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LARGE OUTGOING SOLUTIONS TO SUPERCRITICAL

WAVE EQUATIONS

MARIUS BECEANU AND AVY SOFFER

Abstract. We prove the existence of global solutions to the energy-
supercritical wave equation in R

3+1

utt −∆u± |u|Nu = 0, u(0) = u0, ut(0) = u1, 4 < N < ∞,

for a large class of radially symmetric finite-energy initial data.
Functions in this class are characterized as being outgoing under the
linear flow — for a specific meaning of “outgoing” defined below.
In particular, we construct global solutions for initial data with large
(even infinite) critical Sobolev, Besov, Lebesgue, and Lorentz norms
and several other large critical norms.
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1. Introduction

1.1. Statement of the main results. Consider the semilinear wave equa-
tion in R

3+1

utt −∆u± |u|Nu = 0, u(0) = u0, ut(0) = u1. (1.1)

The equation is called focusing or defocusing according to whether the sign
of the nonlinearity is − or +.
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2 MARIUS BECEANU AND AVY SOFFER

For α ∈ (0,∞), this equation is invariant under the scaling symmetries

u(x, t) 7→ α2/Nu(αx, αt),

as well as under the Lorentz group of transformations. Restricted to the
initial data, the rescaling is

(u0(x), u1(x)) 7→ (α2/Nu0(αx), α
1+2/Nu1(αx)). (1.2)

For sc = 3/2 − 2/N , the Ḣsc × Ḣsc−1 Sobolev norm is invariant under
the rescaling (1.2), making it the critical Sobolev norm for the equation.

Equation (1.1) is locally well-posed in the Ḣsc × Ḣsc−1 norm. Note that the
corresponding (critical) Lebesgue norm is u0 ∈ Lpc with pc = 3N/2.

All non-critical norms of the solution can be made arbitrarily large or
small by rescaling, but critical norms remain constant after rescaling.

An important conserved quantity for equation (1.1) is energy, defined as

E[u] :=

∫

R3×{t}

1

2
|ut(x, t)|2 +

1

2
|∇u(x, t)|2 ± 1

N + 2
|u(x, t)|N+2 dx.

In case the equation is defocusing, energy controls the Ḣ1 ×L2 norm of the
solution, also called the energy norm.

Equation (1.1) is energy-supercritical (or, in brief, supercritical) if N > 4.
The difficulty of the initial-value problem in this case lies in the fact that
solutions cannot be controlled in the energy norm (as sc > 1) and no higher-
level conserved quantities can be used either.

By the standard local existence theory, based on Strichartz estimates, any
initial data in the critical Sobolev space Ḣsc × Ḣsc−1 produce a solution,
locally in time. If the initial data are sufficiently small in the critical Sobolev
norm, then the corresponding solution exists globally in time and disperses,
meaning that, for example, it has finite L2N

t,x Strichartz norm (the endpoints

are L∞
t L

3N/2
x , which is not dispersive, and L

N/2
t L∞

x , which is achieved for
N > 4 or N = 4 and radially symmetric solutions). In general, solutions

with finite L2N
t,x norm preserve regularity (if (u0, u1) ∈ Ḣs × Ḣs−1 for some

s ≥ 1, the solution remains in this space for its whole interval of existence),
are stable under small perturbations, and can be continued for as long as
the L2N

t,x norm remains finite.
In this paper we heavily use the reversed Strichartz inequalities intro-

duced in [BeGo], Lorentz and Besov spaces, and real and complex inter-
polation techniques. A good reference for the latter is [BeLö]. The main
new technique is a decomposition of solutions to the free wave equation into
outgoing and incoming components by means of orthogonal projections; see
below.

We only consider the case of radially symmetric, i.e. rotation-invariant,
solutions (but see the Appendix for a very different result). We also assume
all solutions are real-valued.

We define radial outgoing functions as follows:
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Definition 1.1. A pair (u0, u1) of radially symmetric functions or distribu-
tions is called outgoing if u1 = −(u0)r − u0

r .

Since −∂r−1/r and (−∂r−1/r)∗ are bounded from Ḣs to Ḣs−1, 1 ≤ s <

3/2, it follows that −∂r−1/r ∈ B(Ḣs, Ḣs−1) for −1/2 < s < 3/2. Thus, the

above definition makes sense for (u0, u1) ∈ Ḣs × Ḣs−1 for −1/2 < s < 3/2
(but not only). Also, u0 completely determines u1. See Section 3 and
Definition 3.6 for more details.

For simplicity we suppose that N is an integer in (1.1). This makes little
actual difference in the proof.

Our first result is an existence result for the class of initial data

((Ḣ1 ∩ L∞)× L2)out + Ḣsc × Ḣsc−1 := {(u0, u1) = (v0, v1) + (w0, w1) |
(v0, v1) ∈ ((Ḣ1 ∩ L∞)× L2)out, (w0, w1) ∈ Ḣsc × Ḣsc−1},

where ((Ḣ1 ∩ L∞)× L2)out means radial and outgoing following Definition
1.1. For data in this class the outgoing component is in a weaker space than
Ḣsc × Ḣsc−1, but the incoming component must still be in Ḣsc × Ḣsc−1.

Theorem 1.2. Assume that N ∈ (4, 12], the initial data (u0, u1) = (v0, v1)+
(w0, w1) decompose into a radial and outgoing component (v0, v1) and a sec-

ond radial component (w0, w1) ∈ Ḣsc × Ḣsc−1 such that

‖v0‖4/NḢ1
‖v0‖1−4/N

L∞ + ‖(w0, w1)‖Ḣsc×Ḣsc−1 << 1

is sufficiently small. Then the corresponding solution u to (1.1) exists glob-

ally, forward in time, remains small in ((Ḣ1
x ∩L∞

x )×L2
x)out+ Ḣsc

x × Ḣsc−1
x ,

and disperses:

‖u‖
L
N/2
t L∞

x
. ‖v0‖4/NḢ1

‖v0‖1−4/N
L∞ + ‖(w0, w1)‖Ḣsc×Ḣsc−1 . (1.3)

In addition u scatters: there exist (w0+, w1+) ∈ Ḣsc × Ḣsc−1 such that

lim
t→∞

‖(u(t), ut(t))− Φ(t)(v0, v1)− Φ(t)(w0+, w1+)‖Ḣsc×Ḣsc−1 = 0. (1.4)

Here Φ(t) is the flow induced by the linear wave equation.

If (v0, v1) ∈ ((Ḣ1 ∩ L∞) × L2)out and (w0, w1) ∈ Ḣsc × Ḣsc−1 are not
small, then there exist an interval I = [0, T ] with T > 0 and a solution u to
(1.1) defined on R

3×I, with (u0, u1) as initial data, such that (u(t), ut(t)) ∈
((Ḣ1

x ∩ L∞
x )× L2

x)out + Ḣsc
x × Ḣsc−1

x for t ∈ I and

‖u‖
L
N/2
t L∞

x (R3×I)
<∞.

The caseN = 4 corresponds to sc = 1 andN = 12 corresponds to sc = 4/3.
The conclusion is still true, but trivial, when N = 4.

These initial data are small in the critical Lpc norm. However, equation
(1.1) is not well-posed in Lpc. On the other hand, these are arbitrarily large
initial data, as measured in the critical Sobolev norm, which is the natural
norm for this equation.



4 MARIUS BECEANU AND AVY SOFFER

Dropping the scaling invariance, we can obtain a local existence result for
large ((Ḣ1 ∩ L∞) × L2)out initial data in the subcritical sense (i.e. where
the time of existence only depends on the size of the initial data). We can
also obtain a global existence result for small initial data, such that the
solution remains bounded in ((Ḣ1 ∩L∞)×L2)out + Ḣ2 ∩ Ḣ1 × Ḣ1 ∩ L2 for
all times, i.e. the incoming component of the solution gains a full derivative.
See Proposition 5.2 for both results.

As a consequence of Theorem 1.2, outgoing and radial finite energy initial
data of any size lead to a global solution forward in time if they are supported
sufficiently far away from the origin.

Corollary 1.3. Assume that N ∈ (4, 12], the initial data (u0, u1) are radial,
outgoing according to Definition 1.1, supported outside the sphere B(0, R),
and

‖u0‖2Ḣ1 R
4/N−1 << 1 (1.5)

is sufficiently small. Then the corresponding solution u to (1.1) exists glob-

ally, forward in time, and disperses: ‖u‖
L
N/2
t L∞

x
. ‖u0‖Ḣ1 R2/N−1/2.

Again, one can add a small Ḣsc × Ḣsc−1 perturbation to the initial data,
either outgoing or incoming, without changing the result. In addition, note
that the conclusion is still true, but trivial, when N = 4.

Remark 1.4. In the defocusing case all solutions can be conjectured to be
dispersive, as suggested by the Morawetz estimate

∫

R3×I

|u|N+2

|x| dx dt . E[u].

Here I is the maximal interval of existence of the solution u. Then condition
(1.5) can be conjectured to always be satisfied (up to a small error) if we

wait for long enough. Indeed, the Ḣ1 × L2 energy norm remains bounded
by the energy E[u], so the left-hand side of (1.5) should improve with time:
the solution should become more outgoing and further removed from the
origin. Since 4/N − 1 < 0, R4/N−1 → 0 as R→ ∞.

Thus, our results could be part of the the process of showing global in
time existence and scattering for any large radial solution to (1.1), after the
solution is first shown to disperse for a sufficiently long, but finite time.

The next result shows that it is not necessary to assume that the initial
data have finite energy — bounded and of compact support will suffice.

Theorem 1.5. Assume that N ∈ [4,∞) and (u0, u1) are radial initial data,
outgoing according to Definition 1.1, such that u0 is bounded and supported
on B(0, R). Then, as long as

‖u0‖L∞R2/N << 1
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is sufficiently small, the corresponding solution u to (1.1) exists globally,
forward in time, and disperses:

‖u‖
L
3N/2
x L∞

t ∩L∞
x L

N/2
t

. ‖u0‖L∞R2/N .

The initial data are only in L2×Ḣ−1 (for which the notion of being outgo-
ing is still well-defined, however), but these solutions have finite homogenous
L2N
t,x norm, meaning that they preserve higher regularity.
Note that these initial data must still be small in the critical Lpc norm,

but can be arbitrarily large in the critical Sobolev norm.
Again, it is possible to add a small Ḣsc × Ḣsc−1 perturbation, either

incoming or outgoing, to the initial data.
As a complement to Theorem 1.5, by Proposition 5.1 solutions to (1.1)

exist locally for large radial outgoing initial data (u0, u1) with u0 ∈ L∞.

1.2. Large solutions. In the previous section we constructed global so-
lutions for outgoing initial data u0 of large (possibly infinite) critical Ḣsc

norm. However, these solutions are still small in a certain sense, because
‖u0‖Lpc and ‖u‖L2N

t,x
are small.

In an interesting remark, the referee raised the question of exactly what we
mean by a “large” solution. In this section we set out to answer this question
by constructing a solution that is large according to almost every reasonable
standard, while also examining, then discarding several alternative methods.

A more obvious way of constructing large solutions is as follows: start
with initial data (u0, u1) of large, but finite Ḣ

sc × Ḣsc−1 norm and let them
evolve under the linear flow, until the remaining Strichartz norm of their
future evolution becomes small:

‖Φ0(t)(u0, u1)‖L2N (R3×(T,∞)) << 1. (1.6)

Then (ũ0, ũ1) := Φ(T )(u0, u1) is still large in Ḣ
sc × Ḣsc−1 and they give rise

to small global solutions to (1.1) forward in time, but ‖ũ0‖Lpc << 1.
This is a particular case of our construction in Theorem 1.2 and Corollary

1.3, because after a long time any linear solution becomes almost completely
outgoing and supported far from the origin. Our construction is more gen-
eral, since we only assume the initial data are outgoing, not that they are
supported far away.

Another way of constructing large solutions is by superposing many small
profiles, widely separated in either space or scale (so that the nonlinear
interaction between them is minimized). However, as we shall see below,
any solution constructed in this manner is still necessarily “locally” small,
because each bump is small and they are widely separated. Thus, we just
need an appropriate norm to take advantage of this smallness.

In the radial setting, as suggested by the anonymous referee, one can
construct a large solution as follows: take small radial initial data (φ,ψ),

either in the Ḣsc norm or as in Theorem 1.5, so that the corresponding
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solution u to (1.1) is global and scattering. For

0 < λ1 << λ2 << . . . << λJ ,

take

u0 =
J
∑

j=1

λ
−2/N
j φ(x/λj), u1 =

J
∑

j=1

λ
−1−2/N
j ψ(x/λj). (1.7)

Note that these initial data are large in the Lpc norm. Indeed, if the scales
λj are sufficiently separated, then ‖u0‖pcLpc ∼ J‖φ‖pcLpc . However, the initial

data (u0, u1) are still small in Ḃsc
2,∞ × Ḃsc−1

2,∞ (where also Ḃsc
2,∞ ⊂ Lpc,∞).

Thus, for sc > 1, we immediately get from [BeGo] that

‖u‖
L
3N/2,∞
x L∞

t
. ‖u0‖Ḃsc

2,∞
+ ‖u1‖Ḃsc−1

2,∞
<< 1

(this follows by real interpolation, see [BeLö]). The equation (1.1) is well-
posed (in particular, higher regularity is preserved) in this case, by the same
proof as Theorem 1.5, so (1.7) are still small data in some very precise sense.

Discarding radial symmetry, one can also construct a global solution with
large initial data given by many small bumps far apart from one another:

u0 =

J
∑

j=1

φ(x− yj), u1 =

J
∑

j=1

ψ(x− yj), |yj1 − yj2 | >> 1 ∀j1 6= j2. (1.8)

Clearly, such data are not small in any scaling- and symmetric rearrangement-
invariant norm. However, this just means that we need a different type of
norm to see their smallness. We construct one in the Appendix, by means of
the Choquet integral (see [Cho] and [Ada]) corresponding to an outer norm
defined in terms of the global Kato norm (see [GoSc]).

More precisely, we show that one can globally solve equation (1.1) by
means of a contraction argument in Lp,∞

x (µα)L
t
∞, see Theorem A.13. The

linear evolution and the solution spanned by initial data (1.8) are always
small in this space.

This more general scaling-invariant norm also controls (1.7), as well as
any combination of small bumps separated in scale and/or space. Beyond
that, this norm can also be used to control a solution that does not decay at
spatial infinity, as long as it is sufficiently sparse; we obtain a quantitative
estimate of the sparseness required. See the Appendix for details.

