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Abstract 
 

Riboswitches are a type of RNA structure found on messenger RNAs that function in 

gene expression regulation. The preQ1 riboswitch is particularly interesting to study because it 

contains a relatively small aptamer binding region and it is not essential in E. coli for the 

organism's survival, allowing in vivo experimentation in a viable organism. Upon ligand binding 

to the aptamer, a hairpin-type RNA pseudoknot forms, which functions to turn off the gene using 

a premature transcriptional termination mechanism. However, in some species studied, this 

terminator hairpin possesses enough thermodynamic stability that it is doesn't unfold upon 

release of the ligand. Based on this, it has been shown that the terminator and anti-terminator 

hairpins are capable of coexisting in the absence of the ligand. Thermodynamics play a large role 

in determining the actual degree of the translational control. It was found in previous 

experiments that the greater the stability of the terminator hairpin, the less reporter gene (firefly 

luciferase) activity recorded. When the aptamer-anti-terminator hairpin conformation is present, 

luciferase activity was found to be roughly double. Since it is possible for both hairpins to be 

present, the gene is not either turned off or on completely. This allows for the ability for partial 

effects (differential degrees of control). These different expression patterns have been explored 

for different species that contain this riboswitch. 
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Introduction 
 

 In the original central dogma of molecular biology, Ribonucleic Acid (RNA) was thought 

to act primarily as an intermediary message between the DNA genetic code and the enzymatic 

and functional proteins.  However, RNA has since been recognized to exhibit many different 

functions and structures, adopt countless three-dimensional structures, and to act as a catalyst in 

biochemical reactions (Cech, 2014).  The synthesis of RNA based on the DNA template is the 

process of transcription.  It is followed by the synthesis of proteins by using the RNA as a 

template sequence, which is the process of translation (Berg et al., 2007). The genetic 

information that is stored in DNA is expressed through this process of transcription and 

translation in the form of proteins.  RNA is a single stranded molecule made up of the 

nucleotides Adenine (A), Guanine (G), Cytosine (C), and Uracil (U) and is synthesized by the 

enzyme RNA polymerase (Berg et al., 2007).  Since RNA is a single stranded molecule, the 

nucleotides are capable of forming classic Watson and Crick base pairs, which can give rise to 

the RNA secondary and tertiary structures. These structures are responsible for the various 

activities of RNA molecules in forming structures, binding to small molecules, DNA, RNA, 

proteins, and functioning in catalysis.   

 RNA synthesis (transcription) is catalyzed by a large enzyme called RNA polymerase.  

This process is carried out in three stages, initiation, elongation, and termination.  During 

initiation, RNA polymerase binds to promoter sites on the DNA template.  Promoter sequences 

are upstream from the gene being transcribed and signal the start of transcription for the RNA 

polymerase.  The RNA polymerase then unwinds the DNA and begins to add the template’s 

complementary nucleotides together with phosphodiester bonds.  This process is known as 

elongation, Figure 1A.  In bacteria, sequences within the newly transcribed RNA signal 
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termination.  One common method is the formation of a G-C rich hairpin structure followed by a 

sequence of four or more uracil residues, Figure 1B (Lee, 2011).  RNA polymerase pauses 

immediately after it has synthesized a stretch of RNA that folds into a hairpin.  The RNA 

polymerase is then able to scan its recently transcribed regions to determine if it contains a 

terminator sequence (Berg et al., 2007).  

 

Figure 1: (A) Transcription by RNA polymerase.  (B) Termination signal found at the 3’ end of 

an RNA transcript.  Figure adapted from Berg et al., 2007. 

 

 

 Riboswitches are small segments of non-coding mRNA located in the untranslated 

regions (UTRs) of genes that function in gene expression (Rieder et al., 2010).  A tight control of 

gene regulation is seen as an advantage for bacteria because it allows them to conserve resources 

and reserve its energy for cellular necessities.  Expressing genes unnecessarily can deplete 
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valuable resources that could be utilized in other pathways.  Riboswitches are found widespread 

among distinct evolutionarily distinct microorganisms, which indicate an early evolutionary 

history.  This control of gene expression is not as advanced as some methods seen in higher 

organisms today, but riboswitches may have provided an advantageous method of gene 

regulation in the ancient hypothesized RNA-based world (Winkler, 2003). 

