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Abstract  

  

Given the potential for significant changes in climate over the next century, understanding 

how biome locations may shift in response to these changes may be useful in informing 

conservation efforts. In this work the potential effect of climate change on the distribution of alpine 

tundra in the Adirondack Mountains of New York is examined. The ecological niche modelling 

software Maxent was used to analyze the distribution of alpine tundra relative to 30 year 800m 

PRISM climate normal data and terrain aspect over the Adirondacks. Random points from 

surveyed areas of alpine tundra in the Adirondacks were used as presence data in model training. 

The initial analysis was aimed at creating a model that was able to predict current alpine tundra 

distributions with a high level of skill. For the final analysis climate variables that contributed 

significantly to the skill of the model were downscaled to 10m resolution using an average lapse 

rate derived from the PRISM data. This analysis found that the presence of alpine tundra is well 

predicted by annual mean temperature. Different warming thresholds were applied to the climate 

grids and the model was rerun. The projected reduction in area of alpine tundra in the analysis area 

is calculated along with uncertainties in timing of area decline associated with different emission 

scenarios and GCM uncertainty. 
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Introduction 

 

Alpine tundra ecosystems cover only around 3% of global land area and are found at 

latitudes ranging from near equatorial to near arctic; these isolated patches can contain samples of 

species not found in great abundance anywhere within hundreds or thousands of miles of their 

location (Körner, 2003). These patches can provide valuable information on the natural history of 

their region, and can be local hotspots of biodiversity (Körner, 1995). Alpine tundra ecosystems 

are typically defined as those that occur at an elevation exceeding the local treeline and having a 

community composition distinct from the surrounding forested lands (Gabriel & Talbot, 1984; 

Körner, 1998; Rundel & Millar, 2016). Alpine tundra communities are composed primarily of 

non-woody vascular plants, bryophytes and lichens whereas a forest community is dominated by 

woody plants over 3 meters in height (Gabriel & Talbot, 1984; Körner, 2007). There is some 

uncertainty and difficulty in precisely describing the location of the treeline on a given slope 

because of the gradual nature of the transition between densely forested areas and those that are 

treeless; one common way of delineating this transition is to use a line connecting the last large 

forested patches on the slope (Körner, 2007; Rundel & Millar, 2016). 

There have been numerous efforts to find an environmental factor capable of accounting 

for this transition, many of which are described in the Alpine Treelines chapter of Körner (2003). 

Most of these efforts have found temperature-based climate variables such as mean growing 

season temperature, degree days above a threshold, and difference between summer and winter 

mean temperatures to be the best predictors of alpine tundra on a global or continental scale 

(Körner, 2003, 2004, 2007; Paulsen & Körner, 2014). Some research has suggested that the 

minimum root zone temperature for tissue growth in woody vascular plants may be significantly 

lower than the minimum temperature required for growth of non-woody vascular plant, lichens 



 

and bryophytes, therefore leading to the coldest regions on mountains being dominated by these 

non-woody plants (Körner, 1998). These analyses, along with many that have found significant 

changes in alpine tundra community composition and treeline elevation in the recent past 

associated with changes in temperature (Batllori et al. 2009; Danby, Koh, Hik, & Price, 2011; 

Gottfried et al. 2012; Jacobs, Chan, & Sutton, 2014; Silva et al. 2016) suggest that temperature is 

a good predictor of the transition between forest and alpine tundra at various scales of analysis. 

Studies have also documented changes in community composition in the alpine tundra 

communities across the North East United States in recent decades (Capers & Stone, 2011). A 

return to historic survey transects in the Adirondacks by Robinson et al. (2010) found that 

bryophytes and lichens went from constituting around 20% of area vegetation to around 10% from 

1984 to 2007. 

  Given the previously observed impacts of warming temperatures on alpine tundra 

ecosystems and the near certainty for warming to occur globally over the next century (IPCC, 

2007), understanding how future changes in climate could impact these regions may be useful in 

informing conservation efforts. There have been species distribution model analyses of the impact 

of a variety of climate change scenarios on alpine tundra in the European Alps finding that a 2 

degree Celsius increase in temperature reduced alpine tundra area to an area about one quarter of 

its current size (Dirnböck, Dullinger & Grabherr, 2003).  

An analysis of the impact of changing climate on alpine tundra like the one done by 

Dirnböck et al. (2003) has not yet been carried out on the Adirondack Mountains of New York. 

There are twenty peaks in the High Peaks region of the Adirondack Mountains that maintain 

communities of alpine tundra, these patches are among the southernmost in the Eastern United 

States and cover only about 26.3 ha or about 7 x 10- 4 % of the Adirondack Park area (Carlson et 

al. 2011; Robinson et al., 2010). These alpine tundra patches have become a focus of major 
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conservation efforts because they received significant damage through trampling and soil erosion 

from the large number of hikers in the region. Before the implementation of hiker education 

programs in the 1990’s, hikers were responsible for destruction of up to 30% of alpine tundra area 

on some peaks in the region (Ketchledge, 1977, 1979 as cited in Ketchledge, 1985). Recent 

surveys have found significant recovery in areas previously damaged by hikers in the region 

(Robinson et al., 2010). On some mountaintop transects, 50% of area that was bare substratum in 

1984 transitioned to plant covered by 2007 (Robinson et al., 2010). Assuming the continued 

effectiveness of education and conservation efforts, direct physical damage to alpine tundra 

ecosystems from hikers should not significantly impact future alpine tundra presence in the region. 

In addition to this potential to be damaged by hikers, the alpine tundra of the Adirondacks may be 

sensitive to changes in climate. Because no previous attempts have been made to quantify the 

impact that warming may have on the alpine tundra of the Adirondacks, such an analysis could be 

provide insight on the temperature sensitivity of the community and potentially inform 

conservation efforts in the region. 

Species distribution models can be used to make projections of how the distributions of 

species will change in altered environments (Elith et al., 2006). These models operate by finding 

a statistical relationship between species presence data and environmental predictors in a region 

(Elith et al., 2006). This statistical relationship can then be exposed to a new set of environmental 

variables, providing a probability of occurrence in this novel environment. However, uncertainty 

surrounding the true determining factors of the species distribution as well as the species ability 

to shift in response to changes in climate must be considered when applying these models to altered 

climate scenarios (Wiens et al., 2009).  