Finally, using the methods introduced in this paper, we construct a solu-
tion which is large by all the standards described above. For simplicity we
assume that N is an even integer.

Theorem 1.6 (Main result). Assume that N ∈ (2,∞) is even. For any
L > 0 there exist radial initial data (u0, u1) such that ‖u0‖Lpc ≥ L, the
corresponding solution u of (1.1) is global, forward in time, and

‖u‖〈x〉−1L∞

t,x∩〈x〉−1L∞
x L1

t
<∞, sup

t
u(x, t) & L〈x〉−1.
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Our construction is based on taking outgoing initial data concentrated on
a thin spherical shell.

Such solutions have finite critical L2N
t,x norm, so they are also stable under

small Ḣsc × Ḣsc−1 perturbations.

Remark 1.7 (Size of the initial data and solution). 1. These initial data nec-

essarily have arbitrarily high Ḣsc norm, but we already had such examples
from Theorem 1.2.

2. From our construction it follows that ‖u0‖L∞(|x|≥1) >> 1 (another
standard for largeness), see [KrSc] for a similar result obtained by completely
different methods.

3. More generally, it is reasonable to consider the seminorms ‖u‖Lp(|x|≥1),
p > pc, and ‖u‖Lp(|x|≤2), p < pc. By allowing for rescaling and translation,
these seminorms become norms:

‖u‖ := sup
λ,y

‖λ−2/Nu(x/λ− y)‖Lp(|x|≤1), p < pc

or

‖u‖ := sup
λ,y

‖λ−2/Nu(x/λ− y)‖Lp(|x|≥1), p > pc.

Our initial data u0 are also large in these norms when p > N + 1.
4. Finally, the solution u is large in the sense of Theorem A.13. Indeed,

the norms ‖Φ0(u0, u1)‖Lp,∞
x (µα)L∞

t
and ‖u‖Lp,∞

x (µα)L∞

t
are uniformly large for

all p in the specified range N + 1 ≤ p ≤ 3N/2.

As suggested by the referee, one can perhaps combine the construction
in Theorem 1.6 with the ones in (1.7) and/or (1.8) to obtain an even larger
solution. We shall not pursue this idea here.

All these results hold in both the focusing and the defocusing case, re-
gardless of the sign of the nonlinearity in (1.1).

Also note that if we assume the initial data are smooth then the solution
is also smooth.

1.3. History of the problem. The first well-posedness result for large
data supercritical problems was obtained by Tao [Tao], for the logarithmi-
cally supercritical defocusing wave equation that he introduced

utt −∆u+ u5 log(2 + u2) = 0, u(0) = u0, ut(0) = u1. (1.9)

[Tao] proved global well-posedness and scattering for radial initial data. The
starting point of [Tao] was an observation made in [GSV] for the energy-
critical problem.

Further results belong to Roy [Roy1] [Roy2], who proved the scattering
of solutions to the log-log-supercritical equation

utt −∆u+ u5 logc(log(10 + u2)) = 0, u(0) = u0, ut(0) = u1,

0 < c < 8
225 , without the radial assumption.
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Struwe [Str] proved the global well-posedness of the equation

utt −∆u+ ueu
2
= 0, u(0) = u0, ut(0) = u1,

(supercritical when E[u] > 2π) for arbitrary radial smooth initial data.
Another series of results asserts the conditional well-posedness of super-

critical equations. If the critical Sobolev norm ‖(u, ut)‖Ḣsc×Ḣsc−1 of a solu-
tion to (1.1) stays bounded, then the solution exists globally and disperses.
Such findings belong to Kenig–Merle [KeMe2], Killip–Visan [KiVi1], [KiVi2],
and Bulut [Bul1], [Bul2], [Bul3] in the defocusing case and Duyckaerts–
Kenig–Merle [DKM], Dodson–Lawrie [DoLa], and Duyckaerts–Roy [DuRo]
in the focusing case.

All these conditional results are based on methods developed by Bour-
gain [Bou], Colliander–Keel–Staffilani–Takaoka–Tao [CKSTT], Kenig–Merle
[KeMe], and Keraani [Ker] in the energy-critical case.

By an original method, adapted to that specific equation, Li [Li] proved
the unconditional global wellposedness of hedgehog solutions for the (3+ 1)
Skyrme model.

Wang–Yu [WaYu], Yang [Yan], and Miao–Pei–Yu [MPY] constructed
large global solutions for semilinear wave equations satisfying the null con-
dition, related to a result of Christodulou [Chr].

Finally, another recent result belongs to Krieger–Schlag [KrSc], who con-
struct a very specific class of global, smooth nondispersive solutions to (1.1)
with the best decay at infinity possible. Due to the slow decay, these solu-
tions logarithmically miss being in Ḣsc × Ḣsc−1, but belong instead to the
Besov spaces Ḃsc

2,∞ × Ḃsc−1
2,∞ .

The results in this paper are in the same spirit as [WaYu], [Yan], [MPY]:
taking a particular class of initial data with much better properties than
generic ones and constructing large solutions for them.

These previous papers use a null frame decomposition of energy-class
solutions (and assume the finiteness of some higher order energy norms).
One component of the solution is allowed to be large, all others are assumed
to be small, then the null condition for the nonlinearity prevents large-large
nonlinear self-interactions.

By contrast, our results are based on a decomposition of possibly much
rougher (infinite energy) solutions into incoming and outgoing components.
The linear evolution of outgoing initial data has better properties than
generic solutions and satisfies improved multilinear estimates. The non-
linearity in (1.1) does not satisfy the null condition.

For more recent and roughly similar results, also see Luk–Oh–Yang [LOY],
who construct large solutions of Einstein’s equation and of equation (1.1)
with radial symmetry. Their solutions have infinite critical norm due to slow
decay, like those in [KrSc].

Our result and the one of [KrSc] are also rather different. Ours is based
on multilinear estimates and [KrSc] is based on a nonlinear construction. In

addition, the solutions of [KrSc] only logarithmically fail to be in Ḣsc×Ḣsc−1
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and in fact are bounded in a critical Besov space. By contrast, our solutions
can miss being in the critical Sobolev space by a wide margin and are large
in all reasonable critical norms.

In this paper, we do not require solutions to be bounded or even finite in
the critical Sobolev norm Ḣsc × Ḣsc−1. Indeed, this critical norm can be
replaced with the Ḣ1 × L2 energy norm of outgoing initial data, provided
they are supported sufficiently far out (or the L∞ norm is sufficiently small).

One can use a numerical scheme or some other approximation procedure,
which is accurate over short times, for specific initial conditions. If the
solution, after such a short time, satisfies our outgoing conditions up to a
small error, then it will be global by Corollary 1.3.

This is plausible because it is true in the free case: any solution to the free
wave equation becomes outgoing and supported far away from the origin,
up to a small error, when a sufficiently long time has elapsed.

Energy being finite is also not necessary, as we construct solutions for
bounded and compactly supported initial data. A variant of our construc-
tion, Theorem 1.6, leads to initial data that are large in every possible sense,
see the discussion above.

Even though our results hold for rough initial data, we can also assume
both the initial data and the solutions are smooth, due to the preservation
of regularity.

In other contexts, various notions of incoming and outgoing waves have
been introduced and used. However, the incoming and outgoing projections
that we define seem to be new. In papers on this topic, “outgoing” typically
refers to any linear solution after a sufficient time has elapsed so that the
remaining Strichartz norm of its future evolution is small, see (1.6). We
need no such smallness assumption.

The incoming condition in this paper resembles a condition from Engquist–
Majda [EnMa], see formula (1.27) in that paper.

We expect the same method to lead to an improvement in the energy-
critical and subcritical cases, by allowing us to prove, for example, global
well-posedness for (Ḣ1/2∩L∞)× Ḣ−1/2 outgoing initial data, thus requiring
fewer derivatives than the critical Sobolev exponent for the equation. These
improvements will be explored in a future paper.

Another expected result is the well-posedness of equation (1.1) for arbi-
trary large initial data, after projecting the nonlinearity on the outgoing
states. This constitutes the subject of our next paper, [BeSo1].

This paper is organized as follows: in Section 3 we state several results
about incoming and outgoing states for the linear flow, in Section 4 we
enounce some standard existence results, in Section 5 we prove the theo-
rems stated in the introduction, and in the Appendix we introduce Lorentz–
Choquet norms for the Kato outer measure and use them to study multi-
bump solutions.

In the initial version of this paper there was one more result in the Appen-
dix, concerning large solutions for the focusing supercritical wave equation,
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obtained by means of a positivity criterion. We have removed that result
and developed it into a separate paper [BeSo2].

2. Notations

A . B means that |A| ≤ C|B| for some constant C. We denote various
constants, not always the same, by C.

The Laplacian is the operator on R
3 ∆ = ∂2

∂2
x1

+ ∂2

∂2
x2

+ ∂2

∂2
x3

.

We denote by Lp the Lebesgue spaces, by Ḣs and Ẇ s,p (fractional) ho-
mogenous Sobolev spaces, and by Lp,q Lorentz spaces. We also define the
weighted Lebesgue spaces w(x)Lp

x := {w(x)f(x) : f ∈ Lp}.
Ḣs are Hilbert spaces and so is Ḣ1 × L2, under the norm

‖(u0, u1)‖Ḣ1×L2 = (‖u0‖2Ḣ1 + ‖u1‖2L2)
1/2.

By Ḣs
rad, etc. we designate the radial version of these spaces. For a radially

symmetric function u(x), we let u(r) := u(x) for |x| = r.

By (Ḣ1×L2)out we mean the space of outgoing radially symmetric Ḣ1×L2

initial data, see Definition 3.6.
We define the mixed-norm spaces on R

3 × [0,∞)

Lp
tL

q
x :=

{

f | ‖f‖Lp
tL

q
x
:=

(

∫ ∞

0
‖f(x, t)‖p

Lq
x
dt
)1/p

<∞
}

,

with the standard modification for p = ∞, and likewise for the reversed
mixed-norm spaces Lq

xL
p
t . We use a similar definition for Lp

t Ẇ
s,p
x . Also, for

I ⊂ [0,∞), let ‖f‖Lp
tL

q
x(R3×I) := ‖χI(t)f‖Lp

tL
q
x
, where χI is the characteristic

function of I.
We also denote B(0, R) := {x ∈ R

3 | |x| ≤ R}.
Let D be the Fourier multiplier |ξ|, δ0 be Dirac’s delta at zero, and χ

denote the indicator function of a set.
Let Φ(t) : Ḣ1 ×L2 → Ḣ1 × L2 be the flow of the linear wave equation in

three dimensions: for

utt −∆u = 0, u(0) = u0, ut(0) = u1,

we set Φ(t)(u0, u1) = (Φ0(t)(u0, u1),Φ1(t)(u0, u1)) := (u(t), ut(t)).

Also let φ(t) : L2×Ḣ−1 → L2×Ḣ−1 be the flow of the linear wave equation
in dimension one (on a half-line with Neumann boundary conditions): for

vtt − vrr = 0, v(0) = v0, vt(0) = v1, vr(0, t) = 0,

we set φ(t)(v0, v1) := (v(t), vt(t)).
In this paper we only consider mild solutions to (1.1), i.e. solutions to the

following equivalent integral equation:

u(t) = cos(t
√
−∆)u0 +

sin(t
√
−∆)√

−∆
u1 ∓

∫ t

0

sin((t− s)
√
−∆)√

−∆
|u(s)|Nu(s) ds.
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3. Outgoing and incoming states for the free flow

In order to define outgoing and incoming states for the linear wave equa-
tion, we reduce the equation to a one-dimensional problem, where identifying
such states is straightforward.

In the radial case, the following operator will establish a correspondence
between the three-dimensional wave equation and the one-dimensional wave
equation on a half-line:

Definition 3.1.

T (u)(r) =
1

2π
(ru(r))′, u(r) =

2π

r

∫ r

0
T (u)(s) ds. (3.1)

Remark 3.2. If we write the radial function u(r = |x|) on R
3 as a superpo-

sition of identical one-coordinate functions in every possible direction, each
of these functions can be taken to be T (u). In other words, for each radial
function u(x) on R

3

u(x) =

∫

S2

T (u)(x · ω) dω. (3.2)

For T (u) supported on [0,∞), this works out to (3.1). Indeed, with no
loss of generality assume that x = (0, 0, r) and write ω in polar coordinates
as ω = (sin θ cosφ, sin θ sinφ, cos θ). Then

u(r) =

∫ π

0

∫ 2π

0
T (u)(r cos θ) sin θ dφ dθ =

2π

r

∫ r

−r
T (u)(s) ds =

2π

r

∫ r

0
T (u)(s) ds.

One can further generalize this analysis to the non-radial case, by using
the Radon transform for the construction of the projections.

By Ḣ−1([0,∞)) we understand the space of distributions that are deriva-
tives of L2 functions and are supported on [0,∞).

Conveniently, T is a constant times a unitary map from L2
rad (the space of

radial L2 functions) to Ḣ−1([0,∞)) and bounded from Ḣ1
rad to L

2([0,∞)) —
the latter by Hardy’s inequality. The inverse operator T−1 is also bounded
from L2([0,∞)) to Ḣ1

rad.

Lemma 3.3. With T defined by (3.1), ‖T (u)‖Ḣ−1([0,∞)) = 1√
π
‖u‖L2

rad
.

Moreover, ‖T (u)‖L2([0,∞)) . ‖u‖Ḣ1
rad

and ‖u‖Ḣ1
rad

. ‖T (u)‖L2([0,∞)).

Remark 3.4. This shows that ‖u‖ := ‖T (u)‖L2([0,∞)) = ‖(ru(r))′‖L2([0,∞)) is

another norm on Ḣ1
rad equivalent to the usual one.

Proof of Lemma 3.3. Note that u ∈ L2
rad if and only if

‖u‖2L2
rad

= 4π

∫ ∞

0
|u(r)|2r2 dr.

In particular, ‖u‖L2
rad

= 2
√
π‖ru(r)‖L2([0,∞)) = 2

√
π‖(ru(r))′‖Ḣ−1([0,∞)).
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Next, note that by Hardy’s inequality

‖u/r‖2L2
rad

= 4π

∫ ∞

0
|u(r)|2 dr . ‖u‖2

Ḣ1
rad

= 4π

∫ ∞

0
|ur(r)|2r2 dr.

Therefore ‖(ru(r))′‖L2([0,∞)) ≤ ‖u‖L2
[0,∞)

+ ‖ru′(r)‖L2([0,∞)) . ‖u‖Ḣ1
rad

.

