhood of the standing wave
manifold in which it has to be for the argument to hold. Existence results for
initial data in a weaker invariant norm, one that does not grow in time, are needed
in order to approach the global result.
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Similar considerations apply to the proof of local in time invariance for negative
time. Consider a global solution Ψ with Ψ(0) ∈ N . Instead of truncating, now we
use local existence theory to get a continuation of Ψ to a small interval [−t, 0]. Let
Ψ−t be the solution obtained by pasting this onto the original solution. By means
of the modulation equations

〈(
Ψ(s)

Ψ(s)

)
−
(
W (π(s))

W (π(s))

)
, ξF (π(s))

〉
= 0 (2.188)

we also extend the parameter path π to a small time interval [−t, 0]. At this point
we apply Lemma 2.11 exactly as above, eventually concluding that Ψ(−t) ∈ N .

There is still the issue of checking that N is a centre-stable manifold as in
[BatJon]. We prove it in the neighborhood of each standing wave W , since being
a centre-stable manifold is a local property.

To begin with, we rewrite equation (0.1) to make it fit the framework of the
theory of Bates, Jones [BatJon]. Consider a fixed ground state φ(·, α0) and the
constant path π0 = (0, 0, 0, α0). Linearizing the equation around this constant
path and applying a symmetry transformation, as in Lemma 2.2, yields, for U =

gπ0

((
Ψ
Ψ

)
−
(
W (π0)

W (π0)

))
, that

i∂tU +HU = N(U, π0), (2.189)

where

H =

(
∆+ 2φ2(·, α0)− α0 φ2(·, α0)

−φ2(·, α0) −∆− 2φ2(·, α0) + α0

)
(2.190)

and N(U, π0) is as in (2.28). Note that here all the right-hand side terms are at
least quadratic in U , due to linearizing around a constant path.

The spectrum of H is known, see Section 2.3, namely σ(H) = (−∞,−α] ∪
[α,∞) ∪ {0,±iσ}. The stable spectrum is −iσ, the unstable spectrum is iσ, and
everything else belongs to the centre. It is easy to check that all the conditions of
[BatJon] are met, leading to the existence of a centre-stable manifold.

In the sequel we prove that N is a centre-stable manifold, namely that it fulfills
the three three properties enumerated in Definition 1: N is t-invariant with respect
to a neighborhood of φ(·, α0), π

cs(N ) contains a neighborhood of 0 in Xc ⊕ Xs,
and N ∩Wu = {0}. All of this is relative to a specific neighborhood of 0, V = {U |
‖U‖Σ < δ0} for some small δ0.

The t-invariance of N relative to V follows from definition and Lemma 2.11, in
the same manner in which we proved the local in time invariance of N under the
Hamiltonian flow.

Then,

πcs(N ) = {(P− + Pc + Proot)(U(0))} =
{
g

((
Ψ0

Ψ0

))
− φ(·, α0)

}
. (2.191)

Since

(
R0

R0

)
covers a whole neighborhood of 0 in Ker(P+) ∩ Ker(Proot) and the

action of g is transverse, with the range of its differential at 0 spanned by ηF (π0),
it follows that πcs(N ) is a neighbothood of 0 in Ker(P+), the second property that
the centre-stable manifold must have.

Finally, consider a solution U ∈ Wu of (2.189), meaning that ‖U(t)‖Σ ≤ δ for
all negative t and that it decays exponentially as t → −∞, ‖U(t)‖Σ ≤ CeCt (even



38 M. BECEANU

though polynomial decay is sufficient). Decompose U into its projections on the
continuous, imaginary, and zero spectrum of H and let

δ(T ) = ‖U‖
〈t〉−1L1

t (−∞,T ]L
6/5∩6
x

+ ‖U‖L2
t(−∞,T ]L6

x∩L∞

t (−∞,T ]L2
x
. (2.192)

Observe that δ(t) → 0 as t → −∞, so we can assume it to be arbitrarily small,
δ(t) < 1 to begin with.

By means of Strichartz estimates one obtains that

‖PcU‖L2
t(−∞,T ]L6

x∩L∞

t (−∞,T ]L2
x
≤ C‖N(U, π0)‖L2

t (−∞,T ]L
6/5
x +L1

t (−∞,T ]L2
x

≤ Cδ(T )‖U‖L∞

t (−∞,T ]L2
x
,

(2.193)

because now the right-hand side N contains only quadratic or higher terms.
The same estimate holds for PimU , because it is bounded at −∞, so we can use

Lemma 2.9. We write it in the form

P−U(t) = −
∫ t

−∞

e−σ(t−s)P−N(U(s), π0) ds

P+U(t) = e(t−T )σP+U(T )−
∫ T

t

e(t−s)σP+N(U(s), π0) ds.

(2.194)

Therefore

‖PimU‖L∞

t (−∞,T ]L2
x
≤ C(‖P+U(T )‖2 + δ(T )‖U‖L∞

t (−∞,T ]L2
x
). (2.195)

We assumed no orthogonality condition. The modulation equations (2.43) now
give ProotU and contain only quadratic or higher terms. Note that lim

t→−∞
ProotU(t) =

0. Therefore

‖ProotU‖L∞

t (−∞,T ]L2
x
≤ C‖N(U, π0)‖〈t〉−1L1

t (−∞,T ]L1+∞

x
≤ Cδ(t)‖U‖L∞

t (−∞,T ]L2
x
.

(2.196)
Putting these estimates together, one has that

‖U‖L∞

t (−∞,T ]L2
x
≤ C(δ(T )‖U‖L∞

t (−∞,T ]L2
x
+ ‖P+U(T )‖2). (2.197)

For sufficiently negative T0, it follows that ‖U(t)‖2 ≤ C‖P+U(t)‖2, for any t ≤ T0.
The converse is obviously true, so the two norms are comparable.

Furthermore, by reiterating this argument one has that ‖(1 − P+)U(t)‖2 ≤
Cδ(t)‖P+U(t)‖2.

Next, assume that U is on the stable manifold, meaning that, for some Ψ(0) ∈ N ,

U = gπ0

((
Ψ
Ψ

)
−

(
W (π0)

W (π0)

))
. Ψ has some moving soliton path π associated to it

such that
((

Ψ

Ψ

)
−
(
W (π)

W (π)

)
= Z, π

)
∈ Xδ. Then,

|π(t) − π0(t)| ≤C
(∥∥∥

(
Ψ(t)

Ψ(t)

)
−
(
W (π(t))

W (π(t))

)∥∥∥
Σ
+
∥∥∥
(
Ψ(t)

Ψ(t)

)
−
(
W (π0(t))

W (π0(t))

)∥∥∥
Σ

)

≤C(δ + |π(∞)− (0, 0, 0, α0)|) (2.198)

and therefore ‖π − π0‖∞ ≤ C(δ + |π(∞) − (0, 0, 0, α0)|). This implies that

‖U(t)‖L∞

t L2∩3
x

≤ C(δ + |π(∞) − (0, 0, 0, α0)|) (2.199)

for positive t and therefore for all t, due to the fact that U ∈ Wu.
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If (0, 0, 0, α0) is not the terminal value of the path π, then, since U is a bounded
solution to (2.189) at +∞, it follows by Lemma 2.9 that

‖P+U(t)‖2 ≤
∫ ∞

t

e(t−s)σ‖P+N(U, π)‖2ds ≤ C(δ2+|π(∞)−(0, 0, 0, α0)|2). (2.200)

Also, because ‖ProotU(t)‖2 is bounded from below,

‖(1− P+)U(t)‖2 ≥ ‖ProotU(t)‖2 ≥ C|π(∞)− (0, 0, 0, α0)|. (2.201)

Therefore

‖P+U(t)‖/‖(1− P+)U(t)‖ ≤ C(δ + |π(∞)− (0, 0, 0, α0)|) ≤ C(δ + δ0). (2.202)

If, on the other hand, π approaches (0, 0, 0, α0) in the limit, note that in the mod-
ulated equation (2.24) valid for (UZ = gπZ, π), if δ is sufficiently small, it follows
that

C‖PcUZ(0)‖Σ ≥ ‖PcUZ(t)‖2 ≥ C(‖PcUZ(0)‖Σ−‖PcUZ(0)‖2Σ) ≥ C‖PcUZ(0)‖Σ ≥ Cδ
(2.203)

by means of the Strichartz estimates. Such a lower bound is also implied by scat-
tering. Furthermore, since π and π0 grow near in the +∞ limit, it follows that
‖PcUZ − PcU‖2 → 0.