 

The Maximum Entropy Software for Modeling Species Niches and Distributions (Maxent) 

was selected for use in this project because of its wide documented use in projecting species 

distributions in future climates and evidence suggesting it is able to outperform many other species 

distribution models in standardized tests (Elith et al., 2006; Phillips et al., 2017a). Developed in 

the early 2000’s, Maxent was made to integrate more advanced machine learning techniques into 

the field of species distribution modelling and offer improved performance over other software 

available at the time (Elith et al., 2006; Phillips, Dudik, & Schapire, 2004). Maxent is a presence-

only model, meaning that the only information that is provided by the user about species 

distribution is where occurrences have been observed (Phillips et al., 2004). Other niche-modelling 

software such as DesktopGarp and S-Plus also use absence data which can be difficult to acquire 

an accurate set of for many species (Elith et al., 2006).  

Maxent estimates the distribution of the species across the landscape by finding the 

distribution function that maximizes entropy (is as close to a uniform distribution as possible) 

while still within the bounds of information given by the user-provided species presence data 

(Phillips, Dudik, & Schapire, 2004). For each environmental variable a set of features are created; 

a feature, denoted fj is a function describing how the environmental variable is distributed across 

the analysis region (Elith et al., 2010). These features can be based on a single environmental 

variable, the square of a single variable, a threshold of a single variable, or the product of two 

variables (Elith et al., 2010; Phillips & Dudík, 2008). Each of these features is used for calculating 

a characteristic of the species distribution (Table 1). These features are then combined as a linear 

combination in the exponent of a Gibbs distribution to generate the estimator ẑ. The estimator ẑ is 

a probability density function that approximates the true distribution of the species denoted Z, 

another probability density function (Phillips, Dudik, & Schapire, 2004).  This approximation of 

Z is informed by the distribution of the species presence data provided by the user denoted z* 
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(Phillips, Dudik, & Schapire, 2004). The first step in the process of generating ẑ is finding all ẑ 

such that the E(ẑ(fj)) = E(ẕ*(fj)) for all features, where the function E() denotes expected value 

(Phillips, Dudik, & Schapire, 2004). It is possible that many different probability density functions 

will meet this criterion, so the distribution with maximal entropy (closest to uniform distribution) 

is selected (Phillips, Dudik, & Schapire, 2004; Phillips & Dudík, 2008). Once a satisfactory 

estimator ẑ is created, the software outputs species probability across the region, the relative 

weights of each feature used, and optionally, an analysis of how much each environmental variable 

contributed to the skill of the model (Phillips, Dudik, & Schapire, 2004; Phillips & Dudík, 2008). 

This process is capable of generating accurate predictions of species presence across a variety of 

taxa, landscapes, and scales of analysis (Elith et al., 2010). 

 

Methods 

 

  In this analysis Maxent models were run using a variety of climate variables to identify a 

set that could be used to predict alpine tundra presence skillfully in the analysis region. The 

initial climate dataset used was at too coarse a resolution for analysis beyond initial variable 

testing, so annual average temperature and precipitation values were downscaled to 10m from 

another nationwide climate dataset and used as climate input for further Maxent models. Maxent 

models were built using downscaled climate data and terrain aspect to determine if aspect would 

contribute to model skill. Finally, the model using downscaled annual average temperature and 

precipitation was used to make a projection of the potential impact of various degrees of 

warming from 0.25C to 2.0C on the area of alpine tundra found in the Adirondacks. 

Initially an attempt was made to acquire species specific presence location data for a 

large number of Adirondack alpine tundra species listed as being present in Robinson et al. 



 

(2010). After an extensive search the only potential source we found for such data was the 

species specific climate model resource on the Canadian Department of Natural Resources’ plant 

hardiness website (Natural Resources Canada, 2017). A request for the species location data 

described on the website was denied because of established data sharing agreements (D. 

McKenney, personal communication). As an alternative, data from a previously conducted field 

survey of Adirondack alpine tundra patches conducted by Carlson et al. (2011) were used as the 

presence input for Maxent. This survey produced outlines of patches on all twenty peaks with 

alpine tundra by collecting coordinates around the perimeter of patches using handheld GPS 

devices (Carlson et al. 2011). The maximum amount of horizontal error for any patch was 3m, 

and Carlson et al. (2011) describe that most patches had “much less” error. The shapefile of the 

alpine tundra patches, and all other geospatial files used throughout this project were projected 

to the geographic coordinate system associated with North American Datum 1983. The random 

point generator tool in the open source GIS software QGIS was used to create a collection of 

points within the perimeter of the surveyed patch shapefile. For the initial Maxent model using 

400m resolution data 100 points were created. For the models run on 10m grids 2500 points 

were used. In both cases the goal was to ensure that almost all grid cells under tundra patches 

contained a point. These points were used as the presence data input for the Maxent model. 

These points were converted from their native format to .csv format and arranged in Microsoft 

Excel to meet the formatting requirements of Maxent. 

The climate data used in our initial analysis came from the Bioclimatic Predictors for 

Supporting Ecological Applications in the Conterminous United States dataset, found online 

under the name United States Geological Survey (USGS) Data Series 691 (USGS, 2012). These 

bioclimatic predictors are based on annual and monthly Parameter-elevation Regressions on 

Independent Slopes Model (PRISM) climate normal data at 800m and 4000m spatial resolution 
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that have been downscaled to 400m and parsed into a variety of variables that have been found 

to be relevant biological distributions (Daly et al., 2008; USGS, 2012) (Table 2). The PRISM 

climate dataset incorporates quality controlled temperature and precipitation data from around 

10,000 stations nationwide and a regression of climate and elevation to estimate the climate 

normal state across the entire United States from 1981- 2010 (Daly et al., 2008). A variety of 

factors including station proximity to coastline, and elevation are used in weighting stations for 

their contribution to the estimate of climate for a given location (Daly et al., 2008). 