Finally, let T (u) = v. Then by (3.1)

‖u‖2
Ḣ1

rad
= 4π

∫ ∞

0
|ur(r)|2r2 dr .

∫ ∞

0
|v(r)|2 dr +

∫ ∞

0

1

r2

(

∫ r

0
v(s) ds

)2
dr.

Then, 1
r

∫ r
0 v(s) ds =

∫ 1
0 v(αr) dα and ‖v(α·)‖L2 = α−1/2‖v‖L2 , so

∥

∥

∥

∫ 1

0
v(αr) dα

∥

∥

∥

L2
r

≤
∫ 1

0
‖v(α·)‖L2 dα = ‖v‖L2

∫ 1

0
α−1/2 dα . ‖v‖L2 .

This proves the last statement of the lemma. �

For non-radial functions, a similar decomposition into one-coordinate
functions can be obtained, but the computation is more complicated. One
restricts the three-dimensional Fourier transform along each line through
the origin, then takes the inverse one-dimensional Fourier transform. This
is related to the Radon transform.

So far, the transformation T is completely general; however, the subse-
quent computation is not and will be different for, say, Schrödinger’s equa-
tion.

Lemma 3.5. There exist bounded operators P+ and P− on Ḣ1
rad × L2

rad,
given by

P+(u0, u1) =
(1

2

(

u0 −
1

r

∫ r

0
su1(s) ds

)

,
1

2

(

− (u0)r −
u0
r

+ u1
)

)

(3.3)

and

P−(u0, u1) =
(1

2

(

u0 +
1

r

∫ r

0
su1(s) ds

)

,
1

2

(

(u0)r +
u0
r

+ u1
)

)

, (3.4)

such that I = P+ + P−, P 2
+ = P+, and P

2
− = P−.

If Φ(t) is the flow of the linear equation then for t ≥ 0 P−Φ(t)P+ = 0 and
for t ≤ 0 P+Φ(t)P− = 0. In addition, for t ≥ 0 Φ(t)P+(u0, u1) is supported

on R3 \B(0, t) and for t ≤ 0 Φ(t)P−(u0, u1) is supported on R3 \B(0,−t).
Definition 3.6. P+ and P− are called the projection on outgoing, respec-
tively incoming states. We call any radial (u0, u1) such that P−(u0, u1) = 0
outgoing ; if P+(u0, u1) = 0 we call it incoming.

Remark 3.7. P+ and P− are self-adjoint on Ḣ1
rad × L2

rad with the norm

‖(u0, u1)‖ := (‖(ru0(r))′‖2L2([0,∞)) + ‖ru1(r)‖2L2([0,∞)))
1/2, see Remark 3.4.

Proof. Given a radial solution u of the free wave equation

utt −∆u = 0, u(0) = u0, ut(0) = u1, (3.5)
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each of the essentially one-dimensional functions T (u(t))(x ·ω) fulfills a one-
dimensional wave equation of the form

vtt − vrr = 0, v(0) = v0, vt(0) = v1, (3.6)

where

v0 =
1

2π
(ru0(r))

′, v1 =
1

2π
(ru1(r))

′.

Indeed, in radial coordinates one has that utt − urr − (2/r)ur = 0 or equiv-
alently that (ru)tt − (ru)rr = 0. Since v = T (u) = 1

2π (ru(r))
′, taking a

derivative leads to (3.6), which holds in the weak sense.

To fix ideas we assume that (u0, u1) ∈ Ḣ1
rad×L2

rad, so (v0, v1) ∈ L2× Ḣ−1

by Lemma 3.3. Note that v0 and v1 are supported on [0,∞).
In addition, we consider equation (3.6) on a half-line only and impose

the Neumann boundary condition vr(0, t) = 0. This is justified because for
a smooth radial solution u one necessarily has ur(0, t) = 0 and vr(0, t) =
1
2π (ru)rr(0, t) =

1
πur(0, t).

The Neumann boundary condition means that the solution is reflected
back at the boundary or, in other words, that it could be extended by
symmetry to the negative half-axis.

In fact, note that we can prove some of the statements in just the case
when u0 and u1 are smooth functions and proceed by continuity in the
general case, since P+ and P− are bounded on Ḣs × Ḣs−1, 1 ≤ s < 3/2, as
we prove below.

Equation (3.6) then has solutions of the form (with r ≥ 0)

v(r, t) = χr≥tv+(r− t)+χr≤tv−(t− r)+χr+t≥0v−(r+ t)+χr+t≤0v+(−r− t),
where by d’Alembert’s formula

v+(r) =
1

2

(

v0(r)− ∂−1
r v1(r)

)

, v−(r) =
1

2

(

v0(r) + ∂−1
r v1(r)

)

. (3.7)

Here ∂−1
r denotes the unique antiderivative of a Ḣ−1 distribution that be-

longs to L2. Note that since v1 is supported on [0,∞), ∂−1
r v1 is also sup-

ported on [0,∞) (in fact it is given by 1
2π ru1(r)).

Thus both v+ and v− are supported on [0,∞).
At time t, the outgoing component of v, which moves in the positive

direction with velocity 1, consists of

vout(r, t) = χr≥max(t,0)v+(r − t) + χ0≤r≤tv−(t− r).

The incoming component consists of

vin(r, t) = χr≥max(0,−t)v−(r + t) + χ0≤r≤−tv+(−r − t).

In particular, at t = 0 the outgoing component is v+ and the incoming
component is v−.

Note that as t grows the incoming component hits the origin and becomes
outgoing. If we wait for long enough, most of the solution becomes outgoing.
Conversely, if we reverse time flow, as t → −∞ all of the solution becomes
incoming.
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In order to obtain a general formula for the outgoing projection, without
loss of generality we restrict our attention to time 0. Let π+(v0, v1) be the
initial data of the outgoing component, i.e.

π+(v0, v1)(r) := (v+(r − t) |t=0, ∂t(v+(r − t)) |t=0) = (v+(r),−v′+(r))
and likewise

π−(v0, v1)(r) := (v−(r + t) |t=0, ∂t(v − (r + t)) |t=0) = (v−(r), v
′
−(r)).

Note that π+(v0, v1) is the initial data for the solution v+(r− t) of equation
(3.6) on the time interval [0,∞) (which moves with velocity 1 in the positive
direction) and same for π0 on (−∞, 0].

By d’Alembert’s formula (3.7), π+ then has the form

π+(v0, v1)(r) :=
(1

2

(

v0(r)− ∂−1
r v1(r)

)

,
1

2

(

− v′0(r) + v1(r)
)

)

and the incoming component π− has the form

π−(v0, v1)(r) :=
(1

2

(

v0(r) + ∂−1
r v1(r)

)

,
1

2

(

v′0(r) + v1(r)
)

)

.

Note that π+ + π− = I, π2+ = π+, π
2
− = π−, and π+π− = π−π+ = 0. In

particular, note that ∂−1
r v′0 = v0, because in any case an antiderivative of v′0

must be of the form v0 + c and this is in L2 only if c = 0.
Since by definition 〈u, v〉L2 = 〈u′, v′〉Ḣ−1 , a simple computation shows

that π+ and π− are bounded, self-adjoint operators on L2 × Ḣ−1.
Thus, both π+ and π− are orthogonal projections, in a proper setting (on

L2 × Ḣ−1 or more generally on Ḣs × Ḣs−1).
Note that a solution of the form v := v+(r − t) preserves the property

that ∂tv = −∂rv and hence that π−(v(t), vt(t)) = 0 for all t ≥ 0. In other
words, if we denote by φ(t) the flow induced by the linear equation (3.6) on

L2 × Ḣ−1, then for t ≥ 0

π−φ(t)π+(v0, v1) = 0.

Furthermore, in this case φ(t)π+(v0, v1) is obviously supported on [t,∞).
Likewise, for t ≤ 0 π+φ(t)π−(v0, v1) = 0 and suppφ(t)π−(v0, v1) ⊂ [−t,∞).
The outgoing component of u corresponds to the outgoing component

π+(v, vt) of v traveling in the positive direction. Conjugating the projec-
tions π+ and π− by the transformation T defined by (3.2), we obtain the
corresponding operators for radial functions in R

3. Letting P+ := T−1π+T ,
P− := T−1π−T , we obtain formulas (3.3) and (3.4). Both operators are

bounded on Ḣ1
rad × L2

rad due to Lemma 3.3.
As an easy consequence of the properties of π+ and π−, we get that

P+ + P− = I, P+P− = 0, P 2
+ = P+, P

2
− = P−, and all the other stated

properties of P+ and P−. �

We now prove some properties of the nonlocal operator that appears in
the definition of the projections on incoming and outgoing states. This leads
among other things to the boundedness of the projections on outgoing and
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incoming states. Also note that if the initial data (u0, u1) are purely outgoing
or are purely incoming, then u0 determines u1 and vice-versa. Furthermore,
this can be made into a quantitative estimate.

Lemma 3.8. For radial f ∈ L2

∥

∥

∥

1

r

∫ r

0
ρf(ρ) dρ

∥

∥

∥

Ḣ1
rad

. ‖f‖L2
rad
.

More generally, for 0 ≤ s < 3/2
∥

∥

∥

1

r

∫ r

0
ρf(ρ) dρ

∥

∥

∥

Ḣs+1
rad

. ‖f‖Ḣs
rad
. (3.8)

Consequently, P+ and P− are bounded on Ḣs × Ḣs−1 for 1 ≤ s < 3/2.
Furthermore, if (u0, u1) are purely outgoing or purely incoming, then

‖u0‖Ḣs ∼ ‖u1‖Ḣs−1 for 1 ≤ s < 3/2.

Proof of Lemma 3.8. By differentiation we see that
∥

∥

∥

1

r

∫ r

0
ρf(ρ) dρ

∥

∥

∥

Ḣ1
rad

=
∥

∥

∥
f − 1

r2

∫ r

0
ρf(ρ) dρ

∥

∥

∥

L2
rad

and then
∥

∥

∥

1

r2

∫ r

0
ρf(ρ) dρ

∥

∥

∥

L2
rad

.
∥

∥

∥

1

r

∫ r

0
ρf(ρ) dρ

∥

∥

∥

L2
r([0,∞))

=
∥

∥

∥

∫ 1

0
αrf(αr) dα

∥

∥

∥

L2
r([0,∞))

.

∫ 1

0
‖αrf(αr)‖L2

r([0,∞)) = ‖rf(r)‖L2
r([0,∞))

∫ 1

0
α−1/2 dα . ‖f‖L2

rad
.

(3.9)
By the same reasoning, (3.8) follows for 0 ≤ s ≤ 1 from

∥

∥

∥

1

r2

∫ r

0
ρf(ρ) dρ

∥

∥

∥

Ḣs
. ‖f‖Ḣs .

This in turn follows by interpolation between the s = 0 case proved above
(see 3.9) and the s = 1 case, which is implied by Hardy’s inequality ‖f/|x|‖L2 .
‖f‖Ḣ1 and
∥

∥

∥

1

r3

∫ r

0
ρf(ρ) dρ

∥

∥

∥

L2
≤

∥

∥

∥

1

r2

∫ r

0
f(ρ) dρ

∥

∥

∥

L2
.

∥

∥

∥

1

r

∫ r

0
f(ρ) dρ

∥

∥

∥

L6,2

=
∥

∥

∥

∫ 1

0
f(αr) dα

∥

∥

∥

L6,2
. ‖f‖Ḣ1

∫ 1

0
α−1/2 dα . ‖f‖Ḣ1 .

In the same manner one proves that for 1 ≤ s < 3/2
∥

∥

∥

1

r4

∫ r

0
ρf(ρ) dρ

∥

∥

∥

Ḣs−2
.

∥

∥

∥

1

r

∫ r

0
f(ρ) dρ

∥

∥

∥

Ḣs
. ‖f‖Ḣs ,

which implies that (3.8) is true for 0 ≤ s < 3/2.

The Ḣs × Ḣs−1 boundedness of P+ and P− for 1 ≤ s < 3/2 is a conse-
quence of their definition, of (3.8), and of Hardy’s inequality ‖f/|x|‖Ḣs−1 .
‖f‖Ḣs . The same is true for the final conclusion. �
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Next, we state the most important (and somewhat trivial) identity for
outgoing solutions.

Proposition 3.9. If u is a radial solution to the free wave equation (3.5)
with outgoing initial data (u0, u1), then for r ≥ t ≥ 0

u(r, t) =
r − t

r
u0(r − t)

and u(r, t) ≡ 0 for 0 ≤ r ≤ t.

Note that, as t increases, an outgoing solution keeps constant sign. The
computation is different, so this is not true, for negative t. Equivalently, the
incoming component need not keep a constant sign for positive t.

Also note that by a direct computation one can check the outgoing prop-
erty P−(u(t), ut(t)) = 0, i.e. ut + ur + u/r = 0.

Proof. This follows from the one-dimensional reduction. Indeed, let v =
T (u), where T is given by (3.2). Since u is outgoing, by definition v is also
outgoing, i.e. v(r, t) = v+(r − t) for all t ≥ 0 and some v+ supported on
[0,∞). Then by (3.1)

ru(r, t) =

∫ r

0
v(s, t) ds =

∫ r

0
v+(s− t) ds =

∫ r−t

0
v+(s) ds,

which only depends on r − t. Therefore ru(r, t) = (r − t)u(r − t, 0). The
second conclusion follows because the integral is zero when r ≤ t. �

This identity immediately leads to improved Strichartz and decay esti-
mates for outgoing solutions.

Corollary 3.10 (Uniform bounds). If u is a radial solution to the free wave
equation (3.5) in three dimensions with outgoing initial data (u0, u1), then
if u0 ∈ L∞

‖u‖L∞

t,x
≤ ‖u0‖L∞ (3.10)

and if u0 ∈ Lp then ‖u‖L∞

t Lp
x
≤ ‖u0‖Lp for 2 ≤ p ≤ ∞. In particular, the L2

norm ‖u(x, t)‖L2
x
is constant with respect to time for t ≥ 0. Furthermore,

‖u‖L∞

t Ẇ 1,p
x

. ‖u0‖Ẇ 1,p for 2 ≤ p < 3.

Note that the last estimate is better than one would expect from scaling.

