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LARGE OUTGOING SOLUTIONS TO SUPERCRITICAL
WAVE EQUATIONS

MARIUS BECEANU AND AVY SOFFER

ABSTRACT. We prove the existence of global solutions to the energy-
supercritical wave equation in R3+!
upe — Au =+ [ulNu =0, u(0) = uo, u(0) =wu1,4 < N < o0,

for a large class of radially symmetric finite-energy initial data.
Functions in this class are characterized as being outgoing under the
linear flow — for a specific meaning of “outgoing” defined below.

In particular, we construct global solutions for initial data with large
(even infinite) critical Sobolev, Besov, Lebesgue, and Lorentz norms
and several other large critical norms.
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1. INTRODUCTION

1.1. Statement of the main results. Consider the semilinear wave equa-
tion in R3*!

ug — Au = |ulNu =0, w(0) = ug, us(0) = uy. (1.1)

The equation is called focusing or defocusing according to whether the sign
of the nonlinearity is — or +.
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2 MARIUS BECEANU AND AVY SOFFER

For a € (0,00), this equation is invariant under the scaling symmetries
u(z, t) = o2 Nu(ax, at),

as well as under the Lorentz group of transformations. Restricted to the
initial data, the rescaling is

(uo(z), ur (z)) — (a*Nug(ax), a2 Ny (ax)). (1.2)

For s. = 3/2 — 2/N, the H* x H*~! Sobolev norm is invariant under
the rescaling (L2]), making it the critical Sobolev norm for the equation.
Equation (II)) is locally well-posed in the H* x H*~! norm. Note that the
corresponding (critical) Lebesgue norm is ug € LPe with p. = 3N/2.

All non-critical norms of the solution can be made arbitrarily large or
small by rescaling, but critical norms remain constant after rescaling.

An important conserved quantity for equation (I.I) is energy, defined as

= 1 2, 1 2 1 N+42
Buji= [ S+ I 0 £ glate 0 e
In case the equation is defocusing, energy controls the H' x L2 norm of the
solution, also called the energy norm.

Equation (LT is energy-supercritical (or, in brief, supercritical) if N > 4.
The difficulty of the initial-value problem in this case lies in the fact that
solutions cannot be controlled in the energy norm (as s. > 1) and no higher-
level conserved quantities can be used either.

By the standard local existence theory, based on Strichartz estimates, any
initial data in the critical Sobolev space H® x H®~1 produce a solution,
locally in time. If the initial data are sufficiently small in the critical Sobolev
norm, then the corresponding solution exists globally in time and disperses,

meaning that, for example, it has finite L%ZX Strichartz norm (the endpoints

are LtOOL‘zN/ 2, which is not dispersive, and Liv / 2L§°, which is achieved for

N > 4 or N = 4 and radially symmetric solutions). In general, solutions
with finite L%]:X norm preserve regularity (if (ug,u;) € H® x H*~! for some
s > 1, the solution remains in this space for its whole interval of existence),
are stable under small perturbations, and can be continued for as long as
the L?ﬁ norm remains finite.

In this paper we heavily use the reversed Strichartz inequalities intro-
duced in [BeGo|, Lorentz and Besov spaces, and real and complex inter-
polation techniques. A good reference for the latter is [BeL6]. The main
new technique is a decomposition of solutions to the free wave equation into
outgoing and incoming components by means of orthogonal projections; see
below.

We only consider the case of radially symmetric, i.e. rotation-invariant,
solutions (but see the Appendix for a very different result). We also assume
all solutions are real-valued.

We define radial outgoing functions as follows:
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Definition 1.1. A pair (ugp,u1) of radially symmetric functions or distribu-

tions is called outgoing if u; = —(ug), — 42.

Since —0, —1/r and (=0, —1/r)* are bounded from H* to H*~!, 1 < s <
3/2, it follows that —d, —1/r € B(H®, H*~") for —1/2 < s < 3/2. Thus, the
above definition makes sense for (ug,u1) € H® x H*! for —1/2 < s < 3/2
(but not only). Also, up completely determines u;. See Section [ and
Definition [B.6] for more details.