An initial Maxent analysis was run incorporating all twenty USGS bioclimatic predictors 

as environmental variables and 100 alpine tundra points as presence data. The jackknife analysis 

from this model was used to find the predictors that contributed most to the skill of the model 

and informed predictor selection in future model runs (Figure 1). Because of the small size of 

alpine tundra patches in the analysis region and the inability of the 400m USGS dataset to 

resolve individual patches, it was concluded that significant further downscaling would be 

necessary to accurately represent the current climate state for model building. By training a 

model on climate data that more accurately represented the current climate state, more accurate 

predictions of the response of alpine tundra to changes in climate would be made.  

The downscaling process involved several steps to bring the 800m climate data to 10m 

resolution. The first step was resampling all rasters to the resolution of the high-resolution DEM.  

A single rate of change of the climate variable with respect to elevation, called a lapse rate was 

found for each variable across the analysis region. The lapse rate was calculated through a linear 

regression of the variables with respect to elevation. The slope of the line of best fit from this 

linear regression was used as the lapse rate across the region for that variable. These lapse rates 

were multiplied by the difference in elevation between the coarse resolution DEM and the finer 



 

resolution DEM, and the change in variable value was then added to the resampled variable 

raster to generate the final downscaled raster. 

 To identify potential candidates for this downscaling, a linear regression of all twenty 

USGS bioclimatic predictors with respect to elevation was performed. The results of this linear 

regression are listed in Table 3. An R2 value near 1 in this regression suggests that the line of 

best fit is a good approximation of the elevation dependence of the variable for a wide range of 

elevations found in the region, and the variable is therefore a good candidate for downscaling 

using a single lapse rate.  

A visual analysis of various raster resolutions relative to alpine tundra patch size led to 

the conclusion that downscaling to a grid size of approximately 10m x 10m would provide 

sufficient resolution for the analysis. At this resolution, most alpine tundra patches are resolved 

with several pixels. The USGS 1/3 arc second (approximately 10m x 10m) DEM product was 

selected as the elevation dataset for this downscaling. These files were downloaded from the 

USGS National Map website (TNM Download, 2019). A single DEM file from this dataset did 

not cover the entire analysis region, so the four DEMs listed in Table 4 were merged in ArcMap 

using the Mosaic to New Raster tool with pixel type set to “32 bit signed” to produce a single 

DEM that covered the entire analysis region. This merged DEM was then clipped to the analysis 

region using the Raster Clip tool in ArcMap.   

PRISM 30-year 800m climate normals were selected as the source for climate data for 

subsequent analyses. The 800m PRISM normals were downscaled to a resolution of 10m; at this 

resolution most patches of alpine tundra had multiple grid cells covering them. To perform this 

downscaling monthly climate normals for mean temperature and mean precipitation along with 

elevation were acquired from the PRISM website at a resolution of 800m (PRISM Climate 

Group, 2015). The rasters were clipped to the area of the analysis region using the Raster Clip 
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tool in ArcMap. A linear regression of mean temperature and of mean precipitation was 

performed relative to elevation for each month on this clipped dataset. The slope of the 

regression line was later used as the average lapse rate for the predictor in that month in the 

analysis region (Table 5). For temperature, the lapse rates varied from 3.5C/km to 6.0C/km and 

had lapse rates above 0.61 for all months and above 0.85 in all non-winter months. The values of 

lapse rate for precipitation varied from -36mm/km to -57 and had R2 values above 0.5 for 5 of 

the months. 

The clipped 800m PRISM dataset was resampled to the same resolution as the USGS 1/3 

arc second DEM using the Resample tool in ArcMap. Bilinear interpolation resampling was used 

to avoid aliasing that would occur with nearest neighbor interpolation. The DEM was set as the 

snap raster under the environmental settings for all resampling operations to ensure that pixels 

were properly aligned for use in Maxent. Once all the monthly datasets were resampled, the 

Raster Calculator tool in ArcMap was used to apply the lapse rate from the linear regression to 

each of the monthly datasets using the following equation. 

Equation 1.) 

Pnew = P0 + (∆elevation)(ΓP)   

Pnew = new predictor value;  P0 = Initial predictor value; ΓP = predictor lapse rate 

∆elevation = Elevation difference between 10m DEM and resampled PRISM elevation   

 

The annual mean of the downscaled monthly predictors was calculated using the raster 

calculator tool and used as the annual average for that climate variable. These annual average 

rasters were exported as ASCII files using the Raster to ASCII tool in ArcMap for use in 

Maxent. 



 

  Terrain aspect was also considered as a model training predictor because of evidence that 

alpine tundra is more prevalent at some aspect values than others in the analysis region and other 

locations in North America (Carlson et al., 2011, Danby et al., 2011).  Terrain aspect data was 

generated from the 1/3 arc second USGS DEM using the Aspect tool in ArcMap. Aspect data 

were converted to a categorical format using nested conditional statements in the Raster 

Calculator tool of ArcMap. This categorical raster was exported as an ASCII file using the same 

procedure as the annual average climate predictors. Preliminary Maxent models were run to 

determine the relative importance of the selected environmental predictors and to ensure that the 

model was highly skilled at predicting alpine tundra presence under climate normal conditions 

(Table 6, TPA-1, TPA-2, TP-1).  

To simulate potential climate change scenarios a constant value was added to every pixel 

of the annual average temperature raster; this process was carried out using several different 

constant values ranging from 0 to 2 degrees Celsius at 0.25 degree increments. Maxent was run 

for the final climate impact analysis using the projection option which allows users to input 

environmental predictors with altered values; Maxent then provides as an output probability of 

occurrence in the new climate (Phillips, 2017). To correct for the overestimation of presence in 

the model, a ratio of true area to predicted area was calculated from the climate normal model 

(Table 6, TP-1) and used as a correction factor for predicted area in the current climate and in 

climate projection models.  

The Maxent software provides several useful metrics for analyzing the distribution of 

species across the analysis landscape, the general skill of the model at predicting presence, and 

the relative contribution of each variable to model skill. For analyzing predicted presence across 

the analysis region, a map with probability of presence values is produced. These maps can be 

used to calculate area of predicted presence above a threshold and analyze changes in 
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distribution for different climate scenarios. To measure the relative skill of the model Area under 

the ROC curve (AUC) is used. AUC is the sum of the probabilities of randomly chosen species 

presence locations having higher values for probability of occurrence than a randomly chosen 

background point (Swets, 1998). The closer the AUC value is to 1 the more skilled the model is 

considered (Swets, 1998).The relative importance of the environmental variables is conducted 

through an analysis of variable contributions (Phillips et al., 2017). Two values are given to the 

user from his analysis. The first value is called percent contribution, it represents the amount of 

prediction skill as measured by AUC that came from that variable (Phillips et al., 2017). The 

second analysis randomly changes the values of the environmental variable across the analysis 

region and records the amount of model skill lost as measured by AUC (Phillips et al., 2017). 