Proof. Inequality (3.10) follows directly from Proposition 3.9, since for 0 ≤
t ≤ r 0 ≤ r−t

r ≤ 1. Concerning the Lp norm, for 2 ≤ p <∞

‖u(x, t)‖p
Lp
x
= 4π

∫ ∞

0
|u(r, t)|pr2 dr = 4π

∫ ∞

t

(r − t

r

)p
|u0(r − t)|pr2 dr

≤ 4π

∫ ∞

0
|u0(r)|pr2 dr

since
(

r−t
r

)p
r2 ≤ (r − t)2 for p ≥ 2.
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Note that by dominated convergence, when 2 < p <∞, in fact ‖u(x, t)‖Lp
x
→

0 as t → ∞. When p = ∞ ‖u(x, t)‖L∞
x

→ 0 as t → ∞ for u0 ∈ L∞
0 , the

closure in L∞ of the set of bounded functions with compact support.
Regarding the Sobolev norms, again by Proposition 3.9

‖u(x, t)‖p
Ẇ 1,p

= 4π

∫ ∞

0
|ur(r, t)|pr2 dr = 4π

∫ ∞

t

∣

∣

∣

r − t

r
(u0)r(r−t)+

t

r2
u0(r−t)

∣

∣

∣

p
r2 dr.

We bound the first term exactly as above and for the second term we use
Hardy’s inequality, i.e.

∫ ∞

t

( t

r2

)p
|u0(r − t)|pr2 dr ≤

∫ ∞

0

( |u0(r)|
r

)p
r2 dr . ‖u0‖pẆ 1,p

since t ≤ r and p ≥ 2. �

Corollary 3.11 (Decay and reversed Strichartz estimates). Suppose that
the initial data (u0, u1) is outgoing and suppu0 ⊂ B(0, R). Then for t ≥ 0
and 2 ≤ p ≤ ∞, the solution to the free wave equation (1.1) satisfies

‖u(x, t)‖Lp
x
. min(1,

(R

t

)−1+2/p
)‖u0‖Lp . (3.11)

Suppose that suppu0 ⊂ B(0, R). Then for 3 < q < ∞ (and L3,∞ or L∞ at
the endpoints) and 1 ≤ p ≤ ∞

‖u‖
Lq,2
x Lp

t
. R3/q+1/p‖u0‖L∞ (3.12)

and for 1 ≤ p ≤ 2

‖u‖L3,∞
x Lp

t
. R1/p−1/2‖u0‖L2 .

More generally, suppose that suppu0 ⊂ B(0, R1)\B(0, R2) for R1 > R2 and
u0 ∈ L∞. Then for 3 < q < ∞ (and L3,∞ or L∞ at the endpoints) and
1 ≤ p ≤ ∞

‖u‖Lq,2
x Lp

t
. R

3/q
1 (R1 −R2)

1/p‖u0‖L∞ . (3.13)

Also, for 1 ≤ p ≤ 2 and 3 < q ≤ ∞ (and L3,∞ for q = 3)

‖u‖
Lq,2
x Lp

t
. (R1 −R2)

1/p−1/2R
−1+3/q
2 ‖u0‖L2 .

Proof. Estimate (3.11) is an obvious consequence of Proposition 3.9 when
p = ∞ and we interpolate with p = 2 (for which ‖u(x, t)‖L2

x
= ‖u0‖L2) to

get all the other cases.
Next, (3.12) follows because, when suppu0 ⊂ B(0, R) and u0 ∈ L∞, by

Proposition 3.9 (where we use the fact that r−t
r ≤ 1 on one hand and that

r − t ≤ R on suppu0 on the other hand)

‖u(r, t)‖Lp
t
. min(R1/p‖u0‖L∞ ,

R1+1/p

r
‖u0‖L∞).

Likewise, for 1 ≤ p ≤ 2

‖u(r, t)‖Lp
t
.
R1/p−1/2

r
‖u0‖L2 .
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Finally, (3.13) is true because, when suppu0 ⊂ B(0, R1) \ B(0, R2) and
u0 ∈ L∞,

‖u(r, t)‖Lp
t
. min((R1 −R2)

1/p‖u0‖L∞ ,
R1(R1 −R2)

1/p

r
‖u0‖L∞).

Also, for the last inequality, by Proposition 3.9

‖u(r, t)‖Lp
t
. min

((R1 −R2)
1/p−1/2

r
‖u0‖L2 ,

(R1 −R2)
1/p−1/2

R2
‖u0‖L2

)

.

�

We next state some Strichartz estimates that hold only for outgoing so-
lutions. For simplicity, we state them only for the scaling-invariant norms
of our problem (1.1).

Corollary 3.12 (Strichartz estimates). For any 4 ≤ N ≤ ∞, if u0 ∈ L∞

and (u0, u1) ∈ (Ḣ1 ×L2)out are radial and outgoing, then the corresponding
solution u to the free wave equation (3.5) in three dimensions fulfills

‖u‖
LN
t Ẇ

2/N,N
x

+ ‖u‖
L
N/2
t L∞

x
+ ‖u‖

L∞

t Ẇ
4/N,N/2
x

. ‖u0‖4/NḢ1
‖u0‖1−4/N

L∞ (3.14)

and

‖|u|Nu‖L1
t Ḣ

sc−1
x

. ‖u0‖(N+1)4/N

Ḣ1
‖u0‖(N+1)(1−4/N)

L∞

x,t
. (3.15)

Note that the bounds (3.14) hold for less than the full range of scaling-
invariant norms.

Proof. Strichartz estimates for the free wave equation (see [GiVe] or [KeTa],
as well as [KlMa] for the radial endpoint estimate) ensure that

‖u‖
L4
t Ẇ

1/2, 4
x

+‖u‖L5
tL

10
x
+‖u‖L2

tL
∞
x
+‖u‖L∞

t Ḣ1
x
. ‖u0‖Ḣ1 +‖u1‖L2 . ‖u0‖Ḣ1 ,

where we also used Lemma 3.8. Interpolating (see Theorems 5.1.2 and 6.4.5
in [BeLö] for the interpolation results) with the supremum estimate (3.10),
we obtain that for N ≥ 4

‖u‖
LN
t Ẇ

2/N,N
x

+ ‖u‖
L
N/2
t L∞

x
+ ‖u‖

L∞

t Ẇ
4/N,N/2
x

. ‖u0‖4/NḢ1
‖u0‖1−4/N

L∞ ,

which is the scaling-invariant estimate (3.14).
By the Leibniz rule (only here we use that N is an integer and it is

probably unnecessary), for any integer N ≥ 4

‖|u|Nu‖L1
t Ḣ

1
x
. ‖u‖L∞

t Ḣ1
x
‖u‖2L2

tL
∞
x
‖u‖N−2

L∞

t,x
. ‖u0‖3Ḣ1‖u0‖N−2

L∞ (3.16)

and by Hölder’s inequality

‖|u|Nu‖L1
t L̇

2
x
. ‖u‖5L5

tL
10
x
‖u‖N−4

L∞

t,x
. ‖u0‖5Ḣ1‖u0‖N−4

L∞ . (3.17)

In particular, since sc−1 = 1/2−2/N and 3(12− 2
N )+5(12+

2
N ) = (N+1)4/N ,

by interpolation between (3.16) and (3.17) we obtain (3.15). �
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4. Standard existence results

We first state some standard Strichartz estimates, see [KeTa], that hold
in scaling-invariant norms for equation (1.1).

Proposition 4.1. Consider a solution u of the linear wave equation in three
dimensions with a source term

utt −∆u = F, u(0) = u0, ut(0) = u1.

Then

‖u‖
L∞

t Ḣs
x∩L4

t Ẇ
sc−1/2,4
x ∩LN/2

t L∞
x
+ ‖ut‖L∞

t Ḣsc−1
x ∩L4N/(N−4)

t L
4N/(N+4)
x

.

. ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 + ‖F‖L1
t Ḣ

sc−1
x

.

Another simple linear estimate we shall use is
∥

∥

∥

sin(t
√
−∆)√

−∆
f
∥

∥

∥

L∞

. |t|‖f‖L∞ . (4.1)

We next state some reversed-norm Strichartz estimates, following [BeGo].
Again we only state those estimates which hold in scaling-invariant norms
for equation (1.1).

Proposition 4.2. Consider a solution u of the linear wave equation in three
dimensions with a source term

utt −∆u = F, u(0) = u0, ut(0) = u1.

Then

‖u‖
L
3N/2,2
x L∞

t
. ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 + ‖F‖

L
3N

2(N+1)
,2

x L∞

t

, (4.2)

‖u‖
L∞

x L
N/2
t

. ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 + ‖F‖
L
3/2,1
x L

N/2
t

.

Note that these reversed-norm estimates also hold (for the projection on
the continuous spectrum) if the Hamiltonian is −∆+V instead of −∆, where
V is a Kato-class potential, if there are no eigenvalues or resonances in the
continuous spectrum.

Remark 4.3. The following strictly stronger (in our context) inequalities are
also true:

‖Dsc−1
x u‖L6,2

x L∞

t
. ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 + ‖Dsc−1

x F‖
L
6/5,2
x L∞

t

and

‖Dsc−1
t u‖L∞

x L2
t
. ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 + ‖Dsc−1

t F‖
L
3/2,1
x L2

t
.

It is also possible to base a fixed point argument on these inequalities.

Although we don’t use them, we next state some standard well-posedness
results for the semilinear wave equation (1.1)

utt −∆u± |u|Nu = 0, u(0) = u0, ut(0) = u1.
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The first existence result is one that holds in the standard Strichartz
norms.

Proposition 4.4. Assume that N > 4 and ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 is suffi-
ciently small (or N = 4 and the data are small and radially symmetric).
Then equation (1.1) admits a global solution u with (u0, u1) as initial data,
such that

‖u‖
L∞

t Ḣs
x∩L4

t Ẇ
sc−1/2,4
x ∩LN/2

t L∞
x
+ ‖ut‖L∞

t Ḣsc−1
x ∩L4N/(N−4)

t L
4N/(N+4)
x

.

. ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 .

In addition, u scatters: there exist (u0+, u1+) ∈ Ḣsc × Ḣsc−1 such that

lim
t→∞

‖(u(t), ut(t)) −Φ(t)(u0+, u1+)‖Ḣsc×Ḣsc−1 = 0

and likewise as t→ −∞.
More generally, if (u0, u1) ∈ Ḣsc × Ḣsc−1 are not small, then there exist

an interval I = (−T, T ) with T > 0 and a solution u to (1.1) defined on
R
3 × I, having (u0, u1) as initial data, such that

‖u‖
L∞

t Ḣs
x(R

3×I)∩L4
t Ẇ

sc−1/2,4
x (R3×I)∩LN/2

t L∞
x (R3×I)

+

+ ‖ut‖L∞

t Ḣsc−1
x (R3×I)∩L4N/(N−4)

t L
4N/(N+4)
x (R3×I)

<∞.

Proof. This is a consequence of the standard Strichartz estimates for the
free wave equation of [KeTa], see Proposition 4.1.

The proof works by a contraction argument in the L∞
t Ḣ

s
x∩L4

tẆ
sc−1/2,4
x ∩

L
N/2
t L∞

x norm. Indeed, note that the nonlinearity can be bounded in the
dual Strichartz norm by

‖|u|Nu‖L1
t Ḣ

sc−1
x

. ‖u‖N/2

L
N/2
t L∞

x

‖u‖N/2

L∞

t L
3N/2
x

‖u‖L∞

t Ḣs
x
. ‖u‖N/2

L
N/2
t L∞

x

‖u‖N/2+1

L∞

t Ḣs
x
.

See [Tay] for mixed fractional Leibniz rules such as we are using here. A
rather general statement is the following:

Lemma 4.5. Let 1 < p, p1, p2 <∞, 1 ≤ q, q1, q2 ≤ ∞, α ∈ [0, 1], Dα be the
Fourier multiplier |ξ|α, and 1

p1
+ 1

p2
= 1

p̃1
+ 1

p̃2
= 1

p ,
1
q 1

+ 1
q 2

= 1
q̃1

+ 1
q̃2

= 1
q .

Then

‖Dα(fg)‖Lp,q . ‖Dαf‖Lp1,q1‖g‖Lp2,q2 + ‖f‖Lp̃1,q̃1‖Dαg‖Lp̃2,q̃2 .

This can be easily proved by complex interpolation between the α = 0
and α = 1 cases; see [BeLö], p. 153.

Concerning scattering, we define

u0+ := u0 −
∫ ∞

0

sin(s
√
−∆)√

−∆
(|u(s)|Nu(s)) ds,

u1+ := u1 +

∫ ∞

0
cos(s

√
−∆)(|u(s)|Nu(s)) ds.
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Then

u(t) = cos(t
√
−∆)u0 +

sin(t
√
−∆)√

−∆
u1 +

∫ t

0

(sin(t
√
−∆)√

−∆
cos(s

√
−∆)−

cos(t
√
−∆)

sin(s
√
−∆)√

−∆

)

(|u(s)|Nu(s)) ds,

so

u(t)− Φ0(t)(u0+, u1+) =
sin(t

√
−∆)√

−∆

∫ ∞

t
cos(s

√
−∆)(|u(s)|Nu(s)) ds−

cos(t
√
−∆)

∫ ∞

t

sin(s
√
−∆)√

−∆
(|u(s)|Nu(s)) ds,

where Φ0(t) is the first component of Φ(t). This expression goes to zero in

the Ḣsc norm. The same is true for ut.

In case the initial data is not small, the global L4
t Ẇ

sc−1/2,4
x ∩ L

N/2
t L∞

x

Strichartz norm of its linear development is still finite, hence it becomes
small on some sufficiently small interval (−T, T ), and we run the contraction
argument on that interval. In the same way one can prove the uniqueness

of the solution in L∞
t Ḣ

s
x(R

3× I)∩LN/2
t L∞

x (R3× I), where I is the maximal
interval on which the solution is defined. �

The second existence result holds in the reversed Strichartz norms in-
troduced in [BeGo], being a straightforward generalization of Proposition 5
from that paper.

Proposition 4.6. Assume that N ≥ 4 and ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 is suffi-
ciently small. Then equation (1.1) admits a global solution u with (u0, u1)
as initial data, such that

‖u‖
L
3N/2
x L∞

t ∩L∞

x L
N/2
t

. ‖u0‖Ḣsc + ‖u1‖Ḣsc−1 .

Moreover, if the initial data (u0, u1) ∈ Ḣsc×Ḣsc−1 are not small, there exist
an interval I = (−T, T ) and a solution u to (1.1) on R

3 × I such that

‖u‖
L
3N/2
x L∞

t (R3×I)∩L∞

x L
N/2
t (R3×I)

<∞.