For simplicity we suppose that N is an integer in (LI]). This makes little
actual difference in the proof.

Our first result is an existence result for the class of initial data

((Hl N L%) % L¥)out + H x H* ™! = {(uo, u1) = (vo,v1) + (wo, wr) |
(v0,v1) € (H' N L) x L)out, (wo,wr) € H* x H*7'},

where ((H' N L) x L?)yy; means radial and outgoing following Definition
[LIl For data in this class the outgoing component is in a weaker space than
H#e x H* =1 but the incoming component must still be in H% x %~

Theorem 1.2. Assume that N € (4,12], the initial data (ug,ur) = (v, v1)+
(wo, wy) decompose into a radial and outgoing component (vg,v1) and a sec-
ond radial component (wg,w1) € H® x H%~' such that

4/N 1-4/N

lvoll 0 lvoll oo™ + 1(wos wi)ll groe o grse—1 <<'1

is sufficiently small. Then the corresponding solution u to (L) exists glob-
ally, forward in time, remains small in ((HL N L) x L2) gy + HEe x HSe™1)
and disperses:

4/N| 1-4/N

ull pv72 o S ool g llvoll e ™ + [[(wo, wi)ll groc sgrse—1- - (1.3)

In addition u scatters: there exist (woi,w1y) € H® x H*1 such that
T [[(u(®) ur (1)) = D(8)(00,01) — D) (g w1 e ees =0 (14)

Here ®(t) is the flow induced by the linear wave equation.

If (vo,v1) € ((H' N L®) x L?)gw and (wo,wy) € H x H*' are not
small, then there exist an interval I = [0,T] with T > 0 and a solution u to
(1) defined on R3 x I, with (ug,uy) as initial data, such that (u(t),us(t)) €
(HE N L) X L) gus + HZe x H3"" fort € I and

HUHLév/QLgO(RSXI) < 0.

The case N = 4 corresponds to s, = 1 and N = 12 corresponds to s, = 4/3.
The conclusion is still true, but trivial, when N = 4.

These initial data are small in the critical LP¢ norm. However, equation
(L) is not well-posed in LP¢. On the other hand, these are arbitrarily large
initial data, as measured in the critical Sobolev norm, which is the natural
norm for this equation.
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Dropping the scaling invariance, we can obtain a local existence result for
large ((H' N L>®) x L?),y; initial data in the subcritical sense (i.e. where
the time of existence only depends on the size of the initial data). We can
also obtain a global existence result for small initial data, such that the
solution remains bounded in ((H' N L) x L%y + H>* N H' x H' N L? for
all times, i.e. the incoming component of the solution gains a full derivative.
See Proposition for both results.

As a consequence of Theorem [[L2] outgoing and radial finite energy initial
data of any size lead to a global solution forward in time if they are supported
sufficiently far away from the origin.

Corollary 1.3. Assume that N € (4,12], the initial data (ug,u1) are radial,
outgoing according to Definition [I1, supported outside the sphere B(0, R),
and

[uol| %, RYNT! << 1 (1.5)

is sufficiently small. Then the corresponding solution u to (I1l) exists glob-
ally, forward in time, and disperses: |lull n/2, o S lluoll g RYN-1/2,
t T

Again, one can add a small H5 x H% ! perturbation to the initial data,
either outgoing or incoming, without changing the result. In addition, note
that the conclusion is still true, but trivial, when N = 4.

Remark 1.4. In the defocusing case all solutions can be conjectured to be
dispersive, as suggested by the Morawetz estimate

| u|N +2
/ dx dt < Elul.
R3xI |Z]

Here I is the maximal interval of existence of the solution u. Then condition
(LH) can be conjectured to always be satisfied (up to a small error) if we
wait for long enough. Indeed, the H' x L? energy norm remains bounded
by the energy E[u], so the left-hand side of (5] should improve with time:
the solution should become more outgoing and further removed from the
origin. Since 4/N —1 <0, R¥N=1 - 0as R — oc.