This loss in skill is used to calculate the relative importance of that variable. The Jackknife 

analysis shows how skilled the model would be if it were to be run either exclusively with a 

certain variable, or run excluding the variable (Phillips et al., 2017). Additionally, for each 

variable a response curve showing how the probability of occurrence relative to the range of 

values that variable takes on is produced. Another way of analyzing the contribution of each 

environmental variable is to analyze the .lambdas file that is produced with every Maxent run. 

This file contains information on what features were in the model. The lambda value for a 

feature tells how much weight that feature was given, as described in the introduction section. 

These metrics are examined for each of the Maxent models run for this project to gain insight 

into their operation and skill of prediction.  

 



 

Results 

   

  The initial Maxent analysis using the USGS bioclimatic variables as environmental layer 

inputs (Table 6; BC-1) yielded results that were used to inform the decision of what variables to 

include in the final analysis. The AUC of the model was 0.998, suggesting the model was highly 

skilled at predicating alpine tundra presence (Table 7). The Jackknife analysis (Figure 1) found 

that the variables that were most skilled at predicting the presence of alpine tundra by themselves 

were: annual mean temperature, minimum temperature of coldest month, mean temperature of 

warmest quarter, and mean temperature of coldest quarter. The analysis of variable contributions 

should be considered a result of secondary importance to the jackknife when analyzing results 

because of issues that arise when environmental variables are highly correlated. This analysis of 

variable contribution found that mean temperature of driest quarter and mean temperature of 

coldest quarter were found to have the largest contribution to model skill, and altering minimum 

temperature of coldest month was found to cause the largest loss in model skill (Table 8). This is 

consistent with analyses that have previously analyzed trends connecting climatic variables and 

alpine tundra location (Körner, 2003, 2004, 2007; Paulsen & Körner, 2014). Precipitation 

variables were found have a minimal contribution to the skill of the model (Figure 1). 

 Because this model suggested that various temperature variables contributed 

significantly model skill and were skilled at predicting alpine tundra presence by themselves, 

annual average temperature was chosen for further analysis. Despite the relatively low skill of 

the precipitation variables (Figure 1), annual average precipitation was included because of its 

importance as a predictor in species distribution models run for alpine tundra species in the 

European Alps (Dirnböck, Dullinger & Grabherr, 2003). As previously discussed, downscaling 

to significantly finer resolutions was also deemed necessary for further analysis based on visual 
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analysis, and the fact that the alpine tundra patches on some mountains are less than 10 meters 

across (Carlson et al., 2011). The finest resolution dataset available for the entire analysis region 

was the USGS 1/3 arc second (approximately 10m x 10m) DEM (USGS CITE). This DEM was 

used in the downscaling analysis and is therefore the resolution of the climate data used in the 

final analysis. 

The next model (Table 6, TP-1) was made to determine if using only downscaled values 

of annual mean temperature and annual mean precipitation would generate a model as skilled as 

the one that used all twenty bioclimatic variables. The AUC from this analysis was 0.996. This is 

very close to the AUC of model run BC-1, suggesting that the two models have similar skill at 

predicting the presence of alpine tundra (Table 7). The contents of the lambdas file presented in 

Table 9 show that this two-variable model incorporates a large number of forward hinge features 

based on annual average temperature and incorporates few features based on annual average 

precipitation. The large number of temperature forward hinge variables, and their relatively large 

lambda values (compared to the precipitation hinge feature) suggests that the model was 

resolving a linear decrease in alpine tundra presence with decreasing temperature, and giving 

these features a relatively large weight in the final model. The large difference between the ‘with 

only’ and ‘without’ from the jackknife analysis in Figure 2  shows that annual average 

temperature is responsible for the majority of the skill in this model. When the model is run 

using only temperature as an input model skill is very nearly the same as when it is run with both 

variables. When the model is run without temperature data, the skill of the model is drastically 

decreased.  

The next set of models were made to determine if incorporating terrain aspect would 

contribute significantly to model skill and to determine if product features combining aspect 



 

with one of the climate variables would be created. The alpine tundra patches in the Adirondacks 

are not evenly distributed across all different values of aspect, there is about 25% more area on 

east facing slopes than on any others (Carlson et al., 2011). Aspect was analyzed in two forms in 

two Maxent runs, first including values from across the entire analysis region (TPA-1) and then 

only including values from elevations above 1000m (TPA-2). The AUC values for TPA-1 and 

TPA-2 were both 0.995 (Table 7), this value very close to the AUC of TP-1 suggesting all 

models were similarly skilled. The response curve for alpine tundra to aspect is essentially flat 

for both the masked and unmasked analysis meaning that the different categories of aspect had 

the same probability of alpine tundra occurrence across them (Figure 3, Figure 4). The jackknife 

analyses show that a model using aspect alone is not skilled at predicting presence, and that 

removing aspect does not remove skill from the model (Figure 5, Figure 6). The lambdas file 

from TPA-1 and TPA-2 do not contain any instances of product features incorporating aspect 

into them suggesting that covariance between aspect and the climate variables was not an 

important factor (Table 10, Table 11). Because of the results showing that aspect did not 

contribute significantly to the skill of the model it was not used in further model runs. 

The final analysis attempts to make a projection of how changes in temperature 

associated with global climate change could potentially impact the distribution and area of alpine 

tundra in the region. Model TP-1 was used in this analysis because it was found to be as skilled 

as BC-1, TPA-1, and TPA-2 while providing higher resolution results than BC-1 and being less 

computationally intensive than TPA-1 or TPA-2. There were very slight variations in the 

lambdas file output between this second running of TP-1 and the initial run because of the 

random nature of training point and background point selection by Maxent. The model was 

exposed to climate data with temperature increases ranging from 0 to 2 degree C at 0.25 degree 

intervals. The predicted area of alpine tundra is shown to decay exponentially as warming 
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amounts increase (Figure 7, Figure 8). The nature of this decay comes from the decreasing 

surface area of the mountains with elevation. The surface area of a roughly conic mountain 

above an elevation contour will decay exponentially as that contour is moved up the mountain. 

