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Abstract 

 Research into the regeneration of optic nerves in Xenopus laevis has determined that 

heterogeneous nuclear ribonucleoprotein K (hnRNP K) plays a crucial role in regulating the 

trafficking and translation of mRNAs essential for the organization of the axonal cytoskeleton. 

To further explore this role, our lab has turned to tools that can definitively elucidate hnRNP K’s 

translocation in-and-out of the nucleus, as well as directly quantitate its degradation rate, in vivo. 

An appropriate tool for such experiments is the monomeric Eos fluorescent protein (mEosFP), 

which can be stably and irreversibly photo-converted. This fluorescent protein naturally emits 

green light (~516nm) and upon photo-conversion with UV (~405nm), it stably emits red light 

(~581nm). Using traditional cloning techniques, we are fusing mEosFP (Xenopus codon specific) 

to Xenopus hnRNP K in a plasmid designed to generate 5’ capped mRNA through in vitro 

transcription. The resultant RNA will be microinjected into 2-cell stage Xenopus embryos, and 

these embryos will be allowed to mature to stage 22 (24 hrs. post-fertilization). From these 

animals we will create dissociated, embryonic spinal cord / myotome cultures. We will then 

photo-convert mEosFP using a Zeiss 710 confocal microscope and monitor the subcellular 

location as well as quantitate the resulting fluorescence. To achieve this, we will use time-lapse 

photography and ImageJ software, respectively. A series of controls will be included to ensure 

the incorporation of the fluorescent protein does not interfere with hnRNP K’s biological 

activity. This technique will enable us to track hnRNP K’s movements through the cell more 

accurately and quantify its turnover rate in vivo. 
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Introduction 

Axonogenesis- the growth of axons- is an essential component of development for all 

organisms with a functioning nervous system. Once the process is complete, the axons, or nerve 

fibers, allow signals to be transmitted from one part of the body to the next in response to a series 

of chemical changes. As important as these structures are, many organisms, including mammals, 

lack the ability to mend their axons or to reinitiate axonogenesis upon neuronal damage. 

However, the African clawed frog Xenopus laevis has the ability to regenerate its optic axons due 

to its cells’ ability to sustain cytoskeletal organization, gene transcription, and post-

transcriptional control of its cytoskeletal composition (Hutchins and Szaro, 2013) through a 

series of protein-kinase interactions. In the Szaro lab, my project focused on heterogeneous 

nuclear ribonucleoprotein K (hnRNP K), an integral RNA-binding protein responsible for the 

post-transcriptional control of a specific range of mRNAs (Liu & Szaro, 2011). During neural 

development, the protein helps to coordinate the synthesis of structural proteins used to organize 

microtubules, microfilaments, and NFs [neurofilaments] into an axon through its export out of 

the nucleus. Humans and the African clawed frog are separated by a great evolutionary distance, 

but are genetically joined in the fact that they express homologous hnRNP K proteins (Dreyfuss, 

1997). Thus, studying X. laevis’ hnRNP K protein may provide insight into the mechanisms that 

allow amphibians to regenerate axons and prevent humans from recreating such events. 

Several hypotheses have been raised to explain what regulates the transport of hnRNP K 

in and out of the nucleus (Adolph, Flach, Mueller, Ostareck & Ostareck-Lederer, 2007; Michael, 

Eder, and Dreyfuss, 1997), but research is ongoing. Prior experiments have provided a copious 

amount of information regarding the most efficient ways to study the protein. Previously in the 

Szaro lab, various cDNAs, of interest, have been inserted into a modified pGEM-3Z plasmid 
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containing a promoter for the SP6 RNA polymerase vector (Lin and Szaro, 1996; Liu, Gervasi 

and Szaro, 2008; Hutchins and Szaro, 2013). Furthermore, based on the works of Paul Krieg and 

Doug Melton (1984), synthetic mRNAs produced by the SP6 RNA polymerase by in vitro 

transcription of cDNA clones from such plasmids are translated just as efficiently as native 

mRNAs in injected embryos. Thus, the study of a laboratory-manipulated endogenous protein is 

possible due the vector’s capability of producing protein expression in intact embryos 

comparable to proteins left untampered by scientists.  