Riboswitches control gene expression by binding small ligands, which results in a 

conformation change of the RNA structure and leads to gene repression or activation (Atkins et 

al., 2001).  Riboswitches are found in the 5’ untranslated regions of mRNA in bacteria and in 5’ 

and 3’ untranslateed regions and introns of pre-mRNA’s of plants and fungi (Villa, 2009).  

Riboswitches generally bind their prospective ligand with high affinity and with high specificity.   

 The ligand-binding portion of the riboswitch is referred to as the aptamer domain.  The 

binding of the ligand in this region induces structural changes further downstream in the RNA in 

a region known as the expression platform, Figure 2.  In transcriptional control riboswitches, the 

ligand binding causes a formation of a terminator hairpin loop similar to the hairpin loop in 

Figure 1B.  This hairpin loop prevents the transcription of the complete protein-encoding mRNA 

(Villa, 2009).  In this manner, the system functions like a negative feedback loop.  The binding 

of the ligand induces a conformational change that results in the formation of a terminator 

hairpin, which effectively stops gene expression, Figure 2 (Liberman, 2012). 

 In the absence of ligand binding to the aptamer region, the expression platform folds to 

form an anti-terminator hairpin.  The anti-terminator hairpin sequence overlaps with that of the 

terminator hairpin.  As a result, both cannot exist simultaneously.  When the anti-terminator 

hairpin is present, the G-C rich terminator hairpin cannot form and the oligo U tail cannot signal 

termination.   Consequently, transcription continues along and the whole RNA is transcribed. 
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Figure 2. Formation of terminator hairpin as a result of ligand binding.  The star represents the 

binding of the riboswitch specific ligand.  This figure was taken, without modification from 

Liberman, 2012. 

 

 

 One riboswitch system that is of particular interest to study is the preQ1 riboswitch.  The 

preQ1 riboswitch is a part of the biological pathway for the production of queuosine (Kang et al., 

2009).  Queuosine is a modified guanine nucleotide that occurs in the wobble position in some 

anticodons of tRNA’s.  The presence of the queuosine at this position is believed to improve 

translational accuracy (Kang et al., 2009).   

 Although queuosine is present in both mammals and bacteria, only bacteria are able to 

synthesize queuosine.  Eukaryotes acquire queuosine from their diet and/or from bacteria in the 
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intestines and insert the queuosine directly into tRNA using an enzyme called tRNA-guanine 

transglycosylase (TGT) (Iwata-Reuyl, 2003).  Bacteria are able to synthesize queuosine although 

the complete details of the biological pathway have not been completely determined, Figure 3.   

 

 

Figure 3. Pathway of queuosine biosynthesis in bacteria.  This figure is adapted from Roth, 

2007. 

 

 

The preQ1 riboswitch is responsible for the production of the queuosine precursors, preQ0 

and preQ1, by modifying the gene expression of the queC gene in the queCDEF operon (Reader 
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et al., 2003).  First, GTP is converted to 7,8-hydroneopterin triphosphate (H2NTP) by GTP 

cyclohydrolase I (GCYH-I), the first enzyme of the folate biosynthesis pathway, providing a link 

between the queuosine-tRNA synthesis and primary metabolism (Kang et al., 2009).  Next, 7-

cyano-7-deazaguanine (preQ0) is converted to preQ1 by an NADPH dependent oxidoreductase, 

QueF (Lee et.,al 2007).  Free preQ1 is then inserted into the wobble position of the appropriate 

tRNA anticodon by a tRNA-guanine transglycosylase (TGT), replacing the unmodified guanine 

(G) in that position (Roth et al., 2007). 

An abundance of preQ1 in a cell is a signal that queuosine biosynthesis as currently not 

necessary, and results in preQ1 binding to the riboswitch.  The binding of the preQ1 ligand to the 

aptamer region results in rearrangement of the aptamer to the ligand-bound state which abolishes 

the anti-terminator hairpin structure, and allows the terminator hairpin to form, which prevents 

the production of more preQ1 and the downstream product, queuosine (Kang et al., 2009).  

 The preQ1 riboswitch is a good model system to study riboswitch-mediated transcription 

termination for a number of reasons.  First, the aptamer domain of the preQ1 riboswitch consists 

of only 34 nucleotides, which makes it the smallest naturally known occurring aptamer region.  

Second, both NMR and X-ray crystal structures are available for the preQ1 bound aptamer 

domain (Roth et al., 2007).  The preQ1 riboswitch is not essential for E. coli and thus allows in 

vivo characterization to be carried out.  These features make it easier to study the preQ1 

riboswitch compared to other larger and more complicated riboswitches. 