Because the alpine tundra presence is well predicted by colder temperatures, and temperatures 

are decreasing with elevation, the contour representing the 70% likelihood of alpine tundra 

moves upslope with warming temperatures and encompasses a surface area that is decaying 

exponentially as it climbs. Approximately half of alpine tundra area is predicted to be lost at 

0.25C of warming, 75% of area at 0.5C of warming and 100% between 1.25 and 1.5C of 

warming. These are all lower than the amount of warming projected to occur by the year 2050 in 

the North Eastern United States by the USGCRP under scenario RCP 4.5 (USGCRP, 2017). 

 

Conclusion & Discussion 

 

When interpreting these results, it must be noted that the timeframe of the RCP scenarios 

used in Figures 7 and 8 do not represent the timeframe at which changes in the area of alpine 

tundra are predicted to be observed. Plants in high elevation environments do not respond in a 

single season to changes in their environment; it may take years or decades for changes in 

distribution or community composition to be observed (Grabherr et al., 1994). Additionally, 

once these changes begins to occur they likely will not be at a high rate. It is estimated that most 

plant species are only capable of shifting their range upslope at 5 to 10 m per decade (Chen et al 

2011) and changes in community composition often take decades to occur (Batllori et al. 2009; 

Gottfried et al., 2012; Robinson et al., 2010).  

The estimated amount of warming required to reduce the area of the Adirondacks that is 

climatically suitable for alpine tundra by 75 to 100% is lower than the amount of warming that 



 

has been estimated for a similar reduction in other parts of the world. For instance, in the 

Calcareous Alps near Vienna, Austria it has been projected that a warming of 2 Degrees Celsius 

would cause the area of alpine tundra in the region to be reduced to an area about one quarter of 

its current size (Dirnböck, Dullinger & Grabherr, 2003). Projections of alpine tundra in Scotland 

suggest that a warming of 1.7C would lead to 70% of alpine tundra plants in the region losing all 

of their suitable climate area and a warming of 3.3C would lead to 80% of species experiencing 

a total loss of suitable climate area (Schneiderbauer et al., 2011). Projections over the Qinghai 

Province of China that suggest a warming of 1 to 3 Degrees Celsius would be enough to a make 

around three quarters of current alpine tundra become dominated by forest communities (Zhang 

et al., 2010).  

The difference in the amount of warming required for 75 -100% reduction in suitable 

alpine tundra area for these projections and our projection in the Adirondacks may be explained 

by difference between the regions. The alpine tundra in the Adirondacks totals only about 65 

acres and is found only within a roughly 400m elevation range (Carlson et al. 2011) while the 

area of alpine tundra in the other analysis regions cover hundreds or thousands of acres and is 

found in an elevation range of over 1000m (Dirnböck, Dullinger & Grabherr, 2003; 

Schneiderbauer et al. 2011; Zhang, 2010). Because the alpine tundra presence is connected to 

colder temperatures, and temperatures generally decrease with elevation, locations with a greater 

range of elevation suitable for alpine tundra will have more area for species to retreat to as 

warming occurs, thus allowing for more warming before all suitable habitat is lost. 

There were several assumptions made in the methods of our projection that should be 

taken into consideration when analyzing the results. The assumption of a uniform warming of 

the region with no variations around features like elevation is may not be representative of 

reality (Pepin et al., 2015). It is not clear if this assumption of uniform warming overestimates 
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warming in Adirondack peaks or underestimates it. There is evidence that higher elevations 

locations a few hundred miles from the Adirondacks on Mt. Washington in New Hampshire 

experienced a smaller magnitude of climate change than surrounding low elevation locations 

from 1930 to 2006, possibly because of thermal inversions and frequent cloud fog near the 

summit (Seidel et al., 2009). However, it is not clear if this trend is representative of other 

mountains in the region (Seidel et al., 2009). Conversely, Wilson and Nilsson (2009) found that 

the amount of change in bioclimatic temperature variables in alpine tundra zones in the Alps was 

about four times larger than in the surrounding lowlands over 30 years from 1987 to 2007. 

Depending on the relationship between elevation and magnitude of warming in the high 

elevation locations in the Adirondacks, the temperatures suitable for alpine tundra to occur at 

may cease to exist at a time that is sooner, or later than the one predicted by the RCP scenarios.  

 There are also potential sources of error in the climate data used in the Maxent models. 

This error stems from the lack of high-elevation temperature and precipitation monitoring 

stations across the Adirondacks in the PRISM dataset and in the downscaling process used to 

further downscale PRISM data used in this analysis. In the PRISM dataset, the climate normals 

at high elevation locations are estimated using values from nearby monitoring stations that are 

located at much lower elevations than the mountain peaks that contain alpine tundra. This lack of 

data measured directly at the site of alpine tundra leads to uncertainty about the true climate 

normal conditions at these locations. The assumption of a constant lapse rate across the entire 

region made in this analysis is likely not representative of reality; large topographic features can 

lead to spatial variations in lapse rate across a region (Minder, Mote, & Lundquist, 2010). 

Variations in lapse rate across the analyses region could mean that the climate data used in the 

Maxent models is significantly different than reality. 



 

Another major assumption is that the alpine tundra species of the Adirondacks will 

respond uniformly to changes in climate. Performing a Maxent analysis on the alpine tundra 

community as a whole does not allow models to project the ways in which the community 

composition could change as a result of increases in temperature, or the sensitivity of individual 

species to warming. As mentioned earlier, there is evidence that warming temperatures cause 

tundra ecosystems to shift towards containing fewer lichens and bryophytes, and more vascular 

plants (Batllori et al. 2009; Gottfried et al. 2012; Silva et al. 2016, Jacobs, Chan, & Sutton, 2014; 

Danby, Koh, Hik, & Price, 2011). These changes in community composition and shifts in 

individual species ranges could be more informative than looking at all species of the alpine 

tundra together as a single unit. In order to have a sufficiently large amount of location data, 

presence locations would likely need to be included from locations across the eastern US and 

Canada, not just the Adirondacks. Presence data from a wide geographic extent would also serve 

to represent the range of climate that the species are capable of living in more accurately than 

only using data from the Adirondacks. 