Prior to the revolutionary experiments and studies performed using Green Fluorescent 

Protein (GFP) (Chalfie et al., 1994), scientists wanting to monitor gene expression were limited 

to using methods that required them to observe the cellular localizations of a particular target 

protein only after the death of the organism. Use of the commercially available markers such as 

protein-specific antibodies and β-galactosidase required the animals to be fixed and 

permeabilized to allow the reagents used for their detection to enter the tissue. In addition, 

several pictures of the organism had to be compared in order to effectively monitor the target 

protein (Chalfie, 2008). Thus, after the discovery of the fluorescent protein naturally produced by 

the jellyfish Aequorea victoria, Martin Chalfie recognized its potential as a less invasive 

biological marker. 

The dimeric protein is composed of a unique 3-dimensional structure in which β strands 

surround and protect a chromophore, (consisting of the residues Serine-Tyrosine-Glycine), 

located towards the center of a “beta-can” configuration. To further protect the reactive 

chromophore, the “can” is capped by α helices and short loop regions, allowing the protein to 

fluoresce even while submerged in fluorescence quenching agents such as acrylamide and 

molecular oxygen (Chalfie and Kain, 1998). Furthermore, there are two methods in which GFP 
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can be induced to emit a similar green light that are identical in spectral properties. The first, 

natural mechanism, the Förster-type, occurs through a radiation-less energy transfer when the 

excitation energy is transferred from the donor molecule to the acceptor without the emission of 

a photon. The second method involves the donor molecule emitting light that is consequently 

absorbed and reemitted by the acceptor (Chalfie and Kain, 1998). Consequently, by stimulating 

fluorescence of the protein by illuminating it with blue light, it was possible to harness the 

fluorescent capabilities of the protein to visualize it without the use of any additional reagents. 

Chalfie took advantage of additional qualities that made the protein an ideal biological marker 

such as its relatively small size with only 238 amino acids, its maintained functionality after 

modification to a monomeric protein, its fluorescence in the absence of cofactors or other small 

molecules, and its resistance to photobleaching (Chalfie, 2008). Advancements in technology 

have since allowed Martin Chalfie, Roger Tsien, and Osamu Shimomura to genetically modify 

the GFP gene so that it can fluoresce brighter within an organism, in addition to working 

efficiently in many different model systems.  

Following the commercialization of GFP, other naturally occurring proteins have been 

discovered and genetically enhanced to develop fluorescent variants that better serve the 

purposes of the various types of studies done in the laboratory. Originating from a range of 

jellyfish, coral reefs, and sea anemone species, each product has features that makes it better 

suited for certain experiments over other protein types. Proteins such as Kaede, tdTomato, and 

EosFP are attractive to scientists around the world due to their relative brightness (compared to 

enhanced GFP [EGFP]) and their molecular structures. However, when choosing an appropriate 

fluorescent protein to be included in an experiment, there are several factors that must be taken 

into consideration. Properties such as excitation/ emission peaks, optimal temperature for protein 
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folding, whether it forms oligomers, and photostability all have the potential to negatively affect 

the outcome of an experiment (Haimovich, 2014). While Kaede and tdTomato offer some of the 

highest levels of relative brightness, their tetrameric and tandem dimeric structures, respectively, 

have the potential to impair proper protein functions in vivo and can lead to the creation of 

artifacts that may mislead scientists and skew data. This is because larger molecular structures 

tend to be driven towards oligomer formation in vivo (Chalfie and Kain, 1998) especially when 

expressed with proteins, such as tubulin, that naturally oligomerize within the organism. 

