Dispersive Estimates in R^3 with Threshold Resonances

Marius Beceanu
University at Albany, State University of New York, mbeceanu@albany.edu

Follow this and additional works at: https://scholarsarchive.library.albany.edu/math_fac_scholar

Part of the Mathematics Commons

Recommended Citation
https://scholarsarchive.library.albany.edu/math_fac_scholar/21

This Article is brought to you for free and open access by the Mathematics & Statistics at Scholars Archive. It has been accepted for inclusion in Mathematics and Statistics Faculty Scholarship by an authorized administrator of Scholars Archive. For more information, please contact scholarsarchive@albany.edu.
DISPERSE ESTIMATES IN \mathbb{R}^3 WITH THRESHOLD EIGENSTATES AND RESONANCES

MARIUS BECEANU

Abstract. We prove dispersive estimates in \mathbb{R}^3 for the Schrödinger evolution generated by the Hamiltonian $H = -\Delta + V$, under optimal decay conditions on V, in the presence of zero energy eigenstates and resonances.

Contents

1. Introduction 1
 1.1. Classification of exceptional Hamiltonians 1
 1.2. Main result 2
 1.3. History of the problem 4
2. Proof of the statements 6
 2.1. Notations 6
 2.2. Auxiliary results 6
 2.3. Wiener spaces 10
 2.4. Regular points and regular Hamiltonians 12
 2.5. Exceptional Hamiltonians of the first kind 16
 2.6. Exceptional Hamiltonians of the third kind 27
Acknowledgments 44
References 44

1. Introduction

1.1. Classification of exceptional Hamiltonians. Consider a Hamiltonian of the form $H = -\Delta + V$, where V is a real-valued scalar potential on \mathbb{R}^3.

We assume $V \in L^{3/2,1} \subset L^{3/2}$, which is the predual of weak-L^3 and a Lorentz space, $L^{3/2,1} \subset L^{3/2-\varepsilon} \cap L^{3/2+\varepsilon}$; for its definition and properties see [BeLö]. By [Sim] this is sufficient to guarantee the self-adjointness of $H = -\Delta + V$.

Let $R_0(\lambda) := (-\Delta - \lambda)^{-1}$ be the free resolvent corresponding to the free evolution $e^{-it\Delta}$ and let $R_V(\lambda) := (-\Delta + V - \lambda)^{-1}$ be the perturbed

2000 Mathematics Subject Classification. 35J10, 47D08.

The author was partially supported by a Rutgers Research Council grant.
resolvent corresponding to the perturbed evolution e^{itH}. Explicitly, in three dimensions and for $\text{Im} \, \lambda \geq 0$,

$$R_0((\lambda + i0)^2)(x, y) = \frac{1}{4\pi} \frac{e^{i\lambda|x-y|}}{|x-y|}. \quad (1.1)$$

It will be shown below that under reasonable assumptions H has only finitely many negative eigenvalues. Then the Schrödinger evolution restricted to the continuous spectrum $[0, \infty)$ has the representation formula

$$e^{itH} P_c = \lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_0^\infty \! e^{it\eta} (R_V(\eta + i\epsilon) - R_V(\eta - i\epsilon)) \, d\eta.$$

By the work of Ionescu–Jerison [IoJe] and Goldberg–Schlag [GoSc1], it is known that, when $V \in L^{3/2}$, $R_V(\lambda \pm i0)$ is uniformly bounded in $\mathcal{B}(L^{6/5}, L^6)$ on any interval $\lambda \in [\epsilon_0, \infty)$, $\epsilon_0 > 0$, and has no singularities in $[0, \infty)$ except potentially at $\lambda = 0$.

Observe that $R_V = (I + R_0 V)^{-1} R_0$, so R_V has a singularity at zero precisely when $I + R_0(0)V$, which is compact, is not invertible.

We denote the null space of $I + R_0(0)V$ by \mathcal{M}:

$$\mathcal{M} := \{ \phi \in L^\infty \mid \phi + R_0(0)V\phi = 0 \}.$$

If $\mathcal{M} \neq \emptyset$ we say that H is of exceptional type, while if $\mathcal{M} = \emptyset$ we say that H is of generic type.

The sesquilinear form $-\langle u, Vv \rangle$ is an inner product on \mathcal{M}, see Lemma 2.2. This pairing is well-defined when $V \in L^{3/2, 1}$ because $u, v \in L^{3, \infty} \cap L^\infty$ by Lemma 2.1.

Let $\mathcal{E} := \mathcal{M} \cap L^2$ and P_0 be the orthogonal L^2 projection onto \mathcal{E}. In Lemma 2.3 we provide a characterization of \mathcal{E} and show that $\text{codim}_M \mathcal{E} \leq 1$.

The set $\mathcal{E}_1 := \mathcal{E} \cap L^1$ also plays a special part in the proof. In Lemma 2.5 we give a characterization of \mathcal{E}_1 and prove that $\text{codim}_E \mathcal{E}_1 \leq 12$.

A function $\phi \in \mathcal{M} \setminus \mathcal{E}$ is called a zero energy resonance of H. Following [JeKa] and [Yaj1], we classify exceptional Hamiltonians H as follows:

1. H is of exceptional type of the first kind if it has a zero energy resonance, but no zero energy eigenfunctions: $\{0\} = \mathcal{E} \subsetneq \mathcal{M}$.
2. H is of exceptional type of the second kind if it has zero energy eigenfunctions, but no zero energy resonance: $\{0\} \subsetneq \mathcal{E} = \mathcal{M}$.
3. H is of exceptional type of the third kind if it has both resonances and eigenfunctions at zero energy: $\{0\} \subsetneq \mathcal{E} \subsetneq \mathcal{M}$.

1.2. Main result. When H is of exceptional type of the first kind, we let the canonical resonance be $\phi \in \mathcal{M}$ such that $\langle V, \phi \rangle > 0$ and $-\langle \phi, V\phi \rangle = 1$ (one can make these choices by Lemma 2.3 and Lemma 2.2 respectively).

Using the canonical resonance $\phi(x)$, we define a constant a and a function $\zeta_t(x)$ by

$$a = \frac{4\pi i}{|\langle V, \phi \rangle|^2}; \quad \zeta_t(x) = e^{\frac{ix^2}{4t}} \phi(x).$$
We also define a function $\mu_t(x)$ by

$$
\mu_t(x) := \frac{i}{|x|} \int_0^1 (e^{\frac{i|y|^2}{4\pi t}} - e^{\frac{-i|y|^2}{4\pi t}}) \, d\theta.
$$

Let the operators $R(t)$ and $S(t)$ be given by

$$
R(t) := \frac{ae^{-i\frac{\pi}{4}}}{\sqrt{\pi t}} \zeta(x) \otimes \zeta(y),
$$

$$
S(t) := \frac{e^{-i\frac{\pi}{4}}}{\sqrt{\pi t}} \left(-ip_0 V \frac{|x-y|^2}{24\pi} VP_0 + \mu_t(x) \frac{|x-y|}{8\pi} VP_0 + P_0 V \frac{|x-y|}{8\pi} \mu_t(y) \right).
$$

Note that

$$
\|R(t)u\|_{L^3, \infty} + \|S(t)u\|_{L^3, \infty} \lesssim t^{-1/2}\|u\|_{L^3/2, 1}.
$$

Proposition 1.1 (Main result). Assume that $\langle x \rangle^2 V \in L^{3/2, 1}$ and that $H = -\Delta + V$ is exceptional of the first kind. Then for $1 \leq p < 3/2$ and any $u \in L^2 \cap L^p$

$$
e^{-itH} P_c u = Z(t)u + R(t)u, \quad \|Z(t)u\|_{L^{p'}} \lesssim t^{-\frac{3}{2} \left(\frac{1}{p} - \frac{1}{p'} \right)} \|f\|_{L^p},
$$

where p' is the dual exponent $\frac{1}{p} + \frac{1}{p'} = 1$. Furthermore, assuming only that $V \in L^{3/2, 1}$, for $3/2 < p \leq 2$

$$
\|e^{-itH} P_c u\|_{L^{p'}} \lesssim t^{-\frac{3}{2} \left(\frac{1}{p} - \frac{1}{p'} \right)} \|u\|_{L^p}, \quad \|e^{-itH} P_c u\|_{L^3, \infty} \lesssim t^{-1/2}\|u\|_{L^3/2, 1}.
$$

Assume that $\langle x \rangle^2 V \in L^{3/2, 1}$ and that $H = -\Delta + V$ is exceptional of the second or third kind. Then for $1 \leq p < 3/2$ and any $u \in L^2 \cap L^p$

$$
e^{-itH} P_c u = Z(t)u + R(t)u + S(t)u, \quad \|Z(t)u\|_{L^{p'}} \lesssim t^{-\frac{3}{2} \left(\frac{1}{p} - \frac{1}{p'} \right)} \|u\|_{L^p},
$$

where $R(t)$ is missing if H is an exceptional Hamiltonian of the second kind.

In the case when all the zero energy eigenfunctions of H are in L^1, one can omit $S(t)$ from (1.3).

Assume that $\langle x \rangle^2 V \in L^{3/2, 1}$ and that $H = -\Delta + V$ is exceptional of the second or third kind. Then for $3/2 < p \leq 2$

$$
\|e^{-itH} P_c u\|_{L^{p'}} \lesssim t^{-\frac{3}{2} \left(\frac{1}{p} - \frac{1}{p'} \right)} \|u\|_{L^p}, \quad \|e^{-itH} P_c u\|_{L^3, \infty} \lesssim t^{-1/2}\|u\|_{L^{3/2, 1}}.
$$

Note that, in terms of powers of x, the decay conditions on the potential correspond to $|V| \lesssim \langle x \rangle^{-2}$, $|V| \lesssim \langle x \rangle^{-4}$, and $|V| \lesssim \langle x \rangle^{-6}$.

Also note that these decay estimates also imply a certain range of Strichartz estimates.

The rest of the paper is dedicated to proving this main result, which is a combination of Propositions 2.13, 2.15, 2.18, and 2.19. For brevity, we omit the proof in case H is an exceptional Hamiltonian of the second kind, which is similar to the case when H is exceptional of the third kind.
1.3. History of the problem. We study solutions to the linear Schrödinger equation in \mathbb{R}^3 with potential

$$i\partial_t u + \Delta u - Vu = 0, \ u(0) \text{ given}.$$

By the RAGE theorem, every solution is the sum of a bound and a scattering component. The quantitative study of scattering states began with Rauch [Rau], who proved that if $H = -\Delta + gV$, $g \in \mathbb{C}$, with exponentially decaying V, then $e^{itH}P_c$ has a local decay rate of $t^{-3/2}$, with at most a discrete set of exceptional g for which the decay rate is $t^{-1/2}$. Here P_c is the projection on the space of scattering solutions.

Threshold estimates in the presence of eigenvalues and resonances go back to the work of Jensen–Kato [JeKa], who obtained an asymptotic expansion of the resolvent $R(\zeta) = (H - \zeta)^{-1}$ into

$$R(\zeta) = -\zeta^{-1}B_{-2} - i\zeta^{-1/2}B_{-1} + B_0 + i\zeta^{1/2}B_1 + \ldots$$

and similar ones for the spectral density and the S-matrix. The condition imposed on the potential was polynomial decay at infinity of the form $|V(x)| \leq x^{-\beta} |x|^2$, $\beta > 2$.

The possible singularities in this expansion are due to the presence of resonances or eigenstates at zero. B_{-2} is the L^2 orthogonal projection on the zero eigenspace, while B_{-1} is given by

$$B_{-1} = P_0V \frac{|x - y|^2}{24\pi}VP_0 - \phi \otimes \phi,$$

where ϕ is the canonical zero resonance, see above.

Jensen–Kato also obtained an asymptotic expansion for the evolution $e^{itH}P_c$, in two cases: if zero is a regular point, then

$$e^{itH}P_c = -(4\pi i)^{-1/2}t^{-3/2}B_0 + o(t^{-3/2})$$

and if there is only a resonance ϕ at zero then

$$e^{itH}P_c = (\pi i)^{-1/2}t^{-1/2}\phi \otimes \phi + o(t^{-1/2}).$$

Murata [Mur] extended these results by obtaining an asymptotic expansion to any order, for a more general evolution, with or without singular points, and then proving that each term in the expansion is degenerate. Murata’s expansion and proof are valid in weighted L^2 spaces.

Erdogan–Schlag [ErSc1] obtained an asymptotic expansion of the evolution $e^{itH}P_c$ in the pointwise L^1-to-L^∞ setting using the Jensen–Nenciu [JeNe] lemma. The condition assumed for the potential was that $|V(x)| \leq \langle x \rangle^{-12-\epsilon}$. The same method works in the case of nonselfadjoint Hamiltonians, see [ErSc2], of the form

$$\mathcal{H} = \begin{pmatrix} -\Delta + \mu + V_1 & V_2 \\ -V_2 & \Delta - \mu - V_1 \end{pmatrix},$$

assuming that $|V_1(x)| + |V_2(x)| \leq \langle x \rangle^{-10-\epsilon}$.
At the same time, Yajima [Yaj1] proved a similar expansion for generic Hamiltonians $H = -\Delta + V$ if $|V(x)| \leq \langle x \rangle^{-5/2-\epsilon}$, for singular Hamiltonians of the first kind when $|V(x)| \leq \langle x \rangle^{-9/2-\epsilon}$, and of the second and third kind when $|V(x)| \leq \langle x \rangle^{-11/2-\epsilon}$. His main result stated the following:

Theorem 1.2 (Theorem 1.3, [Yaj1]).

1. Let V satisfy $|V(x)| \leq C\langle x \rangle^{-\beta}$ for some $\beta > 5/2$. Suppose that H is of generic type. Then, for any $1 \leq q \leq 2 \leq p \leq \infty$ such that $1/p + 1/q = 1$,

$$\|e^{-itH}P_c u\|_p \leq C_{p\beta}t^{-3(\frac{4}{3} - \frac{1}{p})} \|u\|_q, \quad u \in L^2 \cap L^q. \quad (1.4)$$

2. Let V satisfy $|V(x)| \leq C\langle x \rangle^{-\beta}$ for some $\beta > 11/2$. Suppose that H is of exceptional type. Then the following statements are satisfied:

 a) Estimate (1.4) holds when p and q are restricted to $3/2 < q \leq 2 \leq p < 3$ and $1/p + 1/q = 1$.

 b) Estimate (1.4) holds when $p = 3$ and $q = 3/2$ provided that L^3 and $L^{3/2}$ are respectively replaced by Lorentz spaces $L^{3,\infty}$ and $L^{3/2,1}$.

 c) When $3 < p \leq \infty$ and $1 \leq q < 3/2$ are such that $1/p + 1/q = 1$, there exists a constant C_{pq} such that for any $u \in L^2 \cap L^q$,

$$\|e^{-itH}P_c - R(t) - S(t))u\|_p \leq C_{pq}t^{-3(\frac{1}{2} - \frac{1}{p})} \|u\|_q.$$

If H is of exceptional type of the first kind, statement (2) holds under a weaker decay condition $|V(x)| \leq C\langle x \rangle^{-\beta}$ with $\beta > 9/2$.

However, note that due to a mistake in the proof the requirement $\beta > 11/2$ should be replaced by $\beta > 8$.

When the zero energy eigenfunctions ϕ_k of H have enough decay, both $R(t)$ and $S(t)$ can be taken to be zero. Indeed, in [Gol1] Goldberg showed that if $V \in L^{3/2-\epsilon} \cap L^{3/2+\epsilon}$ and the zero energy eigenfunctions are in L^1 then $\|e^{-itH}P_c u\|_{L^\infty} \leq t^{-3/2} \|u\|_{L^1}$. We retrieve a similar result in our context.

Some of our results for exceptional potentials of the first kind hold under the same decay assumption as those for generic potentials: $V \in L^{3/2,1}$. A similar fact was also recently noticed by Egorova–Kopylova–Marchenko–Teschl [EKMT] in dimension one.

Several results [JSS], [GoSc2], [Gol1], [BeGol] address the issue of pointwise decay in the case of generic Hamiltonians — for $L^{3/2-\epsilon} \cap L^{3/2+\epsilon}$ potentials in [Gol1] and Kato-class potentials in [BeGol].

Results obtained in other dimensions include [CCV], [EKMT], [EGG], [ErGr1], [ErGr2], [ErGr3], [ErGr4], [Go2], [GoGr1], [GoGr2], [Gre], and [Sch].

The current result, Theorem 1.1, represents an improvement on [Yaj1], by half a power of potential decay for exceptional Hamiltonians of the first kind. We expect the rate of potential decay from Theorem 1.1 to be optimal for this sort of result.

The same considerations apply in the case of exceptional Hamiltonians of the second and third kind, also leading to similar improved results. These will constitute the subject of a separate paper.
Below we mostly follow the scheme of Yajima’s proof in [Yaj1], making the changes from Hölder spaces to Wiener spaces needed to improve the result. The proof method that we use here is the same as in [Bec] and [BeGo1].

2. Proof of the statements

2.1. Notations. We denote by \(L^p \) the usual Lebesgue spaces and by \(L^{p,q} \), \(1 \leq p, q \leq \infty \), the Lorentz spaces. Note here that \(L^{p,p} = L^p \), \(L^{p,\infty} \) is weak-\(L^p \), and \(L^{p,q_1} \subset L^{p,q_2} \) for \(q_1 \leq q_2 \). For the definition and further properties see [BeLö].

Let Sobolev spaces be \(W^{s,p} \), \(s \in \mathbb{R}, 1 \leq p \leq \infty \) and denote weighted Lebesgue spaces by \(f^p x^q L^p \). Fix the Fourier transform to

\[
\hat{f}(\xi) = \int_{\mathbb{R}^d} e^{-ix \xi} f(x) \, dx, \quad \tilde{f}(x) = (2\pi)^{-d} \int_{\mathbb{R}^d} e^{i\xi \cdot x} f(\xi) \, d\xi.
\]

Let \(R_0(\lambda) := (-\Delta - \lambda)^{-1} \) and for \(\lambda \in \mathbb{R} \) \(R_{00}(\lambda) := \frac{1}{\pi} (R_0(\lambda+i0) - R_0(\lambda-i0)) \). Concerning the Fourier transform, resolvents, and the free evolution, note that with our definitions

\[
e^{itH_0} = (R_{00}(\lambda))^\vee (t); \quad R_{00}(\lambda) = (e^{itH_0})^\wedge, \quad \lambda \in \mathbb{R};
\]

\[
iR_0(\lambda) = (\chi_{[0,\infty)}(t)e^{itH_0})^\wedge(\lambda), \quad \text{Im} \lambda < 0.
\]

Likewise let \(R_V(\lambda) := (-\Delta + V - \lambda)^{-1} \).

Also, let

* \(\chi_A \) be the characteristic function of the set \(A \);
* \(\mathcal{M} \) be the space of finite-mass Borel measures on \(\mathbb{R} \);
* \(\delta_x \) denote Dirac’s measure at \(x \);
* \(\langle x \rangle = (1 + |x|^2)^{\gamma} \);
* \(\mathcal{B}(X,Y) \) be the Banach space of bounded operators from \(X \) to \(Y \) and \(\mathcal{B}(X) \) be the Banach space of bounded operators from \(X \) to itself;
* \(C \) be any constant (not always the same throughout the paper);
* \(a \lesssim b \) mean \(|a| \leq C|b| \);
* \(\mathcal{S} \) be the Schwartz space;
* \(u \otimes v \) mean the rank-one operator \(\langle \cdot, v \rangle u \);
* \(K(x,y) \) denote the operator having \(K(x,y) \) as integral kernel.

For a potential \(V \), let \(V_1 = |V|^{1/2} \) and \(V_2 = |V|^{1/2} \text{sgn} \, V \).

2.2. Auxiliary results. Recall that \(\mathcal{M} \) is the kernel of \(I + R_0(0)V \) in \(L^\infty \).

Lemma 2.1. Let \(V \in L^{3/2,1} \); then \(\mathcal{M} \subset L^{3,\infty} \). Conversely, any \(\phi \in L^{3,\infty} \) that satisfies the equation \(\phi + R_0(0)V\phi = 0 \) must be in \(L^\infty \), hence in \(\mathcal{M} \).
Proof of Lemma 2.1. Let $V = V^1 + V^2$, where V^1 is smooth of compact support and $\|V^2\|_{L^{3/2,1}} \ll 1$. Then, if ϕ solves the equation,

$$\phi = - (I + R_0(0)V^2)^{-1}R_0(0)V^1 \phi$$

$$= - \left(\sum_{k=0}^{\infty} (-1)^k (R_0(0)V^2)^k \right) R_0(0)V^1 \phi,$$

where the inverse is the sum of a Neumann series, thus bounded on $L^{3,\infty}$ and on L^∞.

If $\phi \in L^\infty$, then $V^1 \phi \in L^1$, hence $R_0(0)V^1 \phi \in L^{3,\infty}$, so $\phi \in L^{3,\infty}$.

If $\phi \in L^{3,\infty}$, then $V^1 \phi \in L^{3/2,1}$, hence $R_0(0)V^1 \phi \in L^\infty$, so $\phi \in L^\infty$. □

Lemma 2.2. The quadratic form $-\langle u, V \rangle$ is an inner product on \mathcal{M}.