Thus, our results could be part of the the process of showing global in
time existence and scattering for any large radial solution to (ILT), after the
solution is first shown to disperse for a sufficiently long, but finite time.

The next result shows that it is not necessary to assume that the initial
data have finite energy — bounded and of compact support will suffice.

Theorem 1.5. Assume that N € [4,00) and (up,u1) are radial initial data,
outgoing according to Definition[1.1], such that ug is bounded and supported
on B(0,R). Then, as long as

ol RN << 1
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is sufficiently small, the corresponding solution u to (1)) exists globally,
forward in time, and disperses:

v S lluoll = RPN

Hu”LiN”LgongoLt

The initial data are only in L2 x H~! (for which the notion of being outgo-
ing is still well-defined, however), but these solutions have finite homogenous
L?ﬁ norm, meaning that they preserve higher regularity.

Note that these initial data must still be small in the critical LP¢ norm,
but can be arbitrarily large in the critical Sobolev norm.

Again, it is possible to add a small H5 x H5 ™1 perturbation, either
incoming or outgoing, to the initial data.

As a complement to Theorem [[L5 by Proposition (.11 solutions to (L)
exist locally for large radial outgoing initial data (ug,u;) with ug € L.

1.2. Large solutions. In the previous section we constructed global so-
lutions for outgoing initial data ug of large (possibly infinite) critical Hse
norm. However, these solutions are still small in a certain sense, because
[[uollzre and [Juf| 2v are small.

In an interestiné remark, the referee raised the question of exactly what we
mean by a “large” solution. In this section we set out to answer this question
by constructing a solution that is large according to almost every reasonable
standard, while also examining, then discarding several alternative methods.

A more obvious way of constructing large solutions is as follows: start
with initial data (ug, u1) of large, but finite H* x H*~! norm and let them
evolve under the linear flow, until the remaining Strichartz norm of their
future evolution becomes small:

[P0 (t) (w0, ur)] Lo (s x (7,00)) << 1. (1.6)

Then (g, 1) := ®(T)(ug, ;) is still large in H* x H*~! and they give rise
to small global solutions to (1) forward in time, but ||ag| Lee << 1.

This is a particular case of our construction in Theorem [[.21and Corollary
[[.3] because after a long time any linear solution becomes almost completely
outgoing and supported far from the origin. Our construction is more gen-
eral, since we only assume the initial data are outgoing, not that they are
supported far away.

Another way of constructing large solutions is by superposing many small
profiles, widely separated in either space or scale (so that the nonlinear
interaction between them is minimized). However, as we shall see below,
any solution constructed in this manner is still necessarily “locally” small,
because each bump is small and they are widely separated. Thus, we just
need an appropriate norm to take advantage of this smallness.

In the radial setting, as suggested by the anonymous referee, one can
construct a large solution as follows: take small radial initial data (¢, ),
either in the H® norm or as in Theorem [, so that the corresponding
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solution u to (L)) is global and scattering. For
0 <A << A9 << << Ay,
take

J
up = Z)\ N/, ur =3 AT TNy /N). (1.7)
Jj=1 Jj=1
Note that these initial data are large in the LPc norm. Indeed, if the scales
A; are sufficiently separated, then ||uo|’; Lo ~ J o155 . However, the initial
data (ug,u) are still small in Bje_ x Bsc ! (where also B o C LPe),
Thus, for s, > 1, we 1mmed1ately get from [BeGo] that

ull panrzoo oo S lluoll gge |+ Ilunll gy <<

(this follows by real interpolation, see [BeLd|). The equation (1) is well-
posed (in particular, higher regularity is preserved) in this case, by the same
proof as Theorem [LL5] so (L7)) are still small data in some very precise sense.
Discarding radial symmetry, one can also construct a global solution with
large initial data given by many small bumps far apart from one another:

J

UO—Z¢$_% ur = (@ —yy), 1 — Ujp| >> 1 Vi1 # ja. (1.8)
7j=1

j=1

Clearly, such data are not small in any scaling- and symmetric rearrangement-
invariant norm. However, this just means that we need a different type of
norm to see their smallness. We construct one in the Appendix, by means of
the Choquet integral (see [Cho] and [Ada]) corresponding to an outer norm
defined in terms of the global Kato norm (see [GoSc]).