Furthermore, while tdTomato’s tandem dimeric structure signifies that the protein is essentially 

monomeric, but has twice the molecular weight and size, it may still restrict the cellular 

localizations of the target protein due to the larger size of the fusion tag (Shaner, Steinbach, & 

Tsien, 2005). 

Originating from the stony coral Lobophyllia hemprichii, EosFP is a tetrameric 

fluorescent protein similar to Kaede. Upon the introduction of two amino acid substitutions, the 

monomeric derivative (mEosFP) is produced. Although the two proteins have virtually similar 

spectroscopic properties, the point mutations allow the expressed fusion proteins to be 

functionally expressed at temperatures below 30°C- a key element while working with the cold-

blooded Xenopus laevis whose natural body temperatures fall between 20-23°C (Piston et al.). A 

naturally green- fluorescing protein (~516nm), it can be easily photo-converted to emit red light 

(~581nm) following violet light excitation at ~405nm. The irreversible photoconversion is 

possible due to a chromogenic triad of amino acids (Histidine-Tyrosine-Glycine) (Wiedenmann 

et al.,2004) that acts as a chromophore in which the energy difference between two different 

molecular orbitals of the region falls within the range of the visible spectrum. Once this region in 
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the molecule is excited by UV or violet (405 nm) light, a series of conformational changes 

occurs allowing the molecule to emit light of a longer wavelength. 

 Consequently, we decided to utilize mEosFP’s fluorescent capabilities to track hnRNP 

K’s movements through the cell by initially creating a recombinant fusion protein (between 

mEosFP and hnRNP K). To create a cDNA construct that could be used to express the fusion 

protein in embryos, traditional cloning methods were used. The cDNA encoding the 

mEosFP/hnRNP K complex (referred within this paper as the insert) was then ligated into a 

modified pGEM-3Z vector, which can be used to transcribe RNA, in vitro (a feature that is 

necessary for its later use in an intact organism) (“Instructions for Use”, 2009). To propagate the 

plasmid, I transformed it into E. coli competent cells, using the recombinant resistant strain 

DH5α. As the competent cells replicate, they will make copies of our plasmid of interest. 

Materials & Methods 

mEosFP Fragment Acquisition: The amino acid sequence of mEosFP was obtained from 

the Wiedenmann et al. (2004) paper. Using the Xenopus codon usage table published by J. 

Michael Cherry (1991) as a reference, we translated the known amino acid sequence of 

mammalian mEosFP into a nucleotide sequence that is more compatible with translation in 

Xenopus laevis sequence by using the most prevalent codon for each amino acid within Xenopus 

laevis. In addition, we introduced two amino acid substitutions to make the protein more 

thermostable below 37°C (AA 160 C→D & AA 194 E→H) (Piston et al.). For cloning purposes, 

restriction sites and additional coding sequences were also added. A Kozak sequence, 

GCCACCATGG(GA) was added in order to increase the translation efficiency and GA was 

added to the 3’ end to maintain the correct reading frame throughout translation of the sequence 

so that it could be fused, in frame, with hnRNP K. The resulting codon of GGA translates as a 
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glycine which is the most abundant amino acid within Xenopus laevis. 5’ to the Kozak sequence, 

a NotI restriction site, GCGGCCGC, was added to the mEosFP sequence to provide the front-

flanking restriction site of the mEosFP/hnRNP K insert. At the 3’ end of the mEosFP amino acid 

sequence, a linker region was placed by Dr. Szaro and Linn von Pein as a means to join the 

mEosFP and the hnRNP K proteins. Included in the linker region was a SalI (GTCGAC) 

restriction site as well as a BsrGI (TGTACA) site for orientation and cloning purposes, 

respectively (Figure 1). The above described construct was ordered as a GeneArt® String from 

Invitrogen.  

 

hnRNP K Fragment Acquisition: The hnRNP K fragment was already cloned into a 

pGEM-3Z plasmid created by a former member of the Szaro lab, Yuanyuan Liu (Liu & Szaro, 

2008). Located at both the 5’ and 3’ ends of the hnRNP K sequence were NotI restriction sites. 