Therefore the norm of (1 − P+)U is bounded from below at +∞ in either case,
unless PcZ(0) = 0. However, if it were so, it would imply that Z = 0 and Ψ is
constant, equal to a soliton. Since Ψ −W (π0) decays exponentially at −∞, this
would imply that they are equal and then U = 0.

For P+U , now we have that ‖P+
π UZ(t) − P+

π0
U(t)‖1∩∞ → 0 as t → ∞ and

therefore ‖P+U‖1∩∞ → 0.
Excluding the trivial case U = 0, we obtain that either ‖P+U(t)‖/‖(1−P+)U(t)‖ ≤

C(δ + δ0) or ‖P+U(t)‖/‖(1 − P+)U(t)‖ → 0 as t → ∞. This implies that one can
make this ratio as small as necessary for some large T0.

Assume that δ < 1. Then Lemma 2.4 from [BatJon] states, under even more
general conditions, that if the ratio ‖P+U(T0)‖/‖(1− P+)U(T0)‖ is small enough,
it will stay bounded for all t ≤ T0. The proof of this result is based on Gronwall’s
inequality.

However, this contradicts our previous conclusion that ‖(1−Pc)U(t)‖2/‖PcU(t)‖2
goes to 0 as t goes to −∞. Therefore, U can only be 0.

This proves that N ∩ Wu = {0}. In other words, there are no exponentially
unstable solutions in N in the sense of [BatJon]. The final requirement for N to
be a centre-stable manifold is thus met. �

3. Linear Estimates

3.1. The endpoint Strichartz estimate. Consider operators in R3 of the form
H = H0 + V , where

H0 =

(
−∆+ µ 0

0 ∆− µ

)
, V =

(
−U −W
W U

)
. (3.1)

We assume that −σ3V is a positive matrix, that L− = −∆+ µ+ U +W ≥ 0, that
|V | ≤ C〈x〉−7/2−, that the spectral Assumption 1 holds, and that the edges of the
spectrum ±µ are neither eigenvalues nor resonances.

The operator H has σ(H) ⊂ R∪ iR and σess(H) = (−∞,−µ]∪ [µ,∞). We make
the spectral assumption that H has no eigenvalues in the set (−∞,−µ) ∪ (µ,∞)
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and that the thresholds ±µ are also regular, meaning that I + (H0 − µ± i0)−1V :
〈x〉1+ǫL2 → 〈x〉1+ǫL2 is invertible.

Firstly, we need the main result of [KeeTao]:

Theorem 3.1. Let (X, dµ) be a measure space, Lp
x = Lp(X, dµ). Suppose that for

each t one has an operator U(t) such that

‖U(t)f‖2 ≤ C‖f‖2, ‖U(s)U∗(t)f‖∞ ≤ C|t− s|−σ‖f‖1. (3.2)

Let σ > 1. Call (q, r) sharp σ-admissible if q, r ≥ 2,
1

q
+
σ

r
=
σ

2
, and let q′ be the

exponent such that 1
q′ +

1
q = 1. Then

‖U(t)f‖Lq
tL

r
x
≤C‖f‖2, (3.3)

∥∥∥
∫
U∗(s)F (s) ds

∥∥∥
2
≤C‖F‖

Lq′

t Lr′
x
, (3.4)

∥∥∥
∫

s<t

U(t)U∗(s)F ds
∥∥∥
Lq

tL
r
x

≤C‖F‖
Lq̃′

t Lr̃′
x

, (3.5)

for any sharp σ-admissible (q, r), (q̃, r̃).

The following lemma is a straightforward generalization of Theorem 3.1. Since
it is important in the sequel, however, a short proof will be given.

Lemma 3.2. Let (X, dµ) be a measure space, Lp
µ = Lp(X, dµ). Suppose that for

each t one has operators U(t) and V (t) that satisfy

‖U(t)f‖2 ≤ C‖f‖H , ‖V (t)f‖2 ≤ C‖f‖H (3.6)

and
‖U(s)V (t)f‖∞ ≤ C|t− s|−σ‖f‖1,
‖U(s)U∗(t)f‖∞ ≤ C|t− s|−σ‖f‖1,
‖V ∗(s)V (t)f‖∞ ≤ C|t− s|−σ‖f‖1.

(3.7)

Let σ > 1. Call (q, r) sharp σ-admissible if q, r ≥ 2,
1

q
+
σ

r
=

σ

2
, and let q′ be

the exponent such that 1
q′ +

1
q = 1. Then, in addition to the Strichartz estimates

(3.3-3.5) for U and V , one has that
∥∥∥
∫

s<t

U(t)V (s)F ds
∥∥∥
Lq

tL
r
x

≤ C‖F‖
Lq̃′

t Lr̃′
x

(3.8)

for any sharp σ-admissible (q, r), (q̃, r̃).

Proof. The proof is a rephrasing of the one given in [KeeTao]. Inequalities (3.3-
3.5) are already provided, so only (3.8) is left. Consider the bilinear form

T (F,G) =

∫∫

s<t

〈U∗(s)F (s), V (t)G(t)〉 ds dt. (3.9)

By interpolation between

|〈U∗(s)F (s), V (t)G(t)〉| ≤ C‖F (s)‖2‖G(t)‖2 (3.10)

and
|〈U∗(s)F (s), V (t)G(t)〉| ≤ C|t− s|−σ‖F (s)‖1‖G(t)‖1 (3.11)

we obtain

|〈U∗(s)F (s), V (t)G(t)〉| ≤ C|t− s|−1−β(r,r)‖F (s)‖r′‖G(t)‖r′ (3.12)
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where β(r, r̃) = σ − 1− σ

r
− σ

r̃
.

Let Tj(F,G) =

∫∫

t−2j+1<s≤t−2j
〈U∗(s)F (s), V (t)G(t)〉 ds dt. Then the estimate

|Tj(F,G)| ≤ C2−jβ(a,b)‖F‖L2
tL

a′

x
‖G‖L2

tL
b′
x
. (3.13)

holds for all j ∈ Z and all ( 1a ,
1
b ) in a neighborhood of (1r ,

1
r ). The proof goes

through showing (3.13) for the exponents a = b = ∞, (a, 2) with 2 ≤ a < r, and
(2, b) with 2 ≤ b < r.

One can now infer that

|T (F,G)| ≤ ‖F‖
Lq′

t Lr′
x
‖G‖

Lq′

t Lr′
x

(3.14)

for the endpoint (q, r) = (2,
2σ

σ − 1
). Since (3.14) was already true for the other

endpoint by (3.10), it is true for all admissible (q, r). The general retarded estimate
(3.8) follows immediately as in [KeeTao] by interpolation between (3.10), (3.14),
and

|T (F,G)| ≤ sup
t

‖
∫

s<t

U∗(s)F (s) ds‖2‖G‖L1
tL

2
x
≤ ‖F‖

Lq′

t Lr′
x
‖G‖L1

tL
2
x
, (3.15)

and the symmetric inequality, which are both consequences of (3.4). �

Applying Lemma 3.2 to the families of evolution operators U(t) = eitHPc,
V (s) = e−isHPc, we have obtained

Corollary 3.3. Assume that

‖eitHPc‖2→2 ≤ C (3.16)

and
‖eitH∗

P ∗
c e

−isHPc‖1→∞ ≤ C|t− s|−3/2,

‖eitHPce
−isH∗

P ∗
c ‖1→∞ ≤ C|t− s|−3/2.