Proof. Suppose $u, v \in \mathcal{M}$. By the definition of \mathcal{M}, observe that $-\langle u, Vv \rangle = \langle u, -\Delta v \rangle$, where $u \in L^{3,\infty} \cap L^\infty$ by Lemma 2.1 and $-\Delta v = Vv \in L^1 \cap L^{3/2,1}$. Thus the pairing is well-defined.

Furthermore, $\nabla u = \nabla R_0(0)Vu \in L^{3/2,\infty} \cap L^{3,\infty} \subset L^2$ and same for ∇v, so their pairing is also well-defined and we can write $(u, -\Delta v) = (\nabla u, \nabla v)$.

This expression is positively defined because, setting $u = v$, $\langle \nabla u, \nabla u \rangle = 0$ implies that u is constant, hence, in view of the fact that $u \in L^{3,\infty}$ by Lemma 2.1, $u = 0$.

Recall that $\mathcal{E} = \mathcal{M} \cap L^2$.

Lemma 2.3. Assume that $V \in L^{3/2,1}$. Then, for any $\phi \in \mathcal{M}$, $\phi(x) \in \langle x \rangle^{-1}L^\infty$.

Assume that $V \in L^1 \cap L^{3/2,1}$. Then, for any $\phi \in \mathcal{M}$, $\phi(x) - \langle \phi, V \rangle \frac{1}{4\pi |x|}$ \in $|x|^{-1}L^{3,\infty} \cap |x|^{-1}L^\infty \subset L^2$. Thus $\phi \in \mathcal{M}$ is in \mathcal{E} if and only if $\langle \phi, V \rangle = 0$; thus $\text{codim}_\mathcal{M} \mathcal{E} \leq 1$. Also, $\mathcal{E} \subset \langle x \rangle^{-2}L^\infty$.

Proof of Lemma 2.3. First, assume that $V \in L^{3/2,1}$. Rewrite the eigenfunction equation

$$\phi(x) = - \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{1}{|x - y|} V(y) \phi(y) dy$$

as

$$|x| \phi(x) + \frac{1}{4\pi} \int_{|y| \geq R} \frac{|x| - |x - y|}{|x - y||y|} V(y)|y| \phi(y) dy = - \frac{1}{4\pi} \int_{\mathbb{R}^3} V(y) \phi(y) dy - \frac{1}{4\pi} \int_{|y| \leq R} \frac{|x| - |x - y|}{|x - y|} V(y) \phi(y) dy.$$
Next, assume that $V \in L^1 \cap L^{3/2,1}$. Start from
\[
\phi(x) - \frac{\langle \phi, V \rangle}{4\pi|x|} = -\frac{1}{4\pi} \int_{\mathbb{R}^3} \left(\frac{1}{|x - y|} - \frac{1}{|x|} \right) V(y)\phi(y) \, dy
\]
which is bounded in absolute value by
\[
\frac{1}{4\pi|x|} \int_{\mathbb{R}^3} \frac{|y||V(y)||\phi(y)|}{|x - y|} \, dy.
\]
Since $\phi \in \langle \cdot \rangle^{-1}L^\infty$ and $V \in L^1 \cap L^{3/2,1}$, this expression is in $|x|^{-1}L^\infty \cap |x|^{-1}L^{3,\infty} \subset \langle x \rangle^{-1}L^{3,\infty} \subset L^2$.

Since whenever $\langle \phi, V \rangle \neq 0$ $\frac{\phi, V}{4\pi|x|} \notin L^2$, it follows that it is necessary and sufficient for ϕ to be in L^2 that $\langle \phi, V \rangle = 0$.

The space \mathcal{E} is then the kernel of the rank-one map $\phi \mapsto \langle \phi, V \rangle$ from \mathcal{M} to C, so it has codimension at most 1.

Finally, we already know that $\mathcal{E} \subset \mathcal{M} \subset \langle x \rangle^{-1}L^\infty$. The eigenfunction equation for a function $\phi \in \mathcal{E}$, for which $\langle \phi, V \rangle = 0$, can be written as
\[
\phi(x) = -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{|x| - |x - y|}{|x - y||x|} V(y)\phi(y) \, dy.
\]
We further rewrite it as
\[
|x|^2\phi(x) + \frac{1}{4\pi} \int_{|y| \geq R} \left(\frac{|x| - |x - y|}{|x - y||y|} \right)^2 V(y)|y|^2\phi(y) \, dy =
\]
\[
= -\frac{1}{4\pi} \int_{|y| < R} |x| - |x - y| V(y)\phi(y) \, dy - \frac{1}{4\pi} \int_{|y| \geq R} \left(\frac{|x| - |x - y|}{|x - y|} \right)^2 V(y)\phi(y) \, dy.
\]
The right-hand side is in L^∞ and for sufficiently large R the left-hand side is invertible, as above. This shows that $|x|^2\phi(x) \in L^\infty$. \hfill \square

We can continue the asymptotic expansion of eigenfunctions to any order, but first we need the following lemma.

Lemma 2.4. For $x, y \in \mathbb{R}^3$
\[
\left| \frac{1}{|x - y|} - \left(\frac{1}{|x|} + \frac{xy}{|x|^2} \right) \right| \leq \frac{|y|^2}{|x|^3|x - y|} \tag{2.1}
\]
and
\[
\left| \frac{1}{|x - y|} - \left(\frac{1}{|x|} + \frac{xy}{|x|^2} + \frac{|y|^2}{2|x|^3} - \frac{3(xy)^2}{2|x|^5} \right) \right| \leq \frac{|y|^3}{|x|^3|x - y|}. \tag{2.2}
\]

More generally, it seems to be the case (one can prove by induction) that
\[
\left| \frac{1}{|x + y|} - \sum_{k=0}^N \frac{d^k}{|x - i|^k} (y, \ldots, y) \right| \leq \frac{|y|^{N+1}}{|x|^{N+1}|x - y|}.
\]

Proof of Lemma 2.4. Indeed, we start from
\[
(|x|^2 + 2xy + |y|^2)^{1/2} - (|x|^2)^{1/2} = \frac{2xy}{|x + y| + |x|} + \frac{|y|^2}{|x + y| + |x|}. \tag{2.3}
\]
Then
\[\left| \frac{2xy}{|x+y| + |x|} - \frac{xy}{|x|} \right| = \left| \frac{xy(|x| - |x+y|)}{(|x+y| + |x|)|x|} \right| \lesssim \frac{|y|^2}{|x|}. \]

Therefore
\[\left| x + y \right| - |x| - \frac{xy}{|x|} \lesssim \frac{|y|^2}{|x|}. \] (2.4)

Consequently
\[|x^2(|x| - |x-y|) - xy|x-y| | \lesssim |x^2||x-y| - |x| + \frac{xy}{|x|} + |xy(|x| - |x-y|) | \lesssim |y|^2|x|. \]

Dividing by \(|x|^3|x-y|\) we obtain (2.1).

We next perform a more detailed analysis of the same inequality. In (2.3), by (2.4)
\[\left| \frac{xy(|x| - |x+y|)}{(|x+y| + |x|)|x|} + \frac{(xy)^2}{2|x|^3} \right| \lesssim \left| \frac{xy(|x| - |x+y|)}{(|x+y| + |x|)|x|} \frac{xy(|x| - |x+y|)}{2|x|^2} \right| + \left| \frac{xy}{|x|} \right| \lesssim \frac{|y|^3}{|x|^2}. \]

Furthermore, also in (2.3),
\[\left| \frac{|y|^2}{|x+y| + |x|} - \frac{|y|^2}{2|x|} \right| \lesssim \frac{|y|^3}{|x|^2}. \]

Therefore
\[\left| x + y \right| - |x| - \frac{xy}{|x|} - \frac{|y|^2}{2|x|} + \frac{(xy)^2}{2|x|^3} \lesssim \frac{|y|^3}{|x|^2}. \] (2.5)

By (2.4) and (2.5) we then obtain (2.2). \qed

We can now establish the asymptotic expansion of eigenfunctions.

Lemma 2.5. Assume that \(V \in L^1 \cap L^{3/2,1} \). Let \(\phi \in E \) be a zero energy eigenfunction of \(H \). Then
\[\phi(x) - \sum_{k=1}^{3} \langle V\phi, y_k \rangle \frac{x_k}{|x|^3} \in |x|^{-2}(L^{3,\infty} \cap L^\infty). \]

Further assume that \(V \in \langle x \rangle^{-1}L^1 \cap L^{3/2,1} \). Then
\[\phi(x) - \sum_{k=1}^{3} \langle V\phi, y_k \rangle \frac{x_k}{|x|^2} - \sum_{k,l=1}^{3} \langle \phi V, y_k y_l \rangle \left(\frac{\delta_{k\ell}}{2|x|^3} - \frac{3x_k x_{\ell}}{2|x|^5} \right) \in |x|^{-3}(L^{3,\infty} \cap L^\infty). \]

In particular, \(\phi \in E \) is in \(L^1 \) if and only if \(\langle V\phi, y_k \rangle = 0 \) and \(\langle V\phi, y_k y_{\ell} \rangle = 0 \) for \(1 \leq k, \ell \leq 3 \).

Let \(E_1 := E \cap L^1 \). Then \(\text{codim}_E E_1 \leq 12 \).
Proof of Lemma 2.5. We start from the eigenfunction equation
\[\phi(x) = -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{1}{|x-y|} V(y) \phi(y) \, dy. \]
Recall that \(\langle \phi, V \rangle = 0 \). Using (2.1) we obtain that
\[\left| \phi(x) - \sum_{k=1}^{3} \langle V\phi, y_k \rangle \frac{x_k}{|x|^2} \right| \leq \frac{1}{|x|^2} \int_{\mathbb{R}^3} \frac{|y|^2 |V(y)||\phi(y)| \, dy}{|x-y|}. \]
Since \(\phi \in \langle x \rangle^{-2}L^\infty \) and \(V \in L^1 \cap L^{3/2,1} \), the right-hand side is in \(|x|^{-2}(L^{3,\infty} \cap L^\infty) \).

Using (2.2) we obtain instead that
\[\left| \phi(x) - \sum_{k=1}^{3} \langle V\phi, y_k \rangle \frac{x_k}{|x|^2} - \sum_{k,l=1}^{3} \langle V\phi, y_k y_l \rangle \left(\frac{\delta_{k,l}}{2|x|^2} - \frac{3x_k x_l}{2|x|^4} \right) \right| \leq \frac{1}{|x|^3} \int_{\mathbb{R}^3} \frac{|y|^3 |V(y)||\phi(y)| \, dy}{|x-y|}. \]
Since \(\phi \in \langle x \rangle^{-2}L^\infty \) and \(V \in \langle x \rangle^{-1}L^1 \cap L^{3/2,1} \), the right-hand side is in \(|x|^{-3}(L^{3,\infty} \cap L^\infty) \).

These estimates matter only in the region \(\{ x : |x| \geq 1 \} \), since near zero \(\phi \in L^\infty \subset L^1(\{|x| \leq 1\}) \). As \(|x|^{-3}L^{3,\infty} \subset L^1(\{|x| \geq 1\}) \) and \(\frac{x_k}{|x|^2}, \frac{\delta_{k,l}}{2|x|^2} - \frac{3x_k x_l}{2|x|^4} \notin L^1 \)
are linearly independent, it follows that \(\phi \in \mathcal{E} \) is in \(L^1 \) if and only if all the coefficients \(\langle V\phi, y_k \rangle \) and \(\langle V\phi, y_k y_l \rangle \) are zero.

Then \(\mathcal{E}_1 \) is the kernel of a rank-12 map \(\phi \mapsto \langle \langle \phi V, y_k \rangle, \langle \phi V, y_k y_l \rangle \rangle \) from \(\mathcal{E} \)
to \(\mathbb{C}^{12} \), so coding \(\mathcal{E}_1 \leq 12 \). \(\square \)

2.3. Wiener spaces.

Definition 2.1. For a Banach lattice \(X \), let the space \(\mathcal{V}_X \) consist of kernels \(T(x,y,\sigma) \) such that, for each pair \((x,y) \), \(T(x,y,\sigma) \) is a finite measure in \(\sigma \) on \(\mathbb{R} \) and
\[M(T)(x,y) := \int_{\mathbb{R}} d|T(x,y,\sigma)| \]
is an \(X \)-bounded operator.

\(\mathcal{V}_X \) is an algebra under
\[(T_1 \ast T_2)(x,z,\sigma) := \int_{\mathbb{R}} T_1(x,y,\rho)T_2(y,z,\sigma - \rho) \, dy \, ds. \]
Elements of \(\mathcal{V}_X \) have Fourier transforms
\[\hat{T}(x,y,\lambda) := \int_{\mathbb{R}} e^{-i\lambda \sigma} dT(x,y,\sigma) \]
which are uniformly \(X \)-bounded operators, \(\hat{T}(\lambda) \in L^\infty_\chi \mathcal{B}(X) \), and, for every \(\lambda \in \mathbb{R} \), \(\hat{T}_1(\lambda)\hat{T}_2(\lambda) = (T_1 \ast T_2)^\wedge(\lambda) \).

The space \(\mathcal{V}_X \) contains elements of the form \(\delta_0(\sigma)T(x,y) \), whose Fourier transform is constantly the operator \(T(x,y) \in \mathcal{B}(X) \). In particular, rank-one operators \(\delta_0(\sigma)\varphi(\sigma) \otimes \psi(y) \) are in \(\mathcal{V}_X \) when \(\psi \in X^* \), \(\varphi \in X \). More generally, \(f(\sigma)T(x,y) \in \mathcal{V}_X \) if \(f \in L^1 \) and \(T \in \mathcal{B}(X) \).
Moreover, for two Banach lattices X and Y of functions on \mathbb{R}^3, we also define the space $\mathcal{V}_{X,Y}$ of kernels $T(x,y,\sigma)$ such that $M(T)(x,y)$ is a bounded operator from X to Y. The category of such operators forms an algebroid, in the sense that

$$\|T_1 * T_2\|_{\mathcal{V}_{X,Y}} \leq \|T_1\|_{\mathcal{V}_{Y,Z}} \|T_2\|_{\mathcal{V}_{X,Y}}.$$

For example, note that $(R_0((\lambda + i0)^2))^\wedge \in \mathcal{V}_{L^{3/2,1},L^\infty} \cap \mathcal{V}_{L^{1},L^\infty}$ and $(\partial_\lambda R_0((\lambda + i0)^2))^\wedge \in \mathcal{V}_{L^{1},L^\infty}$. Indeed, the Fourier transform in λ is

$$(R_0((\lambda + i0)^2))^\wedge(\sigma)(x,y) = (4\pi\sigma)^{-1}\delta_{|x-y|}(\sigma),$$

so $M((R_0((\lambda + i0)^2))^\wedge) = \frac{1}{4\pi|x-y|}$. Clearly $\frac{1}{4\pi|x-y|}$ is in $\mathcal{B}(L^{3/2,1},L^\infty) \cap \mathcal{B}(L^1,L^\infty)$.

Likewise, $(\partial_\lambda R_0((\lambda + i0)^2))^\wedge(\sigma)(x,y) = (4\pi)^{-1}i\delta_{|x-y|}(\sigma)$, so $M((\partial_\lambda R_0((\lambda + i0)^2))^\wedge) = (4\pi)^{-1}1 \otimes 1$, which is in $\mathcal{B}(L^1,L^\infty)$.

A space that will repeatedly intervene in computations is

Definition 2.2. $\mathcal{W} = \{L \mid L^\gamma \in \mathcal{V}_{L^{3/2,2},L^\infty} \cap \mathcal{V}_{L^{1},L^\infty}, \ (\partial_\lambda L)^\gamma \in \mathcal{V}_{L^{3/2,2},L^{3,2}}\}.$

This space has the algebra property that $L_1, L_2 \in \mathcal{W} \implies L_1(\lambda)L_2(\lambda) \in \mathcal{W}.$

The following technical lemma will be useful:

Lemma 2.6 (Fourier transforms).

$$M\left(\frac{e^{is|x-y|}}{4\pi|x-y|}\right)^\wedge = \frac{1}{4\pi|x-y|};$$

$$M\left(\partial_s \frac{e^{is|x-y|}}{4\pi|x-y|}\right)^\wedge = \frac{1 \otimes 1}{4\pi};$$

$$M\left(\frac{R_0((s + i0)^2) - R_0(0)}{s}\right)^\wedge = \frac{1 \otimes 1}{4\pi};$$

$$M\left(\partial_s \frac{R_0((s + i0)^2) - R_0(0)}{s}\right)^\wedge = \frac{|x-y|}{8\pi};$$

$$M\left(\partial_s \frac{R_0((s + i0)^2) - R_0(0) - is \frac{1 \otimes 1}{4\pi}}{s^2}\right)^\wedge = \frac{|x-y|^2}{24\pi};$$

Proof. Let $a > 0$. Observe that the Fourier transform of $e^{i\lambda a}$ in λ is $\delta_a(t)$. Then

$$\frac{e^{i\lambda a} - 1}{i\lambda} = \int_0^a e^{i\lambda b} \, db,$$

so $\left(\frac{e^{i\lambda a} - 1}{i\lambda}\right)^\wedge = \chi_{[0,a]}(\lambda)$. Also

$$\frac{e^{i\lambda a} - 1 - i\lambda a}{i\lambda^2} = \int_0^a \frac{e^{i\lambda b} - 1}{\lambda} \, db,$$
Integrating in \(\sigma \) spectrum, possible singularity at zero, we study what happens at regular points in the spectrum.

Note that \(R_0((s + i0)^2) = \frac{e^{is|x-y|}}{4\pi|x-y|} \) has the Fourier transform \(\frac{\delta_{|x-y|}(\sigma)}{4\pi|x-y|} \).

Thus
\[
R_0((s + i0)^2)^\wedge = \left(\frac{e^{is|x-y|}}{4\pi|x-y|} \right)^\wedge = \frac{\delta_{|x-y|}(\sigma)}{4\pi|x-y|}.
\]

Integrating the absolute value in \(\sigma \) we obtain
\[
\frac{1}{4\pi|x-y|}.
\]

Likewise,
\[
\left(\frac{R_0((s + i0)^2) - R_0(0)}{s} \right)^\wedge = i\chi_{[0,|x-y|]}(\sigma) \frac{\delta_{|x-y|}(\sigma)}{4\pi|x-y|}.
\]

Integrating the absolute value in \(\sigma \) we get
\[
\frac{1}{4\pi} = \frac{1}{4\pi} \otimes \frac{1}{4\pi}.
\]

The Fourier transform of the derivative is
\[
\left(\partial_s R_0((s + i0)^2) - R_0(0) \right)^\wedge = \frac{i\sigma \chi_{[0,|x-y|]}(\sigma)}{4\pi|x-y|}.
\]

Integrating in \(\sigma \) we obtain
\[
\frac{|x-y|}{8\pi}.
\]

Next,
\[
\left(\frac{R_0((s + i0)^2) - R_0(0) - is1 \otimes 1}{s^2} \right)^\wedge = \left(\frac{e^{is|x-y|} - 1 - is|x-y|}{4\pi s^2|x-y|} \right)^\wedge
\]
\[
= \frac{(|x-y| - \sigma) \chi_{[0,|x-y|]}(\sigma)}{4\pi|x-y|}.
\]

Integrating in \(\sigma \) we obtain
\[
\frac{|x-y|}{8\pi}.
\]

The Fourier transform of the derivative is
\[
\left(\partial_s R_0((s + i0)^2) - R_0(0) - is1 \otimes 1 \right)^\wedge = \frac{\sigma(|x-y| - \sigma) \chi_{[0,|x-y|]}(\sigma)}{4\pi|x-y|}.
\]

Integrating in \(\sigma \) we obtain
\[
\frac{|x-y|^2}{24\pi}.
\]

2.4. Regular points and regular Hamiltonians. Before examining the possible singularity at zero, we study what happens at regular points in the spectrum.

Recall the notation \(V_1 = |V|^{1/2} \) and \(V_2 = |V|^{1/2} \text{ sgn} \ V \). The following two properties play an important part in the study:

Lemma 2.7. Let \(T(x, y, \rho) := \frac{V_2(x)V_1(y)}{4\pi|x-y|} \delta_{|x-y|}(\rho) \), so \(\hat{T}(\lambda) = V_2R_0((\lambda + i0)^2)\hat{V}_1 \). Then

1. \(\lim_{R \to \infty} \| \chi_{[0,R]}(R)T(\rho) \|_{\mathcal{V}_{3/2,2} \cap \mathcal{V}_{3,2}} = 0 \).
2. For some \(N \geq 1 \lim_{\epsilon \to 0} \| T_N(\rho + \epsilon) - T_N(\rho) \|_{\mathcal{V}_{3/2,2} \cap \mathcal{V}_{3,2}} = 0 \).

Here the powers of \(T \) mean repeated convolution. We refer the reader to similar properties that appear in the proof of Theorem 5 in [BeGo1].
Proof of Lemma 2.7. Suppose V_1 and V_2 are bounded functions with compact support in $B(0, D)$. It follows that for $R > 2D$ $\chi(t/R)T(t) = 0$, so in particular $\|\chi(t/R)V_{L_3/2,2} \cap V_{L_3,2} \to 0$ as $R \to \infty$, and property C1 is preserved by taking the limit of V_1 and V_2 in $L^{3,2}$.

Next, fix $p \in (1, 4/3]$ and assume that V_1 and V_2 are bounded and of compact support.