If a dataset was found that included reliable species-specific location data across a wide 

extent a similar Maxent modelling approach to the one used in this paper could be used. Because 

of the inclusion of international presence locations, the USGS Bioclimatic dataset could not be 

used as environmental input. It would likely be necessary to use an international bioclimatic 

dataset such as WorldClim (Fick & Hijmans, 2017) or other data source for bioclimatic variables 

across N. America at sufficiently high resolution. The difficulty in this approach would be in 

downscaling the coarse international climate data to a resolution capable of representing the 

Adirondack region accurately. The finest resolution available from the WorldClim dataset is 30 

arc second or approximately 900m x 900m (Fick & Hijmans, 2017). Downscaling climate 

variables to a level capable of resolving alpine tundra patches for a region that spans hundreds or 
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thousands of miles and then running a Maxent model over these variables would require a 

tremendous amount of computational resources. This kind of analysis would, however provide a 

more accurate representation of how the Adirondack alpine tundra community may respond to 

changes in climate, and allow for analysis of alpine tundra sensitivity to climate change at 

locations across the Eastern United States and Canada. 

It is also possible that variables like icing and wind that are not included in the USGS or 

PRISM datasets may be responsible for the distribution of alpine tundra in the Adirondacks. 

Carlson et al. (2011) found that mean patch elevation on mountain was strongly correlated (R2 > 

0.96) with the elevation of the mountain itself. On all peaks that they surveyed, patches of alpine 

tundra were within about 75 meters of the top of the mountain (Carlson et al., 2011). Because 

patches of alpine tundra on the highest peaks are not extending hundreds of meters to elevations 

(and temperatures) that support alpine tundra on other lower peaks, it is possible that a variable 

other than temperature may be causing the patch distribution we see. Factors like riming, and 

wind desiccation may be more prevalent at the tops of these prominent peaks, and may be the 

ultimate cause of the distribution that is observed.  

The overall goal of this analysis was to make projections of how alpine tundra 

distribution in the Adirondacks could change in a variety of climate change scenarios through 

Maxent modelling with downscaled climate data and presence location data from the region. 

Similar projections have been made for several regions of alpine tundra around the globe, but 

had not yet been carried out in the Adirondacks. Understanding how this community may 

respond to warming could be informative for efforts to preserve its presence in the region. To 

perform this projection, Maxent models were first run using a variety of climate variables to 

identify a set that could be used to skillfully predict alpine tundra presence in the region under 



 

climate normal conditions. Annual mean temperature and precipitation were identified as the 

variables to be used in the projection.  

The PRISM datasets for monthly average temperature and precipitation were at 800m 

resolution. This was too coarse to resolve the patches of alpine tundra in the area. The monthly 

PRISM datasets were downscaled to a resolution of approximately 10m using a lapse rate 

derived from a linear regression of elevation and monthly values. These downscaled monthly 

datasets were averaged to create annual average values. Test models including terrain aspect 

found that it did not contribute to model skill, and was therefore not used in projection analyses. 

  A Maxent model based on annual average temperature and precipitation projection was 

used to determine the impact of warming between 0.25C and 2.0C on alpine tundra distribution. 

One half of alpine tundra area was projected to be lost at 0.35C of warming, three quarters of 

area lost at  0.5C and all area lost between  1.25 and 1.5C. These values are all lower than the 

USGCRP projection for warming in the North East United states by the year 2050 under 

warming scenario 4.5 (USGCRP, 2017). It should be noted that the change in area should not be 

expected to occur in the same timespan as the warming. Changes in community composition, 

and community location can take decades to occur (Batllori et al., 2009; Gottfried et al., 2012; 

Robinson et al., 2010).  

Several of the underlying assumptions of the methods used lead to uncertainty in the 

model results. These include the lack of information on community composition change, the 

potential for factors like wind and icing to influence alpine tundra distributions, and the 

assumption of uniform warming and lapse rate across the region. Overall, these results suggest 

that the alpine tundra of the Adirondacks may be sensitive to changes in temperature that are 

nearly certain to occur in the next century. Further research incorporating species specific 



  
 

21 

 

models, and variables such as rime ice accumulation and wind may provide more accurate 

results on the true impact that climate change could have on the region. 
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Tables 

 

Table 1.) 

Feature Types and Associated Statistics Used in Final Maxent Model 

Feature Type Calculation Method Associated Statistic 

Raw Untransformed data Mean 

Quadratic Square of data values Variance 

Product Product of two variables Covariance 

Threshold Transform feature into 

piecewise function 

Min, or Max value 

Hinge Transform feature into linear 

piecewise function 

Min, or Max value 

Table 1.) Maxent Feature types along with their method of calculation and the statistic that Maxent 

calculates using the feature. 
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Table 2.) 

USGS Data Series 691 Bioclimatic Predictor Name-Number Reference 

Predictor 

Number 

Predictor Name Predictor Units 

BioClim # 1 Annual Mean Temperature Degrees Celsius 

BioClim # 2 Annual Mean Diurnal Range Degrees Celsius 

BioClim # 3 Isothermality Percent 

BioClim # 4 Temperature Seasonality (Standard Deviation) Degrees Celsius 

BioClim # 4a (5) Temperature Seasonality (CV) Percent 

BioClim # 5 (6) Max Temperature of Warmest Month Degrees Celsius 

BioClim # 6 (7) Min Temperature of Coldest Month Degrees Celsius 

BioClim # 7 (8) Annual Temperature Range Degrees Celsius 

BioClim # 8 (9) Mean Temperature of Wettest Quarter Degrees Celsius 

BioClim # 9 (10) Mean Temperature of Driest Quarter Degrees Celsius 

BioClim # 10 (11) Mean Temperature of Warmest Quarter Degrees Celsius 

BioClim # 11 (12) Mean Temperature of Coldest Quarter Degrees Celsius 

BioClim # 12 (13) Annual Precipitation Millimeters 

BioClim # 13 (14) Precipitation of Wettest Month Millimeters 

BioClim # 14 (15) Precipitation of Driest Month Millimeters 

BioClim # 15 (16) Precipitation Seasonality (CV) Percent 

BioClim # 16 (17) Precipitation of Wettest Quarter Millimeters 

BioClim # 17 (18) Precipitation of Driest Quarter Millimeters 

BioClim # 18 (19) Precipitation of Warmest Quarter Millimeters 

BioClim # 19 (20) Precipitation of Coldest Quarter Millimeters 

 

Note: Numbers in parenthesis represent alterations to the numbering system that were made for 

simplifying the raster iteration process in ArcMap. This numbering nomenclature is maintained 

through all analysis with USGS Bioclim Predictors in this paper. 