To remove the hnRNP K fragment, the vector was digested with NotI enzyme and the product 

was purified using Promega’s Wizard SV Gel and PCR Cleanup System (#A9282). The vector 

was then CIP-treated to prevent self-ligation.  

 

Figure 1: Illustrates the finished ligation product of the mEosFP and hnRNP K inserts with their 

respective restriction sites. 
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Fragmented Insert Amplification: Using Invitrogen’s Platinum Pfx DNA Polymerase 

(#11708-013), I amplified the mEosFP and the hnRNP K fragments, separately, using the 

Polymerase Chain Reaction (PCR). The enzyme’s high fidelity and 3’ proofreading capabilities 

helped ensure there would be no mutations in the resulting amplicon. I performed the 

amplification using three different reaction conditions to determine which resulted in the highest 

product yield. The three conditions included (1) the manufacturer’s recommendations; (2) the 

manufacturer’s recommendations with PCRx Enhancer Solution; and (3) Enhancer Solution with 

increased template concentrations (Table I). The cycling parameters (Table II) were based on 

the manufacturer’s recommendations and the reactions were performed in the AB 2720 Thermal 

Cycler. Samples were run on a genetic technology grade (GTG) 1% agarose/Tris borate EDTA 

(TBE) gel (Lonza SeaKem® GTG agarose, #50070) and the separated bands were visualized 

using 5μL of ethidium bromide added to the agarose solution prior to polymerization (EtBr; 

10mg/mL).  The agarose containing the desired bands were excised from the gel, pooled 

together, and the DNA was purified using Promega’s Wizard Kit (#A9282). 
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Table I: Demonstrates the reagent volumes and concentrations for the three reaction conditions used for 

the Pfx PCR to amplify the hnRNP K and mEosFP amplicons. 

 

 

 

Cycling Parameters 

  Temp. (°C) Time 

  94 5min 

  94 15sec 

30X 55 30sec 

  68 1.5min 

  4 ∞ 

Table II: The cycling parameters used for all of the conditions in the Pfx PCR to amplify the 

hnRNP K and mEosFP amplicons. 

 

 

Reagents Cond. 1  Cond. 2  Cond. 3  

 Vol. (μL) Conc. Vol. (μL) 

 

Conc. Vol. (μL) 

 

Conc. 

10X Buffer 5.0 1X 5.0 1X 5.0 1X 

10mM dNTPs 1.5 0.3mM ea. 1.5 0.3mM ea. 1.5 0.3mM ea. 

50mM MgSO4 1.0 1mM 1.0 1mM 1.0 1mM 

10μM  

Primer (F&R) 

3.0  

(1.5 ea.) 

0.3 μM ea. 3.0  

(1.5 ea.) 

0.3μM ea. 3.0 

 (1.5 ea.) 

0.3μM ea. 

Template 

80pg/μL 

2.0 160pg/L 2.0 160pg/L 4.0 320pg/L 

10X enhancer 0 0 5.0 1X 5.0 1X 

Pfx 

2.5U/μL 

0.4 1 unit 0.4 1 unit 0.4 1 unit 

H2O 37.1  32.1  30.1  

Total 50  50  50  



 
14 

mEosFP & hnRNP K Ligation: The two fragments of our prospective insert were 

digested with BsrGI (NEB, #R0575S) at 37°C following the manufacturer’s recommendations, 

and the products were run on a 1% agarose/TBE gel (Invitrogen). The DNA was then quantified 

(A260; ND-1000; NanoDrop/ Thermo Scientific).  

 The two PCR products were ligated in an equimolar ratio (150 fm) using T4 DNA 

Ligase (NEB, #M0202S) according to the manufacturer’s recommendations (16°C, overnight). 