More precisely, we show that one can globally solve equation (LI by
means of a contraction argument in L} (uus)LL,, see Theorem [A-T3l The
linear evolution and the solution spanned by initial data (L8] are always
small in this space.

This more general scaling-invariant norm also controls (L7), as well as
any combination of small bumps separated in scale and/or space. Beyond
that, this norm can also be used to control a solution that does not decay at
spatial infinity, as long as it is sufficiently sparse; we obtain a quantitative
estimate of the sparseness required. See the Appendix for details.

Finally, using the methods introduced in this paper, we construct a solu-
tion which is large by all the standards described above. For simplicity we
assume that IV is an even integer.

Theorem 1.6 (Main result). Assume that N € (2,00) is even. For any
L > 0 there exist radial initial data (ug,uy) such that ||ug| e > L, the
corresponding solution u of (11) is global, forward in time, and

||uH(x)*1Lt°f’xﬂ<m>*1Lg°Lt1 < 00, sgpu(:v,t) 2 L<3§‘>_1
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Our construction is based on taking outgoing initial data concentrated on
a thin spherical shell.
Such solutions have finite critical Lfg norm, so they are also stable under

small H% x H%~! perturbations.

Remark 1.7 (Size of the initial data and solution). 1. These initial data nec-
essarily have arbitrarily high H*® norm, but we already had such examples
from Theorem

2. From our construction it follows that [[ugl|zec(jz)>1) >> 1 (another
standard for largeness), see [KrSc| for a similar result obtained by completely
different methods.

3. More generally, it is reasonable to consider the seminorms |[u| 1 (jz)>1)5
P > pe, and ||ul|pp(jz)<2), P < pe. By allowing for rescaling and translation,
these seminorms become norms:

lull := sup N2 N (@ /A = y)lsga<ry p < pe
7y

or
lJul = Sup INHNw(@ /XN = y) || o (e 1) P > Pe-
7y
Our initial data ug are also large in these norms when p > N + 1.
4. Finally, the solution u is large in the sense of Theorem [A.13 Indeed,
the norms ||®o(uo, w1)| o () Lo0 and [|uf| 2oy, ) Loo are uniformly large for
all p in the specified range N +1 < p < 3N/2.

As suggested by the referee, one can perhaps combine the construction
in Theorem [L.6] with the ones in (L.7) and/or (I.8) to obtain an even larger
solution. We shall not pursue this idea here.

All these results hold in both the focusing and the defocusing case, re-
gardless of the sign of the nonlinearity in (LI]).

Also note that if we assume the initial data are smooth then the solution
is also smooth.

1.3. History of the problem. The first well-posedness result for large
data supercritical problems was obtained by Tao [Tao], for the logarithmi-
cally supercritical defocusing wave equation that he introduced

uy — Au+ u’log(2 +u?) = 0, u(0) = ug, ue(0) = uy. (1.9)

[Tao] proved global well-posedness and scattering for radial initial data. The
starting point of [Tao] was an observation made in [GSV] for the energy-
critical problem.

Further results belong to Roy [Royl] [Roy2|, who proved the scattering
of solutions to the log-log-supercritical equation

uy — Au+ u® log€(log(10 4+ u?)) = 0, u(0) = ug, u(0) = uy,

0<e< %, without the radial assumption.
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Struwe [Str] proved the global well-posedness of the equation
uy — Au+ ue® =0, u(0) = up, ut(0) = uy,

(supercritical when Efu] > 27) for arbitrary radial smooth initial data.

Another series of results asserts the conditional well-posedness of super-
critical equations. If the critical Sobolev norm || (w, )| gse o grse—1 Of a solu-
tion to (LI stays bounded, then the solution exists globally and disperses.
Such findings belong to Kenig-Merle [KeMe2], Killip—Visan [KiVil], [KiVi2],
and Bulut [Bull], [Bul2], [Bul3] in the defocusing case and Duyckaerts—
Kenig-Merle [DKM], Dodson—Lawrie [DoLa|, and Duyckaerts—Roy [DuRol
in the focusing case.