(3.17)

Then
‖eitHPcf‖Lq

tL
r
x
≤C‖f‖2,

∥∥∥
∫
e−isHPcF (s) ds

∥∥∥
2
≤C‖F‖

Lq′

t Lr′
x
,

∥∥∥
∫

s<t

eitHPce
−isH∗

P ∗
c F ds

∥∥∥
Lq

tL
r
x

≤C‖F‖
Lq̃′

t Lr̃′
x

,

∥∥∥
∫

s<t

ei(t−s)HPcF ds
∥∥∥
Lq

tL
r
x

≤C‖F‖
Lq′

t Lr′
x
.

(3.18)

for any sharply admissible (q, r) (that is, such that q, r ≥ 2,
1

q
+

3

2r
=

3

4
) and

(q̃, r̃). The same estimates hold after swapping H and H∗.

Coming back to the particular operatorH given in (3.1), let Pp be the Riesz pro-
jection on the point spectrum and 1−Pp = Pc be the projection on the continuous
spectrum of H. The evolution applied to eigenfunctions may lead to exponential
growth in any norm; leaving that aside, one can achieve the above bound for HPc.
Indeed, the bounds

‖eitHPc‖2→2 ≤ C (3.19)

and
‖eitHPc‖1→∞ ≤ C|t|−3/2 (3.20)
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were proved by Schlag in [Sch] and Schlag, Erdogan in [Erdsch]. What is left to
prove is

‖eitHPce
−isH∗

P ∗
c ‖1→∞ ≤ C|t− s|−3/2, (3.21)

as well as the symmetric estimate.

3.2. Proof of the strengthened dispersive estimate.

Proof. We begin with the following explicit representation derived from [Sch]: for
f , g ∈ L2,1+,

〈φ, eitHPcψ〉 =
1

2πi

∫

Γ−

ǫ ∪Γ+
ǫ

eitλ〈φ,RV (λ)ψ〉 dλ, (3.22)

where RV (λ) = (H − λ)−1 and Γ±
ǫ are the counterclockwise contours given by

Γ±
ǫ = {z | d(z, [±µ,±∞)) = ǫ}. The integral can be taken improper, but it is more

helpful to consider instead the mollified version
∫ ∞

0

f(λ) dx = lim
R→∞

∫ ∞

0

f(λ)χ(λ/R) dλ, (3.23)

where χ is a smooth cutoff function with χ(x) = 1 for |x| < 1 and χ(x) = 0
for |x| > 2. A similar formula holds for e−isH∗

P ∗
c , with V replaced by V ∗. The

expression we need to estimate becomes

〈e−itH∗

P ∗
c φ, e

−isH∗

P ∗
c ψ〉 = − 1

4π2

∫

Γ−

ǫ1
∪Γ+

ǫ1

∫

Γ−

ǫ2
∪Γ+

ǫ2

ei(tλ−sη)〈φ,RV (λ)RV ∗(η)ψ〉 dη dλ.

(3.24)
We make the arbitrary choice ǫ1 > ǫ2. After splitting each contour into Γ+ and Γ−,
we obtain 4 terms to be treated separately. We begin with the Γ+Γ+ term. Expand
both RV and RV ∗ into finite Born sums consisting of 2m terms and a remainder.
Let R0(λ) = (H0 − λ)−1. The expression becomes

〈φ, eitHP+e
−isH∗

P ∗
+ψ〉 = (3.25)

=
2m−1∑

ℓ=0

2m−1∑

k=0

(−1)k+ℓ

∫

Γ+
ǫ1

∫

Γ+
ǫ2

ei(tλ−sη)
〈
φ,R0(λ)(V R0(λ))

ℓR0(η)(V
∗R0(η))

kψ
〉
dη dλ

(3.26)

+

2m−1∑

ℓ=0

(−1)ℓ
∫

Γ+
ǫ1

∫

Γ+
ǫ2

ei(tλ−sη)
〈
φ,

R0(λ)(V R0(λ))
ℓ(R0(η)V

∗)mRV ∗(η)(V ∗R0(η))
mψ

〉
dη dλ (3.27)

+

2m−1∑

k=0

(−1)k
∫

Γ+
ǫ1

∫

Γ+
ǫ2

ei(tλ−sη)
〈
φ,

(R0(λ)V )mRV (λ)(V R0(λ))
mR0(η)(V

∗R0(η))
kψ

〉
dη dλ (3.28)

+

∫

Γ+
ǫ1

∫

Γ+
ǫ2

ei(tλ−sη)
〈
φ,

(R0(λ)V )mRV (λ)(V R0(λ))
m(R0(η)V

∗)mRV ∗(η)(V ∗R0(η))
mψ

〉
dη dλ. (3.29)

In each term, the localizing potentials V or V ∗ alternate with the resolvents R0,
with the exception of exactly two resolvent operators following one another. Since
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this is a potentially dangerous situation, we apply the resolvent identity. For the
very simplest term, this means

∫

Γ+
ǫ1

∫

Γ+
ǫ2

ei(tλ−sη)
〈
φ,R0(λ)R0(η)ψ

〉
dη dλ =

=

∫

Γ+
ǫ1

∫

Γ+
ǫ2

ei(tλ−sη)

λ− η

〈
φ,R0(η)ψ

〉
dη dλ−

∫

Γ+
ǫ1

∫

Γ+
ǫ2

ei(tλ−sη)

λ− η

〈
φ,R0(λ)ψ

〉
dη dλ.

(3.30)

Every resulting term has a kernel that can be written, by means of the resolvent
identity, as a sum of two parts of the form

T =

∫

Γ+
ǫ1

∫

Γ+
ǫ2

ei(tλ−sη)

λ− η
f(λ)g(η) dη dλ. (3.31)

We make f and g explicit later, but for now we continue in this general setting.
After making ǫ2 = 0, we get

T =

∫

Γ+
ǫ1

∫ ∞

0

ei(tλ−s(η+µ))

λ− (η + µ)
f(λ)(g(η + µ+ i0)− g(η + µ− i0)) dη dλ. (3.32)

Let fs(λ) =
1
2 (f(λ+ i0)+ f(λ− i0)) and fa(λ) = 1

2 (f(λ+ i0)− f(λ− i0)) and same
for g. We assume that g(λ± iǫ) = g(λ± i0)+O(ǫ) uniformly on compact intervals.
Letting ǫ1 go to 0 we have

T =

∫ ∞

0

eit(λ+µ)fs(λ+ µ) lim
ǫ→0

( ∫ ∞

0

e−is(η+µ)ga(η + µ)
ǫ

(λ− η)2 + ǫ2
dη

)
dλ+

+

∫ ∞

0

eit(λ+µ)fa(λ + µ) lim
ǫ→0

(∫ ∞

0

e−is(η+µ)ga(η + µ)
λ− η

(λ− η)2 + ǫ2
dη

)
dλ

= ei(t−s)µ

∫ ∞

0

(
ei(t−s)λfs(λ+ µ)ga(λ + µ)+

+eitλfa(λ+ µ)H
(
χ[0,∞)e

−isηga(η + µ)
)
(λ)

)
dλ,

(3.33)
where H is the Hilbert transform. The limit exists because we are applying singular
kernels to integrable functions of compact support. Any further error terms are in
the order of ǫ and vanish.