Since V_1 and V_2 are bounded and of compact support, T also has the local and distal properties

$$\lim_{\epsilon \to 0} \|\chi_\epsilon(|x - y|)\frac{V_2(x)V_1(y)}{|x - y|} \|_{B(L^{3/2,2}) \cap B(L^{3,2})} = 0$$

and

$$\lim_{R \to \infty} \|\chi_\epsilon(|x - y|)\frac{V_2(x)V_1(y)}{|x - y|} \|_{B(L^{3/2,2}) \cap B(L^{3,2})} = 0.$$

Combined with condition C1, this implies that for any $\epsilon > 0$ there exists a cutoff function χ compactly supported in $(0, \infty)$ such that

$$\|\chi(\rho)T(\rho) - T(\rho)\|_{V_{L_3/2,2} \cap V_{L_3,2}} < \epsilon.$$

Thus, it suffices to show that condition C2 holds for $\chi(\rho)T(\rho)$.

The Fourier transform of $\chi(\rho)T(\rho)$ has the form

$$(\chi(\rho)T(\rho))^\wedge(\lambda) = V_2(x)\frac{e^{i\lambda|x-y|}}{4\pi|x-y|} \chi(|x-y|)V_1(y). \quad (2.7)$$

Such oscillating kernels have decay in the L^p operator norm for $p > 1$. By the Lemma of [Ste], page 392, with p' being the dual exponent $\frac{1}{p} + \frac{1}{p'} = 1$,

$$\|\chi(\rho)T(\rho))^\wedge(\lambda)f\|_{L^p} \leq \lambda^{-3/p'}\|f\|_{L^p}. \quad (2.8)$$

Taking into account the fact that $(\chi(\rho)T(\rho))^\wedge(\lambda)$ has a kernel bounded in absolute value by $\frac{|V(x)|^{1/2}|V(y)|^{1/2}}{4\pi|x-y|}$ (where $|V|^{1/2} = V_1$ is bounded and has compact support by assumption), it follows that $(\chi(\rho)T(\rho))^\wedge(\lambda)$ is uniformly bounded in $B(X, L^p)$, $B(L^p, X)$, and $B(L^p)$ for all λ, where X is $L^{3/2,2}$ or $L^{3,2}$. Therefore, by also using (2.8) for the middle factors,

$$\|(\chi(\rho)T(\rho))^\wedge(\lambda)f\|_X \leq \langle \lambda \rangle^{-3(N-2)/p'}\|f\|_X.$$

For $N > 2 + 2p'/3$, this shows that $\partial_\rho(\chi(\rho)T(\rho))^N$ are uniformly bounded operators in $B(X)$, where X is either $L^{3/2,2}$ or $L^{3,2}$. Since $(\chi(\rho)T(\rho))^N$ has compact support in ρ, this in turn implies C2.

For general $V \in L^{3/2,1}$, choose a sequence of bounded compactly supported approximations for which C2 holds, as shown above. By a limiting process, we obtain that C2 also holds for V. \hfill \Box

Lemma 2.8. Let $\hat{T}(\lambda) = V_2 R_0((\lambda + i0)^2)V_1$. Assume that $V \in L^{3/2,1}$ and let $\lambda_0 \neq 0$. Consider a cutoff function χ. Then, for $\epsilon < 1$, $\chi(\frac{\lambda - \lambda_0}{\epsilon})(I + \hat{T}(\lambda)^{-1}) \in \mathcal{W}$. The same holds for $\lambda_0 = 0$ if V is a generic potential.
Infinity has the same property: for $R \gg 1$, $(1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}$.

Proof of Lemma 2.3: Note that $I + \hat{T}(\lambda_0)$ is invertible in $\mathcal{B}(L^{3/2,2})$ and in $\mathcal{B}(L^3)$ for all $\lambda_0 \neq 0$, the only issue being at zero.

Indeed, assume that $I + \hat{T}(\lambda_0)$ is not invertible in $\mathcal{B}(L^{3/2,2})$; then by Fredholm’s alternative there exists a nonzero $f \in L^{3/2,2}$ such that

$$f = -V_2 R_0((\lambda_0 + i0)^2) V_1 f.$$

Let $V_1 = V_1^1 + V_1^2$, $V_2 = V_2^1 + V_2^2$, where V_1^1 and V_2^1 have compact support and are bounded and $\|V_1^2\|_{L^{3,2}}, \|V_2^2\|_{L^{3,2}} \ll 1$. Then

$$f = -(I + V_2 R_0((\lambda_0 + i0)^2) V_1^2 + V_2^2 R_0((\lambda_0 + i0)^2) V_1^1)^{-1} V_2 R_0((\lambda_0 + i0)^2) V_1 f,$$

which implies that $f \in L^2$. Letting $g = R_0((\lambda_0 + i0)^2) V_1 f$, we obtain a nonzero $L^{6,\infty}$ solution g of the equation

$$g = -R_0((\lambda_0 + i0)^2) V g.$$

However, this is impossible for $\lambda_0 \neq 0$ due to the results of Ionescu–Jerison [I0,Je] and Goldberg–Schlag [GoSc1].

When $\lambda_0 = 0$, g is a zero energy eigenfunction or resonance for $H = -\Delta + V$, which cannot happen if V is a generic potential.

Let $S_\epsilon(\lambda) = \chi(\frac{\lambda - \lambda_0}{\epsilon})(\hat{T}(\lambda) - \hat{T}(\lambda_0))$. A simple argument based on condition C1 shows that $\lim_{\epsilon \to 0} \|S_\epsilon \|_{L^{3/2,2} \cap V_{L^{3,2}}} = 0$. Then

$$\chi(\frac{\lambda - \lambda_0}{\epsilon})(I + \hat{T}(\lambda))^{-1} = \chi(\frac{\lambda - \lambda_0}{\epsilon})(I + \hat{T}(\lambda_0) + \chi(\frac{\lambda - \lambda_0}{2\epsilon})(\hat{T}(\lambda) - \hat{T}(\lambda_0)))^{-1}$$

$$= \chi(\frac{\lambda - \lambda_0}{\epsilon})(I + \hat{T}(\lambda_0))^{-1} \sum_{k=0}^{\infty} (-1)^k (S_\epsilon(\lambda)(I + \hat{T}(\lambda_0))^{-1})^k.$$

The Fourier transform of the series above converges for sufficiently small ϵ, showing that $(\chi(\frac{\lambda - \lambda_0}{\epsilon})(I + \hat{T}(\lambda))^{-1})^\vee \in V_{L^{3/2,2}} \cap V_{L^{3,2}}$.

Concerning the derivative,

$$\chi(\frac{\lambda - \lambda_0}{\epsilon})D_{\lambda}(I + \hat{T}(\lambda))^{-1} = -\chi(\frac{\lambda - \lambda_0}{\epsilon})(I + \hat{T}(\lambda))^{-1} D_{\lambda} \hat{T}(\lambda) \chi(\frac{\lambda - \lambda_0}{2\epsilon})(I + \hat{T}(\lambda))^{-1}.$$

Here $(\chi(\frac{\lambda - \lambda_0}{2\epsilon})(I + \hat{T}(\lambda))^{-1})^\vee \in V_{L^{3/2,2}} \cap V_{L^{3,2}}$ and $(D_{\lambda} \hat{T}(\lambda))^\vee \in V_{L^{3/2,2},L^{3,2}}$ since $M((D_{\lambda}T(\lambda))^\vee) = \frac{|V_2(x)| \otimes |V_1(y)|}{4\pi}$. Then $(\chi(\frac{\lambda - \lambda_0}{\epsilon})D_{\lambda}(I + \hat{T}(\lambda))^{-1})^\vee \in V_{L^{3/2,2},L^{3,2}}$.

The term $D_{\lambda}(\chi(\frac{\lambda - \lambda_0}{\epsilon})(I + \hat{T}(\lambda))^{-1})$ is handled as above. Thus $(\chi(\frac{\lambda - \lambda_0}{\epsilon})(I + \hat{T}(\lambda))^{-1})^\vee \in V_{L^{3/2,2},L^{3,2}}$.

At infinity, for any real number L one can express $(1 - \chi(\lambda/R))\hat{T}(\lambda)$ as the Fourier transform of

$$S_R(\rho) = (T - R\chi(R \cdot) * T)(\rho) = \int_{\mathbb{R}} R\chi(R\sigma)[T(\rho) - T(\rho - \sigma)] d\sigma.$$
Thanks to condition C2, the norm of the right-hand side integral vanishes as \(L \to \infty \). This makes it possible to construct an inverse Fourier transform for

\[
(1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1} = (1 - \chi(\lambda/R))\sum_{k=0}^{\infty} (-1)^k \left((1 - \chi(2\lambda/R))\hat{T}(\lambda)\right)^k
\]

via this power series expansion, which converges for sufficiently large \(R \).

If only \(T^N \) satisfies C2 then one constructs an inverse Fourier transform for \((1 - \chi(\lambda/R))(I - (-\hat{T})^N(\lambda))^{-1} \) in this manner and observes that

\[
(1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1} = (1 - \chi(\lambda/R))(I - (-\hat{T}(\lambda))^N)^{-1} \sum_{k=0}^{N-1} (-1)^k \hat{T}^k(\lambda).
\]

Finally, concerning the derivative in a neighborhood of infinity, we note that

\[
(1 - \chi(\lambda/R))\partial_\lambda(I + \hat{T}(\lambda))^{-1} = -(1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1} \partial_\lambda(1 - \chi(2\lambda/R))(I + \hat{T}(\lambda))^{-1}.
\]

Here \(((1 - \chi(2\lambda/R))(I + \hat{T}(\lambda))^{-1})^\vee \in \mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^{3,2}}^\vee \) and \((\partial_\lambda \hat{T}(\lambda))^\vee \in \mathcal{V}_{L^{3/2,2},L^{3,2}}^\vee \). Therefore \(((1 - \chi(\lambda/R))\partial_\lambda(I + \hat{T}(\lambda))^{-1})^\vee \in \mathcal{V}_{L^{3/2,2},L^{3,2}}^\vee \) and furthermore \((\partial_\lambda((1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1}))^\vee \in \mathcal{V}_{L^{3/2,2},L^{3,2}}^\vee \). □

In the case when \(H \) is generic, we can cover the whole spectrum \([0, \infty)\) by open neighborhoods of regular points, plus an open neighborhood of infinity, and choose a subordinate partition of unity. We retrieve a form of Theorem 2 of [BeGo1]:

Theorem 2.9. Let \(V \in L^{3/2,1} \) be a real-valued potential for which the Schrödinger operator \(H = -\Delta + V \) has no resonances or eigenvalues at zero energy. Then

\[
\|e^{-itH}P_c f\|_\infty \lesssim |t|^{-\frac{3}{2}} \|f\|_1. \tag{2.9}
\]

In the context of the wave equation, again if the Hamiltonian \(H \) is generic, we retrieve the results of [BeGo2].

Proof of Theorem 2.9. Consider a sufficiently large \(R \) such that \((1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}, \) by Lemma 2.8. Also by Lemma 2.8, for every \(\lambda_0 \in [-4R, 4R] \) (including zero, since \(V \) is a generic potential) there exists \(\epsilon(\lambda_0) > 0 \) such that \(\chi(\frac{\lambda-\lambda_0}{\epsilon(\lambda_0)})(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}. \)

Since \([-4R, 4R] \) is a compact set, there exists a finite covering \([-4R, 4R] \subset \bigcup_{k=1}^{N} [\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k)] \). Then we construct a finite partition of unity on \(\mathbb{R} \) by smooth functions \(1 = \sum_{k=1}^{N} \chi_k(\lambda) + \chi_\infty(\lambda), \) where supp \(\chi_\infty \subset \mathbb{R}\setminus[-2R, 2R] \) and supp \(\chi_k \subset [\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k)] \). By our construction, for each \(1 \leq k \leq N \) and for \(k = \infty, \chi_k(\lambda)(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}, \) so summing up we obtain that \((I + \hat{T}(\lambda))^{-1} \in \mathcal{W}.\)
By spectral calculus, we express the perturbed evolution as
\[e^{it\hat{H}}P_{c}f = \frac{1}{2\pi i} \int_{0}^{\infty} e^{it\lambda}(R_{V}(\lambda + i0) - R_{V}(\lambda - i0)) f d\lambda \]
\[= \frac{1}{\pi i} \int_{-\infty}^{\infty} e^{it\lambda^2} R_{V}((\lambda + i0)^2) f \lambda d\lambda \]
\[= \frac{1}{\pi i} \int_{-\infty}^{\infty} e^{it\lambda^2} (R_{0}((\lambda + i0)^2) - R_{0}((\lambda + i0)^2)V_{1}(I + \hat{T}(\lambda))^{-1}V_{2}R_{0}((\lambda + i0)^2)) f \lambda d\lambda \]
\[= \frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{it\lambda^2} \hat{\varphi}(R_{0}((\lambda + i0)^2) - R_{0}((\lambda + i0)^2)V_{1}(I + \hat{T}(\lambda))^{-1}V_{2}R_{0}((\lambda + i0)^2)) \varphi(\rho) f d\rho. \]
(2.10)

Since \((I + \hat{T}(\lambda))^{-1} \in \mathcal{W}\), it follows that \((\hat{\varphi}(I + \hat{T}(\lambda))^{-1}) \notin V_{L^{1/2,2}}\). Taking into account that \(R_{0}((\lambda + i0)^2)V_{1} \in V_{L^{1,1/2,2}}\) and \(V_{2}R_{0}((\lambda + i0)^2) \in V_{L^{3/2,1}L^{\infty}}\), we obtain that
\[R_{0}((\lambda + i0)^2)V_{1}(I + \hat{T}(\lambda))^{-1}V_{2}R_{0}((\lambda + i0)^2) \notin V_{L^{1,1,1}}. \]
By definition, this ensures a bound of \(|t|^{-3/2}\) for this expression's contribution to (2.10). The other terms are handled similarly.

We next consider the effect of singularities at zero.

2.5. Exceptional Hamiltonians of the first kind. Let
\[Q = -\frac{1}{2\pi i} \int_{|z + 1| = \delta} (V_{2}R_{0}(0)V_{1} - zI)^{-1} dz \]
and \(\overline{Q} = 1 - Q\). Assuming that \(H = -\Delta + V\) has only a resonance \(\phi\) at zero, then (recalling that \(-\langle \phi, V\phi \rangle = 1\)) by the analytic Fredholm theorem
\[Q = -V_{2}\phi \otimes V_{1}\phi. \]

The resonance \(\phi \in \mathcal{M}\) satisfies the equation \(\phi = -R_{0}(0)V\phi\). Since \(\phi \in L^{3,\infty} \cap L^{\infty}\), \(Q\) is bounded on \(L^{3/2,2}\) and on \(L^{3,2}\), so the constant family of operators \(Q\) is in \(\mathcal{W}\). Moreover, \(Q\) is in \(\mathcal{B}(L^{3/2,2}, \hat{L}^{3,2})\) and in \(\mathcal{B}(L^{3,2}, L^{3,2})\). Note that, since
\[e^{i\lambda|x-y|} \leq \min(1, \lambda|x-y|) \implies e^{i\lambda|x-y|} - 1 \leq \lambda \delta|x-y|, \]
one has
\[V_{2}(x) \left(\frac{e^{i\lambda|x-y|}}{|x-y|} - \frac{1}{|x-y|} \right) V_{1}(y) \leq |V_{2}(x)|\lambda|V_{1}(y)|. \]
(2.11)

Thus, when \(V \in \langle \lambda \rangle^{-1}L^{3/2,1} \mathcal{L} + \hat{T}(\lambda) = I + V_{2}R_{0}((\lambda + i0)^2)V_{1}\) is Lipschitz continuous in \(\mathcal{B}(L^{2})\). This implies that, more generally, when \(V \in L^{3/2,1}\)
\(\hat{T}(\lambda)\) is continuous in \(\mathcal{B}(L^{2})\) (the proof is by approximation).

In a similar manner, by approximating \(V \in L^{3/2,1}\) with \(\langle \lambda \rangle^{-2}L^{3/2,1}\) potentials, we obtain that \(\hat{T}(\lambda)\) is continuous in \(\mathcal{B}(L^{3/2,2}) \cap \mathcal{B}(L^{3,2})\).
Let

\[K = (I + V_2 R_0(0) V_1 + Q)^{-1} Q. \]

Then \(K \) is the inverse of \(Q(I + \hat{T}(0))Q = Q(I + V_2 R_0(0) V_1) Q \) in \(B(\overline{Q} L^{3/2} \cap \overline{Q} L^{3/2}) \), in the sense that

\[K Q(I + V_2 R_0(0) V_1) Q = Q(I + V_2 R_0(0) V_1) Q K = Q. \] (2.12)

By continuity \(Q(I + V_2 R_0((\lambda + i0)^2) V_1) Q \) is also invertible for \(|\lambda| \ll 1 \).

The following lemma (Lemma 4.7 from Yajima [Yaj1], also known as the Feshbach lemma) is extremely useful in studying the singularity at zero.

Lemma 2.10. Let \(X = X_0 + X_1 \) be a direct sum decomposition of a vector space \(X \). Suppose that a linear operator \(L \in B(X) \) is written in the form

\[L = \begin{pmatrix} L_{00} & L_{01} \\ L_{10} & L_{11} \end{pmatrix} \]

with respect to this decomposition and that \(L_{00}^{-1} \) exists. Set \(C = L_{11} - L_{10} L_{00}^{-1} L_{01} \). Then, \(L^{-1} \) exists if and only if \(C^{-1} \) exists. In this case

\[L^{-1} = \begin{pmatrix} L_{00}^{-1} + L_{00}^{-1} L_{01} C^{-1} L_{10} L_{00}^{-1} - L_{00}^{-1} L_{01} C^{-1} \\ -C^{-1} L_{10} L_{00}^{-1} C^{-1} \end{pmatrix}. \] (2.13)

By definition, an exceptional point \(\lambda \in \mathbb{C} \) is one where \(I + V_2 R_0(\lambda) V_1 \) is not \(L^2 \)-invertible.

Lemma 2.11. Assume that \(V \in \langle x \rangle^{-2} L^{3/2, 1} \subset \langle x \rangle^{-1} L^1 \cap L^{3/2, 1} \) and that \(H = -\Delta + V \) is exceptional of the first type, with a resonance \(\phi \) at zero. Let \(\chi \) be a fixed cutoff function. Then for some \(\epsilon > 0 \)

\[\chi(\lambda/\epsilon)(I + \hat{T}(\lambda))^{-1} = L(\lambda) - \lambda^{-1} \chi(\lambda/\epsilon) \frac{4\pi i}{|\langle V, \phi \rangle|^2} V_2 \phi \otimes V_1 \phi, \]

where \(L \in \mathcal{W} \).

Moreover, zero is an isolated exceptional point, so \(H = -\Delta + V \) has finitely many negative eigenvalues.

The computations in the proof of this lemma parallel those in Section 4.3 of [Yaj1]. The main difference is using \(\hat{L}^1 \)-related spaces instead of Hölder spaces.

Proof of Lemma 2.11 We apply Lemma 2.10 to

\[I + \hat{T}(\lambda) := \begin{pmatrix} Q(I + \hat{T}(\lambda))Q & Q \hat{T}(\lambda) Q \\ Q \hat{T}(\lambda) Q & Q(I + \hat{T}(\lambda))Q \end{pmatrix} = \begin{pmatrix} T_{00}(\lambda) & T_{01}(\lambda) \\ T_{10}(\lambda) & T_{11}(\lambda) \end{pmatrix}. \]

Note that \(T_{00}(\lambda) := Q(I + V_2 R_0((\lambda + i0)^2) V_1) Q \) is invertible in \(B(\overline{Q} L^{3/2} \cap \overline{Q} L^{3/2}) \) for \(|\lambda| \ll 1 \), because

\[T_{00}(0) = Q(I + \hat{T}(0))Q = Q(I + V_2 R_0(0) V_1) Q \]

is invertible on \(Q L^{3/2} \) and on \(Q L^{3, 2} \) of inverse \(K \), see (2.12), and \(T_{00}(\lambda) \) is continuous in the norm of \(B(\overline{Q} L^{3/2} \cap \overline{Q} L^{3, 2}) \), see (2.11) above.
Furthermore, start from \((R_0((\lambda + i0)^2))^\wedge \in \mathcal{V}_{L^{3/2,1},L^{\infty}} \cap \mathcal{V}_{L^1,L^{3,\infty}}\) and \((\partial_\lambda R_0((\lambda + i0)^2))^\wedge \in \mathcal{V}_{L^1,L^{\infty}}\). We know that \(|V|^{1/2} \in \mathcal{B}(L^{3/2,2},L^1) \cap \mathcal{B}(L^{\infty},L^{3,2}) \cap \mathcal{B}(L^{3,\infty},L^{3/2,2}) \cap \mathcal{B}(L^{3,2},L^{3,2})\). Thus \(V_2 R_0((\lambda + i0)^2) V_1 \in \mathcal{W}\) and \(\overline{Q}\) preserves that. Then \(T_{00}(\lambda) \in \mathcal{W}\) as well.