 

Table 2.) USGS Bioclimatic predictor names along with their identification numbers and units 

 

 

 

 

 

 

 

 

 



 

Table 3.) 

Results of Linear Regression of Bioclimatic Predictors  

Predictor 

Number 

Predictor Name R2 

Value 

Lapse 

Rate 

(Units/km) 

Predictor Units 

BioClim # 1 Annual Mean Temperature 0.845 4.794 Degrees Celsius 

BioClim # 2 Annual Mean Diurnal Range 0.112 -1.306 Degrees Celsius 

BioClim # 3 Isothermality 0.314 -0.457 Percent 

BioClim # 4 Temperature Seasonality (Standard 

Deviation) 

0.356 0.758 Degrees Celsius 

BioClim # 4a (5) Temperature Seasonality (CV) 0.156 9.141 Percent 

BioClim # 5 (6) Max Temperature of Warmest Month 0.875 5.435 Degrees Celsius 

BioClim # 6 (7) Min Temperature of Coldest Month 0.406 3.584 Degrees Celsius 

BioClim # 7 (8) Annual Temperature Range 0.140 1.850 Degrees Celsius 

BioClim # 8 (9) Mean Temperature of Wettest Quarter 0.156 4.914 Degrees Celsius 

BioClim # 9 (10) Mean Temperature of Driest Quarter 0.005 4.9111 Degrees Celsius 

BioClim # 10 (11) Mean Temperature of Warmest 

Quarter 

0.911 5.834 Degrees Celsius 

BioClim # 11 (12) Mean Temperature of Coldest Quarter 0.586 3.561 Degrees Celsius 

BioClim # 12 (13) Annual Precipitation 0.398 -442.05 Millimeters 

BioClim # 13 (14) Precipitation of Wettest Month 0.332 -38.42 Millimeters 

BioClim # 14 (15) Precipitation of Driest Month 0.301 -32.35 Millimeters 

BioClim # 15 (16) Precipitation Seasonality (CV) 0.032 3.251 Percent 

BioClim # 16 (17) Precipitation of Wettest Quarter 0.499 -116.07 Millimeters 

BioClim # 17 (18) Precipitation of Driest Quarter 0.269 -106.42 Millimeters 

BioClim # 18 (19) Precipitation of Warmest Quarter 0.528 -99.67 Millimeters 

BioClim # 19 (20) Precipitation of Coldest Quarter 0.289 -125.90 Millimeters 

Table 3.) Lapse rates and R^2 values from linear regression of USGS Bioclim variables. 

 

 

Table 4.) 

 

List of DEMs Used 

DEM Name 

USGS NED 1/3 arc-second n45w075 1 x 1 degree ArcGrid 2018 

USGS NED 1/3 arc-second n44w075 1 x 1 degree ArcGrid 2013 

USGS NED 1/3 arc-second n45w074 1 x 1 degree ArcGrid 2018 

USGS NED 1/3 arc-second n44w074 1 x 1 degree ArcGrid 2018 

  Table 4.) List of DEMs used in downscaling analysis and aspect calculation 
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Table 5.) 

Results of Linear Regression of Monthly PRISM Data 

 Precipitation Temperature 

Month R2 Value Lapse Rate 

(mm/km) 

R2 Value Lapse rate 

(C/km) 

January 0.373 51.25 0.626 3.610 

February 0.392 37.18 0.621 3.530 

March 0.227 35.98 0.742 4.644 

April 0.353 38.82 0.874 5.195 

May 0.472 48.68 0.892 5.332 

June 0.578 38.47 0.920 5.674 

July 0.547 40.22 0.911 6.031 

August 0.476 41.19 0.908 5.416 

September 0.597 53.28 0.891 4.847 

October 0.686 56.79 0.883 4.216 

November 0.537 53.61 0.892 4.642 

December 0.453 52.64 0.816 4.493 

  Table 5.) Lapse rates and r2 values for linear regression of PRISM monthly data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 6.) 

Maxent Model Run Settings and Data 

Model 

Run 

Referenc

e 

Environmental 

Dataset; Resolution 

Analysis Region Number 

of 

Presence 

Points 

Percent of 

Points Used 

for Training 

Projection 

Onto 

Future 

Climate 

Performed 

BC-1 All 20 USGS 

Bioclim Predictors; 

400m 

Lat (43.2, 44.95) 

Lon (-75.0,-73.4) 

100 25 No 

TPA-1 Annual Mean Temp, 

Annual Mean Precip, 

Non-Masked Aspect; 

10m 

Lat (43.3, 48.8) 

Lon (-74.85, -73.45) 

2500 25 No 

TPA-2 Annual Mean Temp, 

Annual Mean Precip, 

Masked Aspect; 10m 

Lat (43.3, 48.8) 

Lon (-74.85, -73.45) 

2500 25 No 

TP-1 Annual Mean Temp, 

Annual Mean Precip; 

10m 

Lat (43.3, 48.8) 

Lon (-74.85, -73.45) 

2500 25 No 

Note: All settings not listed were kept at the default values for  Maxent version 3.4.1 

 

Table 6.) Information on the parameters and settings used in each of the Maxent models run in this 

project 

 

 

Table 7.) 

Model Run AUC Values 

BC-1 0.998 

TP-1 0.996 

TPA-1 0.995 

TPA-2 0.995 

Table 7.) The AUC values generated by Maxent for each of the model runs 
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Table 8.) 

Analysis of Variable Contributions in USGS Bioclimatic Variable Maxent Run 

 
Table 8: Analysis of variable contributions from the variables that contributed to Maxent 

model skill. This run used USGS Bioclimatic variables as environmental input. Variables with 

values of zero for both percent contribution and permutation importance are not included. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Table 9.) 