Therefore, we need to examine oscillatory integrals of the following form:

Lemma 3.4. Assume that Fs is even and Fa and Ga are odd functions and that

F̂s, F̂ ′
s ∈ M (the space of finite measures) and likewise for Fa and Ga. Then

∫ ∞

0

ei(t−s)λFs(
√
λ)Ga(

√
λ) dλ ≤ C|t− s|−3/2(‖F̂s‖1‖Ĝ′

a‖1+ ‖F̂ ′
s‖1‖Ĝa‖1), (3.34)

as well as
∫ ∞

0

eitλFa(
√
λ)H(e−isηχ[0,∞)Ga(

√
η))(λ) dλ ≤

≤ C|t− s|−3/2(‖F̂a‖1‖Ĝ′
a‖1 + ‖F̂ ′

a‖1‖Ĝa‖1). (3.35)

The integrals on the left-hand side are improper and computed with the help of
a smooth cutoff. Under the assumptions, Fa ∈ C1(R), so χ[0,∞)Fa(

√
λ) ∈ C1/2,

and likewise for Ga.
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Proof. For (3.34) we have

(3.34) =

∫ ∞

−∞

ei(t−s)λ2

λFs(λ)Ga(λ) dλ

=
1

t− s

∫ ∞

−∞

ei(t−s)λ2

(Fs(λ)Ga(λ))
′ dλ

≤ C|t− s|−3/2(‖F̂s‖1‖Ĝ′
a‖1 + ‖F̂ ′

s‖1‖Ĝa‖1).

(3.36)

For terms of the form (3.35) a slight refinement is needed. First note that

(χ[0,∞)Fa(
√·))∧(τ) =

∫ ∞

0

e−iτλFa(
√
λ) dλ =

1

2

∫ ∞

−∞

e−iτλ2

λFa(λ) dλ

=
1

2τ

∫ ∞

−∞

e−iτλ2

F ′
a(λ) dλ =

1

4
√
2π3/2

τ−3/2

∫ ∞

−∞

eiξ
2/τ F̂ ′

a(ξ) dξ. (3.37)

The same goes for Ga. Letting s− t = k we have

(3.35) =

∫ ∞

−∞

(eit·χ[0,∞)Fa(
√·))∧(τ)(H(e−is·χ[0,∞)Ga(

√·)))∧(−τ) dτ

=

∫ ∞

−∞

(χ[0,∞)Fa(
√·))∧(τ − t)(χ[0,∞)Ga(

√·))∧(−τ + s) sgn(τ) dτ

≤ 2 sup
a,b

∣∣∣∣
∫ b

a

(χ[0,∞)Fa(
√
·))∧(τ)(χ[0,∞)Ga(

√
·))∧(k − τ) dτ

∣∣∣∣

=
1

16π3
sup
a,b

∣∣∣∣
∫ b

a

∫ ∞

−∞

∫ ∞

−∞

|τ |−3/2|k − τ |−3/2ei(
λ2

τ + η2

k−τ )F̂ ′
a(ξ)Ĝ

′
a(ν) dν dξ dτ

∣∣∣∣.
(3.38)

We apply the stationary phase method to this integral (see, for example, [Ste], p.
332). We write the proof explicitly because neither the phase, nor the integrand is
absolutely integrable.

Consider

∫ b

a

eiφψ dτ , where φ =
ξ2

τ
+

ν2

k − τ
and ψ = |τ |−3/2|k − τ |−3/2. The

aim is to prove that
∣∣∣∣
∫ b

a

eiφψ dτ

∣∣∣∣ ≤ C|k|−3/2
( 1

|ξ| +
1

|ν|
)
. (3.39)

Without loss of generality, let ξ, ν, k > 0. First assume [a, b] ⊂ [0, k] and note
that ∣∣∣∣

∫ τ2

τ1

eiφψ dτ

∣∣∣∣ ≤
∫ τ2

τ1

dτ

τ3/2(k − τ)3/2
= Ψ1(τ)

∣∣∣
τ2

τ1
, (3.40)

where the antiderivative is Ψ1(τ) =
1

2k2
(τ1/2(k−τ)−1/2−τ−1/2(k−τ)1/2). Indeed,

(τ1/2(k − τ)−1/2 − τ−1/2(k − τ)1/2)′ =
1

2
(τ−1/2(k − τ)−1/2 + τ1/2(k − τ)−3/2+

+ τ−3/2(k − τ)1/2 + τ−1/2(k − τ)−1/2)

=
(k − τ + τ)2

2τ3/2(k − τ)3/2
.

(3.41)
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On any interval not containing a stationary point, moreover, one has
∣∣∣∣
∫ τ2

τ1

eiφψ dτ

∣∣∣∣ ≤ C sup
τ∈[τ1,τ2]

∣∣∣ ψ(τ)
φ′(τ)

∣∣∣, (3.42)

where, by the convexity of 1/x,

∣∣∣ ψ(τ)
φ′(τ)

∣∣∣ = 1

ντ + ξ(k − τ)

τ1/2(k − τ)1/2

|ντ − ξ(k − τ)| ≤
1

k

(1
ν
+

1

ξ

) τ1/2(k − τ)1/2

|ντ − ξ(k − τ)| . (3.43)

The reason is that, after integration by parts,
( ψ(τ)
φ′(τ)

)′

changes sign at most a

constant number of times, so one can integrate and only lose some constant.
The last expression in (3.43) is 0 at the endpoints 0 and k. Note that the phase

derivative φ′ vanishes at exactly one point in the interval [0, k], namely τ0 =
ξk

ν + ξ
.

Surround τ0 with a small interval [τ1, τ2] on which we estimate the integral in
absolute value and otherwise integrate by parts as above. We obtain that

∣∣∣∣
∫ b

a

eiφψ dτ

∣∣∣∣ ≤ C
(

max
τ∈[0,τ1]∪[τ2,k]

∣∣∣ ψ(τ)
φ′(τ)

∣∣∣+ |Ψ1(τ2)−Ψ1(τ1)|
)
. (3.44)

Choose τ1 and τ2 such that

Ψ1(τ2)−Ψ1(τ0) = k−3/2
(1
ν
+

1

ξ

)
(3.45)

and likewise for τ1, which takes care of the last term. This choice is possible and is
unique due to the fact that Ψ1(τ) → ±∞ as τ → k− and 0+, respectively, and Ψ1

is strictly increasing.
Therefore, for τ ∈ [0, τ1] ∪ [τ2, k],

|Ψ1(τ) −Ψ1(τ0)| ≥ k−3/2
(1
ν
+

1

ξ

)
. (3.46)

It is left to prove that, under this condition,
∣∣∣ ψ(τ)
φ′(τ)

∣∣∣ ≤ Ck−3/2
(1
ν
+

1

ξ

)
. (3.47)

Rewrite condition (3.46) as

1

k2
|ν1/2τ1/2 − ξ1/2(k − τ)1/2| · |ν−1/2(k − τ)−1/2 − ξ−1/2τ−1/2| ≥ Ck−3/2

(1
ν
+

1

ξ

)

(3.48)
and further as

|ντ − ξ(k − τ)|
(k − τ)1/2τ1/2

≥ Ck1/2
(1
ν
+

1

ξ

)(ν1/2τ1/2 + ξ1/2(k − τ)1/2)ν1/2ξ1/2

|ν1/2(k − τ)1/2 − ξ1/2τ1/2| . (3.49)