Next, since \(T_{00}(0)\) is invertible, for small \(\epsilon\) \(\chi(\lambda/\epsilon) T_{00}^{-1}(\lambda) \in \mathcal{W}\). The proof is as follows: let \(S_\epsilon(\lambda) := \chi(\lambda/\epsilon) \overline{Q}(\hat{T}(\lambda) - \hat{T}(0))\overline{Q}\). A simple argument based on condition C1 shows that \(\lim_{\epsilon \to 0} \|S_\epsilon\|^y_{\mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^{3,2}}} = 0\). Then

\[
\chi(\lambda/\epsilon) T_{00}^{-1}(\lambda) = \chi(\lambda/\epsilon)(T_{00}(0) + \chi(\lambda/(2\epsilon))\overline{Q}(\hat{T}(\lambda) - \hat{T}(0))\overline{Q})^{-1}
\]

\[
= \chi(\lambda/\epsilon) T_{00}^{-1}(0) \sum_{k=0}^{\infty} (-1)^k (S_{2\epsilon}(\lambda) T_{00}^{-1}(0))^{k}.
\]

The series above converges for sufficiently small \(\epsilon\), showing that \(\chi(\lambda/\epsilon) T_{00}^{-1}(\lambda) \in \mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^{3,2}}\).

Concerning the derivative,

\[
\chi(\lambda/\epsilon) \partial_\lambda T_{00}^{-1}(\lambda) = -\chi(\lambda/\epsilon) T_{00}^{-1}(\lambda) \partial_\lambda T_{00}(\lambda) \chi(\lambda/(2\epsilon)) T_{00}^{-1}(\lambda).
\]

In this expression \((\chi(\lambda/(2\epsilon)) T_{00}^{-1}(\lambda))^\vee \in \mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^{3,2}}\) and \((\partial_\lambda T_{00}(\lambda))^\vee \in \mathcal{V}_{L^{3/2,2},L^{3,2}}\). Thus \((\chi(\lambda/\epsilon) \partial_\lambda T_{00}^{-1}(\lambda))^\vee \in \mathcal{V}_{L^{3/2,2},L^{3,2}}\).

This computation shows that \(\chi(\lambda/\epsilon) T_{00}^{-1}(\lambda) \in \mathcal{W}\).

Let

\[
J(\lambda) := \frac{\hat{T}(\lambda) - (V_2 R_0(0)V_1 + i\lambda(4\pi)^{-1}V_2 \otimes V_1)}{\lambda^2}
\]

\[
= \frac{V_2 R_0((\lambda + i0)^2) V_1 - V_2 R_0(0)V_1 - i\lambda(4\pi)^{-1}V_2 \otimes V_1}{\lambda^2}.
\]

Then (recall that \(Q = -V_2 \phi \otimes V_1 \phi\))

\[
T_{11}(\lambda) = Q(I + \hat{T}(\lambda)) Q = Q(I + V_2 R_0((\lambda + i0)^2) V_1) Q
\]

\[
= Q(V_2 R_0((\lambda + i0)^2) V_1 - V_2 R_0(0)V_1) Q
\]

\[
= V_2 \phi \otimes V \phi (R_0((\lambda + i0)^2) - R_0(0)) V \phi \otimes V_1 \phi
\]

\[
= \left(\frac{|\langle V, \phi \rangle|^2}{4i\pi} - \lambda^2 \langle V_1 \phi, J(\lambda) V_2 \phi \rangle \right) Q
\]

\[
= (\lambda a^{-1} - \lambda^2 \langle V_1 \phi, J(\lambda) V_2 \phi \rangle) Q
\]

\[
:= \lambda c_0(\lambda) Q.
\]

Note that \(c_0(0) = a^{-1} \neq 0\). Recall that \(a = \frac{4i\pi}{|\langle V, \phi \rangle|^2}\).

By the third line of (2.14), \(c_0(\lambda) \in \hat{L}_1^1\) if

\[
\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} V(x) \phi(x)V(y) \phi(y) \left\| e^{i\lambda|x-y|} - \frac{1}{\lambda|x-y|} \right\|_{L_1^1} dx dy < \infty.
\]
For every \(x \) and \(y \), by Lemma 2.6

\[
\left\| e^{i\lambda|x-y|} \frac{1}{\lambda|x-y|} \right\|_{L^1_\lambda} = \left\| \frac{\lambda[0,|x-y|]}{|x-y|} \right\|_{L^1} = 1,
\]

so it is enough to assume that \(V\phi \in L^1 \), i.e. that \(V \in L^{3/2,1} \), to prove that \(c_0(\lambda) \in \hat{L}^1 \).

In order for \(\partial_\lambda c_0(\lambda) \) to be in \(\hat{L}^1 \), it suffices that

\[
\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} V(x)\phi(x)V(y)\phi(y) \left\| \partial_\lambda \frac{e^{i\lambda|x-y|} - 1}{\lambda|x-y|} \right\|_{L^1_\lambda} dx \, dy < \infty.
\]

For every \(x \) and \(y \), by Lemma 2.6

\[
\left\| \partial_\lambda \frac{e^{i\lambda|x-y|} - 1}{\lambda|x-y|} \right\|_{L^1_\lambda} = \left\| t\frac{\lambda[0,|x-y|]}{|x-y|} \right\|_{L^1} = \frac{|x-y|}{2},
\]

so \(\partial_\lambda c_0(\lambda) \in \hat{L}^1 \) when \(V\phi \in \langle x \rangle^{-1} L^1 \), i.e. when \(V \in L^1 \).

Regarding \(J(\lambda) \), when \(V \in L^1 \) then

\[
\langle J(\lambda)V_2\phi, V_1\phi \rangle = \left\langle \frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda(4\pi)^{-1} \mathbf{1} \otimes 1_V \phi, V_1\phi \rangle \right\rangle \in \hat{L}^1_\lambda.
\]

(2.15)

Moreover, when \(V \in \langle x \rangle^{-1} L^1 \), \(\langle \partial_\lambda J(\lambda)V_2\phi, V_1\phi \rangle \in \hat{L}^1_\lambda \).

Furthermore, considering the fact that \(\phi + R_0(0)V\phi = 0 \), let us define

\[
\lambda\tilde{\psi}(\lambda) := (I + \hat{T}(\lambda))V_2\phi = (V_2R_0((\lambda + i0)^2)V - V_2R_0(0)V)\phi
\]

and

\[
\lambda\tilde{\psi}^*(\lambda) := (I + \hat{T}(\lambda)^*)V_1\phi = (V_1R_0((\lambda + i0)^2)V - V_1R_0(0)V)\phi
\]

so \(\lambda\tilde{\psi}(\lambda) \) and \(\lambda\tilde{\psi}^*(\lambda) \) are bounded operators from \(L^{3/2,2} \) to \(L^{3,2} \), assuming that \(V \in \langle x \rangle^{-2} L^{3/2,1} \). Thus \(J(\lambda) \in \mathcal{V}_{L^{3/2,2},L^{3,2}} \) and same goes for \(\lambda\partial_\lambda J(\lambda) \).

Moreover, \(M((\lambda J(\lambda))^{\gamma}) = \frac{|V_2|}{2\pi} \frac{|x-y|}{8\pi} |V_1(y)| \) is a bounded operator from \(L^{3/2,2} \) to \(L^{3,2} \), assuming that \(V \in \langle x \rangle^{-2} L^{3/2,1} \). Thus \(\lambda J(\lambda) \in \mathcal{V}_{L^{3/2,2},L^{3,2}} \) and \(\lambda J(\lambda) \in \mathcal{W} \). Further note that \(\langle \partial_\lambda J(\lambda) \rangle^{\gamma} \in \mathcal{V}_{L^{3/2,2},L^{3,2}} \). It follows that \(\lambda J(\lambda) \in \mathcal{W} \).

Then (recalling that \(Q = -V_2\phi \otimes V_1\phi \))

\[
T_{01}(\lambda) := \overline{Q}\hat{T}(\lambda)Q = \overline{Q}(I + \hat{T}(\lambda))Q = (I + \hat{T}(\lambda))Q - Q(I + \hat{T}(\lambda))Q
\]

\[
= -\lambda\tilde{\psi}(\lambda) \otimes V_1\phi - \lambda c_0(\lambda)Q
\]

\[
= -\lambda(\tilde{\psi}(\lambda) + c_0(\lambda)V_2\phi) \otimes V_1\phi.
\]
Likewise,

\[T_{10}(\lambda) = -\lambda V_2 \phi \otimes (\tilde{\psi}^*(\lambda) + c_0(\lambda)V_1 \phi). \]

By our above computations it follows that \(T_{01}(\lambda) = \lambda E_1(\lambda) \) and \(T_{10}(\lambda) = \lambda E_2(\lambda) \) with \(E_1, E_2 \in \mathcal{W} \).

Then \(-T_{10}(\lambda)T_{00}^{-1}(\lambda)T_{01}(\lambda) = \lambda^2 c_1(\lambda)Q\), where

\[
\begin{align*}
 c_1(\lambda) &:= -\langle \tilde{\psi}^*(\lambda) + c_0(\lambda)V_1 \phi, T_{00}^{-1}(\lambda)(\tilde{\psi}(\lambda) + c_0(\lambda)V_2 \phi) \rangle \\
 &= -\left(-i \frac{V_1 \otimes V_2}{4\pi} + \lambda J^*(\lambda) \right) V_1 \phi + c_0(\lambda)V_1 \phi, \quad (2.16) \\
 T_{00}^{-1}(\lambda) &\left(\left(i \frac{V_2 \otimes V_1}{4\pi} + \lambda J(\lambda) \right) V_2 \phi + c_0(\lambda)V_2 \phi \right).
\end{align*}
\]

For example, one of the terms in (2.16) has the form

\[\langle \lambda J^*(\lambda) V_1 \phi, T_{00}^{-1}(\lambda) \lambda J(\lambda) V_2 \phi \rangle. \quad (2.17) \]

Since \(\lambda J(\lambda) \in \mathcal{W} \) and \(\chi(\lambda/\epsilon)T_{00}^{-1}(\lambda) \in \mathcal{W} \) and since \(V_1 \phi, V_2 \phi \in L^{3,2} \cap L^{3,2} \), it immediately follows that \(\chi(\lambda/\epsilon) \) is in \(\tilde{L}^1 \) and its derivative is also in \(\tilde{L}^1 \).

Let

\[C(\lambda) := T_{11}(\lambda) - T_{10}(\lambda)T_{00}^{-1}(\lambda)T_{01}(\lambda). \]

Then

\[C(\lambda) = (\lambda a^{-1} - \lambda^2 \langle V_1 \phi, J(\lambda) V_2 \phi \rangle + \lambda^2 c_1(\lambda))Q := \lambda a^{-1}Q + \lambda^2 c_2(\lambda)Q. \]

Thus \(C(\lambda)/\lambda \) is invertible for \(|\lambda| < 1 \) and when \(V \in \langle x \rangle^{-2} L^{3/2,1} \) one has that

\[
C^{-1}(\lambda) = \frac{1}{\lambda a^{-1} + \lambda^2 c_2(\lambda)} Q = \left(\frac{1}{\lambda a^{-1} + \lambda^2 c_2(\lambda)} - \frac{1}{\lambda a^{-1}} \right) Q = \left(\frac{a}{\lambda} - \frac{c_2(\lambda)}{(a^{-1} + \lambda c_2(\lambda)) a^{-1}} \right) Q = a\lambda^{-1} Q + E(\lambda).
\]

By our computations, such as (2.15), \(\chi(\lambda/\epsilon)c_2(\lambda) \in \tilde{L}^1 \) and \(\chi(\lambda/\epsilon)c_2(\lambda) \in \tilde{L}^1 \). Therefore for sufficiently small \(\epsilon \), as \(Q \in B(L^{3/2,2}) \cap B(L^{3,2}) \cap B(L^{3/2,2}, L^{3,2}) \), it follows that \(\chi(\lambda/\epsilon)E(\lambda) \in \mathcal{W} \).

The inverse of \(I + \tilde{T}(\lambda) \) is then given for small \(\lambda \) by formula (2.13):

\[
(I + \tilde{T}(\lambda))^{-1} = \begin{pmatrix} T_{00}^{-1} + T_{00}^{-1} T_{01} C^{-1} T_{10} T_{00}^{-1} & -T_{00}^{-1} T_{01} C^{-1} \\ -C^{-1} T_{10} T_{00}^{-1} & C^{-1} \end{pmatrix}.
\]

Three of the matrix elements belong to \(\mathcal{W} \) when localized by \(\chi(\lambda/\epsilon) \). Indeed, recall that \(\chi(\lambda/\epsilon)T_{00}^{-1}(\lambda) \in \mathcal{W} \) and \(T_{10}(\lambda) = \lambda E_1(\lambda) \) and \(T_{01}(\lambda) = \lambda E_2(\lambda) \), while \(C^{-1} = \lambda^{-1} E_3(\lambda) \), with \(E_1, E_2, \chi(\lambda/\epsilon)E_3 \in \mathcal{W} \).
The fourth matrix element is C^{-1} in the lower-right corner, which is the sum of the regular term $\chi(\lambda/\epsilon)E(\lambda) \in W$ and the singular term

$$a\lambda^{-1}\chi(\lambda/\epsilon)Q = -a\lambda^{-1}\chi(\lambda/\epsilon)V_2\phi \otimes V_1\phi.$$

As an aside, note that $\lambda^{-1}(1 - \chi(\lambda/\epsilon)) \in \hat{L}^1$ and same for its derivative. Thus we can also write the singular term as $a\lambda^{-1}Q$.

Further note that $(I + \hat{T})^{-1}$ is well-defined on a whole cut neighborhood of zero by formula (2.13) above. Thus zero is an isolated exceptional point, so there are finitely many negative eigenvalues.

\[\square\]

The next lemma shows what happens in case the potential has the critical rate of decay.

Lemma 2.12. Assume that $V \in L^{3/2,1}$ and that $H = -\Delta + V$ is exceptional of the first kind. Let χ be a standard cutoff function. Then

$$\chi(\lambda/\epsilon)(I + \hat{T}(\lambda))^{-1} = L(\lambda) + \lambda^{-1}S(\lambda),$$

with $L(\lambda) \in W$ and $S(\lambda)^\vee \in V_{L^{3,2},L^{3/2,2}}$, for sufficiently small $\epsilon > 0$.

Furthermore, 0 is an isolated exceptional point, so H has finitely many negative eigenvalues.

Proof of Lemma 2.12 We again apply Lemma 2.10 to

$$I + \hat{T}(\lambda) := \begin{pmatrix} Q(I + \hat{T}(\lambda))Q & Q\hat{T}(\lambda)Q \\ Q\hat{T}(\lambda)Q & Q(I + \hat{T}(\lambda))Q \end{pmatrix} = \begin{pmatrix} T_{00}(\lambda) & T_{01}(\lambda) \\ T_{10}(\lambda) & T_{11}(\lambda) \end{pmatrix}.$$

The proof of the fact that $\chi(\lambda/\epsilon)T_{00}^{-1}(\lambda) \in W$ is the same as in Lemma 2.11.

Then note that

$$T_{11}(\lambda) = Q(I + \hat{T}(\lambda))Q = Q(I + V_2R_0((\lambda + i0)^2)V_1)Q = Q(V_2R_0((\lambda + i0)^2)V_1 - V_2R_0(0)V_1)Q = V_2\phi \otimes V\phi(R_0((\lambda + i0)^2) - R_0(0))V\phi \otimes V_1\phi := \lambda c_0(\lambda)Q.$$

Observe that $c_0(0) = a^{-1} \neq 0$. Recall that $a = \frac{4i\pi}{\langle V, \phi \rangle^2}$.

Note that $c_0(\lambda) \in \hat{L}^1$ if

$$\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} V(x)\phi(x)V(y)\phi(y) \left| \frac{e^{i\lambda|x-y|} - 1}{\lambda|x-y|} \right| \frac{dx \, dy}{|x|} \frac{dx \, dy}{|y|} < \infty.$$

For every x and y, by Lemma 2.6

$$\left| \frac{e^{i\lambda|x-y|} - 1}{\lambda|x-y|} \right|_{L^1_\lambda} = \left\| \frac{\chi_{[0,|x-y|]}(t)}{|x-y|} \right\|_{L^1_t} = 1,$$

so it is enough to assume that $V\phi \in \hat{L}^1$, i.e. that $V \in L^{3/2,1}$, to prove that $c_0(\lambda) \in \hat{L}^1$.

Furthermore, recalling that $Q = -V_2\phi \otimes V_1\phi$,

$$T_{01}(\lambda) := -\overline{Q}(\lambda)Q = \overline{Q}(\lambda)Q - Q(I + \hat{T}(\lambda))Q$$

$$= -(V_2R_0((\lambda + i0)^2) - R_0(0))V\phi + \lambda c_0(\lambda)V_2\phi \otimes V_1\phi$$

$$= -\lambda\left(V_2\frac{R_0((\lambda + i0)^2) - R_0(0)}{\lambda}V\phi + c_0(\lambda)V_2\phi\right) \otimes V_1\phi. \quad (2.19)$$

Likewise,

$$T_{10}(\lambda) = -V_2\phi \otimes \left(V_1(R_0^*(\lambda + i0)^2) - R_0(0))V\phi + \lambda c_0(\lambda)V_1\phi\right)$$

$$= -\lambda V_2\phi \otimes \left(V_1\frac{R_0^*(\lambda + i0)^2) - R_0(0)}{\lambda}V\phi + c_0(\lambda)V_1\phi\right). \quad (2.20)$$

Thus T_{10} and T_{01}^* are both in $V_{L^{3/2,2}} \cap V_{L^{3,2}}$ by the second line of (2.18), respectively the first line of (2.19), when $V \in L^{3/2,1}$. Indeed, following the definition this reduces to

$$\int_{\mathbb{R}^3} \frac{|V_2(x)||V(y)||\phi(x)||\phi(y)|}{4\pi|x - y|} \, dy \in L^{3/2,2} \cap L^{3,2}.$$

Next, $-T_{10}(\lambda)T_{01}^{-1}(\lambda)T_{01}(\lambda) = \lambda c_1(\lambda)Q$, where

$$c_1(\lambda) = -\left\langle V_1(R_0^*(\lambda + i0)^2) - R_0(0))V\phi + \lambda c_0(\lambda)V_1\phi, \right.$$

$$\left. T_{00}^{-1}(\lambda) \left(V_2\frac{R_0((\lambda + i0)^2) - R_0(0)}{\lambda}V\phi + c_0(\lambda)V_2\phi\right)\right\rangle. \quad (2.20)$$

For example, one term from formula (2.20) has the form

$$\left\langle V_1(R_0^*(\lambda + i0)^2) - R_0(0))V_2V_1\phi, T_{00}^{-1}(\lambda)\left(V_2\frac{R_0((\lambda + i0)^2) - R_0(0)}{\lambda}V_1V_2\phi\right)\right\rangle. \quad (2.21)$$

Note that $V_1(R_0^*(\lambda + i0)^2) - R_0(0))V_2$ and $\chi(\lambda/\epsilon)T_{00}^{-1}(\lambda)$ are in W, while

$$M \left(V_2\frac{R_0((\lambda + i0)^2) - R_0(0)}{\lambda}V_1\right) = \left|\frac{|V_2||V_1|}{4\pi}\right| \in B(L^{3/2,2}; L^{3,2})$$

so $V_2\frac{R_0((\lambda + i0)^2) - R_0(0)}{\lambda}V_1 \in V_{L^{3/2,2},L^{3,2}}$. Taking into account the fact that $V_1\phi, V_2\phi \in L^{3/2,2}$, it follows that (2.21) is in \hat{L}^1.

Thus we recognize from (2.20) that $c_1(\lambda) \in \hat{L}^1$ when $V \in L^{3/2,1}$.

Further note that, since when $\lambda = 0 \frac{R_0^*((\lambda + i0)^2) - R_0(0)}{\lambda} = 0, c_1(0) = 0$. Let

$$C(\lambda) := T_{11}(\lambda) - T_{10}(\lambda)T_{00}^{-1}(\lambda)T_{01}(\lambda).$$

Then

$$C(\lambda) = \lambda(c_0(\lambda) + c_1(\lambda))Q.$$

Thus $C(\lambda)/\lambda$ is invertible for $|\lambda| \ll 1$ and $C^{-1}(\lambda) = \lambda^{-1}c_2(\lambda)Q$, with c_2 locally in \hat{L}^1. Consequently, for small ϵ $(\chi(\lambda/\epsilon)\lambda C^{-1}(\lambda))^{\epsilon} \in V_{L^{3/2,2},L^{3/2,2}}$.

The inverse of $I + \hat{T}(\lambda)$ is then given for small λ by formula (2.13):

$$(I + \hat{T})^{-1} = \left(\begin{array}{cc}
T_{00}^{-1} + T_{01}^{-1}T_{10}^{-1} C^{-1}T_{00}^{-1} & -T_{01}^{-1}T_{01}C^{-1} \\
-C^{-1}T_{10}^{-1} & C^{-1}
\end{array}\right).$$

Since $T_{00}^{-1} \in \mathcal{W}$ and $T_{01}^{-1}, T_{10}^{-1} \in \mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^{3,2}}$, while $(\chi(\lambda/e)\lambda C^{-1}(\lambda))' \in \mathcal{V}_{L^{3,2},L^{3/2,2}}$, it immediately follows that $\lambda((I + \hat{T}(\lambda))^{-1} - T_{00}^{-1}(\lambda)) \in \mathcal{V}_{L^{3,2},L^{3/2,2}}$ and that $(I + \hat{T})^{-1}$, given by formula (2.13), exists on a whole cut neighborhood of zero. □

Recall that by (1.2)

$$R(t) := \frac{ae^{-i \frac{3\pi}{4}t}}{\sqrt{\pi t}} \zeta(x) \otimes \zeta(y), \quad \zeta(t) := e^{i|\cdot|^2/4t} \phi(x).$$

Proposition 2.13. Assume that $\langle x \rangle^2 V \in L^{3/2,1}$ and that $H = -\Delta + V$ is an exceptional Hamiltonian of the first kind with canonical resonance ϕ at zero. Then for $1 \leq p < 3/2$ and $R(t)$ as above

$$e^{-itH} P_c u = Z(t)u + R(t)u,$$

$$\|Z(t)u\|_{L^p} \leq t^{-\frac{3}{2}(\frac{1}{p} - 1)} \|f\|_{L^p}, \quad \|Z(t)u\|_{L^{3,\infty}} \leq t^{-\frac{3}{2}} \|f\|_{L^{3/2,1}}.$$

Furthermore, for $3/2 < p \leq 2$

$$\|e^{-itH} P_c u\|_{L^p} \leq t^{-\frac{3}{2}(\frac{1}{p} - 1)} \|u\|_{L^p}.$$

Here $\frac{1}{p} + \frac{1}{p'} = 1$.