One example of the individual riboswitch for B. subtilis is shown below in Figure 4. 
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Figure 4. Secondary structure of B. subtilis riboswitch. 

 

 

 The riboswitch consists of the P0 hairpin, P1 (aptamer) hairpin and the terminator 

hairpin.  The anti-terminator hairpin is shown above the anti-terminator hairpin (Roth 2007).  

The solution and crystal structures of the aptamer regions of the preQ1 riboswitch from Bacillus 

subtilis have revealed that, upon the binding of preQ1, the aptamer domain folds into an H-type 

RNA pseudoknot (Kang et al., 2009).  In an H-type pseudoknot, the bases in the loop of a hairpin 

form intramolecular pairs with bases from outside of the stem (Figure 5A and 5B).  This causes a 

second stem and loop, resulting in a pseudoknot with two stems and two loops (Figure 5C).  In a 

pseudoknot, the stems and loops are labeled in sequential order (Staple et al., 2005). 

The preQ1-binding pseudoknot from B. subtilis consists of the binding of preQ1 with a 

number of important base pairs in the riboswitch including C60 and A72, Figure 4 and 6 (Gong 

et al., 2014).  This pseudoknot sequesters a portion of a 3’ A-rich tail that is involved in the 

structure of the transcriptional anti-terminator (Kang et al., 2009).  In the absence of preQ1 the 3’ 

A-rich tail remains unfolded and the RNA folds to form the anti-terminator hairpin. 
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Figure 5. RNA H-type pseudoknot.  (A) Linear arrangement of base-pairing elements within an 

H-type RNA pseudoknot.  (B) Formation of initial hairpin within pseudoknot sequence.  (C) 

Classic H-type pseudoknot fold.  This figure was modified from Staple et al., 2005.   

 

 

 

Figure 6. Structure of preQ1 bound riboswitch. (A) Secondary structure of riboswitch.  (B) 

Tertiary structure of riboswitch.  This figure was adapted from Gong et al., 2014. 

 

 

 Thus far, studies on a single riboswitch of a certain type have been used to characterize 

entire families of riboswitches.  While this is a good starting point, it ignores how species 
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variability could influence the degree to which riboswitch-mediated gene expression control 

could vary within a family, particularly when the ligand-binding family includes BOTH 

transcriptional control and translational control riboswitches.   The sequences of the preQ1 

riboswitch in a number of different bacterium can be seen in Figure 7 (Roth, 2007).   

From Figure 7, the aptamer domain regions of the riboswitches between species are 

highly conserved, while the expression platform is not as strictly conserved.  Since the aptamer 

regions between species are highly conserved, they all will bind preQ1 fairly similarly.  The 

almost completely conserved C’s from nucleotides 25-27 and the highly conserved A’s from 

nucleotides 32-38 can be related to the C60 and A72 binding nucleotides in B subtilis. 

The expression platform region is not as highly conserved.  As a result, it is not safe to 

characterize the activity of the riboswitch based on studying one type of bacteria.  Some 

conservation is still seen.  There is a high conservation of groups of green thymine nucleotides.  

These can relate to the sequence of U’s following the terminator hairpin that is necessary to 

terminate transcription.  However, since conservation within the expression platform is not seen 

as clearly it is important to study the riboswitch from each species of bacteria independently.  
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Materials and Methods 

In previous work by Dr. Nakesha Smith, a graduate student at the University at Albany, 

the riboswitch constructs of five species of bacteria were chosen to study.  The species that were 

chosen to study in more detail were Bacillus cereus (BCE), Bacillus halodurans (BHA), 

Geobacillus kaustophilus (GKA), Bacillus subtilis (BSU), and Fusobacterium nucleatum (FNU).  

In all the species, the terminator hairpin was predicted to be more stable than the anti-terminator 

hairpin by a range of 0.6 to 7.1 kcal/mol.  Since the terminator hairpin is predicted to be more 

stable, it is possible that the terminator hairpin remains even when the ligand unbinds.  This 

gives the bacteria a range of expression as previously discussed.   

In order to study the preQ1 riboswitch from different species of bacteria, the Dual-Glo 

Luiciferase Assay from Promega was utilized.  This assay uses Recombinant Firefly Luciferase 

in a reaction that produces light.  The amount of light produced can be measured by a lumometer 

and correlated to how much Recombinant Firefly Luciferase that was produced by the cell.  The 

reaction for the assay can be seen below in Figure 8, which was taken from Promega’s Dual-Glo 

protocol. 