All these conditional results are based on methods developed by Bour-
gain [Bou|, Colliander—Keel-Staffilani-Takaoka—Tao [CKSTT], Kenig-Merle
[KeMe], and Keraani [Ker] in the energy-critical case.

By an original method, adapted to that specific equation, Li |Li] proved
the unconditional global wellposedness of hedgehog solutions for the (3 + 1)
Skyrme model.

Wang-Yu [WaYu|, Yang [Yan|, and Miao—Pei-Yu [MPY] constructed
large global solutions for semilinear wave equations satisfying the null con-
dition, related to a result of Christodulou [Chi].

Finally, another recent result belongs to Krieger—Schlag [KrSc|, who con-
struct a very specific class of global, smooth nondispersive solutions to (L)
with the best decay at infinity possible. Due to the slow decay, these solu-
tions logarithmically miss being in H® x H*~! but belong instead to the
Besov spaces BS‘OO X Bscogl

The results in this paper are in the same spirit as [Wa¥Yul, [Yan], [MPY]:
taking a particular class of initial data with much better properties than
generic ones and constructing large solutions for them.

These previous papers use a null frame decomposition of energy-class
solutions (and assume the finiteness of some higher order energy norms).
One component of the solution is allowed to be large, all others are assumed
to be small, then the null condition for the nonlinearity prevents large-large
nonlinear self-interactions.

By contrast, our results are based on a decomposition of possibly much
rougher (infinite energy) solutions into incoming and outgoing components.
The linear evolution of outgoing initial data has better properties than
generic solutions and satisfies improved multilinear estimates. The non-
linearity in (II]) does not satisfy the null condition.

For more recent and roughly similar results, also see Luk—-Oh—Yang [LOY],
who construct large solutions of Einstein’s equation and of equation (L)
with radial symmetry. Their solutions have infinite critical norm due to slow
decay, like those in [KrSd].

Our result and the one of [KrSc] are also rather different. Ours is based
on multilinear estimates and [KrSc| is based on a nonlinear construction. In
addition, the solutions of [KrSc] only logarithmically fail to be in H% x H%~!
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and in fact are bounded in a critical Besov space. By contrast, our solutions
can miss being in the critical Sobolev space by a wide margin and are large
in all reasonable critical norms.

In this paper, we do not require solutions to be bounded or even finite in
the critical Sobolev norm H?® x H%~!. Indeed, this critical norm can be
replaced with the H' x L? energy norm of outgoing initial data, provided
they are supported sufficiently far out (or the L> norm is sufficiently small).

One can use a numerical scheme or some other approximation procedure,
which is accurate over short times, for specific initial conditions. If the
solution, after such a short time, satisfies our outgoing conditions up to a
small error, then it will be global by Corollary L3l

This is plausible because it is true in the free case: any solution to the free
wave equation becomes outgoing and supported far away from the origin,
up to a small error, when a sufficiently long time has elapsed.

Energy being finite is also not necessary, as we construct solutions for
bounded and compactly supported initial data. A variant of our construc-
tion, Theorem [I.0], leads to initial data that are large in every possible sense,
see the discussion above.

Even though our results hold for rough initial data, we can also assume
both the initial data and the solutions are smooth, due to the preservation
of regularity.

In other contexts, various notions of incoming and outgoing waves have
been introduced and used. However, the incoming and outgoing projections
that we define seem to be new. In papers on this topic, “outgoing” typically
refers to any linear solution after a sufficient time has elapsed so that the
remaining Strichartz norm of its future evolution is small, see (LG). We
need no such smallness assumption.

The incoming condition in this paper resembles a condition from Engquist—
Majda [EnMal, see formula (1.27) in that paper.

We expect the same method to lead to an improvement in the energy-
critical and subcritical cases, by allowing us to prove, for example, global
well-posedness for (H 1/2 NL>) x H~Y2 outgoing initial data, thus requiring
fewer derivatives than the critical Sobolev exponent for the equation. These
improvements will be explored in a future paper.