Proof of Proposition 2.13. Write the evolution as

$$e^{-itH} P_c f = \frac{1}{i\pi} \int_{\mathbb{R}} e^{-i\lambda^2 t} \left(R_0((\lambda+i0)^2) - R_0((\lambda+i0)^2)V_1 \hat{T}(\lambda)^{-1} V_2 R_0((\lambda+i0)^2)\right) f \lambda d\lambda.$$

We consider a partition of unity subordinated to the neighborhoods of Lemmas 2.8 and 2.11. First, take a sufficiently large R such that $(1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}$. Then, for every $\lambda_0 \in [-4R, 4R]$ there exists $\epsilon(\lambda_0) > 0$ such that $\chi(\frac{\lambda_0}{\epsilon(\lambda_0)}(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}$ if $\lambda_0 \neq 0$ or the conclusion of Lemma 2.11 holds when $\lambda_0 = 0$.

Since $[-4R, 4R]$ is a compact set, there exists a finite covering $[-4R, 4R] \subset \bigcup_{k=1}^N (\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k))$. Then we construct a finite partition of unity on \mathbb{R} by smooth functions $1 = \chi_0(\lambda) + \sum_{k=1}^N \chi_k(\lambda) + \chi_\infty(\lambda)$, where supp $\chi_\infty \subset \mathbb{R} \setminus (-2R, 2R)$, supp $\chi_0 \subset [-\epsilon(0), \epsilon(0)]$, and supp $\chi_k \subset [\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k)]$.

By Lemma 2.8 for any $k \neq 0$, $\chi_k(\lambda)(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}$, so $(1 - \chi_0(\lambda))(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}$. By Lemma 2.11 $\chi_0(\lambda) \hat{T}(\lambda)$ also decomposes into a regular term $L \in \mathcal{W}$ and a singular term $-\lambda^{-1}\chi_0(\lambda)\partial V_2 \phi \otimes V_1 \phi$.

Let Z_1 be given by the sum of all the regular terms in the decomposition:

$$Z_1(t) := \frac{1}{i\pi} \int_{\mathbb{R}} e^{-it\lambda^2} \left(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2)V_1L(\lambda)V_2R_0((\lambda + i0)^2) - (1 - \chi_0(\lambda))R_0((\lambda + i0)^2)V_1\hat{T}(\lambda)V_2R_0((\lambda + i0)^2) \right) d\lambda$$

$$= \frac{1}{2it} \int_{\mathbb{R}} e^{-it\lambda^2} \hat{\lambda} \left(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2)V_1L(\lambda)V_2R_0((\lambda + i0)^2) - (1 - \chi_0(\lambda))R_0((\lambda + i0)^2)V_1\hat{T}(\lambda)V_2R_0((\lambda + i0)^2) \right) d\lambda$$

$$= \frac{C}{it^{3/2}} \int_{\mathbb{R}} e^{-it\lambda^2} \left(\hat{\lambda}R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2)V_1L(\lambda)V_2R_0((\lambda + i0)^2) - (1 - \chi_0(\lambda))R_0((\lambda + i0)^2)V_1\hat{T}(\lambda)V_2R_0((\lambda + i0)^2) \right) \eta(\rho) d\rho.$$

The fact that $\|Z_1(t)u\|_{L^\infty} \lesssim |t|^{-3/2}\|u\|_{L^1}$ follows by knowing that

$$(\hat{\lambda}R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2)V_1L(\lambda)V_2R_0((\lambda + i0)^2) - (1 - \chi_0(\lambda))R_0((\lambda + i0)^2)V_1\hat{T}(\lambda)V_2R_0((\lambda + i0)^2)) \eta(\rho) \in V_{L^1,L^\infty}.$$

The fact that $\|Z_1(t)u\|_{L^2} \lesssim \|u\|_{L^2}$ follows by smoothing estimates. Indeed, the first term is bounded since it represents the free evolution and note that

$$\|V_2R_0(\lambda \pm i0)f\|_{L^2_{\lambda,x}} \lesssim \|f\|_{L^2},$$

$$\|e^{-it\lambda^2}(\lambda \pm \sqrt{\lambda})V_1(\lambda)\|_{L^\infty B(L^2)} < \infty,$$

$$\left\| \int_{\mathbb{R}} R_0(\lambda \pm i0)V_1F(x,\lambda) d\lambda \right\|_{L^2_x} \lesssim \|F\|_{L^2_{\lambda,x}}.$$

Combining these three estimates we obtain the L^2 boundedness of Z_1.

By interpolation between the two bounds we obtain that, for $\frac{1}{p} + \frac{1}{p'} = 1$, $1 \leq p \leq 2$,

$$\|Z_1(t)u\|_{L^{p'}} \lesssim t^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{p'})}\|u\|_{L^p},$$

as well as

$$\|Z_1(t)u\|_{L^{3,\infty}} \lesssim t^{-1/2}\|u\|_{L^{3/2,1}}.$$

Let Z_2 be the term corresponding to the singular part of the decomposition from Lemma 2.11, given by

$$Z_2(t) := \frac{a}{i\pi} \int_{\mathbb{R}} e^{-it\lambda^2} \chi_0(\lambda)R_0((\lambda + i0)^2)\phi \otimes \phi\phi R_0((\lambda + i0)^2) d\lambda$$

$$= \frac{a}{i\pi} \int_{\mathbb{R}} \int_{(\mathbb{R}^3)^2} e^{-it\lambda^2} \chi_0(\lambda)\frac{e^{i\lambda|x-z_1|}}{4\pi|x-z_1|} V(z_1)\phi(z_1)\phi(z_2)\frac{e^{i\lambda|z_2-y|}}{4\pi|z_2-y|} d\lambda dz_1 dz_2 d\lambda.$$

The subsequent Lemma 2.14 is the same as Lemma 4.10 from [Yaj1], the only difference being the space of potentials for which the result holds. For the sake of completeness we repeat the proof given in [Yaj1].

Lemma 2.14. For $V \in \langle x \rangle^{-1}L^{3/2,1}$

$$\|(Z_2(t) - R(t))u\|_{L^\infty} \lesssim t^{-3/2}\|u\|_{L^1}, \|Z_2(t)u\|_{L^{3,\infty}} \lesssim t^{-1/2}\|u\|_{L^{3/2,1}}. \quad (2.22)$$
Proof of Lemma 2.14. Let \(b = |x - z_1| + |z_2 - y| \) and
\[
C(t, b) = \frac{1}{i\pi} \int_{\mathbb{R}} e^{-it\lambda^2 + i\lambda b} \chi_0(\lambda) d\lambda.
\]
We express \(Z_2(t) \) as
\[
Z_2(t) = \int_{(\mathbb{R}^3)^2} C(t, b) a \frac{V(z_1)\phi(z_1)V(z_2)\phi(z_2)}{|x - z_1||z_2 - y|} dz_1 dz_2.
\]
Note that
\[
C(t, b) = \frac{e^{-i\frac{b^2}{4t}} e^{\frac{i\lambda^2}{4t}} (e^{\frac{i\lambda^2}{4t}} \chi_0(s))^\wedge (b/2t)}{\sqrt{\pi t}}.
\]
Then \(C(t, b) \lesssim t^{-1/2} \) and
\[
|Z_2(t)(x, y)| \lesssim t^{-1/2} \int_{(\mathbb{R}^3)^2} \frac{|V(z_1)\phi(z_1)V(z_2)\phi(z_2)|}{|z_1 - x||z_2 - y|} dz_1 dz_2.
\]
Clearly \(\int_{\mathbb{R}^3} \frac{|V(z_1)\phi(z_1)|}{|z_1 - x|} dz_1 \in L^3_{\text{loc}}(x) \) and \(\int_{\mathbb{R}^3} \frac{|V(z_2)\phi(z_2)|}{|z_2 - y|} dz_2 \in L^3_{\text{loc}}(y) \), implying the second half of (2.22):
\[
\|Z_2(t)u\|_{L^3} \lesssim t^{-1/2} \|u\|_{L^{3,1}}.
\]
We also have
\[
|F(e^{\frac{i\lambda^2}{4t}} \chi_0^\wedge(s))(b/2t) - 1| \lesssim t^{-1}(\|s^2 \chi_0^\wedge\|_1 + |b|).
\]
It is easy to see, for \(B = 2(|x - z_1||z_1| + |z_2 - y||z_2| + |x - z_1||z_2 - y|) + |z_1|^2 + |z_2|^2 \),
\[
|e^{ib^2/4t} - e^{i(x^2+y^2)/4t}| = |e^{i(|x - z_1| + |z_2 - y|)^2/4t} - e^{i(x^2+y^2)/4t}| \lesssim \frac{B}{4t}.
\]
It follows that
\[
C(t, b) - \frac{e^{-i\frac{b^2}{4t}} e^{i(x^2+y^2)/4t}}{\sqrt{\pi t}} \lesssim (1 + b + B)t^{-3/2}.
\]
Then
\[
|Z_2(t) - \int_{(\mathbb{R}^3)^2} \frac{e^{i\frac{b^2}{4t}} e^{i(x^2+y^2)/4t}}{\sqrt{\pi t}} V(z_1)\phi(z_1)V(z_2)\phi(z_2) dz_1 dz_2| \lesssim t^{-3/2} \int_{(\mathbb{R}^3)^2} \frac{(1 + b + B)|V(z_1)\phi(z_1)V(z_2)\phi(z_2)|}{|x - z_1||z_2 - y|} dz_1 dz_2.
\]
Now note that for \(V \in \langle x \rangle^{-1} L^{3,1} \) and \(\phi(x) \lesssim |x|^{-1} \)
\[
\sup_{x,y} \int_{(\mathbb{R}^3)^2} |V(z_1)\phi(z_1)V(z_2)\phi(z_2)|_{|x - z_1||z_2 - y|} dz_1 dz_2 < \infty
\]
and
\[
\int_{\mathbb{R}^3} \frac{V(z_1)\phi(z_1) dz_1}{|x - z_1|} = \phi(x).
\]
We consider a partition of unity subordinated to the neighborhoods of Lem-
Proof of Proposition 2.15.
Here
Assume that
holds for the difference:
\[\| (Z_2(t) - R(t))u \|_{L^2} \lesssim t^{-1/2} \| u \|_{L^2} \]
By interpolation with the \(L^1 \) to \(L^\infty \) estimate of Lemma 2.14 we obtain that
for \(1 \leq p < 3/2 \)
\[\| (Z_2(t) - R(t))u \|_{L^p} \lesssim t^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{p'})} \| u \|_{L^p}. \]
Since the same is true for \(Z_1 \), we obtain for \(1 \leq p < 3/2 \) that
\[\| (Z(t)u) \|_{L^p} = \| (Z_1(t) + Z_2(t) - R(t))u \|_{L^p} \lesssim t^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{p'})} \| u \|_{L^p}, \]
where \(e^{-itH} P_c u = Z_1(t)u + Z_2(t)u = Z(t)u + R(t)u. \)
Knowing that \(\| Z_1(t)u \|_{L^3} \lesssim t^{-1/2} \| u \|_{L^{3/2,1}} \) leads to the conclusion that
\(\| e^{-itH} P_c u \|_{L^3} \lesssim \| u \|_{L^{3/2,1}}. \) Combining this with the \(L^2 \) estimate \(\| e^{-itH} P_c u \|_{L^2} \lesssim \| u \|_{L^2} \), we obtain that for \(3/2 < p \leq 2 \)
\[\| e^{-itH} P_c u \|_{L^p} \lesssim t^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{p'})} \| u \|_{L^p}. \]
Thus we have proved all the conclusions of Proposition 2.13

Proposition 2.15. Assume that \(V \in L^{3/2,1} \) and that \(H = -\Delta + V \) is an exceptiona
Hamiltonian of the first kind. Then
\[\| e^{-itH} P_c u \|_{L^3} \lesssim t^{-1/2} \| u \|_{L^{3/2,1}} \]
and for \(3/2 < p \leq 2 \)
\[\| e^{-itH} P_c u \|_{L^p} \lesssim t^{-\frac{3}{2}(\frac{1}{p} - \frac{1}{p'})} \| u \|_{L^p}. \]
Here \(\frac{1}{p} + \frac{1}{p'} = 1. \)

Proof of Proposition 2.15. Write the evolution as
\[e^{-itH} P_c f = \frac{1}{i\pi} \int_{\mathbb{R}} e^{-i\lambda^2} \left(R_0((\lambda+i0)^2) - R_0((\lambda+i0)^2) V_1 \hat{T}(\lambda)^{-1} V_2 R_0((\lambda+i0)^2) \right) f\lambda \ d\lambda. \]
We consider a partition of unity subordinated to the neighborhoods of Lem-
mas 2.8 and 2.12. First, take a sufficiently large \(R \) such that \((1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1} \in \mathcal{W} \). Then, for every \(\lambda_0 \in [-4R, 4R] \) there exists \(\epsilon(\lambda_0) > 0 \) such that
\(\chi\left(\frac{\lambda - \lambda_0}{\epsilon(\lambda_0)} \right) (I + \hat{T}(\lambda))^{-1} \in \mathcal{W} \) if \(\lambda_0 \neq 0 \) or the conclusion of Lemma 2.12 holds when \(\lambda_0 = 0. \)
Since \([-4R, 4R]\) is a compact set, there exists a finite covering \([-4R, 4R] \subset \bigcup_{k=1}^N (\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k)). \) Then we construct a finite partition of unity on \(\mathbb{R} \) by smooth functions \(1 = \chi_0(\lambda) + \sum_{k=1}^N \chi_k(\lambda) + \chi_\infty(\lambda), \) where \(\text{supp} \chi_\infty \subset \mathbb{R}\backslash(-2R, 2R), \) \(\text{supp} \chi_0 \subset [-\epsilon(0), \epsilon(0)], \) and \(\text{supp} \chi_k \subset (\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k)] \).
By Lemma 2.8 for any \(k \neq 0, \chi_k(\lambda)(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}, \) so \((1 - \chi_0(\lambda))(I + \hat{T}(\lambda))^{-1} \in \mathcal{W} \). By Lemma 2.12 \(\chi_0(\lambda)(I + \hat{T}(\lambda))^{-1} \) also decomposes into
a regular term $L \in \mathcal{W}$ and a singular term $\lambda^{-1}S$ with the property that $S^\vee \in \mathcal{V}_{L^{3/2},L^{3/2}}$.

Let Z_1 be given by the sum of all the regular terms of the decomposition:

$$Z_1(t) := \frac{1}{t \pi} \int_{\mathbb{R}} e^{-it\lambda^2} \left(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2) \right) V_1 L(\lambda) V_2 R_0((\lambda + i0)^2) -$$

$$- (1 - \chi_0(\lambda)) R_0((\lambda + i0)^2) V_1 \hat{T}(\lambda) V_2 R_0((\lambda + i0)^2) \lambda \, d\lambda$$

$$= \frac{1}{2t} \int_{\mathbb{R}} e^{-it\lambda^2} \hat{\partial}_\lambda \left(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2) V_1 L(\lambda) V_2 R_0((\lambda + i0)^2) \right)$$

$$- (1 - \chi_0(\lambda)) R_0((\lambda + i0)^2) V_1 \hat{T}(\lambda) V_2 R_0((\lambda + i0)^2) \lambda \, d\lambda$$

$$= \frac{C}{t^{3/2}} \int_{\mathbb{R}} e^{-it\lambda^2} \left(\hat{\partial}_\lambda \left(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2) V_1 L(\lambda) V_2 R_0((\lambda + i0)^2) \right) \right) \hat{\partial}_\lambda \chi \left(R_0((\lambda + i0)^2) V_1 \hat{T}(\lambda) V_2 R_0((\lambda + i0)^2) \right) \hat{\partial}_\lambda \chi \lambda \, d\lambda.$$

The fact that $\|Z_1(t)u\|_{L^\infty} \leq |t|^{-3/2} \|u\|_{L^1}$ follows by knowing that

$$\left(\hat{\partial}_\lambda \left(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2) V_1 L(\lambda) V_2 R_0((\lambda + i0)^2) \right) - (1 - \chi_0(\lambda)) R_0((\lambda + i0)^2) V_1 \hat{T}(\lambda) V_2 R_0((\lambda + i0)^2) \right) \hat{\partial}_\lambda \chi \left(R_0((\lambda + i0)^2) V_1 \hat{T}(\lambda) V_2 R_0((\lambda + i0)^2) \right) \hat{\partial}_\lambda \chi \lambda \in \mathcal{V}_{L^1,L^\infty}.$$

By smoothing estimates it immediately follows that $Z_1(t)$ is L^2-bounded, see the proof of Proposition 2.13. Interpolating we obtain the desired $\|Z_1(t)u\|_{L^{3,\infty}} \leq t^{-1/2} \|u\|_{L^{3,1}}$ estimate.

Let Z_2 be the singular part of the decomposition from Lemma 2.12 given by

$$Z_2(t) := \frac{1}{t \pi} \int_{\mathbb{R}} e^{-it\lambda^2} R_0((\lambda + i0)^2) V_1 S(\lambda) V_2 R_0((\lambda + i0)^2) \lambda \, d\lambda. \quad (2.23)$$

Note that $(R_0((\lambda+i0)^2)V_1)_{\hat{\partial}_\lambda} \in \mathcal{V}_{L^{3/2,2},L^{3,\infty}}$, $S(\lambda)_{\hat{\partial}_\lambda} \in \mathcal{V}_{L^{3/2,2},L^{3,2}}$, and $(V_2 R_0((\lambda+i0)^2))_{\hat{\partial}_\lambda} \in \mathcal{V}_{L^{3/2,1},L^{3,2}}$. Thus

$$R_0((\lambda+i0)^2)V_1(\lambda S(\lambda)) V_2 R_0((\lambda+i0)^2) \in \mathcal{V}_{L^{3/2,1},L^{3,\infty}}.$$

By taking the Fourier transform in (2.23), this immediately implies the conclusion that $\|Z_2(t)u\|_{L^{3,\infty}} \leq t^{-1/2} \|u\|_{L^{3/2,1}}$.

Putting the two estimates for Z_1 and Z_2 together, we obtain that $\|e^{-itH}P_c u\|_{L^{3,\infty}} \leq \|u\|_{L^{3/2,1}}$. Interpolating with the obvious L^2 bound $\|e^{-itH}P_c u\|_{L^2} \leq \|u\|_{L^2}$, we obtain the stated conclusion.

2.6. Exceptional Hamiltonians of the third kind. We next consider the case in which H is exceptional of the third kind, i.e. there are both zero eigenvectors and zero resonances. Recall that $\hat{T}(\lambda) = V_2 R_0((\lambda + i0)^2) V_1$.

Lemma 2.16. Suppose that $V \in \langle x \rangle^{-4} L^{3/2,1}$ and $H = -\Delta + V$ has both eigenvectors and resonances at zero. Let χ be a standard cutoff function.
Then for sufficiently small ϵ

$$
\chi(\lambda/\epsilon)(I + \hat{T}(\lambda))^{-1} = L(\lambda) + \chi(\lambda/\epsilon) \left(\frac{V_2P_0V_1}{\lambda^2} + \frac{iV_2P_0V|x - y|^2V_0V_1}{\lambda} - \frac{aV_2\phi \otimes V_1\phi}{\lambda} \right),
$$

where $L(\lambda) \in W$ and ϕ is a certain resonance for $H = -\Delta + V$.

Furthermore, 0 is an isolated exceptional point for H, meaning that H has finitely many negative eigenvalues.

The computations in the proof of this lemma parallel those in Section 4.5 of [Yaj1]. The main difference is using the space W instead of Hölder spaces.

Proof of Lemma 2.16 We study $(I + \hat{T}(\lambda))^{-1} := (I + V_2R_0((\lambda + i\theta)^2)V_1)^{-1}$ near $\lambda = 0$.

Let

$$
Q = -\frac{1}{2\pi i} \int_{|z|=\delta} (V_2R_0(0)V_1 - zI)^{-1} \, dz
$$

Take the orthonormal basis $\{\phi_1, \ldots, \phi_N\}$ with respect to the inner product $\langle Vu, v \rangle$ for M so that $\{\phi_2, \ldots, \phi_N\}$ is a basis of E and $\langle \phi_1, V \rangle > 0$. This condition determines ϕ_1 uniquely.