Then it suffices to prove that

(1
ν
+

1

ξ

) (ν1/2τ1/2 + ξ1/2(k − τ)1/2)ν1/2ξ1/2

|ν1/2(k − τ)1/2 − ξ1/2τ1/2| ≥ C (3.50)

or equivalently

(ν + ξ)(νξ1/2τ1/2 + ξν1/2(k − τ)1/2) ≥ Cνξ|ν1/2(k − τ)1/2 − ξ1/2τ1/2| (3.51)

which is obvious. The same goes for τ2.
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Next, assume that [a, b] ⊂ [k,∞). The proof goes along the same lines, based on
(3.40) and on (3.42), with the difference that the antiderivative is now written

Ψ2 =
1

2k2
(τ1/2(τ − k)−1/2 + τ−1/2(τ − k)−1/2) (3.52)

and that
ψ(τ)

φ′(τ)
=

1

ντ + ξ(τ − k)

τ1/2(τ − k)1/2

ντ − ξ(τ − k)
. (3.53)

If ν > ξ the phase has no stationary points in this interval. We divide [k,∞)

into the subintervals on which Ψ2(τ) ≤ ξ−1k−3/2 and the rest. On the former
the integral is trivially bounded and the number of such intervals is bounded from
above. On the latter (also the union of a bounded number of intervals) one has,
following integration by parts,

∣∣∣∣
∫ τ2

τ1

eiφψ dτ

∣∣∣∣ ≤ C max
τ∈[k,∞)

Ψ2(τ)≥ξ−1k−3/2

∣∣∣ ψ(τ)
φ′(τ)

∣∣∣. (3.54)

However, the condition Ψ2(τ) ≥ ξ−1k−3/2 implies that

ξ(2τ − k)

τ1/2(τ − k)1/2
≥ Ck1/2 (3.55)

and therefore
τ1/2(τ − k)1/2

ντ + ξ(τ − k)

1

(ν − ξ)τ + ξk
≤ Ck−1/2 1

ξk
. (3.56)

A stationary point occurs if ν < ξ, namely τ0 =
ξk

ξ − ν
, which becomes infinite

if ξ = ν. Surround it with an interval [τ1, τ2] on which we integrate the absolute
value, otherwise integrate by parts. Overall, the integral is bounded by

∣∣∣∣
∫ b

a

eiφψ dτ

∣∣∣∣ ≤ C(|Ψ2(τ2)−Ψ2(τ1)|+ max
τ∈[k,τ1]∪[τ2,∞)

∣∣∣ ψ(τ)
φ′(τ)

∣∣∣). (3.57)

Choose τ1 such that

|Ψ2(τ1)−Ψ2(τ0)| = k−3/2 1

ν
(3.58)

and likewise for τ2 (or τ2 = ∞ if there is no such value). This takes care of the
integral on [τ1, τ2]. As for the remaining portion, note that for any τ ∈ [k, τ1] ∪
[τ2,∞) one has

|Ψ2(τ1)−Ψ2(τ0)| ≥ k−3/2 1

ν
(3.59)

and therefore

1

k2
|ν1/2τ1/2 − ξ1/2(τ − k)1/2| · |(τ − k)−1/2ν−1/2− τ−1/2ξ−1/2| ≥ Ck−3/2 1

ν
. (3.60)

Equivalently, under the assumption ν < ξ,

|ντ − ξ(τ − k)|
(τ − k)1/2τ1/2

≥ C
k1/2

ν

(τ1/2ν1/2 + (τ − k)1/2ξ1/2)ξ1/2ν1/2

τ1/2ξ1/2 − (τ − k)1/2ν1/2
. (3.61)

Note that ∣∣∣ ψ(τ)
φ′(τ)

∣∣∣ ≤ 1

νk

(τ − k)1/2τ1/2

|ντ − ξ(τ − k)| . (3.62)
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It is left to prove that

ν(τ1/2ξ1/2 − (τ − k)1/2ν1/2)

(τ1/2ν1/2 + (τ − k)1/2ξ1/2)ξ1/2ν1/2
≤ C. (3.63)

However, the last statement is equivalent to

τ1/2ξ1/2ν − (τ − k)1/2ν3/2 ≤ C(τ1/2ξ1/2ν + (τ − k)1/2ξν1/2) (3.64)

which is again obvious.
The third case [a, b] ⊂ (−∞, 0] is identical to the second case [a, b] ⊂ [k,∞).
Cutting the interval [a, b] into at most three pieces according to this partition,

one obtains the conclusion (3.35). �

The lemma relates to (3.33) in the following manner: when applying it to (3.33),
we take Fs,a(λ) =

1
2f((λ + i0)2 + µ) ± f((λ − i0)2 + µ) and likewise for Ga. This

leads to a bound for the conditionally converging integral T (3.31).
After this general discussion of (3.31), we return to the concrete Born sum

expansion (3.26-3.29), expanded again, as previously stated, by means of the re-
solvent identity. Now we identify Fs, Fa, and Ga for this case. From the Born sum
expansion (3.26-3.29) and from the known expression for the kernel of the free
resolvent

R0(λ
2 + µ± i0)(x, y) =

1

4π|x− y|

(
exp(±|x− y|λ) 0

0 exp(−|x− y|
√
λ2 + 2µ)

)

(3.65)
(where

√
is given by the main branch of the logarithm) we get the following types

of factors:

Fs(λ) = cos(Aλ) exp(−B
√
λ2 + 2µ) (a)

or ((R0(λ
2 + µ)V )mRV (λ

2)(V R0(λ
2 + µ))m)s (b)

or ((R0(λ
2 + µ)V )mRV (λ

2 + µ)(V R0(λ
2 + µ))m−1)s (c),

Fa(λ) = sin(Aλ) exp(−B
√
λ2 + 2µ) (d)

or ((R0(λ
2 + µ)V )mRV (λ

2 + µ)(V R0(λ
2 + µ))m)a (e)

or ((R0(λ
2 + µ)V )mRV (λ

2 + µ)(V R0(λ
2 + µ))m−1)a (f),

Ga(λ) = sin(Cλ) exp(−D
√
λ2 + 2µ) (g)

or ((R0(λ
2 + µ)V ∗)mRV ∗(λ2 + µ)(V ∗R0(λ

2 + µ))m)a (h)
or ((R0(λ

2 + µ)V ∗)m−1RV ∗(λ2 + µ)(V R0(λ
2 + µ))m)a (i),

(3.66)

where we again used the notation fs(λ) = 1
2 (f(λ + i0) + f(λ − i0)) and fa(λ) =

1
2 (f(λ+ i0)− f(λ− i0)).

Factors of the form (a), (d), and (g) stem from the general terms in the Born
sum expansion, as in (3.26), while the others represent the contribution of the
remainders and mixed terms (3.27-3.29).

We evaluate the first type of factors, coming from (3.26), in view of applying
Lemma 3.4. Note that, uniformly in A and B,

‖
(
sin(Aλ) exp(−B

√
λ2 + 2µ)

)∧‖1 ≤
≤ ‖(sin(Aλ))∧‖M‖(exp(−B

√
λ2 + 2µ))∧‖1 ≤ C, (3.67)
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where M is the space of finite measures. This is true because (sin(Aλ))∧ is the
sum of two point measures of mass 1/2i, while

‖(exp(−B
√
λ2 + 2µ))∧‖1 =

∥∥∥
∫ ∞

−∞

e−B
√

λ2+2µe−iτλ dλ
∥∥∥
L1

τ

=
∥∥∥
∫ ∞

−∞

e−
√

η2+2µB2
e−iτη dηBig‖L1

τ
≤ C‖e−

√
η2+2µB2‖H1

η
≤ C‖e−|η|‖H1 <∞.