 

 

Figure 8. Recombinant Firefly Luciferase assay reaction. 
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 A series of test vectors were constructed by Dr. Nakesha Smith designed to produce 

recombinant firefly luciferase based on the riboswitch system.  First, the reporter gene, firefly 

luciferase, was inserted into an expression vector.  The pRSF.1b expression vector from 

Novagen was chosen for a number of reasons.  It is a high copy number plasmid, confers 

Kanamycin resistance, contains an RSF origin and has an inducible T7 promoter.  The plasmid 

map of the pRSF.1b vector is shown in Figure 9. 

 

 

Figure 9. Plasmid map of the pRSF.1b vector. 

 

 

 The gene for firefly luciferase was cloned into the expression vector from the pSp-

luc+NF fusion vector from Promega.  This vector is shown in Figure 10 below.   
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Figure 10. Plasmid map of the pSP-luc+NF fusion vector. 

 

 

The resulting vector was the pRSF-Luc plasmid.  The riboswitch constructs for the 

chosen bacteria were cloned into the 5’ untranslated of the pRSF-Luc vector using a 

megaprimer-based polymerase chain reaction mutagenesis strategy (Tyagi, 2004).   

Two vectors for each riboswitch system were constructed, a riboswitch construct and an 

expression platform construct.  The riboswitch construct contains the whole riboswitch system, 

while the expression platform construct only contains the anti-terminator and terminator hairpin 

region.  In the expression platform constructs, the aptamer region is removed to study the activity 

of the expression platform in the absence of ligand binding.  As previously discussed, in all the 

bacteria studied so far, the terminator hairpin has a higher thermodynamic stability than the anti-

terminator hairpin.  It was predicted that these constructs would have less expression than the 
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riboswitch constructs because in the absence of ligand binding, the terminator hairpin is 

thermodynamically favored.   

 Work over the past few semesters has been dedicated to creating a glycerol stock of 

transformed BL21(DE3) cells that can be used in Luciferase assays.  Once in a stock, the cells 

can be easily recovered and used in the assay without having to transform the cells each time.   

 

Making competent cells 

 The first step in order to transform the cells is to grow a batch a competent cells.  Cells 

must be made competent in order for them to uptake the pRSF-luc plasmid that will express the 

gene for the production of Recombinant Firefly Luciferase.  First, a tube of frozen liquid 

BL21(DE3) cells were taken from the -80ºC freezer and streaked on an LB agar plate.  The plate 

was incubated at 37ºC and allowed to grow overnight.  One colony was selected from each plate 

and placed in a Falcon tube with 5 mL of LB broth.  The tube was shaken overnight at 225 RPM 

at 37ºC.  The following day, the overnight culture was inoculated into 500 mL of LB broth and 

allowed to grow at 37ºC, while shaking at 225RPM.   

 Once the OD600 measured near 0.6, the cells were placed into two centrifuge tubes and 

balanced.  The cells were spun down at 4,000 RPM at 4ºC for 10 minutes.  The supernatant was 

removed and the pellet of cells was re-dissolved in 25 mL of ice cold 0.1 M CaCl2.  The cells 

were placed on ice for 30 minutes and spun down again at 4,000 RPM at 4ºC for 10 minutes.  

The supernatant was poured off and the cells were dissolved in 3 mL of 0.1M CaCl2 and 450 μL 

of 99% glycerol.  The cells were pipetted into 500 μL aliquots and placed in the -80ºC freezer for 

long term storage.   
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Transformation 

 The expression platform (THP) and riboswitch (RS) constructs for Bacillus subtilis 

(BSU) and Bacillus cereus (BCE) were the first two sets of constructs to be transformed.  A tube 

of the competent cell stock was allowed to thaw on ice for 10 minutes.  It was flicked a few 

times to ensure thawing and proper mixing.  First 3 μL of each plasmid DNA was placed into an 

epitube.  Next, 50 μL of thawed competent cell stock was mixed with the plasmid DNA in the 

tube.  The tube was flicked to mix the cells and DNA.  The cells were placed on ice for 30 

minutes.  After, each tube was heat shocked at 42ºC for 90 seconds.  Following the heat shock, 

the cells were recovered on ice for 1 minute.  Next, 250 μL of pre-warmed SOC was added to 

each tube.  The tubes were then shaken at 225 RPM at 37ºC for 1 hour to ensure the expression 

of the antibiotic resistance conferred from the plasmid in the cells that had taken up the plasmid 

DNA.  The cells were plated onto LB agar plates that contained 35 mg/L of Kanamycin in 100 

μL and 150 μL amounts.  The plates were then incubated at 37ºC overnight. 