Define the orthogonal projections π_1 onto $CV_1\phi_1$ and π_2 onto $V_1P_0L^2$ with respect to the inner product $-\langle sgn Vu, v \rangle$, i.e. $\pi_1 = -V_2\phi_1 \otimes V_1\phi_1$ and $\pi_2 = -\sum_{j=2}^{N} V_2\phi_j \otimes V_1\phi_j$ and let

$$
Q_0 = \overline{Q} := 1 - Q, \quad Q_1 := Q\pi_1Q, \quad Q_2 := Q\pi_2Q.
$$

The following identities hold in L^2:

- $Q_jQ_k = \delta_{jk}I$, $j, k = 0, 1, 2$ and $Q_0 + Q_1 + Q_2 = I$,
- $(I + V_2R_0(0)V_1)Q_1 = Q_1(I + V_2R_0(0)V_1) = 0$,
- $(I + V_2R_0(0)V_1)Q_2 = Q_2(I + V_2R_0(0)V_1) = 0$,
- $Q_2(V_2 \otimes V_1)Q_0 = 0$, $Q_2(V_2 \otimes V_1)Q_1 = 0$, $Q_2(V_2 \otimes V_1)Q_2 = 0$,
- $Q_0(V_2 \otimes V_1)Q_2 = 0$, $Q_1(V_2 \otimes V_1)Q_2 = 0$.

These identities follow from $Q_2V_2 = 0$ and $Q_2^*V_1 = 0$, which in turn follow from the fact that eigenvectors ϕ_k are orthogonal to V, $\langle \phi_k, V \rangle = 0$, for $2 \leq k \leq N$.

We first apply Lemma 2.10 to invert $Q(I + \hat{T}(\lambda))Q$ in QL^2 for small λ, after writing it in matrix form with respect to the decomposition $QL^2 = Q_1L^2 + Q_2L^2$:

$$
Q(I + \hat{T}(\lambda))Q = \begin{pmatrix}
Q_1(I + \hat{T}(\lambda))Q_1 & Q_1\hat{T}(\lambda)Q_2 \\
Q_2\hat{T}(\lambda)Q_1 & Q_2(I + \hat{T}(\lambda))Q_2
\end{pmatrix}
= \begin{pmatrix}
T_{11}(\lambda) & T_{12}(\lambda) \\
T_{21}(\lambda) & T_{22}(\lambda)
\end{pmatrix}.
$$

The inverse will be given by formula (2.13), that is

$$
(Q(I + \hat{T}(\lambda))Q)^{-1} = \begin{pmatrix}
T_{11}^{-1} + T_{11}^{-1}T_{12}C_{22}^{-1}T_{21}T_{11}^{-1} & -T_{11}^{-1}T_{12}C_{22}^{-1} \\
-C_{22}^{-1}T_{21}T_{11}^{-1} & C_{22}^{-1}
\end{pmatrix}, \quad (2.24)
$$
where

\[C_{22} = T_{22} - T_{21}T_{11}^{-1}T_{12}. \]

As in the case of exceptional Hamiltonians of the first kind, let

\[J(\lambda) := \frac{\hat{T}(\lambda) - (V_2R_0(0)V_1 + i\lambda(4\pi)^{-1}V_2 \otimes V_1)}{\lambda^2}. \]

Then (recall that \(Q_1 = -V_2\phi_1 \otimes V_1\phi_1 \))

\[T_{11}(\lambda) = Q_1(I + \hat{T}(\lambda))Q_1 = Q_1(I + V_2R_0((\lambda + i0)^2)V_1)Q_1 \]

\[= Q_1(V_2R_0((\lambda + i0)^2)V_1 - V_2R_0(0)V_1)Q_1 \]

\[= V_2\phi_1 \otimes V\phi_1(R_0((\lambda + i0)^2) - R_0(0))V\phi_1 \otimes V_1\phi_1 \]

\[= \left(\frac{\lambda\langle V, \phi_1 \rangle^2}{4i\pi} - \lambda^2\langle V\phi_1, J(\lambda)V\phi_1 \rangle \right)Q_1 \]

\[:= (\lambda a^{-1} + \lambda^2 c_1(\lambda))Q_1. \]

Here \(a = \frac{4i\pi}{\langle V, \phi_1 \rangle^2} \neq 0 \). As in the proof of Lemma 2.11, note that \(c_1(\lambda) \in \tilde{L}^1 \)

when \(V \in L^1 \) and \(\partial\lambda c_1(\lambda) \in \tilde{L}^1 \) when \(V \in \langle x \rangle^{-1}L^1 \).

It follows that \(T_{11}(\lambda) \) is invertible for \(|\lambda| \ll 1 \) in \(Q_1L^2 \) and

\[T_{11}^{-1}(\lambda) = \frac{1}{\lambda a^{-1} + \lambda^2 c_1(\lambda)}Q_1 = \left(\frac{a}{\lambda} - \frac{c_1(\lambda)}{(a^{-1} + \lambda c_1(\lambda))a^{-1}} \right)Q_1 = \lambda^{-1}aQ_1 + E(\lambda). \]

Here and below we denote by \(E(\lambda) \) various regular terms, i.e. with the property that \(\chi(\lambda/\epsilon)E(\lambda) \in W \) for sufficiently small \(\epsilon \).

Likewise, since \(Q_2(V_2 \otimes V_1) = (V_2 \otimes V_1)Q_2 = 0 \),

\[T_{12}(\lambda) = Q_1(I + V_2R_0((\lambda + i0)^2)V_1)Q_2 \]

\[= Q_1V_2 \left(R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{1 \otimes 1}{4\pi} \right)V_1Q_2 \]

\[= -\lambda^2 Q_1 \left(V_2 \frac{|x-y|}{8\pi} V_1 + \lambda V_2 e_1(\lambda) V_1 \right)Q_2 \]

\[= -\lambda^2 Q_1V_2 \frac{|x-y|}{8\pi} V_1 Q_2 + \lambda^3 E(\lambda), \]

where

\[e_1(\lambda) := \frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{1 \otimes 1}{4\pi} + \lambda^2 \frac{|x-y|}{8\pi}}{-\lambda^3}. \]

By Lemma 2.6 \(M((e_1(\lambda))^{-1}) = \frac{|x-y|^2}{24\pi} \) and \(M((\partial\lambda e_1(\lambda))^{-1}) = \frac{|x-y|^3}{96\pi} \).

Thus \(E(\lambda) := Q_1V_2 e_1(\lambda)V_1Q_2 \in W \) when

\[\int_{(\mathbb{R}^2)^2} V(x)\phi_1(x)|x-y|^3V(y)\phi_k(y) \, dx \, dy < \infty, \]

which takes place when \(V \in \langle x \rangle^{-2}L^1 \) (recall that \(|\phi_1(y)| \leq \langle y \rangle^{-1} \)).
Likewise we obtain
\[T_{21}(\lambda) = -\lambda^2 Q_2 V_2 \frac{|x - y|}{8\pi} V_1 Q_1 + \lambda^3 E(\lambda), \]
hence, combining the previous results,
\[T_{21}(\lambda) T_{11}^{-1}(\lambda) T_{12}(\lambda) = \lambda^3 a Q_2 V_2 \frac{|x - y|}{8\pi} V_1 Q_1 V_2 \frac{|x - y|}{8\pi} V_1 Q_2 + E(\lambda). \]
Furthermore
\[T_{22}(\lambda) = Q_2 (I + V_2 R_0((\lambda + i0)^2) V_1) Q_2 \]
\[= Q_2 V_2 \left(R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{1}{4\pi} \right) V_1 Q_2 \]
\[= -\lambda^2 Q_2 \left(V_2 \frac{|x - y|}{8\pi} V_1 + i\lambda V_2 \frac{|x - y|^2}{24\pi} V_1 - \lambda^2 V_2 e_2(\lambda) V_1 \right) Q_2. \]
Here
\[e_2(\lambda) := \lambda^{-4} \left(R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{1}{4\pi} - i\lambda^2 \frac{|x - y|}{8\pi} - \lambda^3 \frac{|x - y|^2}{24\pi} \right). \]
By Lemma 2.6 \(M(e_2(\lambda)^\wedge) = \frac{|x - y|^3}{96\pi} \) and \(M((\hat{e}_2(\lambda)^\wedge)) = \frac{|x - y|^4}{480\pi} \). Thus
\[E(\lambda) := Q_2 V_2 e_2(\lambda) V_1 Q_2 \in \mathcal{W} \text{ when} \]
\[\int_{(\mathbb{R}^3)^2} V(x) \phi_k(x)|x - y|^4 V(y) \phi_k(y) \, dx \, dy < \infty, \]
which holds true when \(V \in \langle x \rangle^{-2} L^1 \) (recall that \(|\phi_k(y)| \lesssim \langle y \rangle^{-2} \)). Then
\[T_{22}(\lambda) = -\lambda^2 Q_2 \left(V_2 \frac{|x - y|}{8\pi} V_1 + i\lambda V_2 \frac{|x - y|^2}{24\pi} V_1 \right) Q_2 + \lambda^4 E(\lambda). \quad (2.25) \]
Let \(P_0 \) be the \(L^2 \) orthogonal projection onto the set \(\mathcal{E} \) spanned by \(\phi_2, \ldots, \phi_N \).
By relation (4.38) of [Yaj1],
\[\left(Q_2 V_2 \frac{|x - y|}{8\pi} V_1 Q_2 \right)^{-1} = -V_2 P_0 V_1. \]
Also note that
\[V_2 P_0 V_1 Q_2 = Q_2 V_2 P_0 V_1 = V_2 P_0 V_1. \]
By (2.25),
\[T_{22}^{-1}(\lambda) = -\lambda^{-2} \left(Q_2 V_2 \frac{|x - y|}{8\pi} V_1 Q_2 \right)^{-1} \sum_{k=0}^{\infty} (-1)^k \left(i\lambda Q_2 V_2 \frac{|x - y|^2}{24\pi} V_1 Q_2 - \lambda^2 E(\lambda) \right) \]
\[\left(Q_2 V_2 \frac{|x - y|}{8\pi} V_1 Q_2 \right)^{-1} \]
\[= \lambda^{-2} V_2 P_0 V_1 \sum_{k=0}^{\infty} \left(\left(i\lambda V_2 \frac{|x - y|^2}{24\pi} V_1 - \lambda^2 E(\lambda) \right) V_2 P_0 V_1. \]
Therefore, by grouping the terms by the powers of \(\lambda \), for \(|\lambda| \ll 1 \)
\[T_{22}^{-1}(\lambda) = \lambda^{-2} V_2 P_0 V_1 + i\lambda^{-1} V_2 P_0 V_2 \frac{|x - y|^2}{24\pi} V P_0 V_1 \]
Then we write
\[C_{22}^{-1}(\lambda) = T_{22}^{-1}(\lambda) - T_{21}(\lambda)T_{11}^{-1}(\lambda)T_{12}(\lambda) \]
\[= (I - T_{21}(\lambda)T_{11}^{-1}(\lambda)T_{12}(\lambda)T_{22}^{-1}(\lambda))T_{22}(\lambda). \]

By our previous estimates, \(T_{21}(\lambda)T_{11}^{-1}(\lambda)T_{12}(\lambda)T_{22}^{-1}(\lambda) = \lambda E(\lambda), \ E(\lambda) \in \mathcal{W}. \)

Then by means of a Neumann series expansion we retrieve that
\[C_{22}^{-1}(\lambda) = T_{22}^{-1}(\lambda) \sum_{k=0}^{\infty} (T_{21}(\lambda)T_{11}^{-1}(\lambda)T_{12}(\lambda)T_{22}^{-1}(\lambda))^k \]
\[= T_{22}^{-1}(\lambda) + T_{22}^{-1}(\lambda)T_{21}(\lambda)T_{11}^{-1}(\lambda)T_{12}(\lambda)T_{22}^{-1}(\lambda) + E(\lambda), \]
so
\[C_{22}^{-1}(\lambda) = \lambda^{-2}V_2P_0V_1 + i\lambda^{-1}V_2P_0V_1 \frac{|x - y|^2}{24\pi} VP_0V_1 + \]
\[+ a\lambda^{-1}V_2P_0V_1 \frac{|x - y|}{8\pi} V_1Q_1V_2 \frac{|x - y|}{8\pi} VP_0V_1 + E(\lambda). \]

If we set \(\tilde{\phi}_1 = P_0V_1 \frac{|x - y|}{8\pi} V\phi_1 \in \mathcal{E}, \) then
\[V_2P_0V_1 \frac{|x - y|}{8\pi} V_1Q_1V_2 \frac{|x - y|}{8\pi} VP_0V_1 = -V_2\tilde{\phi}_1 \otimes \tilde{\phi}_1 V_1. \]

Then we get that
\[C_{22}^{-1}(\lambda) = \lambda^{-2}V_2P_0V_1 + i\lambda^{-1}V_2P_0V_1 \frac{|x - y|^2}{24\pi} VP_0V_1 - \lambda^{-1}aV_2\tilde{\phi}_1 \otimes \tilde{\phi}_1 V_1 + E(\lambda). \]

Furthermore
\[-T_{11}^{-1}(\lambda)T_{12}(\lambda)C_{22}^{-1}(\lambda) = (\lambda^{-1}aQ_1 + E(\lambda))\lambda^2Q_1 \left(V_2 \frac{|x - y|}{8\pi} V_1 + \lambda E(\lambda) \right) Q_2 \]
\[\lambda^{-2}V_2P_0V_1 + i\lambda^{-1}E(\lambda) \]
\[= \lambda^{-1}a(-V_2\phi_1 \otimes V_1\phi_1) V_2 \frac{|x - y|}{8\pi} VP_0V_1 + E(\lambda) \]
\[= -a\lambda^{-1}V_2\phi_1 \otimes \phi_1 V_1 + E(\lambda). \]

Likewise we obtain
\[-C_{22}^{-1}(\lambda)T_{21}(\lambda)T_{11}^{-1}(\lambda) = -a\lambda^{-1}V_2\tilde{\phi}_1 \otimes \phi_1 V_1 + E(\lambda) \]
\[T_{11}^{-1}(\lambda)T_{12}(\lambda)C_{22}^{-1}(\lambda)T_{21}(\lambda)T_{11}^{-1}(\lambda) = E(\lambda). \]

By \([2.24]\), \((Q(I + \tilde{T}(\lambda))Q)^{-1}\) is given in matrix form modulo \(E(\lambda) \in \mathcal{W} \) by
\[
\begin{pmatrix}
-a\lambda^{-1}V_2\phi_1 \otimes V_1\phi_1 & -a\lambda^{-1}V_2\phi_1 \otimes V_1\tilde{\phi}_1 \\
-a\lambda^{-1}V_2\tilde{\phi}_1 \otimes V_1\phi_1 & \lambda^{-2}V_2P_0V_1 + i\lambda^{-1}V_2P_0V_1 \frac{|x - y|^2}{24\pi} VP_0V_1 - \lambda^{-1}aV_2\tilde{\phi}_1 \otimes V_1\phi_1 \\
\end{pmatrix}.
\]
Therefore, if we define the canonical resonance as \(\phi = \phi_1 - \tilde{\phi}_1 \), \(\phi \) satisfies \(\phi \in \mathcal{M} \) and \(\langle \phi, V \rangle = 1 \) and

\[
(Q(I + \hat{T}(\lambda))Q)^{-1} = \frac{V_2P_0V_1}{\lambda^2} + \frac{iV_2P_0V_1|x-y|^2}{24\pi}V_0P_0V_1 - \frac{aV_2\phi \otimes V_1\phi}{\lambda} + E(\lambda).
\]

(2.27)

We apply Lemma 2.10 again after writing \(I + \hat{T}(\lambda) \) in matrix form with respect to the decomposition \(L^2 = \overline{Q}L^2 + QL^2 \), where \(QL^2 = V_2\mathcal{M} \):

\[
I + \hat{T}(\lambda) = \begin{pmatrix}
\overline{Q}(I + \hat{T}(\lambda))Q & \overline{Q}\hat{T}(\lambda)Q \\
Q\hat{T}(\lambda)Q & Q(I + \hat{T}(\lambda))Q
\end{pmatrix} :=
\begin{pmatrix}
S_{00}(\lambda) & S_{01}(\lambda) \\
S_{10}(\lambda) & S_{11}(\lambda)
\end{pmatrix}.
\]

Next, let \(A(\lambda) := S_{00}(\lambda)^{-1} \). Then \(\chi(\lambda/\epsilon)A(\lambda) \in \mathcal{W} \) for sufficiently small \(\epsilon \). Indeed, it is easy to see that \(S_{00}(\lambda) \in \mathcal{W} \). Furthermore, \(S_{00}(0) \) is invertible on \(\overline{Q}L^{3/2,2} \cap \overline{Q}L^{3,2} \) of inverse \(K \), see (2.12).

As in the proof of Lemma 2.11 let \(S_\epsilon(\lambda) = \chi(\lambda/\epsilon)\overline{Q}(\hat{T}(\lambda) - \hat{T}(0))\overline{Q} \). A simple argument based on condition C1 shows that \(\lim_{\epsilon \to 0} \|S_\epsilon(\lambda)\|_{\mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^3,2}} = 0 \).

Then

\[
\chi(\lambda/\epsilon)S_{00}^{-1}(\lambda) = \chi(\lambda/\epsilon)(S_{00}(0) + \chi(\frac{\lambda}{2\epsilon})\overline{Q}(\hat{T}(\lambda) - \hat{T}(0))\overline{Q})^{-1}
\]

\[
= \chi(\lambda/\epsilon)S_{00}^{-1}(0) \sum_{k=0}^{\infty} (-1)^k (S_{2\epsilon}(\lambda)S_{00}^{-1}(0))^k.
\]

This series converges for sufficiently small \(\epsilon \), showing that \((\chi(\lambda/\epsilon)S_{00}^{-1}(\lambda))^\vee \in \mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^3,2} \).

Concerning the derivative,

\[
\chi(\lambda/\epsilon)\partial_\lambda S_{00}^{-1}(\lambda) = -\chi(\lambda/\epsilon)S_{00}^{-1}(\lambda)\partial_\lambda S_{00}(\lambda)\chi(\frac{\lambda}{2\epsilon})S_{00}^{-1}(\lambda).
\]

In this expression \((\chi(\lambda/\epsilon)S_{00}^{-1}(\lambda))^\vee \in \mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^3,2} \) and \((\chi(\frac{\lambda}{2\epsilon})\partial_\lambda S_{00}(\lambda))^\vee \in \mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^3,2} \) since \(M((\partial_\lambda T_0(\lambda))^\vee) = \frac{|V_2| \otimes |V_1|}{4\pi} \). Thus \((\chi(\lambda/\epsilon)\partial_\lambda S_{00}^{-1}(\lambda))^\vee \in \mathcal{V}_{L^{3/2,2}} \cap \mathcal{V}_{L^3,2} \).

From this we infer that \(\chi(\lambda/\epsilon)A(\lambda) \in \mathcal{W} \), so \(A \) is a regular term.

We compute the inverse of \(I + \hat{T}(\lambda) \) by finding each of its matrix elements:

\[
(I + \hat{T}(\lambda))^{-1} = \begin{pmatrix}
A + AS_{01}C^{-1}S_{10}A & AS_{01}C^{-1} \\
-C^{-1}S_{10}A & C^{-1}
\end{pmatrix}.
\]

(2.28)

Here

\[
C(\lambda) = S_{11}(\lambda) - S_{10}(\lambda)A(\lambda)S_{01}(\lambda).
\]

\[
S_{10}(\lambda)A(\lambda)S_{01}(\lambda) = \overline{Q}\hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q \text{ may be written as}
\]

\[
\begin{pmatrix}
Q_1\hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q_1 & Q_1\hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q_2 \\
Q_2\hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q_1 & Q_2\hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q_2
\end{pmatrix} = \begin{pmatrix}
\lambda^2E_{11}(\lambda) & \lambda^3E_{12}(\lambda) \\
\lambda^3E_{21}(\lambda) & \lambda^4E_{22}(\lambda)
\end{pmatrix}.
\]

(2.29)
Indeed, consider for example $Q_2 \hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q_2$. It can be reexpressed as

$$Q_2 \hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q_2 = \lambda^4 Q_2 V_2 \frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{\Omega_1}{4\pi} V_1 A(\lambda)}{\lambda^2} V_2 \frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{\Omega_1}{4\pi} V_1 Q_2}{\lambda^2}.$$

(2.30)

For this computation we assume that $V \in \langle x \rangle^{-4}L^{3/2,1}$. Taking a derivative of (2.30) we obtain terms such as

$$Q_2 V_2 \hat{c}_\lambda \left(\frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{\Omega_1}{4\pi}}{\lambda^2} V_1 A(\lambda)V_2 \frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{\Omega_1}{4\pi}}{\lambda^2} V_1 Q_2 \right).$$

(2.31)

Note that the range of Q_2 is spanned by functions $V_2 \phi_k$, $2 \leq k \leq N$, such that $|\phi_k(y)| \leq \langle y \rangle^{-2}$ and $V_2 \phi \in \langle x \rangle^{-2}L^{3,2}$, so $V_2 \phi \in \langle y \rangle^{-4}L^{3,2}$. Also

$$M((V_2 \hat{c}_\lambda (\frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{\Omega_1}{4\pi}}{\lambda^2} V_1))^\wedge) = |V_2| \frac{|x - y|}{24\pi} |V_1| \in \mathcal{B}(L^{3/2,2}, L^{3,2}).$$

Likewise

$$M((V_2 \hat{c}_\lambda (\frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda \frac{\Omega_1}{4\pi}}{\lambda^2} V_1))^\wedge) = |V_2| \frac{|x - y|}{8\pi} |V_1| \in \mathcal{B}(L^{3/2,2}, L^{3/2,2}).$$

This shows that (2.31) $\in \mathcal{V}_{L^{3/2,2}, L^{3,2}}$. By such computations we obtain that $Q_2 \hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q_2 = \lambda^4 E_{22}(\lambda)$, where $\chi(\lambda/\epsilon)E_{22}(\lambda) \in \mathcal{W}$ for sufficiently small ϵ. In this manner we prove (2.29).