Proof. The proof is based on the reversed-norm Strichartz estimates of

Proposition 4.2 and on a contraction argument in the L
3N/2
x L∞

t ∩ L∞
x L

N/2
t

norm. Indeed, note that the nonlinearity can be bounded in the dual
Strichartz norm by

‖|u|Nu‖
L

3N
2(N+1)

,2

x L∞

t

. ‖u‖N+1

L
3N/2,2
x L∞

t

,

‖|u|Nu‖
L
3/2,1
x L

N/2
t

. ‖u‖N
L
3N/2,2
x L∞

t

‖u‖
L∞

x L
N/2
t

.

One can obtain the large data local well-posedness result as follows: by
means of smooth cutoffs, we restrict the initial data to sets on which their
norm is small and solve the initial value problem with this restricted data.
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The solutions obtained will agree on some small time interval with the so-
lution of the original problem due to the finite speed of propagation. Since
there is a lower bound on how small the diameter of the sets is required to
be, by piecing together all these partial solutions we obtain a global in space
solution on some nonempty time interval.

In the same way one can prove that the solution is unique in L
3N/2
x L∞

t (R3×
I), where I is a small interval (or I = R for small norm solutions). �

5. Proof of the main results

Proof of Theorem 1.2. This is a direct consequence of the standard existence
theory, in view of the Strichartz estimates (3.14) and (3.15).

Explicitly, we write the solution u as the sum of the free evolution of
the outgoing initial data and a small perturbation, to which we apply a
contraction argument. Let u(x, t) = v(x, t) + w(x, t), where

vtt −∆v = 0, v(0) = v0, vt(0) = v1

and

wtt −∆w ± |v + w|N (v + w) = 0, w(0) = w0, wt(0) = w1. (5.1)

We linearize equation (5.1) by writing it as

wtt −∆w ± |v + w̃|N (v + w̃) = 0, w(0) = w0, wt(0) = w1, (5.2)

and solving for w = F (w̃), while treating w̃ as given. The subsequent
argument is the same if instead of null initial data we take small (w0, w1) ∈
Ḣsc × Ḣsc−1 initial data in (5.1), i.e. if we allow for a small perturbation of
the outgoing initial data (v0, v1).

By a standard contraction argument we proceed to show that there exists

w̃ of bounded L∞
t Ḣ

sc
x ∩ L4

t Ẇ
sc−1/2,4
x ∩ LN/2

t L∞
x norm such that w̃ = F (w̃).

The source term in equation (5.1) is |v|Nv, which is controlled in the
appropriate norm by (3.15): if we denote

K := ‖v0‖4/NḢ1
‖v0‖1−4/N

L∞

t,x
,

then

‖|v|Nv‖L1
t Ḣ

sc−1
x

. KN+1. (5.3)

The other (mixed) terms are bounded in the critical norm by (3.14) because
for N ≤ 12

sc − 1 = 1/2 − 2/N ≤ 4/N. (5.4)

Indeed,

|v + w̃|N (v + w̃)− |v|Nv = (|v + w̃|N − |v|N )(v + w̃) + |v|N w̃

= w̃
(

∫ 1

0
N |v + αw̃|N−2(v + αw̃) dα

)

(v + w̃) + |v|N w̃.
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Furthermore, note that

‖uN+1‖L1
t Ḣ

sc−1
x

. ‖u‖N/2

L
N/2
t L∞

x

‖u‖N/2

L∞

t L
3N/2
x

‖u‖L∞

t Ẇ sc−1,6 . ‖u‖N/2

L
N/2
t L∞

x

‖u‖N/2+1

L∞

t Ẇ sc−1,6

and more generally (here we use that N is an integer, though it is probably
unnecessary)

‖u1 . . . uN+1‖L1
t Ḣ

sc−1
x

. ‖u1‖L∞

t Ẇ sc−1,6∩LN/2
t L∞

x
. . . ‖uN+1‖L∞

t Ẇ sc−1,6∩LN/2
t L∞

x
.

Then for 0 ≤ α ≤ 1

‖w̃|v + αw̃|N−2(v + αw̃)(v + w̃)‖L1
t Ḣ

sc−1
x

.

. ‖w̃‖
L∞

t Ẇ sc−1,6∩LN/2
t L∞

x
(‖v‖N

L∞

t Ẇ sc−1,6∩LN/2
t L∞

x

+ ‖w̃‖N
L∞

t Ẇ sc−1,6∩LN/2
t L∞

x

)

. ‖w̃‖
L∞

t Ḣsc∩LN/2
t L∞

x
(‖v‖N

L∞

t Ẇ
4/N,N/2
x ∩LN/2

t L∞

x

+ ‖w̃‖N
L∞

t Ḣsc∩LN/2
t L∞

x

),

(5.5)

where Ḣsc ⊂ Ẇ sc−1,6 and Ẇ 4/N,N/2 ⊂ Ẇ sc−1,6. A similar estimate holds
for |v|Nw.

Note that, for (5.5) to hold, each factor on the left-hand side must have
at least sc− 1 derivatives. There are some monomials in (5.5) with only one
power of v; since all the other factors (powers of w) can only be bounded in
scaling-invariant norms, due to scaling we must also bound v in a scaling-
invariant norm. Since by (3.14) v only has 4

N derivatives in a scaling-
invariant norm, condition (5.4) is necessary.

From (5.3) and (5.5), combined with standard Strichartz estimates, we
get that

‖w‖
L∞

t Ḣsc
x ∩L4

t Ẇ
sc−1/2,4
x ∩LN/2

t L∞

x
. ‖w0‖Ḣsc+‖w1‖Ḣsc−1+K

N+1+‖w̃‖N+1

L∞

t Ḣsc
x ∩LN/2

t L∞
x

.

If we assume that ‖w̃‖
L∞

t Ḣsc
x ∩LN/2

t L∞
x

≤ K and that w0, w1, and K are

sufficiently small, it follows that ‖w‖
L∞

t Ḣsc
x ∩LN/2

t L∞
x

≤ K as well.

Note that

|v + w̃1|N (v + w̃1)− |v + w̃2|N (v + w̃2) =

=

∫ 1

0

d

dα

(

|v + αw̃1 + (1− α)w̃2|N (v + αw̃1 + (1− α)w̃2)
)

dα

= (w̃1 − w̃2)

∫ 1

0
(N + 1)|v + αw̃1 + (1− α)w̃2|N dα.

One then shows that, given two pairs w1, w̃1 and w2, w̃2 that both ful-
fill (5.2),

‖w1 − w2‖
L∞

t Ḣsc
x ∩L4

t Ẇ
sc−1/2,4
x ∩LN/2

t L∞

x
.

. ‖w̃1 − w̃2‖
L∞

t Ḣsc
x ∩LN/2

t L∞
x
(KN + ‖w̃1‖N

L∞

t Ḣsc
x ∩LN/2

t L∞

x

+ ‖w̃2‖N
L∞

t Ḣsc
x ∩LN/2

t L∞

x

).

It follows that the mapping w̃ 7→ w is a contraction in the sphere of radius

K in L∞
t Ḣ

sc
x ∩LN/2

t L∞
x when w0, w1, and K are sufficiently small. The fixed
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point w = w̃ then gives rise to a global solution u = v + w to (1.1). As a

byproduct we can also obtain the L∞
t Ḣ

sc−1 norm of wt.
Estimate (1.3) is true because we can separately bound v (by (3.14)) and

w (by the fixed point argument) in the L
N/2
t L∞

x norm.
Concerning scattering, define

w0+ := w0 −
∫ ∞

0

sin(s
√
−∆)√

−∆
(|u(s)|Nu(s)) ds,

w1+ := w1 +

∫ ∞

0
cos(s

√
−∆)(|u(s)|Nu(s)) ds.

Since |u(s)|Nu(s) ∈ L1
t Ḣ

sc−1
x , it is easy to show (1.4).

If the initial data are in ((Ḣ1 ∩L∞)×L2)out+ Ḣ
s× Ḣs−1, but not small,

then still the norm ‖v‖
L
N/2
t L∞

x
< ∞ is finite, so there exists an interval I =

[0, T ] on which ‖v‖
L
N/2
t L∞

x (R3×I)
is small and same for the linear evolution

of (w0, w1). We then run the previous argument on this interval.
In the same manner one can prove the uniqueness of the solution in

L∞
t Ḣ

sc
x (R3 × I)∩LN/2

t L∞
x (R3 × I), where I is the maximal interval of exis-

tence. �

Proof of Corollary 1.3. This follows from Theorem 1.2 and the R3 radial Ḣ1

Sobolev embedding

|u0(r)| . r−1/2‖u0‖Ḣ1
rad
.

Given that u0 is supported outside the sphere B(0, R), this embedding im-
plies that

‖u0‖L∞ . R−1/2‖u0‖Ḣ1
rad
.

Therefore ‖u0‖4/NḢ1
‖u0‖1−4/N

L∞ . ‖u0‖Ḣ1R−(1−4/N)/2. The conclusion follows

by applying Theorem 1.2. �

For the sake of completeness, we also state some local existence results.
We begin with a simple, but weak result that holds for bounded initial data.

Proposition 5.1. Suppose that N > 0, the initial data (u0, u1) are radial
and outgoing, and u0 ∈ L∞. Then there exists a corresponding solution u

to (1.1) on R
3 × I, I = [0, T ], such that T ≥ C‖u0‖−N/2

L∞ and

‖u‖L∞

t,x(R
3×I) . ‖u0‖L∞ .

Note that one cannot repeat this argument for later initial times because
the nonlinearity generates incoming terms and for incoming initial data it
is not enough for it to be in L∞.

Proof of Proposition 5.1. We apply a fixed point argument. Linearize equa-
tion (1.1) to

utt −∆u± |ũ|N ũ = 0, u(0) = u0, ut(0) = u1. (5.6)



SUPERCRITICAL WAVE EQUATION 25

Then, taking into account (3.10) and (4.1),

‖u‖L∞

t,x(R
3×I) . ‖u0‖L∞ + T 2‖|ũ|N ũ‖L∞

t,x(R
3×I) . ‖u0‖L∞ + T 2‖ũ‖N+1

L∞

t,x
.

Thus, if ‖ũ‖L∞

t,x(R
3×I) . ‖u0‖L∞ and T ≤ c‖u0‖−N/2

L∞

t,x
with c sufficiently small,

we retrieve the same conclusion for u. In addition, the mapping ũ 7→ u is
a contraction. Indeed, given two pairs ũ1 and u1, respectively ũ2 and u2,
which fulfill (5.6),

‖u1 − u2‖L∞

t,x(R
3×I) . T 2‖ũ1 − ũ2‖L∞

t,x
(‖ũ1‖NL∞

t,x
+ ‖ũ2‖NL∞

t,x
).

Thus, if T ≤ c‖u0‖−N/2
L∞

t,x
with sufficiently small c, then the mapping ũ 7→ u is

a contraction on {u | ‖u‖L∞

t,x(R
3×I) . ‖u0‖L∞

t,x
}. The fixed point is a solution

of (1.1) with the desired properties. �

We next state another existence result in the subcritical sense, for large
((Ḣ1 ∩L∞)×L2)out +(Ḣ2 ∩ Ḣ1)× (Ḣ1 ∩L2) initial data (and in particular

for ((Ḣ1∩L∞)×L2)out initial data). The solution remains in the same class
for some finite positive time and for all time if the initial data are small.

Proposition 5.2. Assume N ≥ 2 and consider initial data (u0, u1) =

(v0, v1) + (w0, w1), where (v0, v1) ∈ ((Ḣ1 ∩ L∞) × L2)out are radial and

outgoing and (w0, w1) ∈ (Ḣ2∩ Ḣ1)× (Ḣ1∩L2) are radial. Then there exists
a corresponding solution u to (1.1) on R

3 × I, where I = [0, T ] and

T ≥ C(‖w0‖Ḣ2∩Ḣ1 + ‖w1‖Ḣ1∩L2 + ‖v0‖Ḣ1∩L∞)−N ,

such that u = v + w and

‖(v, vt)‖L∞

t ((Ḣ1∩L∞)×L2)out(R3×I) + ‖v‖L2
tL

∞

x (R3×I) . ‖v0‖Ḣ1∩L∞ , (5.7)

‖(w,wt)‖L∞

t (Ḣ2
x∩Ḣ1

x∩L∞
x ×Ḣ1

x∩L2
x)(R

3×I) .

. ‖w0‖Ḣ2∩Ḣ1 + ‖w1‖Ḣ1∩L2 + ‖v0‖Ḣ1∩L∞ .

Assume in addition that N ≥ 4 and

‖w0‖Ḣ2∩Ḣ1 + ‖w1‖Ḣ1∩L2 + ‖v0‖5N−4
Ḣ1

‖v0‖(N−4)(N−1)
L∞ +

+ ‖v0‖2Ḣ1‖v0‖N−2
L∞ + (‖w0‖N−1

Ḣ2∩Ḣ1
+ ‖w1‖N−1

Ḣ1∩L2
)‖v0‖Ḣ1 << 1.

(5.8)

Then there exists a global solution u, forward in time, with this initial data,
such that u = v + w, v fulfills (5.7), and

‖(w,wt)‖L∞

t (Ḣ2
x∩Ḣ1

x×Ḣ1
x∩L2

x)
+ ‖w‖L2

tL
∞

x
. ‖w0‖Ḣ2∩Ḣ1 + ‖w1‖Ḣ1∩L2+

+‖v0‖5Ḣ1‖v0‖N−4
L∞ + ‖v0‖3Ḣ1‖v0‖N−2

L∞ .

Proof of Proposition 5.2. As before, we write the solution as a sum of two
terms, u(x, t) = v(x, t) + w(x, t), where v is the linear evolution of (v0, v1)
and w is the contribution of (w0, w1) and of the nonlinear terms:

vtt −∆v = 0, v(0) = v0, vt(0) = v1



26 MARIUS BECEANU AND AVY SOFFER

and we linearize the second equation to (5.2), that is

wtt −∆w ± |v + w̃|N (v + w̃) = 0, w(0) = w0, wt(0) = w1.

Then clearly (v, vt) satisfy (5.7), see (3.10) and Lemma 3.8. In addition,

‖(w,wt)‖L∞

t (Ḣ2
x∩Ḣ1

x×Ḣ1
x∩L2

x)(R
3×I) .

. ‖w0‖Ḣ2∩Ḣ1 + ‖w1‖Ḣ1∩L2 + T‖|v + w̃|N (v + w̃)‖L∞

t (Ḣ1
x∩L2

x)(R
3×I).