 

Making Bacterial Stocks 

 Once the transformed cells were grown on plates, a stock of the transformed cells was 

made to keep the transformed cells for long-term use.  A single colony from each plate was 

selected and placed into a Falcon Tube, which contained 5 mL of LB broth with 35 mg/L of 

Kanamycin.  The cells were allowed to grow overnight at 37ºC.  The next day, the overnight 

culture was inoculated into 500 mL of LB broth also containing 35 mg/L of Kanamycin.  The 

cells were grown by shaking at 225 RPM at 37ºC until the OD600 was close to 0.6.  The cells 

were harvested by centrifuge at 6,000 RPM at 4ºC for 4 minutes.  After, the cells were re-
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dissolved in 3 mL of LB containing 35 mg/L of Kanamycin and 450 μL of 99% glycerol.  The 

cells were placed in 500μL aliquots for long-term storage in the -80ºC freezer. 

 

Luciferase Assays of Riboswitch Mediated Gene Expression Control 

 The transformed cells were removed from the -80ºC, thawed on ice for 10 minutes and 

mixed by flicking.  First, 50 μL of thawed cells were added to an epitube.  Next, 250 μL of LB 

with 35 mg/L of Kanamycin was added to the tube.  The tube was shaken at 37ºC at 225 RPM 

for 1 hour.  After, the 150 μL of each tube was plated on an LB agar plate containing 35 mg/L of 

Kanamycin.  The plates were placed into the incubator at 37ºC and allowed to grow overnight.   

 The next day a single colony was selected from each plate and placed into a Falcon Tube 

containing 5 mL of LB with 35 mg/L of Kanamycin.  Each tube was placed in the incubator at 

37ºC and allowed to grow overnight, while shaking at 225 RPM.  The next day, the overnight 

cultures were spun down at 4,000 RPM at room temperature for 12 minutes.  After spinning, the 

supernatant was carefully removed and the cell pellet was re-dissolved in 10 mL of fresh LB 

containing 35 mg/L of Kanamycin.  The OD600 was measured to ensure there was enough growth 

of the cells.   

 Each culture was induced with 20 μL of 0.5 M IPTG for a final concentration of 1 mM in 

each culture.  The cultures were placed in the incubator at 37ºC for 4 hours while shaking at 225 

RPM to induce the production of Recombinant Firefly Luciferase from the pRSF-luc plasmid.  

After 4 hours, the cultures were removed from the incubator and the OD600 was measured for 

each culture.  Using the OD600 measurements, approximately 1 mL of each culture were pipetted 

out and placed in an epitube.  Each tube was spun at room temperature at 6,000 RPM for 10 

minutes.  After spinning, the LB broth supernatant was removed from each tube and the cell 
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pellet was re-dissolved into 100 μL of lysis buffer containing 10 mM Tris-HCl (pH 7.5), 10 mM 

EDTA, 2 mM DTT, 10% glycerol, and 2.5 mg/mL of egg white lysozyme.  The cells were 

incubated on ice for 30 minutes with the lysis buffer and lysozyme.  After 30 minutes, the culture 

was spun again at room temperature at 10,000 RPM for 5 minutes and the cell lysate was 

collected. 

 The Dual-Glo Luciferase (Promega) assay was removed from the freezer and allowed to 

thaw.  The bottle of Dual-Glo Luciferase Buffer was added to the bottle of Dual-Glo Luciferase 

Substrate to create the Dual-Glo Luciferase Reagent.  The reagent was mixed by inversion until 

it was fully dissolved.  The reagent was placed in 1 mL aliquots and placed back into the -80ºC 

freezer to prevent freeze-thaw cycles for the whole reagent.  One tube of reagent was kept out 

and allowed to equilibrate to room temperature.  Next, 50 μL of cell lysate was added to a 96-

well plate followed by 75 μL of Dual-Glo Luciferase Reagent.  Two wells of lysate were used 

for each construct.  The mixture was shaken gently to ensure mixture and allowed to react for 20 

minutes at room temperature.  After 20 minutes, the luminescence of each reaction was measured 

using a Biotek Synergy HT microplate reader.  The instrument was set to a read time of 10 

seconds for each well.   
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Results and Discussion 

 Making competent cells for the first part of the experiment was successful.  The cells 

grew nice colonies on the LB agar plate and the overnight culture produced a nice cloudy 

mixture, which indicated growth over night.  Once inoculated, the cells were allowed to grow for 

6 hours until the OD600 measured 0.527.  The cells were spun down and placed into storage 

according to the protocol above. 