By (2.29), $S^{-1}_{11}(\lambda) = (Q\hat{T}(\lambda)Q)^{-1}$ is of the form

$$S^{-1}_{11}(\lambda) = \begin{pmatrix} \lambda^{-1}E(\lambda) & \lambda^{-1}E(\lambda) \\ \lambda^{-1}E(\lambda) & \lambda^{-1}E(\lambda) \end{pmatrix}.$$

Then, letting $N(\lambda) := S^{-1}_{11}(\lambda)S_{10}(\lambda)A(\lambda)S_{01}(\lambda)$, by (2.29)

$$N(\lambda) := S^{-1}_{11}(\lambda)S_{10}(\lambda)S^{-1}_{01}(\lambda)S_{01}(\lambda) = \begin{pmatrix} \lambda^{-1}E(\lambda) & \lambda^{-1}E(\lambda) \\ \lambda^{-1}E(\lambda) & \lambda^{-1}E(\lambda) \end{pmatrix} \begin{pmatrix} E_{11}(\lambda) & E_{12}(\lambda) \\ E_{21}(\lambda) & E_{22}(\lambda) \end{pmatrix} = \begin{pmatrix} \lambda E(\lambda) & \lambda^2 E(\lambda) \\ \lambda E(\lambda) & \lambda^2 E(\lambda) \end{pmatrix}.$$

This shows that $C(\lambda)$ is invertible for $\lambda \ll 1$:

$$C(\lambda) = S_{11}(\lambda) - S_{10}(\lambda)A(\lambda)S_{01}(\lambda) = S_{11}(\lambda)(1 - N(\lambda)),$$

so

$$C^{-1}(\lambda) = (I - N(\lambda))^{-1}S^{-1}_{11}(\lambda) = S^{-1}_{11}(\lambda) + (I - N(\lambda))^{-1}N(\lambda)S^{-1}_{11}(\lambda).$$

(2.32)
A computation shows that \((I - N(\lambda))^{-1}N(\lambda)S_{11}^{-1}(\lambda)\) is a regular term:

\[
(1 - N(\lambda))^{-1}N(\lambda)S_{11}^{-1}(\lambda) = E(\lambda) \begin{pmatrix}
\lambda E(\lambda) & \lambda^2 E(\lambda) \\
\lambda E(\lambda) & \lambda^2 E(\lambda)
\end{pmatrix} \begin{pmatrix}
\lambda^{-1} E(\lambda) & \lambda^{-1} E(\lambda) \\
\lambda^{-1} E(\lambda) & \lambda^{-2} E(\lambda)
\end{pmatrix} = E(\lambda).
\]

By (2.32) and (2.27)

\[C^{-1}(\lambda) = S_{11}^{-1}(\lambda) + E(\lambda)\]

\[
= \lambda^{-2}V_2P_0V_1 + i\lambda^{-1}V_2P_0 \frac{|x - y|^2}{24} VP_0V_1 - a\lambda^{-1}V_2\phi \otimes V_1\phi + E(\lambda).
\]

One can then also write \(C^{-1}\) as

\[
C^{-1}(\lambda) = \begin{pmatrix}
\lambda^{-1} E(\lambda) & \lambda^{-1} E(\lambda) \\
\lambda^{-1} E(\lambda) & \lambda^{-2} E(\lambda)
\end{pmatrix}.
\]

We also have

\[
S_{01}(\lambda) = \overline{Q}(I + \hat{T}(\lambda))Q = \lambda E_1(\lambda)Q_1 + \lambda^2 E_2(\lambda)Q_2
\]

with regular terms \(E_1, E_2 \in \mathcal{W}:

\[
E_1(\lambda) := \overline{Q}V_2 R_0((\lambda + i0)^2) - \overline{R_0(0)} V_1 Q_1,
\]

\[
E_2(\lambda) := \overline{Q}V_2 \frac{\lambda}{\lambda^2} R_0((\lambda + i0)^2) - \overline{R_0(0)} - i\lambda^1 \otimes 1 V_1 Q_2.
\]

Showing that \(E_1, E_2 \in \mathcal{W}\) requires assuming that \(V \in \langle x \rangle^{-4}L^{3/2,1}\).

Therefore the following matrix element of (2.28) is regular near zero:

\[
A(\lambda)S_{01}(\lambda)C^{-1}(\lambda) = (\lambda A(\lambda)E_1(\lambda) \lambda^2 A(\lambda)E_2(\lambda)) \begin{pmatrix}
\lambda^{-1} E(\lambda) & \lambda^{-1} E(\lambda) \\
\lambda^{-1} E(\lambda) & \lambda^{-2} E(\lambda)
\end{pmatrix} = E(\lambda).
\]

One shows in the same manner that the matrix element \(C^{-1}(\lambda)S_{10}(\lambda)A(\lambda)\) of (2.28) is regular near zero.

Finally, the last remaining matrix element \(A + AS_{01}C^{-1}S_{10}A\) of (2.28) consists of the regular part \(A\) and

\[
AS_{01}C^{-1}S_{10}A = \lambda E(\lambda) \lambda E(\lambda) \lambda^2 E(\lambda) \begin{pmatrix}
\lambda^{-1} E(\lambda) & \lambda^{-1} E(\lambda) \\
\lambda^{-1} E(\lambda) & \lambda^{-2} E(\lambda)
\end{pmatrix} \begin{pmatrix}
\lambda E(\lambda) \\
\lambda^2 E(\lambda)
\end{pmatrix} E(\lambda) = \lambda E(\lambda).
\]

Thus this is also a regular term. It follows by (2.28) that \(\hat{T}(\lambda)^{-1}\) is up to regular terms given by

\[
\lambda^{-2}V_2P_0V_1 + i\lambda^{-1}V_2P_0 \frac{|x - y|^2}{24} VP_0V_1 - a\lambda^{-1}V_2\phi \otimes V_1\phi,
\]

which was to be shown. □
We next prove a corresponding statement in the case when V has an almost minimal amount of decay. One can also obtain a resolvent expansion when $V \in \langle x \rangle^{-1}L^{3/2,1}$, but that one does not lead to decay estimates.

Lemma 2.17. Suppose that $V \in \langle x \rangle^{-2}L^{3/2,1}$ and $H = -\Delta + V$ is an exceptional Hamiltonian of the third kind. Let χ be a standard cutoff function. Then for sufficiently small ϵ

$$\chi(\lambda/\epsilon)(I + \hat{T}(\lambda))^{-1} = L(\lambda) + \lambda^{-1}S(\lambda) + \lambda^{-2}V_2P_0V_1,$$

where $L(\lambda) \in \mathbb{W}$, $S(\lambda) \in V_{L^{3,2},L^{3/2,2}}$, and P_0 is the L^2 orthogonal projection on \mathcal{E}.

Furthermore, 0 is an isolated exceptional point, so H has finitely many negative eigenvalues.

Proof of Lemma 2.17. We study $(I + \hat{T}(\lambda))^{-1} := (I + V_2R_0((\lambda + i0)^2)V_1)^{-1}$ near $\lambda = 0$.

Let $Q = Q_1 + Q_2$, $Q_0 = \overline{Q}$, Q_1, and Q_2 be as in the proof of Lemma 2.16.

Also take again the orthonormal basis $\{\phi_1, \ldots, \phi_N\}$ with respect to the inner product $-\langle Vu, v \rangle$ for \mathcal{M} so that $\{\phi_2, \ldots, \phi_N\}$ is a basis of \mathcal{E} and $\langle \phi_1, V \rangle > 0$.

We apply Lemma 2.10 to invert $Q(I + \hat{T}(\lambda))Q$ in QL^2 for small λ, after writing it in matrix form with respect to the decomposition $QL^2 = Q_1L^2 + Q_2L^2$:

$$Q(I + \hat{T}(\lambda))Q = \begin{pmatrix} Q_1(I + \hat{T}(\lambda))Q_1 & Q_1\hat{T}(\lambda)Q_2 \\ Q_2\hat{T}(\lambda)Q_1 & Q_2(I + \hat{T}(\lambda))Q_2 \end{pmatrix} := \begin{pmatrix} T_{11}(\lambda) & T_{12}(\lambda) \\ T_{21}(\lambda) & T_{22}(\lambda) \end{pmatrix}.$$

The inverse will be given by formula (2.13), that is

$$(Q(I + \hat{T}(\lambda))Q)^{-1} = \begin{pmatrix} T_{11}^{-1} + T_{11}^{-1}T_{12}C_{22}^{-1}T_{21}T_{11}^{-1} & -T_{11}^{-1}T_{12}C_{22}^{-1} \\ -C_{22}^{-1}T_{21}T_{11}^{-1} & C_{22}^{-1} \end{pmatrix}, \quad (2.33)$$

where

$$C_{22} = T_{22} - T_{21}T_{11}^{-1}T_{12}.$$

Then (recall that $Q_1 = -V_2\phi_1 \otimes V_1\phi_1$)

$$T_{11}(\lambda) = Q_1(I + \hat{T}(\lambda))Q_1 = Q_1(I + V_2R_0((\lambda + i0)^2)V_1)Q_1$$

$$= Q_1(V_2R_0((\lambda + i0)^2)V_1 - V_2R_0(0)V_1)Q_1$$

$$= V_2\phi_1 \otimes V\phi_1(R_0((\lambda + i0)^2) - R_0(0))V\phi_1 \otimes V_1\phi_1$$

$$:= \lambda c_0(\lambda)Q_1.$$

Here $c_0(0) = a = \frac{4i\pi}{|\langle V, \phi_1 \rangle|^2} \neq 0$. Note that $c_0(\lambda) \in \hat{L}^1$ when

$$\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} V(x)\phi_1(x)V(y)\phi_1(y) \left\| \frac{e^{i\lambda|x-y|} - 1}{\lambda|x-y|} \right\|_{L^1_{\lambda}} dx dy < \infty.$$
Since $\|e^{i\lambda(x-y)}-1\|_{L_1^2} = 1$, it is enough to assume that $V\phi_1 \in L^1$, i.e. that
$V \in L^{3/2,1}$, in view of the fact that $\phi_1 \in \langle x \rangle^{-1}L^\infty$.

It follows that $T_{11}(\lambda)$ is invertible for $|\lambda|<1$ in Q_1L^2 and
$$T_{11}^{-1}(\lambda) = \lambda^{-1}e^{-1}(\lambda)Q_1 = \lambda^{-1}E(\lambda).$$

Here $\chi(\lambda/\epsilon)c_0^{-1}(\lambda) \in \hat{L}^1$ for sufficiently small ϵ.

Likewise, since $Q_2(V_2 \otimes V_1) = (V_2 \otimes V_1)Q_2 = 0$,
$$T_{12}(\lambda) = Q_1(I + V_2 R_0((\lambda + i0)^2) V_1)Q_2$$
$$= \lambda^2Q_1 V_2 \frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda(4\pi)^{-1}I \otimes 1}{\lambda^2} V_1 Q_2$$
$$= \lambda^2Q_1 e(\lambda)Q_2.$$

Since by Lemma 2.6
$$M(\left(\frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda(4\pi)^{-1}I \otimes 1}{\lambda^2}\right)^\wedge) = \frac{|x-y|}{8\pi},$$
it follows that $e(\lambda) \in \hat{L}^1$ if
$$\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} V(x)\phi_1(x)V(y)\phi_1(y)|x-y| < \infty,$$
that is if $V \in L^1$.

Likewise we obtain
$$T_{21}(\lambda) = \lambda^2Q_2 e(\lambda)Q_1,$$
hence, combining the previous results,
$$T_{21}(\lambda)T_{11}^{-1}(\lambda)T_{12}(\lambda) = \lambda^3Q_2 e(\lambda)Q_2.$$

Furthermore
$$T_{22}(\lambda) = Q_2(I + V_2 R_0((\lambda + i0)^2) V_1)Q_2$$
$$= \lambda^2Q_2 V_2 \frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda(4\pi)^{-1}I \otimes 1}{\lambda^2} V_1 Q_2$$
$$= -\lambda^2(Q_2 V_2 \frac{|x-y|}{8\pi} V_1 Q_2 + \lambda Q_2 e(\lambda)Q_2).$$

Again by Lemma 2.6 $e(\lambda) \in \hat{L}^1$ if
$$\int_{\mathbb{R}^3} \int_{\mathbb{R}^3} V(x)\phi_1(x)V(y)\phi_1(y)|x-y|^2 < \infty,$$
that is (taking into account that $\phi_k, \phi_{\ell} \ll \langle x \rangle^{-2}$) if $V \in L^1$.

Let P_0 be the L^2 orthogonal projection onto the set E spanned by ϕ_2, \ldots, ϕ_N.

By relation (4.38) of [Yaj1],
$$(Q_2 V_2 \frac{|x-y|}{8\pi} V_1 Q_2)^{-1} = -V_2 P_0 V_1.$$
Then
\[C_{22}(\lambda) = T_{22}(\lambda) - T_{21}(\lambda)T_{11}^{-1}(\lambda)T_{12}(\lambda) \]
\[= -\lambda^2 Q_2 V_2 \frac{|x-y|}{8\pi} V_1 Q_2 + \lambda^3 Q_2 e(\lambda) Q_2. \]

Therefore
\[C_{22}^{-1}(\lambda) = \lambda^{-2} V_2 P_0 V_1 + \lambda^{-1} Q_2 e(\lambda) Q_2. \]

Furthermore, we then obtain that
\[-T_{11}^{-1}(\lambda)T_{12}(\lambda)C_{22}^{-1}(\lambda) = \lambda^{-1} Q_1 e(\lambda) Q_1 \lambda^2 Q_1 e(\lambda) Q_2 \lambda^{-2} Q_2 e(\lambda) Q_2 \]
\[= \lambda^{-1} Q_1 e(\lambda) Q_2. \]

Likewise we obtain
\[-C_{22}^{-1}(\lambda)T_{21}(\lambda)T_{11}^{-1}(\lambda) = \lambda^{-1} Q_2 e(\lambda) Q_1, \]
\[T_{11}^{-1}(\lambda)T_{12}(\lambda)C_{22}^{-1}(\lambda)T_{21}(\lambda)T_{11}^{-1}(\lambda) = Q_1 e(\lambda) Q_1. \]

By (2.33), \((Q(I + \hat{T}(\lambda))Q)^{-1}\) is given in matrix form by
\[
(Q(I + \hat{T}(\lambda))Q)^{-1} = \begin{pmatrix}
\lambda^{-1} Q_1 e(\lambda) Q_1 & \lambda^{-1} Q_1 e(\lambda) Q_2 \\
\lambda^{-1} Q_2 e(\lambda) Q_1 & \lambda^{-2} V_2 P_0 V_1 + \lambda^{-1} Q_2 e(\lambda) Q_2 \\
& \lambda^{-1} Q e(\lambda) Q + \lambda^{-2} V_2 P_0 V_1, \end{pmatrix}
\]
(2.34)

where \(\chi(\lambda/\epsilon) e(\lambda) \in \hat{L}^1\) for sufficiently small \(\epsilon\).

We apply Lemma 2.10 again after writing \(I + \hat{T}(\lambda)\) in matrix form with respect to the decomposition \(L^2 = Q L^2 + Q L^2\), where \(Q L^2 = V_2 M\):
\[I + \hat{T}(\lambda) = \begin{pmatrix} \hat{Q}(I + \hat{T}(\lambda)) \hat{Q} & \hat{Q}(I + \hat{T}(\lambda))Q \\
Q(I + \hat{T}(\lambda))Q & Q(I + \hat{T}(\lambda))Q \end{pmatrix} := \begin{pmatrix} S_{00}(\lambda) & S_{01}(\lambda) \\
S_{10}(\lambda) & S_{11}(\lambda) \end{pmatrix}. \]

Next, as in the proof of Lemma 2.16 let \(A(\lambda) = S_{00}^{-1}(\lambda). \) Then \(\chi(\lambda/\epsilon) A(\lambda) \in \mathcal{W}\) for sufficiently small \(\epsilon\).

We compute the inverse of \(I + \hat{T}(\lambda)\) by finding each of its matrix elements:
\[
(I + \hat{T}(\lambda))^{-1} = \begin{pmatrix} A + A S_{01} C^{-1} S_{10} A & A S_{01} C^{-1} \\
-C^{-1} S_{10} A & C^{-1} \end{pmatrix}. \]
(2.35)

Here
\[C(\lambda) = S_{11}(\lambda) - S_{10}(\lambda) A(\lambda) S_{01}(\lambda). \]
\[S_{10}(\lambda) A(\lambda) S_{01}(\lambda) = Q \hat{T}(\lambda) A(\lambda) \hat{T}(\lambda) Q \] may be written as
\[
\begin{pmatrix} Q_1 \hat{T}(\lambda) A(\lambda) \hat{T}(\lambda) Q_1 & Q_1 \hat{T}(\lambda) A(\lambda) \hat{T}(\lambda) Q_2 \\
Q_2 \hat{T}(\lambda) A(\lambda) \hat{T}(\lambda) Q_1 & Q_2 \hat{T}(\lambda) A(\lambda) \hat{T}(\lambda) Q_2 \end{pmatrix} = \begin{pmatrix} \lambda^2 Q_1 e(\lambda) Q_1 & \lambda^3 Q_1 e(\lambda) Q_2 \\
\lambda^2 Q_2 e(\lambda) Q_1 & \lambda^3 Q_2 e(\lambda) Q_2 \end{pmatrix}, \]
(2.36)

where \(e(\lambda) \in \hat{L}^1\).
Indeed, consider for example $Q_2 \hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q_2$. It can be rewritten as

$$Q_2 \hat{T}(\lambda)A(\lambda)\hat{T}(\lambda)Q_2 = \lambda^3 Q_2V_2\frac{R_0((\lambda + i0)^2) - R_0(0) - i\lambda1 \otimes 1}{\lambda}V_1A(\lambda)$$

$$V_2\frac{R_0((\lambda + i0)^2) - R_0(0)}{\lambda}V_1Q_2 .$$

Assuming that $V \in \langle x \rangle^{-2}L^{3/2,1}$

$$M((V_2R_0((\lambda + i0)^2) - R_0(0)^V_1)^\wedge) = \frac{|V_2| \otimes |V_1|}{4\pi} \in \mathcal{B}(L^{3/2,2}).$$

Likewise

$$M((V_2R_0((\lambda + i0)^2) - R_0(0) - i\lambda \otimes 1_{\mathbb{R}}V_1)^\wedge) = |V_2|\frac{|x - y|}{8\pi}|V_1| \in \mathcal{B}(L^{3/2,2}, L^{3,2}).$$

This implies that $(2.37) = \lambda^3 Q_2e_0(\lambda)Q_2, e_0(\lambda) \in \hat{L}^1$. In this manner we prove (2.36).

By (2.34), $S_{11}^{-1}(\lambda) = (Q\hat{T}(\lambda)Q)^{-1}$ is of the form

$$S_{11}^{-1}(\lambda) = \begin{pmatrix} \lambda^{-1}Q_1e(\lambda)Q_1 & \lambda^{-1}Q_1e(\lambda)Q_2 \\ \lambda^{-1}Q_2e(\lambda)Q_1 & \lambda^{-2}Q_2e(\lambda)Q_2 \end{pmatrix}.$$

Then, letting $N(\lambda) := S_{11}^{-1}(\lambda)S_{10}(\lambda)A(\lambda)S_{01}(\lambda)$, by (2.36)

$$N(\lambda) := \begin{pmatrix} \lambda^{-1}Q_1e(\lambda)Q_1 & \lambda^{-1}Q_1e(\lambda)Q_2 \\ \lambda^{-1}Q_2e(\lambda)Q_1 & \lambda^{-2}Q_2e(\lambda)Q_2 \end{pmatrix} \begin{pmatrix} \lambda^2 Q_1e(\lambda)Q_1 & \lambda^3 Q_1e(\lambda)Q_2 \\ \lambda^3 Q_2e(\lambda)Q_1 & \lambda^2 Q_2e(\lambda)Q_2 \end{pmatrix}$$

Therefore $N(0) = 0$. This shows that $C(\lambda)$ is invertible for $\lambda \ll 1$:

$$C(\lambda) = S_{11}(\lambda) - S_{10}(\lambda)A(\lambda)S_{01}(\lambda) = S_{11}(\lambda)(I - N(\lambda)),$$

so

$$C^{-1}(\lambda) = (I - N(\lambda))^{-1}S_{11}^{-1}(\lambda)$$

$$= S_{11}^{-1}(\lambda) + (I - N(\lambda))^{-1}N(\lambda)S_{11}^{-1}(\lambda).$$

A computation shows that

$$(I - N(\lambda))^{-1}N(\lambda)S_{11}^{-1}(\lambda) = Qe(\lambda) \begin{pmatrix} \lambda Q_1e(\lambda)Q_1 & \lambda^2 Q_1e(\lambda)Q_2 \\ \lambda Q_2e(\lambda)Q_1 & \lambda^2 Q_2e(\lambda)Q_2 \end{pmatrix}$$

$$= \begin{pmatrix} \lambda^{-1}Q_1e(\lambda)Q_1 & \lambda^{-1}Q_1e(\lambda)Q_2 \\ \lambda^{-1}Q_2e(\lambda)Q_1 & \lambda^{-2}Q_2e(\lambda)Q_2 \end{pmatrix}.$$
By (2.38) and (2.34)

\[C^{-1}(\lambda) = S_{11}^{-1}(\lambda) + \lambda^{-1} Q e(\lambda) Q \]
\[= \lambda^{-2} V_{2} P_{0} V_{1} + \lambda^{-1} Q e(\lambda) Q. \]

Note that

\[S_{01}(\lambda) = \overline{Q} \hat{T}(\lambda) Q = \overline{Q} (I + \hat{T}(\lambda)) Q \]
\[= \lambda \overline{Q} V_{2} \frac{R_{0}((\lambda + i \theta)^{2} - R_{0}(0))}{\lambda} V_{1} Q = \lambda E_{1}(\lambda), \]

where \(E_{1}(\lambda) \in \mathcal{V}_{L^{3/2,2}} \) when \(V \in \langle x \rangle^{-1} L^{1} \). Therefore

\[A(\lambda) S_{01}(\lambda) C^{-1}(\lambda) = A(\lambda) \lambda E_{1}(\lambda) \lambda^{-2} Q e(\lambda) Q = \lambda^{-1} S(\lambda), \]

where \(S(\lambda) \in \mathcal{V}_{L^{3,2},L^{3,2}} \). Likewise \(S_{10}(\lambda) = \lambda E_{2}(\lambda) \), where \(E_{2}(\lambda) \in \mathcal{V}_{L^{3,2}} \).