Here

‖|v + w̃|N (v + w̃)‖L∞

t L2
x(R

3×I) . ‖v‖N−2
L∞

t,x(R
3×I)

‖v‖3
L∞

t Ḣ1
x(R

3×I)
+

+‖w̃‖N−2
L∞

t,x(R
3×I)

‖w̃‖3
L∞

t Ḣ1
x(R

3×I)

and

‖|v + w̃|N (v + w̃)‖L∞

t Ḣ1
x(R

3×I) . (‖v‖NL∞

t,x(R
3×I) + ‖w̃‖NL∞

t,x(R
3×I))

(‖v‖L∞

t Ḣ1
x(R

3×I) + ‖w̃‖L∞

t Ḣ1
x(R

3×I)).

Also note that

‖w̃‖L∞

t,x(R
3×I) . ‖w̃‖L∞

t (Ḣ2
x∩Ḣ1

x)(R
3×I). (5.9)

In conclusion, if

‖w̃‖L∞

t (Ḣ2
x∩Ḣ1

x)(R
3×I) . ‖w0‖Ḣ2∩Ḣ1 + ‖w1‖Ḣ1∩L2 + ‖v0‖Ḣ1∩L∞

and if

T ≤ c(‖w0‖Ḣ2∩Ḣ1 + ‖w1‖Ḣ1∩L2 + ‖v0‖Ḣ1∩L∞)−N

with c sufficiently small, then we retrieve the same conclusion for w. Un-
der the same condition one can prove that the mapping w̃ 7→ w is a con-
traction on the set {w | ‖w̃‖L∞

t (Ḣ2
x∩Ḣ1

x)(R
3×I) . ‖w0‖Ḣ2∩Ḣ1 + ‖w1‖Ḣ1∩L2 +

‖v0‖Ḣ1∩L∞}. The fixed point w gives rise to a solution u = v + w with the
required properties. In particular, we also retrieve a bound for wt.

For the global existence result, we use the following estimates:

‖(w,wt)‖L∞

t (Ḣ1
x×L2

x)
+‖w‖L2

tL
∞

x
. ‖w0‖Ḣ1 +‖w1‖L2+‖|v+w̃|N (v+w̃)‖L1

tL
2
x
,

where

‖|v+w̃|N (v+w̃)‖L1
tL

2
x
. ‖v‖3

L∞

t Ḣ1
x
‖v‖2L2

tL
∞
x
‖v‖N−4

L∞

t,x
+‖w̃‖3

L∞

t Ḣ1
x
‖w̃‖2L2

tL
∞
x
‖w̃‖N−4

L∞

t,x
,

together with

‖(w,wt)‖L∞

t (Ḣ2×Ḣ1) . ‖w0‖Ḣ2 + ‖w1‖Ḣ1 + ‖|v + w̃|(v + w̃)‖L1
t Ḣ

1
x
,

where

‖|v+w̃|(v+w̃)‖L1
t Ḣ

1
x
. (‖v‖2L2

tL
∞

x
‖v‖N−2

L∞

t,x
+‖w̃‖2L2

tL
∞

x
‖w̃‖N−2

L∞

t,x
)(‖v‖L∞

t Ḣ1
x
+‖w̃‖L∞

t Ḣ1
x
).

Also note (5.9) and that ‖v‖L∞

t,x
≤ ‖v0‖L∞ and ‖v‖L∞

t Ḣ1
x
. ‖v0‖Ḣ1 . It

follows that whenever

‖w̃‖L∞

t (Ḣ2
x∩Ḣ1

x)∩L2
tL

∞

x
≤ ǫ << 1 (5.10)
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and

‖w0‖Ḣ2∩Ḣ1 + ‖w1‖Ḣ1∩L2 + ‖v0‖5Ḣ1‖v0‖N−4
L∞ + ‖v0‖3Ḣ1‖v0‖N−2

L∞ . cǫ,

‖v0‖2Ḣ1‖v0‖N−2
L∞ + ǫN−1‖v0‖Ḣ1 << 1,

with c sufficiently small (not depending on ǫ), then we retrieve the same
conclusion (5.10) for w.

In particular, for this to happen it is necessary that (‖v0‖5Ḣ1‖v0‖N−4
L∞ )N−1‖v0‖Ḣ1 <<

1, which is part of our condition (5.8).
Next, we prove that the mapping w̃ 7→ w is a contraction. In the same

manner as above it can be shown that, when w1 and w̃1, respectively w2

and w̃2, satisfy the linearized equation (5.2) and condition (5.10), then

‖w1 − w2‖L∞

t Ḣ1
x∩L2

tL
∞

x
. ‖w̃1 − w̃2‖L∞

t Ḣ1
x
(‖v0‖4Ḣ1‖v0‖N−4

L∞ + ǫN )

and

‖w1−w2‖L∞

t Ḣ2
x
. ‖w̃1−w̃2‖L∞

t (Ḣ2
x∩Ḣ1

x)
(‖v0‖2Ḣ1‖v0‖N−2

L∞ +‖v0‖3Ḣ1‖v0‖N−3
L∞ +ǫN ).

Thus, as long as ǫ is sufficiently small and

‖v0‖2Ḣ1‖v0‖N−2
L∞ + ‖v0‖3Ḣ1‖v0‖N−3

L∞ << 1,

the mapping is a contraction. The ensuing fixed point w gives rise to a
solution u of (1.1) with the desired properties.

As part of the contraction argument we can also bound wt. Putting
together all the conditions we use, we obtain (5.8). �

We continue with the proof of Theorem 1.5, concerning global existence
for bounded compact support initial data.

Proof of Theorem 1.5. This follows by a standard fixed point argument in

the L
3N/2,2
x L∞

t ∩ L∞
x L

N/2
t norm.

Let u(x, t) = v(x, t) + w(x, t), where

vtt −∆v = 0, v(0) = u0, vt(0) = u1

and

wtt −∆w + |v + w|N (v + w) = 0, w(0) = 0, wt(0) = 0. (5.11)

As in the proof of Theorem 1.2, we linearize (5.11) to

wtt −∆w ± |v + w̃|N (v + w̃) = 0, w(0) = 0, wt(0) = 0

and then we prove by a contraction argument that there exists w̃ ∈ L
3N/2,2
x L∞

t ∩
L∞
x L

N/2
t for which w = w̃.

Note that by (3.12)

‖v‖
L
3N/2,2
x L∞

t ∩L∞

x L
N/2
t

. R2/N‖u0‖L∞ := K.
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Then, since the initial data are zero,

‖w‖
L
3N/2,2
x L∞

t ∩L∞
x L

N/2
t

. ‖|v + w̃|N (v + w̃)‖
L

3N
2(N+1)

,2

x L∞

t ∩L3/2,1
x L

N/2
t

. KN+1 + ‖w̃‖N+1

L
3N/2,2
x L∞

t ∩L∞

x L
N/2
t

.

Thus, whenK is small, the mapping w̃ 7→ w leaves a sufficiently small sphere

in L
3N/2,2
x L∞

t ∩ L∞
x L

N/2
t invariant.

Furthermore, considering two auxiliary functions w̃1 and w̃2 that give rise
to solutions w1, respectively w2,

‖w1 − w2‖L3N/2,2
x L∞

t ∩L∞
x L

N/2
t

.

. ‖|v + w̃1|N (v + w̃1)− |v + w̃2|N (v + w̃2)‖
L

3N
2(N+1)

,2

x L∞

t ∩L3/2,1
x L

N/2
t

. ‖w̃1 − w̃2‖L3N/2,2
x L∞

t ∩L∞

x L
N/2
t

(KN + ‖w̃1‖N
L
3N/2,2
x L∞

t ∩L∞
x L

N/2
t

+ ‖w̃2‖N
L
3N/2,2
x L∞

t ∩L∞
x L

N/2
t

).

Thus the mapping w̃ 7→ w is a contraction in a sufficiently small sphere when
K is also small. It therefore has a fixed point w = w̃, such that u = v + w
is a solution to (1.1). �

We finally construct true large initial data global solutions to (1.1).

Proof of Theorem 1.6. For α > 0 and ǫ << 1, consider outgoing initial
data (u0, u1) supported on B(0, 1 + ǫ) \B(0, 1), such that u0(r) = Lǫ−α for
r ∈ [1, 1 + ǫ]. Then ‖u0‖L∞ ∼ Lǫ−α and ‖u0‖L1/α ∼ L. Let v be the linear
evolution of (u0, u1), that is

vtt −∆v = 0, v(0) = u0, vt(0) = u1.

By (3.13)

‖v‖
L
3N/2,2
x L∞

t
. ‖u0‖L∞ ∼ Lǫ−α, ‖v‖

L∞

x L
N/2
t

. ǫ2/N‖u0‖L∞ ∼ Lǫ2/N−α.

Letting ǫ go to zero, we cannot make the scaling-invariant L
3N/2,2
x L∞

t re-
versed Strichartz norm of v small. This is why we examine one more iterate
in the nonlinear contraction scheme.

Note that by Proposition 3.9 v(r, t) is supported onB(1 + t+ ǫ) \B(1 + t)
and

v(1 + t+ a, t) .
Lǫ−α

1 + t+ a
≤ Lǫ−α

1 + t
. (5.12)

Let n > 2. Therefore, vn(r = 1+t+a, t) is supported onB(1 + t+ ǫ) \B(1 + t)

and bounded by Lnǫ−nα

(1+t+a)n . To help with computations, we write this bound as

vn(1 + t+ a, t) .

∫ ǫ

0

Lnǫ−nα

(1 + t+ a)n−1

sin((1 + t+ a)
√
−∆)√

−∆
δ0 da,

where δ0 is Dirac’s delta and we have taken advantage of the special form

of the kernel of sin(t
√
−∆)√

−∆
(x, y) = 1

4πtδ|x−y|=t for t ≥ 0.
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Let us estimate the Duhamel term
∫ t

0

sin((t− s)
√
−∆)√

−∆
vn(s) ds. (5.13)

Since we use absolute values, not cancellations, we bound this from above by
∫ t

0

sin((t− s)
√
−∆)√

−∆

Lnǫ−nα

(1 + s)n−1

∫ ǫ

0

sin((1 + s+ a)
√
−∆)√

−∆
δ0 da ds =

=

∫ ǫ

0

∫ t

0

Lnǫ−nα

(1 + s)n−1

1

2

(cos((t− 1− 2s− a)
√
−∆)

−∆
− cos((1 + t+ a)

√
−∆)

−∆

)

δ0 ds da.

Note that cos(t
√
−∆)

−∆ (x, y) = 1
4π|x−y|χ|x−y|≥t. We obtain a bound of

∫ ǫ

0

∫ t

0

Lnǫ−nα

(1 + s)n−1

1

r
χ[|t−1−2s−a|,1+t+a](r) ds da =

=

∫ ǫ

0

∫ min(t, t−1−a+r
2

)

max(0, t−1−a−r
2

)

Lnǫ−nα

(1 + s)n−1
ds
χ[max(0,1+a−t),1+t+a](r)

r
da

.

∫ ǫ

0

χ[max(0,1+a−t),1+t+a](r)

r

( Lnǫ−nα

(1 + max(0, t−1−a−r
2 ))n−2

− Lnǫ−nα

(1 + t−1−a+r
2 )n−2

)

da

. Lnǫ1−nαχ[0,2+t](r)min
(1

r
, 1
)

,

(5.14)
the second part using the mean value theorem.

It follows that
‖(5.13)‖〈x〉−1L∞

t,x
. Lnǫ1−nα.

Setting n = N + 1, we obtain for example that this norm can be made
arbitrarily small by letting ǫ go to zero if α < 1

N+1 .

We write the solution u as a sum of two parts, u(x, t) = v(x, t) +w(x, t),
where v is the linear evolution of the initial data and w is the contribution
of the nonlinear terms:

wtt −∆w ± (v + w)N+1 = 0, w(0) = 0, wt(0) = 0. (5.15)

Recall that for simplicity we assumed that N is even.
We then have to obtain similar bounds for the terms

∫ t

0

sin((t− s)
√
−∆)√

−∆
(vn(s)wN+1−n(s)) ds (5.16)

for 0 ≤ n ≤ N + 1. For n > 0 we proceed in the same manner as in
(5.14). Note that vn(t)wN+1−n(t) is supported on B(1 + t+ ǫ) \B(1 + t)
and therefore has size

vn(r, t)wN+1−n(r, t) .
Lnǫ−nα

rN+1
‖w‖N+1−n

〈x〉−1L∞

t,x
.

In the same way as above we then obtain a bound of

‖(5.16)‖〈x〉−1L∞

t,x
. Lnǫ1−nα‖w‖N+1−n

〈x〉−1L∞

t,x
.



30 MARIUS BECEANU AND AVY SOFFER

For the last term corresponding to n = 0, we use a different method, namely
∥

∥

∥

(

∫ t

0

sin((t− s)
√
−∆)√

−∆
wN+1(s) ds

)

(x, t)
∥

∥

∥

L∞

t

.

∫

R3

1

|x− y|‖w(y, s)‖
N+1
L∞
s

dy.

Note that for n > 3, by subdividing the integration domain into |x−y| ≤ |x|
2

and |x− y| ≥ |x|
2 , we obtain

∣

∣

∣

1

|x| ∗
1

〈x〉n
∣

∣

∣
=

∫

R3

1

|x− y|
1

〈y〉n dy .
1

〈x〉 .

Consequently, for N + 1 > 3
∥

∥

∥

∫ t

0

sin((t− s)
√
−∆)√

−∆
wN+1(s) ds

∥

∥

∥

〈x〉−1L∞

t,x

. ‖w‖N+1
〈x〉−1L∞

t,x
.

We linearize equation (5.15) to

wtt −∆w ± (v + w̃)N+1 = 0, w(0) = 0, wt(0) = 0. (5.17)

Putting everything together, since this equation has null initial data, we
have obtained that

‖w‖〈x〉−1L∞

t,x
. LN+1ǫ1−(N+1)α + Lǫ1−α‖w̃‖N〈x〉−1L∞

t,x
+ ‖w̃‖N+1

〈x〉−1L∞

t,x
.

Assuming that ‖w̃‖〈x〉−1L∞

t,x
≤ ǫ0 << 1, we retrieve the same for w if we

assume that ǫ is small enough and that α < 1
N+1 .

Consider two pairs w1 and w̃1, respectively w2 and w̃2, which fulfill (5.17).
In the same manner as before we obtain that

‖w1 − w2‖〈x〉−1L∞

t,x
. ‖w̃1 − w̃2‖〈x〉−1L∞

t,x
(LN ǫ1−Nα + Lǫ1−α(‖w̃1‖N−1

〈x〉−1L∞

t,x
+

+ ‖w̃2‖N−1
〈x〉−1L∞

t,x
) + ‖w̃1‖N〈x〉−1L∞

t,x
+ ‖w̃2‖N〈x〉−1L∞

t,x
).