In this procedure, λ bacteriophage DNA that had been digested with HindIII (USB, #70061) was 

ligated in a parallel reaction to confirm that the ligation reaction ran to completion. Once it was 

confirmed that the reaction had run to completion, the ligase was heat inactivated at 65°C for 10 

minutes. The ligation product was then electrophoresed on a GTG 1% agarose gel (Lonza 

SeaKem® GTG agarose, #50070) at 100V for 130 minutes, and the appropriate band; (~2Kb), 

was excised from the gel, and the DNA purified, and quantified on the spectrophotometer as 

before. Because we did not obtain enough product to proceed, we performed a second PCR 

reaction, this time using Promega’s Go Taq Green Master Mix (#M712B) in a 25 μL reaction 

(denature 1 min at 95°C, anneal 1 min at 60°C, and extend at 72°C for 2.5 min for 30 cycles). 

The product was electrophoresed through a 1% TBE agarose gel purified and quantified as 

before. 

Insert & Vector Ligation: To prepare the insert for ligation within the pGEM-3Z vector, 

we performed an overnight NotI-HF (NEB, #R3189S) digestion according to the manufacturer’s 

recommendations. After inactivating the reaction, we purified the product after a 1% TBE 

agarose gel electrophoresis and quantified the product as before. 

The mEosFP/hnRNP K insert and CIP-treated vector were ligated together using a 3:1 

molar ratio (150:50 fm, respectively) using NEB’s T4 Ligase (#M0202S) and 5X T4 ligase 
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buffer with polyethylene glycol (Invitrogen, #Y90001)- a macromolecular crowder- to further 

increase the chances of a successful ligation. Following confirmation that the ligation reaction 

was complete, the ligation product and controls were Phenol-Chloroform extracted and ethanol 

precipitated to remove the polyethylene glycol, which is toxic to E. coli. The final DNA products 

were resuspended in 20 μL of nuclease-free water for transformation.  

Transformation: The purified ligation products were then transformed into Subcloning 

Efficiency DH5α Competent Cells (Invitrogen, #18265-017). Following the manufacturer’s 

protocol, 5 μL of the ligated DNA was added to the DH5α cells in addition to 2.5 μL of the 

pUC19 positive control plasmid (100pg/μL) provided by the company. The transformed cells 

were plated onto agarose plates containing LB medium supplemented with ampicillin 

(50μg/mL), added to select for cells transformed by the plasmid, which contained an ampicillin 

resistance gene on the original pGEM-3Z parent vector. Super Optimal Broth with Catabolite 

repression (SOC) was used in conjunction with the culture to facilitate recovery from the 

transformation prior to spreading the cells onto the agarose plates. The plates were incubated 

overnight at 37°C. 

Miniprep & Sequencing: This section has yet to be performed. Assuming a successful 

ligation, and sequencing from GeneWiz, Figure 4 demonstrates the DNA construct we will 

produce.  

Results 

The yields from the Platinum Pfx PCR reaction to amplify mEosFP and hnRNP K 

fragments (Figure 2) were 87.9 and 229.8 ng/μL, respectively.  Following the BsrGI digestion of 

the fragments, we had 11.1 ng/μL of mEosFP and 12.3 ng/μL of hnRNP K. After ligating the two 

PCR products (Figure 3), we had 3.13 ng/μL in 31 μL (97ng). We felt that 97 ng wasn’t enough 
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material to continue with the experiment, so a second GoTaq Green PCR reaction was performed 

to produce 40.02 ng/μL in 38 μL, for a final yield of 1520 ng. After the newly-ligated insert was 

NotI-HF digested, we arrived at a final concentration of 9.84 ng/μL in 34 μL. Since this was too 

dilute for the vector/insert ligation, the digested product was dried down in a Heto-SpinVac, and 

the pellet resuspended in 5 μL for a final concentration of 66.6 ng/μL. The transformation 

performed was not successful and we are still reviewing the results. Figure 4 demonstrates the 

DNA construct that would have been produced assuming a successful transformation which 

includes the ligated mEosFP/hnRNP K insert (~2Kb) and the pGEM-3Z vector (without the 

depiction of the 3’UTR rabbit β-globin fragment) (~5Kb). 