(3.68)

Similarly,

∥∥∥
( d

dλ

(
sin(Aλ) exp(−B

√
λ2 + 2µ)

))∧∥∥∥
1
≤

≤‖
(
A cos(Aλ) exp(−B

√
λ2 + 2µ)

)∧‖1+

+
∥∥∥
( sin(Aλ)

λ

Bλ2√
λ2 + 2µ

exp(−B
√
λ2 + 2µ)

)∧∥∥∥
1
≤ CA,

(3.69)

because ∥∥∥
(sin(Aλ)

λ

)∧∥∥∥
1
=

1

2
‖χ[−A,A]‖1 ≤ CA (3.70)

and
∥∥∥
( Bλ2√

λ2 + 2µ
exp(−B

√
λ2 + 2µ)

)∧∥∥∥
1
=
∥∥∥
∫ ∞

−∞

Bλ2√
λ2 + 2µ

e−B
√

λ2+2µe−iτλ dλ
∥∥∥
L1

τ

=
∥∥∥
∫ ∞

−∞

η2√
η2 + 2µB2

e−
√

η2+2µB2
e−iτη dη

∥∥∥
L1

τ

≤C
∥∥∥ η2√

η2 + 2µB2
e−

√
η2+2µB2

∥∥∥
W 1,2

η

≤‖|η|e−|η|‖W 1,2 <∞.

(3.71)
With sine replaced by cosine, the analogous estimate is

∥∥∥
(
cos(Aλ)λ

d

dλ
exp(−B

√
λ2 + 2µ)

)∧∥∥∥
1
≤ C. (3.72)

This takes care of factors of the form (a), (d), or (g).
We proceed to obtain a bound for the remaining factors. Intuitively, since they

represent the remainder in the Born sum expansion, the bound should be less sharp.
Let

Gx(λ
2)(x1) =

(
e−iλ|x| 0

0 1

)
R0(λ

2 + µ)(x, x1)

=
1

4π|x− x1|

(
exp(i(|x− x1| − |x|)λ) 0

0 exp(−|x− x1|
√
λ2 + 2µ)

)

(3.73)
and

ax,y(λ
2) =

〈
V RV (λ

2 + µ)V (R0(λ
2 + µ)V )mGy(λ

2), (R∗
0(λ

2 + µ)V ∗)mG∗
x(λ

2)
〉
.

(3.74)
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The following estimates hold for G:

sup
x

‖∂jλGx(λ
2)‖〈x1〉3/2+j+ǫL2

x1
≤ C〈x〉−1, sup

x
‖∂jλGx(λ

2)‖〈x1〉1/2+j+ǫL2
x1

≤ C,

(3.75)
implying that

∣∣∣∣
dj

dλj
ax,y(λ

2)

∣∣∣∣ ≤C〈λ〉−2−ǫ〈x〉−1〈y〉−1 for j = 0, 1

∣∣∣∣
dj

dλj
ax,y(λ

2)

∣∣∣∣ ≤C〈λ〉−2−ǫ for j = 2,

(3.76)

provided that m is sufficiently large and V has sufficient decay, |V | ≤ C〈x〉−7/2−ǫ.
We used the limiting absorbtion principle Lemma 2.8 to bound this quantity.

Incrementing m by 1 increases the decay by 〈λ〉−1/2. The decay condition on V
arises as follows: if, for example, two derivatives fall on the RV factor, then V has
to compensate for 3 + ǫ powers of x from its output and for another 1/2+ ǫ power
coming from the pairing with R0.

Then the factors of the form (b) and (e) can be written as

KV s(λ) =
1

2
(KV ((λ+ i0)2) +KV ((λ− i0)2), (3.77)

respectively

KV a(λ) =
1

2
(KV ((λ + i0)2)−KV ((λ − i0)2), (3.78)

where

KV (λ
2)(x, y) = ((R0(λ

2 + µ)V )mRV (λ
2 + µ)(V R0(λ

2 + µ))m)(x, y)

=

(
eiλ|x| 0
0 1

)
ax,y(λ

2)

(
eiλ|y| 0
0 1

)
.

(3.79)

Clearly

‖K̂V a‖1 = ‖(ax,y(λ2))∧‖1 ≤ ‖ax,y(λ2)‖W 1,2(R) ≤ C〈x〉−1〈y〉−1 (3.80)

and, taking into account the fact that KV a(λ) is of the form Fa(
√
λ) for antisym-

metric Fa,

‖K̂ ′
V a‖1 ≤ ‖ d

dλ
ax,y(λ

2)‖W 1,2(R) + (|x|+ |y|)‖(ax,y(λ2))∧‖1 ≤ C. (3.81)

Moreover, ∥∥∥
(KV a

λ

)∧∥∥∥
1
≤ C‖ξK̂V a(ξ)‖1 ≤ C‖K̂ ′

V a‖1 ≤ C. (3.82)

These decay estimates carry on to factors of the form (b) or (e) and, with minimal
modifications, to factors of the form (c), (f), (h), and (i), provided that m is
sufficiently large.

After showing that all types of terms arising from (3.66) satisfy the prerequisites
for applying Lemma 3.4, we apply it to each of them, in turn.

We first deal with the 4m2 terms in (3.26). As mentioned previously, each splits
into two parts after using the resolvent identity. Let us introduce the following
notations:

K(x0, . . . , xk+ℓ−1) =

∏k+ℓ−2
j=1 Vj(xj)

∏k+ℓ−2
j=0 |xj+1 − xj |

, (3.83)
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where Vj are entries of V (that is, ±U or ±W );

A =
∑

j∈J

|xj+1−xj |, B =
∑

j∈Jc

|xj+1−xj |, C =
∑

j∈I

|xj+1−xj |, D =
∑

j∈Ic

|xj+1−xj |,

(3.84)
where J ⊂ {0, . . . , ℓ − 1} and Jc = {0, . . . , ℓ − 1} \ J ; I ⊂ {ℓ, . . . , ℓ + k − 2} and
Ic = {ℓ, . . . , ℓ+ k − 2} \ I. Also, let

Fs(λ) = cos(Aλ) exp(−B
√
λ2 + 2µ),

Fa(λ) = sin(Aλ) exp(−B
√
λ2 + 2µ),

Ga(λ) = sin(Cλ) exp(−D
√
λ2 + 2µ).

(3.85)

After applying the resolvent identity and performing the matrix multiplication, we
find that each term of (3.26) is a sum, for all possible choices of J and I, of terms
with kernel of the form

Kk−1 ℓ(x0, xk+ℓ−1) =

∫

R3(k+ℓ−2)

K(x0, . . . , xk+ℓ−1)

∫ ∞

0

(
ei(t−s)λFs(

√
λ)Ga(

√
λ)+

+ eitλFa(
√
λ)Hη(χ[0,∞]e

−isηGa(
√
η))(λ)

)
dλ dx1 . . . dxk+ℓ−2. (3.86)

Then, in view of Lemma 3.4 and the bounds (3.67), (3.69), and (3.72), we have
that

∣∣∣
∫ ∞

0

ei(t−s)λFs(
√
λ)Ga(

√
λ) + eitλFa(

√
λ)H(χ[0,∞]e

−isηGa(
√
η))(λ) dλ

∣∣∣ ≤

≤ C|t− s|−3/2(A+ C) ≤ C|t− s|−3/2
k+ℓ−2∑

j=0

|xj+1 − xj |. (3.87)

Combining this with Lemma 2.5, p. 12 of [Rodsch], which states that

∣∣∣
∫

R3(k+ℓ−2)

K(x0, . . . , xk+ℓ−1)
k+ℓ−2∑

j=0

|xj+1−xj | dx1 . . . dxk+ℓ−2

∣∣∣ ≤ (k+ ℓ)‖V ‖k+ℓ−1
K ,

(3.88)

where ‖V ‖K = sup
x∈R3

∫ |V (y)|
|x− y|dy is the Kato norm, we obtain that

‖Kk−1 ℓ‖1→∞ ≤ sup
x0,xk+ℓ−1

Kk−1 ℓ(x0, xk+ℓ−1) ≤ C|t− s|−3/2. (3.89)