Lambdas File Output for TP-1 

Feature Name and Type Lambda Value Min Value of 

Variable in 

Training 

Max Value of 

Variable in 

Training 

annual average precipitation 0 66.13546753 161.7019958 

annual average temperature 0 0.765864909 8.779252052 

annual average precipitation ^2 -0.023065336 4373.900065 26147.53546 

annual average 

precipitation*annual average 

temperature 

-0.250583576 123.8378993 792.7650805 

annual average temperature – FH -1.244019818 2.242676973 8.779252052 

annual average temperature – FH -1.872197352 2.448004603 8.779252052 

annual average temperature – FH -2.147196104 2.488901019 8.779252052 

annual average temperature – FH -2.07628575 2.501142979 8.779252052 

annual average temperature – FH -3.561273582 2.504409432 8.779252052 

annual average temperature – FH -0.849498498 2.481745005 8.779252052 

annual average precipitation – RH -0.404996825 66.13546753 125.2432976 

annual average precipitation – RH -0.715324481 66.13546753 125.2659988 

annual average temperature – FH -0.423241992 2.447395086 8.779252052 

annual average temperature – FH -0.967791773 2.426437497 8.779252052 

Key: 

 Feature name = Raw feature 

Feature Name*Feature Name = Product Feature 

^2 = Quadratic feature 

- RH = Reverse Hinge feature 

- FH = Forward Hinge feature 

(Feature Name = integer) = Threshold feature 

Table 9.) Content of lambdas file for model TP-1 
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Table 10.) 

Lambdas File Output for TPA-1 

Feature Name and Type Lambda Value Min Value 

of Variable 

in Training 

Max Value of 

Variable in 

Training 

(aspect=0.0) 0 0 1 

(aspect=5.0) 0.005402358 0 1 

(aspect=6.0) 0.095019442 0 1 

(aspect=7.0) -0.019238857 0 1 

annual average precipitation 0 66.22400665 161.7019958 

annual average temperature -0.187504878 0.76709491 8.784367561 

annual average precipitation ^2 -0.002878165 4385.619057 26147.53546 

annual average temperature ^2 -41.68903447 0.588434601 77.16511345 

annual average precipitation*annual average 

temperature 

-1.145853736 124.040778 792.2790877 

annual average temperature – FH -0.857624798 0.76709491 1.746787012 

annual average temperature – FH -0.405721956 0.76709491 1.775585473 

annual average temperature – FH -0.027880508 0.76709491 1.761152983 

Key: 

 Feature name = Raw feature 

Feature Name*Feature Name = Product Feature 

^2 = Quadratic feature 

- RH = Reverse Hinge feature 

- FH = Forward Hinge feature 

(Name = integer) = Threshold feature 

Table 10.) Content of lambdas file for model TPA-1 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 11.) 

Lambdas File Output for TPA-2 

Feature Name and Type Lambda 

Value 

Min Value of 

Variable in 

Training 

Max Value of 

Variable in 

Training 

(acpect_masked=1.0) 0 0 1 

(acpect_masked=5.0) 0.012163054 0 1 

(acpect_masked=6.0) 0.157018512 0 1 

annual average precipitation – RH -0.005055165 66.19568634 161.7019958 

annual average temperature – FH -17.08529721 0.76709491 8.792941093 

ann_avg_precip^2 -0.048601349 4381.86889 26147.53546 

ann_avg_temp^2 -16.3627547 0.588434601 77.31581307 

annual average precipitation*annual average 

temperature 

-0.065374358 124.040778 795.4974585 

annual average temperature – FH -0.138296071 0.76709491 1.727829516 

annual average temperature – FH -1.636171559 0.76709491 1.746787012 

annual average temperature – FH -0.312906592 0.76709491 1.761152983 

annual average temperature – FH -0.045032511 0.76709491 1.775585473 

annual average temperature – FH -0.206389011 0.76709491 1.625766993 

Key: 

Feature name = Raw feature 

Feature Name*Feature Name = Product Feature 

^2 = Quadratic feature 

- RH = Reverse Hinge feature 

- FH = Forward Hinge feature 

(Name = integer) = Threshold feature 

Table 11.) Content of lambdas file for model TPA-2 

 

 

 

 

  



  
 

35 

 

 

Figures 

 

Figure 1.) 

 
  Figure 1.) Results of jackknife analysis from model BC-1 

 

 

Figure 2.) 

 
  Fig 2.) Maxent output of test gain (a measure of total skill gain) for jackknife analysis 

from model TP-1 



 

 

 

Figure 3.)    

 

TPA-1 Response Histogram 

 
Figure 3.) Response curve for aspect in model TPA-1, the analysis using non-masked 

aspect. Values of 0 indicate flat ground, values from 1 to 8 indicate 45 degree increments of 

direction starting at N followed by NE, around to NW at 8 

 

 

 

Figure 4.)   

 

TPA-2 Response Histogram 

 
Figure 4.) Response curve for aspect in model TPA-2, the analysis using masked aspect. 

Values of 0 indicate flat ground, values from 1 to 8 indicate 45 degree increments of direction 

starting at N followed by NE, around to NW at 8 
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Figure 5 

 
 

Figure 5.) Jackknife analysis from model with non-masked aspect values. 

 

 

Figure 6 

 

 
Figure 6.) Jackknife analysis from model with masked aspect values. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure 7.) 

 
 

Figure 7.) Predicted alpine tundra area at various amounts of warming along with Mid-

Century and Late Century estimates of warming based on RCP 4.5 and 8.5 over the Northeast 

United States. The dotted line depicts the line of best fit for the alpine tundra area data. The two 

colored lines on the X axis depict the range of projected warming in the Northeast United States 

between climate scenarios RCP 4.5 and RCP 8.5 at two different future times. 
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Figure 8.) 

 
 

Figure 8.) Predicted alpine tundra area at various amounts of warming along with Mid-

Century and Late Century estimates of warming based on RCP 4.5 and 8.5 over the Northeast 

United States plotted on a logarithmic scale. The dotted line depicts the line of best fit for the 

alpine tundra area data. The two colored lines on the X axis depict the range of projected 

warming in the Northeast United States between climate scenarios RCP 4.5 and RCP 8.5 at two 

different future times. 
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