 There was more difficulty when trying to transform the cells for the next part.  At first no 

growth of transformed cells was being seen after a number of transformation attempts.  It was 

determined that the wrong antibiotic was being used to select for the transformed cells.  

Ampicillin was in the LB agar plates so when the transformed cells were being plated after 

shaking, the Ampicillin was killing all the E. coli cells.  Once it was discovered that Ampicillin 

was being used instead of Kanamycin, the transformations for BCE (RS and THP) and BSU (RS 

and THP) were completed.  The number of colonies grown on each plate is described in Table 1 

below. 

 

Table 1. Number of colonies grown from transformation of BCE and BSU plasmid constructs. 

Plasmid Construct Plated amount (μL) Number of colonies seen 

BCE THP 100 1 

BCE THP 150 2 

BCE RS 100 1 

BCE RS 150 3 

BSU THP 100 4 

BSU THP 150 5 

BSU RS 100 6 

BSU RS 150 8 
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After transformation, the plates were stored at 4ºC until the stocks could be produced.  

First, the BCE THP and BCE RS constructs were grown up according to the protocol above.  

Both overnight cultures grew cloudy indicating growth overnight.  After inoculation into the 500 

mL of LB and the culture was allowed to grow, the OD600 for BCE THP was measured at 0.634 

and the OD600 for BCE RS was 0.574.  The cells were then spun down and made into stocks 

without any problems. 

 Next, the BSU THP and BSU RS constructs were grown up from the transformed plates.  

Again the overnight culture was cloudy indicating that growth had occurred.  After inolculation 

and further growth the OD600 was measured for each culture.  The OD600 measurement was 0.684 

for the BSU THP culture and 0.738 for the BSU RS culture.  Both cultures were spun down and 

the stocks were created without any issues.   

 The transformed cells were able to be retrieved out of the glycerol stocks without any 

problems.  Colonies grew on all the plates without any problems.  When a colony was selected 

from each plate and allowed to grow overnight, each culture was cloudy the next day indicating 

growth.  After spinning and re-dissolving in fresh LB, the OD600 measurement was taken for 

each culture.  The measurements can be seen in Table 2. 

 

Table 2. OD600 reading of each culture prior to induction with IPTG. 

Plasmid Construct OD600 measurement 

BCE RS 0.712 

BCE THP 0.717 

BSU RS 0.717 

BSU THP 0.701 
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 As shown in Table 2, the optical density for each culture is fairly close, which indicates 

approximately the same number of cells for each culture.  Since the OD600 reading was above 

0.6, the cultures were ready to be induced with IPTG and grown for another 4 hours.   

 After induction and growth, the OD600 for each culture was measured once again.  Using 

this measurement as a relative estimate for the number of cells present, approximately 1 mL of 

each culture was taken out.  Table 3 shows the optical density measured and the volume of cell 

culture used.   

 

Table 3. OD600 of cultures after induction and volume of culture used. 

Plasmid Construct OD600 Measurement Volume of culture used (μL) 

BCE THP 0.916 970 

BCE RS 0.919 967 

BSU THP 0.889 1000 

BSU RS 0.891 997 

  

  

By taking less amount of culture from the tubes with a high optical density, it is possible 

to approximate that they have the same number of cells.  This method was double checked by 

taking two samples of culture from each tube to measure the luminesce.    

 The cells were lysed according to the protocol above and loaded into the well plate with 

the reagent mixture.  The BSU RS construct was in wells A1 and A2, BSU THP was in B1 and 

B2, BCE RS was loaded into C1 and C2, and BCE THP was pipetted into D1 and D2.  The light 

produced from the luciferase reaction was measured by microplate reader and the results are 

shown in Table 4. 
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Table 4. Luminescence measurements for plasmid constructs.  