 

 

 

 

 

Figure 2: Demonstrates the results on the 1% GTG gel after the Invitrogen Platinum Pfx PCR 

reaction using the three different conditions. The results were as expected with the mEosFP 

fragment at ~0.7Kb and the hnRNP K fragment at ~1.2Kb. The gel was imaged on a UV light box 

on the analytical setting. 
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Figure 4: Image of the completed map that was created in the lab, without the 3’UTR rabbit β-globin 

that would be between the T7 promoter and the hnRNP K portion of the insert. 

*Note: The missing 3’UTR rabbit β-globin would add ~2.2 kb to the depicted map. 

 

 
Figure 3: Demonstrates the 1% GTG gel used to purify the DNA after the mEosFP/hnRNP K ligation 

using NEB’s T4 DNA Ligase. The squared fragment band represents our product of interest at ~2Kb. 

The gel was imaged on a UV light box on the analytical setting. 
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Discussion 

To conclude my time working on this project, agarose gels determined that I successfully 

amplified and ligated mEosFP and hnRNP K to create a cDNA encoding an mEosFP/hnRNP K 

fusion protein. For efficient transcription and expression of the resulting protein, however, the 

insert had to be ligated within the bacterial SP6 vector, pGEM-3Z. Unfortunately, upon 

transformation, no colonies were produced. Under more successful circumstances, colonies from 

the transformation would have been mini-prepped and sent out for sequencing by the company 

GeneWiz. After sequencing has confirmed the introduction of the insert in the appropriate 

orientation within the plasmid, with no mutations that will interfere with subsequent 

experiments, it would then be possible to move on to in vitro transcription of the DNA into 5’ 

capped mRNA and injecting it into the 2-cell stage of Xenopus laevis to observe the processes 

and localizations of hnRNP K in vivo. Transcribing the DNA into 5’ capped RNA is essential for 

stabilizing the injected RNA once it is inside of the embryo. In addition to the 5’ cap, the 3’UTR 

of rabbit β-globin also acts as a stabilizer of the RNA due to an intrinsic cytoplasmic 

polyadenylation element (Gervasi & Szaro, 2004).  

The frog’s expression of a photoconvertible protein presents an innovative way in which 

to circumnavigate the issue of observing natural processes within the organism without the 

disturbances of invasive procedures. As mentioned earlier, hnRNP K acts as a scaffolding 

protein for other proteins that are integral in the proper growth and synapse formation in optic 

neurons. However, to control such processes, hnRNP K’s activation in the nucleus and export 

towards the cytoplasm has to be carefully regulated. We plan to excite the photoconvertible 

protein while observing cells through a Zeiss LSM 710 confocal microscope. Then, using time-

lapse photography and the ImageJ program, we plan to observe the subcellular localization of the 
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protein and quantitate the resulting fluorescence. Photoconverting the protein will enable us to 

monitor the decay of the red fluorescent form of the protein to measure hnRNP K’s turnover rate 

in different regions of the cell. 

 Prior to the collection of any noteworthy data while using the fluorescent protein to 

observe hnRNP K, a preliminary experiment would have to be conducted by the lab to confirm 

its efficiency for continued lab use. Currently in the Szaro lab, fluorescent proteins such as EGFP 

are used to observe the intracellular processes of hnRNP K (Hutchins and Szaro, 2013). 

However, the GFP used for the fusion protein is not Xenopus codon-optimized like the mEosF 

protein created for this experiment. Additionally, mEosFP is reportedly brighter than EGFP 

(Piston et al.). Thus, we would have to perform a comparative experiment in which we determine 

whether more hnRNP K protein is made with the mEosFP fusion (using western blots) which 

could be attributed to its codon optimization for our model organism. Furthermore, a higher 

expression of hnRNP K will increase the brightness of the signal intensity.  
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