Then

\[C^{-1}(\lambda) S_{10}(\lambda) A(\lambda) = \lambda^{-1} S(\lambda), \]

where \(S(\lambda) \in \mathcal{V}_{L^{3,2},L^{3,2}} \).

Finally, for the last remaining matrix element \(A + A S_{01} C^{-1} S_{10} A \) of (2.35) we use the fact that

\[A S_{01} C^{-1} S_{10} A = A(\lambda) \lambda E_{1}(\lambda) \lambda^{-2} Q e(\lambda) Q \lambda E_{2}(\lambda) A(\lambda) = S(\lambda), \]

where \(S(\lambda) \in \mathcal{V}_{L^{3,2},L^{3,2}} \). Also recall that \(A(\lambda) \in \mathcal{W} \).

We have thus analyzed all the terms in (2.35) and the conclusion follows.

Recall that

\[R(t) := \frac{ae^{-i \frac{\pi}{4} t}}{\sqrt{\pi t}} \zeta_{t}(x) \otimes \zeta_{t}(y), \quad \zeta_{t}(x) := e^{i |x|^{2}/4t} \phi(x), \]
\[S(t) := \frac{e^{-i \frac{\pi}{4} t}}{\sqrt{\pi t}} \left(-i P_{0} V \frac{|x - y|^{2}}{24\pi} V_{0} P_{0} + \mu_{t}(x) \frac{|x - y|}{8\pi} V P_{0} + P_{0} V \frac{|x - y|}{8\pi} \mu_{t}(y) \right), \]

where \(\mu_{t}(x) := \frac{i}{|x|} \int_{0}^{1} (e^{i \frac{|x|^{2} t}{4\theta}} - e^{i \frac{|y|^{2} t}{4\theta}}) d\theta. \)

Although it is not immediately obvious, it is also true that

\[\| S(t) u \|_{L^{3\infty}} \lesssim t^{-1/2} \| u \|_{L^{3/2,1}}. \] (2.39)

Indeed, note that since \(\langle \phi_{k}, V \rangle = 0 \) for the eigenvectors \(\phi_{k} \), \(2 \leq k \leq N \) (recall that \(\phi_{1} \) is the resonance),

\[\mu_{t}(x)|x - y| V P_{0} = \mu_{t}(x)(|x - y| - |x|) V P_{0}, \]

which is bounded in absolute value by \(\sum_{k=2}^{N} |\mu_{t}(x)| \int_{\mathbb{R}^{3}} |y||V(y)||\phi_{k}(y)| dy \otimes |\phi_{k}(z)|. \) By definition, \(|\mu_{t}(x)| \lesssim |x|^{-1}. \) This leads to (2.39), since \(\phi_{k} \in \langle x \rangle^{-2} L^{\infty} \) and \(V \in L^{3/2,1} \).

We use Lemma 2.13 as the basis for the following decay estimate:
Proposition 2.18. Let V satisfy $\langle x \rangle^4 V(x) \in L^{3/2, 1}$. Suppose that H is of exceptional type of the third kind. Then, for $1 \leq p < 3/2$ and $u \in L^2 \cap L^p$,

$$e^{-itH} P_c u = Z(t)u + R(t)u + S(t)u, \quad \|Z(t)u\|_{L^p'} \lesssim t^{-\frac{1}{2} \left(\frac{1}{p} - \frac{1}{p'} \right)} \|u\|_{L^p}.$$ (2.40)

Here $\frac{1}{p} + \frac{1}{p'} = 1$. If in addition all the zero energy eigenfunctions ϕ_k, $2 \leq k \leq N$ are in L^1, then we can take $S(t) = 0$.

Proof of Proposition 2.18. Write the dispersive component of the evolution as

$$e^{itH} P_c f = \frac{1}{i\pi} \int_{\mathbb{R}} e^{it\lambda} (R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2) V_1 \hat{T}(\lambda)^{-1} V_2 R_0((\lambda + i0)^2)) f \lambda d\lambda.$$

We use the same method as in the proofs of Proposition 2.13 and 2.15. Consider a partition of unity subordinated to the neighborhoods of Lemmas 2.8 and 2.16. First, following Lemma 2.8, take a sufficiently large R such that $(1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}$. Then, again by Lemma 2.8, for every $\lambda_0 \in [-4R, 4R]$, there exists $\epsilon(\lambda_0)$ such that $\chi(\lambda_0) \in \mathcal{W}$ if $\lambda_0 \neq 0$ or the conclusion of Lemma 2.16 holds when $\lambda_0 = 0$.

Since $[-4R, 4R]$ is a compact set, there exists a finite covering $[-4R, 4R] \subset \bigcup_{k=1}^N (\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k))$. Then we construct a finite partition of unity on \mathbb{R} by smooth functions $1 = \chi_0(\lambda) + \sum_{k=1}^N \chi_k(\lambda)$, where $\text{supp } \chi_0 \subset (-2R, 2R)$, $\text{supp } \chi_k \subset [-\epsilon(0), \epsilon(0)]$, and $\text{supp } \chi_k \subset [\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k)]$.

By Lemma 2.8 for any $k \neq 0$, $\chi_k(\lambda) (I + \hat{T}(\lambda))^{-1} \in \mathcal{W}$, so $(1 - \chi_0(\lambda))(I + \hat{T}(\lambda))^{-1} \in \mathcal{W}$.

By Lemma 2.16 for $L \in \mathcal{W}$

$$\chi_0(\lambda)(I + \hat{T}(\lambda))^{-1} = L(\lambda) + \chi_0(\lambda) \left(\frac{V_2 P_0 V_1}{\lambda^2} + \frac{i V_2 P_0 V|x - y|^2 V P_0 V_1}{\lambda} - \frac{a}{\lambda^2} V_2 \phi \otimes V_1 \phi \right).$$

Let Z_1 be the contribution of all the regular terms in this decomposition, such as the free resolvent, $(1 - \chi_0(\lambda))(I + \hat{T}(\lambda))^{-1}$, and $L(\lambda)$:

$$Z_1(t) := \frac{1}{i\pi} \int_{\mathbb{R}} e^{-it\lambda^2} \left(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2) V_1 L(\lambda) V_2 R_0((\lambda + i0)^2) \right) -$$

$$- (1 - \chi_0(\lambda)) R_0((\lambda + i0)^2) V_1 \hat{T}(\lambda) V_2 R_0((\lambda + i0)^2)) \lambda d\lambda$$

$$= \frac{1}{2it} \int_{\mathbb{R}} e^{-it\lambda^2} \left(\hat{\chi}(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2) V_1 L(\lambda) V_2 R_0((\lambda + i0)^2)) \right) d\lambda$$

$$= \frac{C}{t^{3/2}} \int_{\mathbb{R}} e^{-it\lambda^2} \left((\hat{\chi}(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2) V_1 L(\lambda) V_2 R_0((\lambda + i0)^2))) \right)^\circ (\rho) d\rho.$$

The fact that $\|Z_1(t)u\|_{L^1} \lesssim |t|^{-3/2} \|u\|_{L^\infty}$ follows by knowing that

$$(\hat{\chi}(R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2) V_1 L(\lambda) V_2 R_0((\lambda + i0)^2)) \right)^\circ \in V_{L^1, L^\infty}.$$
By smoothing estimates it also follows that $Z_1(t)$ is L^2-bounded, see the proof of Proposition 2.13. By interpolation we also obtain the estimate
\[\|Z_1(t)u\|_{L^{3,\infty}} \lesssim \|u\|_{L^{3/2,1}}. \]
Let $Z_2(t)$ be the contribution of the term $a\lambda^{-1} \chi_0(\lambda) V_2 \phi \otimes V_1 \phi$:
\[Z_2(t) := a \int \frac{e^{-it\lambda^2} \chi_0(\lambda) R_0((\lambda + i0)^2) V \phi \otimes V \phi R_0((\lambda + i0)^2)}{i\pi} d\lambda. \]
By Lemma 2.14
\[\|Z_2(t) - R(t)\|_{L^\infty} \lesssim t^{-3/2} \|u\|_{L^{3/2,1}}, \quad \|Z_2(t)\|_{L^{3,\infty}} \lesssim t^{-1/2} \|u\|_{L^{3/2,1}}. \]
We are left with the terms $\lambda^{-2} R_0((\lambda + i0)^2) V P_0 V \phi R_0((\lambda + i0)^2)$ and $i\lambda^{-1} R_0((\lambda + i0)^2) V P_0 V \frac{|x - y|^2}{24\pi} V P_0 V \phi R_0((\lambda + i0)^2)$. Let their contributions be
\[
X_2(t) := -\frac{1}{\pi} \int e^{-it\lambda^2} R_0((\lambda + i0)^2) V P_0 V \frac{|x - y|^2}{24\pi} V P_0 V \phi R_0((\lambda + i0)^2) d\lambda,
\]
\[
X_3(t) := -\frac{1}{\pi} \lim_{\delta \to 0} \int e^{-it\lambda^2} R_0((\lambda + i0)^2) V P_0 V \frac{|x - y|^2}{24\pi} V P_0 V \phi R_0((\lambda + i0)^2) \lambda^{-1} d\lambda.
\]
By Lemma 4.12 of [Yaj1],
\[\|X_2(t)\|_{L^{3,\infty}} \lesssim t^{-1/2} \|u\|_{L^{3/2,1}}, \]
\[\|X_2(t)u + \frac{e^{-it\pi^2}}{\sqrt{\pi t}} P_0 V \frac{|x - y|^2}{24\pi} V P_0\|_{L^\infty} \lesssim t^{-3/2} \|u\|_{L^1}. \]
(2.41)
This lemma has a proof similar to Lemma 2.14. It requires, in addition, that $|\phi_j(x)| \lesssim |x|^{-2}$ for every eigenfunction $\phi_j \in \mathcal{E}$, $2 \leq j \leq N$, which is guaranteed by Lemma 2.3.
By Lemma 4.14 of [Yaj1],
\[\|X_3(t)\|_{L^{3,\infty}} \lesssim t^{-1/2} \|u\|_{L^{3/2,1}}, \]
\[\|X_3(t)u - \frac{e^{-it\pi^2}}{\sqrt{\pi t}} \left(\mu_t(x) \frac{|x - y|}{8\pi} V P_0 + P_0 V \frac{|x - y|}{8\pi} \mu_t(y) \right)\|_{L^\infty} \lesssim t^{-3/2} \|u\|_{L^1}. \]
(2.42)
The proof of Lemma 4.14 in [Yaj1] depends on $\langle y \rangle^3 V(y) \phi(y)$ being integrable, which is also true here since $|\phi(y)| \lesssim \langle y \rangle^{-1}$ and $\langle y \rangle^3 V(y) \in \langle y \rangle^{-2} L^{3/2,1} \subset L^1$.
Combining the two results (2.41) and (2.42) and knowing that $\|S(t)u\|_{L^{3,\infty}} \lesssim t^{-1/2} \|u\|_{L^{3/2,1}}$ by (2.39), we obtain that
\[\|(X_2(t) + X_3(t) - S(t))u\|_{L^\infty} \lesssim t^{-3/2} \|u\|_{L^1}, \quad \|(X_2(t) + X_3(t) - S(t))u\|_{L^{3,\infty}} \lesssim t^{-1/2} \|u\|_{L^{3/2,1}}. \]
(2.43)
Recall that $e^{-itH} P_0 = Z_1(t) + Z_2(t) + X_2(t) + X_3(t) = Z(t) + R(t) + S(t)$. We obtain for $Z(t) = Z_1(t) + (Z_2(t) - R(t)) + (X_2(t) + X_3(t) - S(t))$ that
\[\|Z(t)u\|_{L^\infty} \lesssim t^{-3/2} \|u\|_{L^1}, \quad \|Z(t)u\|_{L^{3,\infty}} \lesssim t^{-1/2} \|u\|_{L^{3/2,1}}. \]
Conclusion (2.40) follows by interpolation.
Finally, assume that all the eigenfunctions \(\phi_k \in L^1 \) for \(2 \leq k \leq N \) (recall that \(\phi_1 \) is the resonance). Then, by Lemma 2.5, it follows that \(\langle V \phi_k, y_\ell \rangle = \langle V \phi_k, y_\ell m \rangle = 0 \) for all \(\ell \) and \(m \) and all \(2 \leq k \leq N \). As a consequence, we immediately see that
\[
P_0 V |x - y|^2 V P_0 = P_0 V (|x|^2 + |y|^2) P_0 - 2 \sum_{k=1}^3 P_0 V x_k y_k V P_0 = 0.
\]
Since \(\langle \phi_k, V \rangle = 0 \) and \(\langle V \phi_k, y_\ell \rangle = 0 \), we can also rewrite
\[
\mu_t(x)|x - y| V P_0 = \mu_t(x) |x - y| + \frac{xy}{|x|} V P_0.
\]
Then note that \(|x| |x - y| + \frac{xy}{|x|} |x - y| + \frac{xy}{|x|} \) is bounded in absolute value by
\[
\sum_{k=2}^N \int_{\mathbb{R}^3} |y|^2 |V(y)||\phi_k(y)| dy \otimes |\phi_k(z)|,
\]
which is bounded from \(L^1 \) to \(L^\infty \) since \(\phi_k \in \langle x \rangle^{-1} L^\infty \) and \(V \in \langle x \rangle^{-1} L^{3/2,1} \). Having gained a power of decay in \(x \), we use it by \(\mu_t(x)|x|^{-1} \leq t^{-1} \). Therefore
\[
\| t^{-1/2} \mu_t(x)|x - y| V P_0 u \|_{L^\infty} \leq t^{-3/2} \| u \|_{L^1}.
\]
Consequently, when \(\phi_k \in L^1 \) for \(2 \leq k \leq N \), \(S(t) \) can be removed from (2.43). Hence we retrieve conclusion (2.40) without \(S(t) \), as claimed.

Proposition 2.19. Assume that \(V \in \langle x \rangle^{-2} L^{3/2,1} \) and that \(H = -\Delta + V \) is an exceptional Hamiltonian of the third kind. Then
\[
\| e^{-itH} P_c u \|_{L^\infty} \leq t^{-1/2} \| u \|_{L^{3/2,1}}
\]
and for \(3/2 < p \leq 2 \)
\[
\| e^{-itH} P_c u \|_{L^p} \leq t^{-\frac{2(\frac{1}{p} - \frac{1}{2})}{p/2}} \| u \|_{L^p}.
\]
Here \(\frac{1}{p} + \frac{1}{p'} = 1 \).

The proof of this proposition parallels the proof of Proposition 2.15.

Proof of Proposition 2.19. Write the evolution as
\[
e^{-itH} P_c f = \frac{1}{i \pi} \int_{\mathbb{R}} e^{-it\lambda^2} (R_0((\lambda+i)0) - R_0((\lambda+i)0)^2) V_1 \hat{T}(\lambda)^{-1} V_2 R_0((\lambda+i0)^2) f(\lambda) d\lambda.
\]
We consider a partition of unity subordinated to the neighborhoods of Lemmas 2.8 and 2.17. First, take a sufficiently large \(R \) such that \((1 - \chi(\lambda/R))(I + \hat{T}(\lambda))^{-1} \in \mathcal{W} \). Then, for every \(\lambda_0 \in [-4R, 4R] \) there exists \(\epsilon(\lambda_0) > 0 \) such that \(\chi(\lambda_0/R)(I + \hat{T}(\lambda))^{-1} \in \mathcal{W} \) if \(\lambda_0 \neq 0 \) or the conclusion of Lemma 2.12 holds when \(\lambda_0 = 0 \).

Since \([-4R, 4R] \) is a compact set, there exists a finite covering \([-4R, 4R] \subset \bigcup_{k=1}^N (\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k)) \). Then we construct a finite partition of unity on \(\mathbb{R} \) by smooth functions 1 = \(\chi_0(\lambda) + \sum_{k=1}^N \chi_k(\lambda) + \chi_{\infty}(\lambda) \), where \(\supp \chi_{\infty} \subset \mathbb{R} \setminus (-2R, 2R) \), \(\supp \chi_0 \subset [-\epsilon(0), \epsilon(0)] \), and \(\supp \chi_k \subset (\lambda_k - \epsilon(\lambda_k), \lambda_k + \epsilon(\lambda_k)) \).
where $L \in \mathcal{W}$ and $S^\gamma \in \mathcal{V}_{L^{3,2, L^{3,2}}}$.

Let Z_1 be given by the sum of all the regular terms of the decomposition:

$$Z_1(t) := \frac{1}{2\pi} \int e^{-it\lambda^2} (R_0((\lambda + i0)^2) - R_0((\lambda + i0)^2)V_1 L(\lambda) V_2 R_0((\lambda + i0)^2)) \cdot \lambda \, d\lambda$$

$$= \frac{1}{2\pi} \int e^{-it\lambda^2} \hat{\chi}_0((\lambda + i0)^2)V_1 L(\lambda) V_2 R_0((\lambda + i0)^2) \cdot \lambda \, d\lambda$$

By smoothing estimates it immediately follows that $Z_1(t)$ is L^2-bounded, see the proof of Proposition 2.13. Interpolating, we obtain that $\|Z_1(t)u\|_{L^{3,\infty}} \lesssim t^{-1/2} \|u\|_{L^{3,1}}$.

Let Z_2 be the following singular term in the decomposition of Lemma 2.17:

$$Z_2(t) := \frac{1}{2\pi} \int e^{-it\lambda^2} R_0((\lambda + i0)^2)V_1 L(\lambda) V_2 R_0((\lambda + i0)^2) \cdot \lambda \, d\lambda$$

$$= \frac{1}{2\pi} \int e^{-it\lambda^2} \hat{\chi}_0((\lambda + i0)^2)V_1 L(\lambda) V_2 R_0((\lambda + i0)^2) \cdot \lambda \, d\lambda$$

Note that $(R_0((\lambda + i0)^2)V_1)^\gamma \in \mathcal{V}_{L^{3,2, L^{3,\infty}}}, S(\lambda)^\gamma \in \mathcal{V}_{L^{3,2, L^{3,2}}}$, and $(V_2 R_0((\lambda + i0)^2))^\gamma \in \mathcal{V}_{L^{3,2, L^{3,2}}}$. Thus

$$R_0((\lambda + i0)^2)V_1 (\lambda S(\lambda)) V_2 R_0((\lambda + i0)^2) \in \mathcal{V}_{L^{3,2, L^{3,\infty}}}$.

This immediately implies that $\|Z_2(t)u\|_{L^{3,\infty}} \lesssim t^{-1/2} \|u\|_{L^{3,2,1}}$.

We are left with the contribution of the term $\lambda^{-2} V_2 P_0 V_1$. This is the same as the term X_3 from the proof of Proposition 2.18. By 2.42 $\|X_3(t)u\|_{L^{3,\infty}} \lesssim t^{-1/2} \|u\|_{L^{3,2,1}}$.

Putting the three estimates for Z_1, Z_2, and X_3 together, we obtain that $\|e^{-itH} P_0 u\|_{L^{3,\infty}} \lesssim \|u\|_{L^{3,2,1}}$. Interpolating with the obvious L^2 bound $\|e^{-itH} P_0 u\|_{L^2} \lesssim \|u\|_{L^2}$, we obtain the stated conclusion.
ACKNOWLEDGMENTS

This paper is indebted to Professor Kenji Yajima’s article [Yaj1], from which it borrows several lemmas, as well as the general plan of the proof. I would like to thank Professor Avy Soffer for referring me to that article and Professor Wilhelm Schlag for introducing me to this problem. I would also like to thank the anonymous referee for the many useful comments.

The author was partially supported by the NSF grant DMS–1128155 and by an AMS–Simons Foundation travel grant.

REFERENCES