The same method can be applied to the remaining terms in (3.27), (3.28), and
(3.29). Since (3.27) and (3.28) are similar, we look at a typical term of one of these
two sums, consisting of the product between some term of the Born sum expansion,
on one hand, and the remainder, on the other. The kernel of such a term is of the
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form

Kk−1 V ∗(x0, xk−1+2m) =

∫

R3(k−2+2m)

K(x0, . . . , xk−1)V (xk−1)·

·
∫ ∞

0

ei(t−s)λFs(
√
λ)eitλKV ∗a(xk−1, . . . , xk−1+2m,

√
λ)+

+ eitλFa(
√
λ)Hη(χ[0,∞]e

−isηKV ∗a(xk−1, . . . , xk−1+2m,
√
η))(λ) dλ dx1 . . . xk−2+2m,

(3.90)

where Fa, Fs are as in (3.85).
The kernel KV ∗a involves RV ∗ and is not given by an explicit formula as Fa is.

However, we still have estimates (3.67), (3.69), (3.72), as well as (3.80), (3.81),
(3.82), based on the limiting absorbtion principle.

We could treat treat the pairing FsKV ∗a using only inequalities of the form
(3.80), (3.81), becauseK(x0, . . . , xk−1)V (xk−1)Fs(

√
λ)KV ∗a(xk−1, . . . , xk−1+2m,

√
(λ))

is the sum of two antisymmetric kernels. Otherwise, keeping within the previous
framework, note that we can take a factor of λ from the antisymmetric part over
to the symmetric part whenever that is needed.

By Lemma 3.4,

∣∣∣
∫ ∞

0

ei(t−s)λFs(
√
λ)eitλKV ∗a(xk−1, . . . , xk−1+2m,

√
λ)+

+ eitλFa(
√
λ)Hη(χ[0,∞]e

−isηKV ∗a(xk−1, xk−1+2m,
√
η))(λ)

dλ dxk . . . dxk−2+2m

∣∣∣ ≤

≤ C|t− s|−3/2
( k−2∑

j=0

|xj+1 − xj |+ 1
)
.

(3.91)

This estimate, to which we now add back those factors of (3.90) that we omitted
for convenience in (3.91), results in

|Kk−1 V ∗(x0, xk−1+2m)| ≤

≤C|t− s|−3/2

∫
K(x0, . . . , xk−1)|V (xk−1)|(

k−2∑

j=0

|xj+1 − xj |+ 1) dx1 . . . dxk−1

≤C|t− s|−3/2‖V ‖1 sup
xk−1

∣∣∣∣
∫
K(x0, . . . , xk)

k−2∑

j=0

|xj+1 − xj | dx1 . . . dxk−2

∣∣∣∣+

+ C|t− s|−3/2

∣∣∣∣
∫
K(x0, . . . , xk−1)V (xk−1) dx1 . . . dxk−1

∣∣∣∣ ≤ C|t− s|−3/2.

(3.92)

Thus we have proved that ‖Kk−1 V ∗‖1→∞ ≤ C|t− s|−3/2.
Finally, the last term appearing in (3.29), consisting of the product of the re-

mainders in the Born sum expansion, yields to the same approach. The final step
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of the computation, instead of (3.92), is

|KV V ∗(x0, x4m−1)| ≤
≤ C|t− s|−3/2

∫
〈x0〉−1〈x2m〉−1V (x2m) + V (x2m)〈x2m〉−1〈x4m−1〉−1 dx2m

≤ C|t− s|−3/2‖V ‖1 ≤ C|t− s|−3/2.
(3.93)

This completes the proof of the fact that ‖eitHP+e
−isH∗

P ∗
+‖1→∞ ≤ C|t−s|−3/2.

The other 3 combinations are entirely analogous. Indeed, the P−P− term can
be treated by the same means. As for the mixed terms, a very similar approach
works and we present the proof in brief. Again, we expand both factors into finite
Born series and we obtain a sum with (2m+ 1)2 terms.

Each term has a kernel that can be written, by means of the resolvent identity,
as a sum of 2 parts of the form

T =

∫

Γ+
ǫ1

∫

Γ−

ǫ2

ei(tλ−sη)

λ− η
f(λ)g(η) dη dλ. (3.94)

After making ǫ1 = ǫ2 = 0, we get, by analogy to (3.33),

T =

∫ ∞

0

eitλfa(λ+ µ)H(χ(−∞,0]e
−isηga(η − µ))(λ) dλ, (3.95)

where H is the Hilbert transform. The other term, involving the Dirichlet kernel,
cancels, because now the contours surround disjoint regoins.

However, now we note upon inspection that the terms stemming from χ(−∞,0]ga(η−
µ) have the same form as those we have already enumerated in (3.66). From here
the proof proceeds in the same manner as in the previous case. The bound that we
eventually obtain for these terms is even better, C|t+s|−3/2 instead of C|t−s|−3/2,
because the phases add instead of cancelling. �

3.3. Other linear estimates.

Proof of Corollary 1.5. The dispersive estimate (3.21) holds for H∗ as well as H,
since they are conjugated by σ3. This, together with the L2 bound (3.19), implies
the Keel-Tao endpoint Strichartz estimate. �

Next, by interpolating between the endpoint Strichartz estimate for L2 initial
data and the L1 → L∞ decay estimates, we achieve an improved decay of the
solution, in norm, for Lp initial data, 1 ≤ p ≤ 2.

In the sequel, denote

(
a
b

)†

=
(
a b

)
, so that

(
a
b

)(
c
d

)†

=

(
ac ad
bc bd

)
.

Lemma 3.5. For 1 ≤ q ≤ 2,
∫ ∞

T

‖eitHPcU1(e
itHPcU2)

†‖ 3q
2(q−1)

dt ≤ CT 2− 4
q ‖U1‖q‖U2‖q. (3.96)

Likewise, for 1 ≤ q < 4/3, β < 2/q − 1,
∫ ∞

T

〈t〉2β‖eitHPcU1(e
itHPcU2)

†‖3+ 3q
2(q−1)

dt ≤ C〈T 〉2− 4
q+β‖U1‖q∩2‖U2‖q∩2. (3.97)

Proof. We obtain the first result by complex bilinear interpolation (see [BerLöf],
p. 96, Theorem 4.4.1). We use it in the following form:
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Theorem 3.6. For i = 0, 1, let B : Ai ⊕Bi → Ci be a bilinear mapping such that

‖B(a, b)‖Ci ≤Mi‖a‖Ai‖b‖Bi . (3.98)

Then, for each 0 ≤ θ ≤ 1, B can be extended uniquely to a bilinear mapping from
[A0, A1][θ] ⊕ [B0, B1][θ] to [C0, C1][θ] with norm at most Mθ

0M
1−θ
1 .

The first estimate (3.96) then follows directly if we take

B(U1, U2) = eitHPcU1(e
itHPcU2)

† (3.99)

and interpolate between
∫ ∞

T

‖eitHPcU1(e
itHPcU2)

†‖∞ dt ≤ CT−2‖U1‖1‖U2‖1 (3.100)

and ∫ ∞

T

‖eitHPcU1(e
itHPcU2)

†‖3 dt ≤ C‖U1‖2‖U2‖2. (3.101)

The second statement (3.97) follows from the first, once we write

∫ ∞

T

〈t〉2β‖eitHPcU1(e
itHPcU2)

†‖3+ 3q
2(q−1)

dt ≤

≤〈T 〉2β
∫ ∞

T

‖eitHPcU1(e
itHPcU2)

†‖3+ 3q
2(q−1)

dt+

+ C

∫ ∞

T

〈t〉2β−1

∫ ∞

t

‖eisHPcU1(e
isHPcU2)

†‖3+ 3q
2(q−1)

ds dt.