We obtain that the mapping w̃ 7→ w is a contraction on {w | ‖w‖〈x〉−1L∞

t,x
≤

ǫ0} if ǫ0 and ǫ are sufficiently small and if α < 1
N . Consequently it has a

fixed point w such that u = v + w is a solution to (1.1).
Since we want to obtain a dispersive solution, we shall also keep track

throughout the contraction scheme of the L∞
x L

1
t norm (in fact we can do

better and we shall bound the 〈x〉−1L∞
x L

1
t norm). This is sufficient in view

of the fact that

〈x〉−1L∞
t,x ∩ L∞

x L
1
t ⊂ L2N

t,x .

Note that

‖w‖L∞

x L1
t
. ‖(v + w̃)N+1‖

L
3/2,1
x L1

t
.

However, this estimate is insufficient in view of the fact that v is large.
Returning to our computation (5.14), we extract some better bounds. Note
that (5.13) is zero for t ≤ r − 2 and that for t ≥ r − 2

(5.13) . Lnǫ1−nαmin
( 1

r(1 + max(0, t−2−r
2 ))n−2

,
1

(1 + max(0, t−2−r
2 ))n−1

)
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the latter by using the mean value theorem. It follows that for n > 3

‖(5.13)‖〈x〉−1L∞

x L1
t
. Lnǫ1−nα.

We again set n = N+1 and use a similar method (considering their support)
to evaluate the terms (5.16) for 0 < n ≤ N + 1, resulting in

‖(5.16)‖〈x〉−1L∞
x L1

t
. Lnǫ1−nα‖w‖N+1−n

〈x〉−1L∞

t,x
.

For the remaining term of the form (5.16), in which n = 0, i.e. for
∫ t

0

sin((t− s)
√
−∆)√

−∆
wN+1(s) ds, (5.18)

we use the fact that for N + 1 > 3

‖(5.18)‖〈x〉−1L∞
x L1

t
. ‖w̃N+1‖〈x〉−N−1L∞

x L1
t
. ‖w̃‖N〈x〉−1L∞

t,x
‖w̃‖〈x〉−1L∞

x L1
t
.

In conclusion

‖w‖〈x〉−1L∞

x L1
t
. LN+1ǫ1−(N+1)α+Lǫ1−α‖w̃‖N〈x〉−1L∞

t,x
+‖w̃‖N〈x〉−1L∞

t,x
‖w̃‖〈x〉−1L∞

x L1
t
.

Thus the mapping w 7→ w̃ takes the set {w | ‖w‖〈x〉−1L∞
x L1

t
≤ R, ‖w‖〈x〉−1L∞

t,x
≤

ǫ0} into itself for sufficiently large R and sufficiently small ǫ and ǫ0.
Similarly we obtain that for two pairs w1 and w̃1, respectively w2 and w̃2,

that satisfy (5.17),

‖w1 − w2‖〈x〉−1L∞

x L1
t
. ‖w̃1 − w̃2‖〈x〉−1L∞

t,x
(LNǫ1−Nα + Lǫ1−α(‖w̃1‖N−1

〈x〉−1L∞

t,x
+

+ ‖w̃2‖N−1
〈x〉−1L∞

t,x
)) + ‖w̃1 − w̃2‖〈x〉−1L∞

x L1
t
(‖w̃1‖N〈x〉−1L∞

t,x
+ ‖w̃2‖N〈x〉−1L∞

t,x
).

It follows that the sequence w0 = 0,

wn+1 = ∓
∫ t

0

sin((t− s)
√
−∆)√

−∆
(v(s) + wn(s))

N+1 ds

converges in 〈x〉−1L∞
x L

1
t for sufficiently small ǫ and ǫ0 (in addition to 〈x〉−1L∞

t,x,
which we already knew).

In particular we can take α = 1
pc

= 2
3N < 1

N+1 so that ‖u0‖Lpc ∼ L is

arbitrarily large.
The linear evolution v of the initial data dominates all other terms, hence

when estimating the norm of the solution it is enough to consider v, which
is of size Lǫ−α in L∞

t , see (5.12).
�

Remark 5.3. The proof works more generally whenever (u0, u1) are radial

and outgoing, supported on B(0, 1 + ǫ) \B(0, 1) and

ǫ1/(N+1)‖u0‖L∞ << 1.

This means that the LN+1 norm of u0 must be small (though it does not
vanish), but the Lp(B(1, 2)) norms for p > N + 1 (in particular the Lpc

norm) become arbitrarily high as ǫ→ 0 for p > N + 1.
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Remark 5.4. A more interesting case should be taking large initial data sup-
ported on the union of two thin neighboring spherical shells, with opposite
signs. This should lead to improved estimates due to cancellations.

Appendix A. Using Choquet spaces in the study of the wave

equation

In this section we undertake a more detailed study of equation (1.1)

utt −∆u± |u|Nu = 0, u(0) = u0, ut(0) = u1

with spread-out initial data of the form (1.8)

u0 =

J
∑

j=1

φ(x− yj), u1 =

J
∑

j=1

ψ(x− yj), |yj1 − yj2 | >> 1 ∀j1 6= j2

by means of the Choquet integral.
The Choquet integral, introduced by Choquet in [Cho], is defined similarly

to the Lebesgue integral, but is more general, in that it applies to outer
measures (also to capacities). In some cases of interest, these outer measures
do not give rise to a nontrivial σ-algebra of measurable sets, but we can still
use the Choquet integral to integrate with respect to them.

Definition A.1 (See [Cho] and [Ada]). An outer measure µ on a σ-algebra
A ⊂ P(A) is a function µ : A → [0,+∞] such that:
1) µ(∅) = 0;
2) Monotonicity: if A1 ⊂ A2 ⊂ A, then µ(A1) ≤ µ(A2);
3) Subadditivity: for a countable family of sets (An)n ⊂ A,

µ

(

⋃

n

An

)

≤
∑

n

µ(An).

Then the Choquet integral of a nonnegative function f : A → R, f ≥ 0,
with respect to the outer measure µ is defined as

∫

A
f(x)dµ :=

∫ ∞

0
µ({x ∈ A : f(x) ≥ t}) dt.

The Choquet integral is in general not linear or even subadditive. Note,
however, that if supp f ∩ supp g = ∅ then

∫

f + g dµ ≤
∫

f dµ+

∫

g dµ.

It also has the following useful properties:
1)

∫

αfdµ = α
∫

fdµ;
2)

∫

fdµ = 0 ≡ f = 0 µ-a.e.;
3) If f ≤ g, then

∫

f dµ ≤
∫

g dµ.
Also, it is trivial to prove, using

{x : f(x) + g(x) ≥ 2k} ⊂ {x : f(x) ≥ 2k−1} ∪ {x : g(x) ≥ 2k−1},
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that
∫

f + g dµ ≤ 2

∫

f dµ+ 2

∫

g dµ.

A similar analysis shows that, since

{x :
∑

k≥1

fk(x) ≥ 2ℓ} ⊂
⋃

k≥1

{x : fk ≥ 2ℓ−k},

therefore

Lemma A.2.
∫

(

∑

k

fk

)

dµ ≤ 2

∫

f1 dµ+ 4

∫

f2 dµ+ . . . ,

meaning that any geometric series with ratio less than 1/2 converges.
Also note that

∫

f1 + . . .+ fN dµ ≤ N

(
∫

f1 dµ+ . . .+

∫

fN dµ

)

.

Since the right hand side constant grows with the number of terms, in general
it may be difficult to sum an infinite series.

Definition A.3. For 1 ≤ p < ∞, let the Choquet space Lp(µ) be the space
of functions such that

‖f‖pLp(µ) :=

∫

A
|f(x)|p dµ <∞,

with L∞(µ) also defined using the essential supremum with respect to µ.

In general ‖f‖Lp(µ) is only a quasinorm, not a norm (except for p = ∞). A
quick computation, based on Newton’s binomial formula, shows that, when
p ≥ 1 is an integer,

‖f + g‖Lp(µ) ≤ (p+ 1)1/p(‖f‖Lp(µ) + ‖g‖Lp(µ)).

Thus, a geometric series with ratio less than (p+ 1)−1/p converges in Lp(µ)
when p ≥ 1 is an integer (and less than ⌊p+ 1⌋−1/⌊p⌋ in general).

A quasinorm (raised to a suitable power) induces a metric structure, see
[BeLö], so Lp(µ) are also metric spaces. Consider any Cauchy sequence in
Lp(µ); one can extract a subsequence such that the difference of successive
terms has a small ratio, so it converges. Hence Lp(µ) is a complete metric
space, for 1 ≤ p ≤ ∞.

In some cases there exist equivalent norms, so the spaces are normable
(Banach spaces). However, although we shall point out when equivalent
norms exist, quasinorms are also adequate for our purpose, see below.

We want a norm that accounts for the fact that initial data of the type
(1.8) are locally small and spread out, converts this sparseness into smallness,
and within which we can close the loop in a fixed point argument for equation
(1.1).



34 MARIUS BECEANU AND AVY SOFFER

By necessity, such a norm cannot be invariant under symmetric rearrange-
ment, since symmetric rearrangement makes the initial data (1.8) large.

We start with the Kato-type norm, introduced in [RoSc] and [GoSc],

‖f‖Kα := sup
y∈R3

‖|x− y|−αf(x)‖L1
x
,

where α ∈ [0, 3). More generally, for 1 ≤ p < ∞, 1 ≤ q ≤ ∞, let Kα,p :=
Kα,p,p, where

‖f‖Kα,p,q := sup
y∈R3

‖|x− y|−αf(x)‖Lp,q
x
.

Since Lp,q are normed spaces for 1 < p < ∞, 1 ≤ q ≤ ∞, it follows that
Kα,p,q are also normed spaces in the same range (together with Kα and
K0,∞).

Restricted to characteristic functions of Lebesgue measurable sets (or even
Borel sets), the Kα norm gives an outer measure

µα(A) := ‖χA(x)‖Kα .

It is easy to check that there are no nontrivial measurable sets for this outer
measure (except for α = 0, when µ0 is the usual Lebesgue outer measure),
so we need to use the Choquet integral.

The outer measures µα constitute a different class from previously studied
examples in the context of the Choquet integral, such as [Cho], [Ada] (in
the context of capacity theory), or [DoTh] (tent spaces).

We next establish the properties of the quasinormed Choquet spaces
Lp(µα), 1 ≤ p < ∞, to which we add L∞(µα) := L∞. Real interpola-
tion (see [BeLö], Chapter 3) works for these spaces in the same manner as
for Lebesgue spaces, namely

(L∞, L1(µα))(θ,q) = L1/θ,q(µα).

We obtain a larger family of quasinormed Lorentz–Choquet spaces Lp,q(µα),
1 ≤ p ≤ ∞, 1 ≤ q ≤ ∞.

The K functional (see [BeLö], p. 38) has the same form as for the usual
Lorentz spaces, namely

Lemma A.4.

K(f, t, L1(µα), L
∞) =

∫ t

0
f∗α(s) ds,

where f∗α is the decreasing rearrangement of f , but with respect to µα:

f∗α(s) = inf{u ≥ 0 : µα({x : |f(x)| ≥ u}) < s}.
Thus the Lp,q(µα) quasinorms also have the usual definition:

Definition A.5. For 1 ≤ p <∞, 1 ≤ q ≤ ∞,

‖f‖Lp,q(µα) =















(
∫ ∞

0
(t

1
p f∗α(t))

q dt/t

)
1
q

q ∈ (0,∞),

sup
t>0

t
1
p f∗α(t) q = ∞.
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Therefore the spaces Lp,q(µα) have some of the usual properties of Lorentz
spaces, such as Lp,p(µα) = Lp(µα) and L

p,q1(µα) ⊂ Lp,q2(µα) for q1 ≤ q2. As
usual, the spaces L∞,q(µα), q < ∞, behave differently and we won’t study
them.

We next define an Lp(µα) atom.

Definition A.6. For 1 ≤ p < ∞, we say that a is an Lp(µα) atom if a
is essentially bounded, has a support of finite µα outer measure, and is
Lp(µα)-normalized, i.e.

‖a‖pL∞ · µα(supp a) = 1.

It is useful to extend the following simple atomic characterization, de-
veloped in [Bec] for the usual Lorentz spaces, to these Lorentz–Choquet
spaces:

Proposition A.7. Fix 1 ≤ p < ∞, 1 ≤ q ≤ ∞. Then f ∈ Lp,q(µα) if and
only if it admits an atomic decomposition

f =
∑

k∈Z
ckak,

where ck ∈ R, each atom ak has size ‖ak‖L∞ ∼ 2k, their supports are pair-
wise disjoint, and then ‖f‖qLp,q(µα)

∼ ∑

k |ck|q (or ‖f‖Lp,∞(µα) ∼ supk |ck|
when q = ∞).

For each x ∈ R
3 at most one term is nonzero. The sum above is in-

terpreted in this pointwise finite sense, but clearly it also converges in the
Lp,q(µα) norm (if there is one) unless q = ∞. For the converse, it is not
necessary that the supports of the atoms αk should be pairwise disjoint.
The proof is identical to the one in [Bec].

We next establish the relation between the quasinorm of Lp,q(µα) and the
norm of Kα,p,q. There is a clear relation for functions localized in height:

Lemma A.8. Let 1 ≤ p < ∞, 1 ≤ q1, q2 ≤ ∞ and f ∈ Lp,q1(µα) be such
that M ≤ |f | ≤ 2M almost everywhere. Then

‖f‖Lp,q1 (µα) ∼ ‖f‖Kα/p,p,q2
∼Mµα(supp f)

1/p,

with bounds independent of M > 0.

Obviously L1(µα) ⊂ Kα and at the other endpoint L∞ = K0,∞. Straight
from the definition, we then have that for 1 ≤ p ≤ ∞

Lp(µα) ⊂ Kα/p,p.

Using the atomic decomposition above, we more generally obtain that

Lemma A.9. The quasinorm of Lp,q(µα) can be expressed as

‖f‖Lp,q(µα) ∼
(

∑

k∈Z
‖χ|f(x)|∈[2k−1,2k)(x)f(x)‖qKα/p,p

)1/q
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for q <∞ and

‖f‖Lp,∞(µα) ∼ sup
k∈Z

‖χ|f(x)|∈[2k−1,2k)(x)f(x)‖Kα/p,p

for q = ∞. Consequently, for 1 ≤ p, q ≤ ∞,

Lp,q(µα) ⊂ Kα/p,p,q ⊂ Lp,∞(µα). (A.1)

Proof. The equivalence of the quasinorms follows from Lemmas A.7 and A.8.
The first inclusion is obvious. For the second one, let f ∈ Kα/p,p,q and

ak = χ|f(x)|∈[2k−1,2k)(x)f(x).