Well Plasmid Construct Luminescence (RLU) 

A1 BSU RS 49,633 

A2 BSU RS 50,677 

B1 BSU THP 2,563 

B2 BSU THP 2,345 

C1 BCE RS 70,991 

C2 BCE RS 68,249 

D1 BCE THP 50,868 

D2 BCE THP 46,819 

 

The average luminescence for each construct can be determined and compared to each 

other.  This is shown in Table 5. 

 

Table 5. Average firefly luminescence in RFU for each plasmid construct. 

Plasmid Construct Luminescence (RLU) 

BSU RS 50,155 

BSU THP 2,454 

BCE RS 69,620 

BCE THP 48,843 

 

  

From Table 5, both RS constructs had a higher expression of Firefly Luciferase than did 

their prospective THP constructs.  This was expected because in the THP constructs, the aptamer 

binding region was removed.  As a result, the expression platform was predicted to mostly 

consist of the terminator hairpin, which would result in a down regulation of the production of 

Firefly Luciferase.  The RS constructs showed a greater amount of expression because the 

aptamer region in the construct allowed for full activity of the riboswitch. 
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 Despite more assays needing to be completed to ensure consistency of results, these 

preliminary results can lead to some minor conclusions.  Previously Dr. Nakesha Smith found 

the stabilities of terminator and anti-terminator hairpins in a number preQ1 riboswitch systems.  

The values are summarized below in Table 6, which was adapted from her thesis. 

 

Table 6. Experimental free energies of BCE and BSU terminator and anti-terminator hairpins. 

Riboswitch system ΔGATHP (kcal/mol) ΔGTHP (kcal/mol) ΔΔGa (kcal/mol) 

B. cereus -3.08 -6.46 -3.38 

B. subtilis -4.56 -10.94 -6.38 

a - ΔΔG = (ΔGTHP - ΔGATHP) 

 

 As seen in the table, both systems’ terminator hairpins have a lower free energy value, 

which means a greater stability for the terminator hairpin.  The table also shows that B. subtilis 

has both a more stable terminator hairpin and anti-terminator hairpin than that of B.  cereus.  The 

B. subtilis riboswitch system also has a larger difference in free energy between the anti-

terminator hairpin and the terminator hairpin than the B. cereus riboswitch system.  This property 

may explain the difference in the Firefly Luciferase expression between the THP constructs.  

Since the BSU THP construct has a more stable terminator hairpin than the BCE THP construct, 

the expression of Firefly Luciferase in the BSU construct is lower. 

 A similar comparison can be made in the RS constructs as well.  In the BSU RS 

construct, the preQ1 is able to bind to the aptamer region to turn gene expression off.  However, 

when the preQ1 unbinds from the construct, the greater stability in the terminator hairpin of BSU 

allows for the terminator hairpin to exist longer than when BCE riboswitch unbinds preQ1.  This 

relationship can be seen by a lowered amount of expression from the BSU RS construct than 
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from the BCE RS construct.  Further assays with these constructs should be carried out to ensure 

consistency of results and in order to draw firmer conclusions.   
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Conclusions 

 Riboswitch systems are small segments of untranslated RNA that function in gene 

expression.  The study of riboswitches is extremely relevant because they offer insights that can 

help us to further understand transcriptional control in bacteria.  Further work can be completed 

on this project not only by continuing to study B. subtilis and B. cereus, but also by expanding 

and studying B. halodurans, G. kaustophilus, and F. nucleatum.  Stocks of these bacteria 

transformed with the test vector can be produced as described above in order to have a source of 

readily available transformed bacteria.  Those bacterial riboswitch systems can also be studied 

using the Dual-Glo Luciferase assay.  Predetermined stabilities of the hairpins in the systems can 

also be compared to the assay results to see if further patterns emerge.   

 The riboswitch systems can also be studied under different environmental factors.  For 

this experiment, the cultures were grown in rich medium.  Other assays can be carried out with 

cells grown in poor growth medium in order to see how the cell responds to more challenging 

environments.  PreQ1 can also be added to the culture in order to see how the riboswitch 

responds to external sources of preQ1.   

 Riboswitch systems play an important role in gene expression.  Their ability to recognize 

small molecules and their abundance in a number of bacterial species make them a potential new 

target for anti-bacterial drug design.  In order to identify riboswitches that can function as anti-

bacterial targets it is necessary to continue the study of other riboswitch systems, such as the 

preQ1 riboswitch to further understand their composition and function.   
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