(3.102)

�

From this we derive an inequality concerning the solution of the inhomogenous
problem.

Lemma 3.7. Consider the equation

i∂tU +HPcU = RHS(t), U(0) given. (3.103)

Then, for q < 4/3, β < 2/q − 1,

∫ ∞

0

〈t〉2β‖PcU‖26+∞ dt ≤ C(‖U(0)‖q∩2 + ‖RHS‖
〈t〉−βL2

tL
1∩6/5
x

)2. (3.104)

Note that for the exponent of interest, β = 1/2, it is possible to replace ∞ by
12 + ǫ and 1 by 6/5− ǫ, if q is sufficiently close to 4/3.

Proof. Firstly, we examine the source terms. Setting U1 = U2 in (3.97), one has

∫ ∞

T

〈t〉2β‖eitHPcU(0)‖2
6+ 3q

q−1

dt ≤ C〈T 〉2−4/q+2β‖U(0)‖2q∩2 (3.105)

and note that L6+ 3q
q−1 ⊂ L6+∞.
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We then evaluate the inhomogenous terms. They have L2 in time decay, as will
follow from (we henceforth denote min(a, b) = a ∧ b)

∫ ∞

0

〈t〉2β
∥∥∥
∫ t

0

ei(t−s)HPcRHS(s) ds
∥∥∥
2

6+∞
dt ≤

≤C
( ∫ ∞

0

〈t〉2β
∥∥∥
∫ t

t/2∧(t−1)

ei(t−s)HPcRHS(s) ds
∥∥∥
2

6
dt+

+

∫ ∞

0

〈t〉2β
∥∥∥
∫ t/2∧(t−1)

0

ei(t−s)HPcRHS(s) ds
∥∥∥
2

∞
dt
)
.

(3.106)

Now we examine the two expressions separately. Concerning the first, note that
what one needs to prove is equivalent to

∣∣∣
∫∫

t/2∧(t−1)≤s≤t

〈t〉−2β〈s〉2β〈e−isHPcF1(s), e
−itH∗

F2(t)〉 ds dt
∣∣∣ ≤

≤ C‖F1‖L2
sL

6/5
x

‖F2‖L2
tL

6/5
x
. (3.107)

However, observe that this follows by the same means as the usual Keel-Tao end-
point Strichartz estimate, by a dyadic partition, because the extra 〈t〉−2β〈s〉2β factor
is bounded.

The second term can be handled as follows:

∫ ∞

0

〈t〉2β‖
∫ t/2∧(t−1)

0

ei(t−s)HPcRHS(s) ds‖2∞ dt ≤

≤
∫ ∞

0

t2β−3
( ∫ t/2∧(t−1)

0

〈s〉2β‖RHS(s)‖21 ds
)(∫ t/2∧(t−1)

0

〈s〉−2β ds
)

≤
∫ ∞

0

〈s〉2β
( ∫ ∞

s+1

t2β−3 dt
)
‖RHS(s)‖21 ds ≤

∫ ∞

0

〈s〉2β‖RHS(s)‖21 ds,
(3.108)

provided that 2β < 2.
It follows that for β < 1

‖〈t〉2β
∫ t

0

ei(t−s)HPcRHS(s) ds‖L2
tL

6+∞

x
≤ ‖〈s〉2βRHS(s)‖

L2
sL

1∩6/5
x

. (3.109)

This suffices to bound the product of the two inhomogenous terms.
The product of a source term and an inhomogenous term can be handled in the

same manner,

∫ ∞

T

〈t〉2β‖eitHPcU(0)‖6+∞

∥∥∥
∫ t

0

ei(t−s)HPcRHS(s) ds
∥∥∥
6+∞

dt ≤

≤
(∫ ∞

T

〈t〉2β‖eitHPcU1(0)‖2 3p
2(p−1)

dt
)1/2

(∫ ∞

T

〈t〉2β
∥∥∥
∫ t

0

ei(t−s)HPcRHS2(s) ds
∥∥∥
2

6+∞
dt
)1/2

≤‖U(0)‖q∩2‖RHS‖〈t〉−βL2
tL

1∩6/5
x

.

(3.110)

�
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[PilWay] C. A. Pillet, C. E. Wayne, Invariant manifolds for a class of dispersive, Hamiltonian,
partial differential equations, J. Diff. Eq. 141 (1997), no. 2, pp. 310-326.

[Rodsch] I. Rodnianski, W. Schlag, Time decay for solutions of Schrödinger equations with rough
and time-dependent potentials, Invent. Math. 155 (2004), no. 3, pp. 451-513.

[RoScSo1] I. Rodnianski, W. Schlag, A. Soffer, Dispersive analysis of charge transfer models,
Communications on Pure and Applied Mathematics, Volume 58, Issue 2, pp. 149-216.

[RoScSo2] I. Rodnianski, W. Schlag, A. Soffer, Asymptotic stability of N-soliton states of NLS,

preprint 2003.
[Sch] W. Schlag, Stable Manifolds for an orbitally unstable NLS, preprint 2004, to appear in

Annals of Mathematics.
[Sch2] W. Schlag, Spectral theory and nonlinear partial differential equations: a survey, Discrete

Contin. Dyn. Syst. 15 (2006), no. 3, 703–723.
[SofWei1] A. Soffer, M. I. Weinstein, Multichannel nonlinear scattering for nonintegrable equa-

tions, Comm. Math. Phys. 133 (1990), pp. 119 - 146.
[SofWei2] A. Soffer, M. I. Weinstein, Multichannel nonlinear scattering, II. The case of

anisotropic potentials and data, J. Diff. Eq. 98 (1992), pp. 376 - 390.
[Ste] E. Stein, Harmonic Analysis, Princeton University Press, Princeton, 1994.
[SulSul] C. Sulem, P.-L. Sulem, The Nonlinear Schrödinger Equation. Self-focusing and Wave

Collapse, Applied Mathematical Sciences, 139, Springer-Verlag, New York, 1999.
[Tay] M. E. Taylor, Tools for PDE. Pseudodifferential operators, paradifferential operators, and

layer potentials, Mathematical Surveys and Monographs, 81, American Mathematical Society,
Providence, RI, 2000.

[Wei1] M. I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive equations,
Comm. Pure Appl. Math. 39 (1986), no. 1, pp. 51-67.

[Wei2] M. I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equa-
tions, SIAM J. Math. Anal. 16 (1985), no. 3, pp. 472-491.

[Yaj] K. Yajima, Dispersive estimate for Schrödinger equations with threshold resonance and
eigenvalue, preprint 2004, to appear in Comm. Math. Physics.


	A Centre-Stable Manifold for the Focussing Cubic NLS in R 1+3
	Recommended Citation

	1. Introduction
	1.1. Main result
	1.2. Background
	1.3. Known stability results in other cases
	1.4. The theory of Bates and Jones
	1.5. The result of Schlag
	1.6. Current paper
	1.7. Linear estimates

	2. Proof of the Nonlinear Results
	2.1. Formulation of the problem
	2.2. Setting up the contraction scheme
	2.3. Spectrum of the Hamiltonian
	2.4. Proof of the main result
	2.5. Stability
	2.6. Contraction
	2.7. Remaining bounds

	3. Linear Estimates
	3.1. The endpoint Strichartz estimate
	3.2. Proof of the strengthened dispersive estimate
	3.3. Other linear estimates

	References