Then, by Lemma A.8, ‖ak‖Lp(µα) ∼ ‖ak‖Kα/p,p,q
≤ ‖f‖Kα/p,p,q

. We conclude
that

‖f‖Lp,∞(µα) ∼ sup
k

‖ak‖Kα/p,p
≤ ‖f‖Kα/p,p,q

.

�

Remark A.10. 1. In particular, (A.1) means that Kα/p,p,∞ = Lp,∞(µα),
with equivalent quasinorms. Therefore Lp,∞(µα) is normable (and a Banach
space) for 1 < p ≤ ∞.

This makes Lp,∞(µα) convenient to work with, but we shall also need
other values of q, in particular Lp,1(µα).

For any 1 < p < ∞, take 1 < p1 < p < p2 < ∞; then by interpolating
again (see the reiteration theorems in [BeLö], Theorem 3.5.3, p. 50 and
Theorem 3.11.5, p. 67, as well as the discussion on p. 63) we get

(Lp1,∞(µα), L
p2,∞(µα))θ,q = Lp,q(µα),

where p = (1 − θ)p1 + θp2, θ ∈ (0, 1). Interpolating between two Banach
spaces we are bound to obtain another Banach space, not a quasinormed
space. Thus, all spaces Lp,q(µα), 1 < p <∞, 1 ≤ q ≤ ∞ are Banach spaces,
i.e. they possess norms equivalent to the original quasinorms. The norms are
obtained by interpolation and are not explicit at this point, but one could
extract an explicit formula, see [BeLö].

2. The spaces Lp,q(µα) and Kα/p,p,q are invariant under translation and

rescaling and have the same scaling as L3p/(3−α), namely

‖f(cx)‖Lp,q
x (µα) = c(α−3)/p‖f‖Lp,q(µα).

3. One of the more useful properties of these Lorentz–Choquet spaces,
which follows trivially from the definition, is that (Lp,q(µα))

r = Lp/r,q/r(µα).
More generally, the usual Hölder’s inequality holds for fixed α (and it has a
generalization for varying α).

4. We now have several ways of approaching the convergence of Cauchy
sequences. For example, (A.1) means that a Cauchy sequence in Lp,q(µα)
converges in Kα/p,p,q and in Lp,∞(µα), which are both Banach spaces for
p > 1. Furthermore, also for 1 < p < ∞, Lp,q(µα) is a Banach space, so
a Cauchy sequence converges. Finally, L1(µα) is not a Banach space, but
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it is a quasinormed space, so Cauchy sequences converge by the argument
mentioned above.

The sums of successive iterates,
∑n

k=1 T
ku0, produced by a contraction

mapping T on Lp,q(µα), are not guaranteed to form a Cauchy series in the
same space, but will converge due to (A.1) in Kα/p,p,q and Lp,∞(µα), which
are Banach spaces. If the contraction ratio is sufficiently small, then this
will be a Cauchy series and will converge in the original quasinorm.

Next, we establish a form of Young’s inequality for these Lorentz–Choquet
spaces. We first prove a weak-type inequality in some extreme cases, then
we upgrade the result by interpolation.

Lemma A.11 (Young’s inequality). Let f ∈ Lp,q(µα), 1 < p <∞, 1 ≤ q ≤
∞ or (p, q) ∈ {(1, 1), (∞,∞)}, and g ∈ L1. Then f ∗ g ∈ Kα/p,p,q and

‖f ∗ g‖Lp,∞(µα) ≤ ‖f ∗ g‖Kα/p,p,q
≤ ‖f‖Lp,q(µα)‖g‖L1 . (A.2)

Moreover,
‖f ∗ g‖Lp,q(µα) . ‖f‖Lp,q(µα)‖g‖L1 (A.3)

for 1 < p <∞, 1 ≤ q ≤ ∞. If 1 ≤ p, q ≤ ∞, then

‖f ∗ g‖L∞ ≤ ‖f‖Lp,q(µα)‖g‖|y|−α/pLp′,q′
y

. (A.4)

Finally, for 1/p = 1/p1 + 1/p2 − 1, 1 < p, p1 ≤ ∞, 1 ≤ p2 ≤ ∞,

‖f ∗ g‖Lp,∞ ≤ ‖f‖Lp1,∞(µα)‖g‖|y|−α(1−1/p2)L
p2,1
y

. (A.5)

This is probably not a complete list of cases in which Young’s inequality
is valid, but it suffices for our purposes.

Proof. The first inequality in (A.2) comes from (A.1). Concerning the second
inequality, for fixed x0 ∈ R

3

∥

∥

∥

∥

|x− x0|−α/p

∫

R3

f(x− y)g(y) dy

∥

∥

∥

∥

Lp,q
x

≤
∫

R3

sup
y∈R3

‖|x− x0|−α/pf(x− y)‖Lp,q
x
|g(y)| dy

= ‖f‖Kα/p,p,q
‖g‖L1 ≤ ‖f‖Lp,q(µα)‖g‖L1 .

(A.6)
Here we used Minkowski’s inequality. Since (A.6) holds uniformly for x0 ∈
R
3, we have proved the second inequality in (A.2).
By real interpolation, we can strengthen this to (A.3)

‖f ∗ g‖Lp,q(µα) . ‖f‖Lp,q(µα)‖g‖L1

for 1 < p < ∞, 1 ≤ q ≤ ∞ (i.e. everything except the endpoints), at the
price of a constant.

When q = ∞ and 1 < p < ∞ (A.3) follows directly from Minkowski’s
inequality, since Lp,∞(µα) are Banach spaces with norms invariant under
translation.

The proof of (A.4) is based on duality:

‖f ∗ g‖L∞ ≤ ‖f‖Kα/p,p,q
‖g‖|y|−α/pLp′,q′

y
≤ ‖f‖Lp,q(µα)‖g‖|y|−α/pLp′,q′

y
.
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Finally, (A.5) is proved by complex interpolation, which we can use here
because all the spaces are Banach spaces. �

We next use Young’s inequality to obtain fractional integration bounds.

Proposition A.12 (Fractional integration).

‖f ∗ |x|−β‖Lr,q(µα) . ‖f‖Lp,q(µα),

where 0 ≤ α < 3, 1 < p < r < ∞, 1 ≤ q ≤ ∞, and (1 − α/3)/r =
(1− α/3)/p + β/3− 1.

Proof. One endpoint we use for interpolation is (A.3):

‖f ∗ g‖Lp,q(µα) . ‖f‖Lp,q(µα)‖g‖L1

The other endpoint is (A.4):

‖f ∗ g‖L∞ ≤ ‖f‖Kα/p,p,q
‖g‖|y|−α/pLp′,q′

y
≤ ‖f‖Lp,q(µα)‖g‖|y|−α/pLp′,q′

y
.

Since we are dealing with quasinorms, we can only use real interpolation,
but the real interpolates of L1 and |y|−α/pLp′,q′ are in general badly behaved
spaces (because we are changing both the exponent and the measure). How-
ever, at this point we are no longer interested in optimal conditions for g,
since we only need to perform fractional integration.

Define the following L∞- and dyadic partition-based family of spaces:

2−skℓpk(L
∞
y ) := {g : 2sk‖χ|y|∈[2k−1,2k)(y)g(y)‖L∞

y
∈ ℓpk}.

By rescaling, we identify the set of bounded functions on any dyadic annulus,
L∞(|y| ∈ [2k−1, 2k)), with A := L∞(|y| ∈ [1/2, 1)). In other words, the
mapping

T : 2−skℓpkA→ 2−skℓpk(L
∞
y ), T ((ak)k) :=

∑

k

ak(x/2
k)

is an isomorphism, where

2−skℓpkA := {(ak)k : 2sk‖ak‖A ∈ ℓpk}.
This second formulation is more suitable for interpolation.

Note that
2−3kℓ1k(L

∞
y ) ⊂ L1

y

and
2−(α/p+3/p′)kℓ∞k (L∞

y ) ⊂ |y|−α/pLp′,∞
y .

Using these more restrictive spaces, we rewrite (A.3) and (A.4) as

‖f ∗ g‖Lp,1(µα) . ‖f‖Lp,1(µα)‖g‖2−3kℓ1k(L
∞
y )

and
‖f ∗ g‖L∞ . ‖f‖Lp,1(µα)‖g‖2−(α/p+3/p′)kℓ∞k (L∞

y ).

Thus, we can apply Theorem 5.6.1 from [BeLö] and obtain that

‖f ∗ g‖Lr,∞(µα) ≤ ‖f‖Lp,1(µα)‖g‖2−βkℓ∞k (L∞
y ),
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where the relation between r, p, and β is dictated by scaling. In other words,
we have proved that fractional integration takes Lp,1(µα) to Lr,∞(µα). By
using real interpolation again, for f this time, we obtain the Lp,q(µα) 7→
Lr,q(µα) boundedness everywhere except at the endpoints. �

The optimal condition on g involves an Lp′,q′-based dyadic decomposi-
tion, instead of an L∞-based one. However, we do not need such a sharp
statement.

Now we have the tools needed for a contraction-based solution to our
problem. The point is that we can use a contraction argument and bootstrap
in the Lp,∞

x (µα)L
∞
t norm below, for sufficiently small/sparse initial data.

Proposition A.13 (Small data global well-posedness). Assume that N > 4
and take N + 1 < p < 3N/2, α = 3 − 2p/N . Then initial data of the form

(1.8), for sufficiently small (φ,ψ) ∈ Ḃsc
2,∞ × Ḃsc−1

2,∞ and sufficiently large

|yj1 − yj2 |, lead to a small global solution of (1.1) in Lp,∞
x (µα)L

∞
t .

The range of N in this statement is not optimal. Note that p > N + 1
is equivalent to α < 1 − 2/N , so α > 0 only requires N > 2. However, the
necessary Strichartz-type inequalities were only proved in [BeGo] for the
range N ≥ 4 (and here we interpolated again to get Besov spaces, which
excludes the endpoint N = 4).

Proof. The linear evolution of the initial data (1.8) is small in the Lp,∞(µα)L
∞
t

norm, where α = 3 − 2p/N is dictated by scaling. Indeed, for α > 0 and
sufficiently far apart centers,

‖Φ0(u0, u1)‖Lp,∞
x (µα)L∞

t
. ‖Φ0(φ,ψ)‖Lp,∞

x (µα)L∞

t
+ ǫ.

But the linear evolution of each bump is small in L
3N/2,∞
x L∞

t ⊂ Lp,∞
x (µα)L

∞
t .

Here L3N/2,∞ ⊂ Kα/p,p,∞ = Lp,∞(µα) by Hölder’s inequality and (A.1).
Clearly, the t coordinate no longer matters. All we need to prove is that

the mapping

u 7→ uN+1 ∗ |x|−1

is a contraction (with sufficiently small ratio) on some small neighborhood
of zero in Lp,∞(µα).

Indeed, assume u is small in this norm. Raising it to the N +1-th power,
we get something even smaller in Lp/(N+1),∞(µα). Then by Young’s inequal-
ity

‖f ∗ |x|−β‖Lp,∞(µα) . ‖f‖Lp/(N+1),∞(µα)

where β is required by Proposition A.12 to be

(1− α/3)/p = (1− α/3)(N + 1)/p + β/3− 1.

But (1 − α/3)N/p = 2/3, so we get β = 1, which is the value that enables
us to close the loop in this quasinorm. �
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To interpret Proposition A.13, take (ǫφ, ǫψ) small bump functions, i.e.
smooth and compactly supported. We can allow for infinitely many such
bumps in the initial data, centered at (yj)j∈N, as long as for some α ∈
(0, N−2

N )

sup
j1

∑

j2 6=j1

〈yj2 − yj1〉−α << 1.

This is because a bump supported far away from others contributes |y|−α

to the quasinorm. Thus

‖Φ0(u0, u1)‖Lp
x(µα)L∞

t
. ǫ1/p(1 + sup

j1

∑

j2 6=j1

〈yj2 − yj1〉−α)1/p,

uniformly for p ∈ [1,∞].
In other words, fix (φ,ψ), take α ∈ (0, N−2

N ), and ǫ ≤ ǫ0(α) (depending
on the fractional integration bound, which gets worse as p → N + 1 and
α→ N−2

N ). Consider a sequence (yj)j such that

sup
j1

∑

j2 6=j1

|yj2 − yj1 |−α <∞.

One can take for example yj = j1/α0~e for some fixed vector ~e ∈ R
3 and fixed

α0 < α < N−2
N . Then, for sufficiently large R ≥ R0 >> 1, the initial data

(u0, u1) with bumps centered at Ryj

u0 = ǫ
∑

j

φ(x−Ryj), u1 = ǫ
∑

j

ψ(x−Ryj)

yield a small global solution in Lp,∞
x (µα)L

∞
t .

These bumps are asymptotically spaced no closer than j
N

N−2 = j
1

sc−1/2 .
In the radially symmetric setting one may perhaps do better: in [LOY],
sc = 3/2 and the initial data can be taken as a sum of spherical shells
of uniform width and height, spaced like j1+ǫ. However, the result is not
directly comparable, since initial data are specified on a light cone.

All solutions constructed in this manner are required to have at least one
small Lp,∞

x (µα)L
∞
t norm, where N+1 < p < 3N/2, α = 3−2p/N . However,

the other norms in this family need not be small and can even be infinite
(e.g. for α ≥ α0).

By contrast, the large solutions constructed in Theorem 1.6 are uniformly
large in all these norms.
Future research directions. In this paper we only used the Choquet
and Lorentz–Choquet spaces to provide a response to the referee’s remarks.
Interesting questions that remain open are:
1. What kind of initial data lead to solutions to wave and Schrödinger
equations in these spaces?
2. Do small Lp,∞

x (µα)L
∞
t solutions preserve regularity? I.e., assuming more

regularity (but no extra smallness) for the initial data, can one show that
u ∈ L2N

t,x ?
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3. Can these norms and quasinorms be used in the study of multisoliton
solutions?
4. When are these Lorentz-Choquet spaces Banach spaces (i.e. when is there
a norm equivalent to the quasinorm)?
5. For what exponents does Young’s inequality hold?
6. How do Morawetz and Strichartz inequalities look like in these norms?
These and other questions will be addressed in subsequent papers.
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