Another expected result is the well-posedness of equation (ILI]) for arbi-
trary large initial data, after projecting the nonlinearity on the outgoing
states. This constitutes the subject of our next paper, [BeSol].

This paper is organized as follows: in Section Bl we state several results
about incoming and outgoing states for the linear flow, in Section Ml we
enounce some standard existence results, in Section [B] we prove the theo-
rems stated in the introduction, and in the Appendix we introduce Lorentz—
Choquet norms for the Kato outer measure and use them to study multi-
bump solutions.

In the initial version of this paper there was one more result in the Appen-
dix, concerning large solutions for the focusing supercritical wave equation,
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obtained by means of a positivity criterion. We have removed that result
and developed it into a separate paper [BeSo2].

2. NOTATIONS

A < B means that |A] < C|B]| for some constant C. We denote various
constants, not always the same, by C.
02

The Laplacian is the operator on R? A = % + % + oz,

We denote by LP the Lebesgue spaces, by H® and WW*? (fractional) ho-
mogenous Sobolev spaces, and by LP¢ Lorentz spaces. We also define the
weighted Lebesgue spaces w(z)LE := {w(z)f(z) : f € LP}.

H?* are Hilbert spaces and so is H' x L2, under the norm

(w0, wn)ll e = (luollFp + llunllZ2)'/2.

By H; ;. etc. we designate the radial version of these spaces. For a radially
symmetric function u(x), we let u(r) := u(zx) for |z| = r.

By (H 1% L?) 5yt we mean the space of outgoing radially symmetric HYx L?
initial data, see Definition

We define the mixed-norm spaces on R3 x [0, c0)

gz = {£ 1lgus = ([ 150l de) " < oo},

with the standard modification for p = oo, and likewise for the reversed
mixed-norm spaces LLLY. We use a similar definition for L} WP, Also, for
I C[0,00), let |[fllrra(msxry = X1 (t) fllpra, where x is the characteristic
function of I.

We also denote B(0, R) := {x € R? | |z| < R}.

Let D be the Fourier multiplier ||, 49 be Dirac’s delta at zero, and x
denote the indicator function of a set.

Let ®(t) : H' x L? — H' x L? be the flow of the linear wave equation in
three dimensions: for

uy — Au =0, u(0) = ug, w(0) = uq,

we set O(t)(u, u1) = (Po(t)(uo, ur), Pr(t)(uo, u1)) := (ult), ue(t)).
Alsolet ¢(t) : L2x H~' — L?x H~! be the flow of the linear wave equation
in dimension one (on a half-line with Neumann boundary conditions): for

v — Ve = 0, v(0) = vg, v£(0) = v1,0,.(0,t) =0,

we set ¢(t)(vo,v1) = (v(t), ve(t)).
In this paper we only consider mild solutions to (LLI]), i.e. solutions to the
following equivalent integral equation:

u(t) = cos(tv/—A)ug + M\/gA)m F /0 sin((t\;%\/j) lu(s)|Nu(s) ds.
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3. OUTGOING AND INCOMING STATES FOR THE FREE FLOW

In order to define outgoing and incoming states for the linear wave equa-
tion, we reduce the equation to a one-dimensional problem, where identifying
such states is straightforward.

In the radial case, the following operator will establish a correspondence
between the three-dimensional wave equation and the one-dimensional wave
equation on a half-line:

Definition 3.1.

L ru)y, ulr) = & / " T(u)(s) ds. (3.1)

T(w)(r) = o -

Remark 3.2. If we write the radial function u(r = |z|) on R? as a superpo-
sition of identical one-coordinate functions in every possible direction, each
of these functions can be taken to be T'(u). In other words, for each radial
function u(z) on R3

u(x) = /52 T(u)(x - w)dw. (3.2)

For T'(u) supported on [0,00), this works out to (BI]). Indeed, with no
loss of generality assume that x = (0,0,7) and write w in polar coordinates
as w = (sin @ cos ¢, sin @ sin ¢, cos f). Then

2m r T
2 2
/ / (rcosf)sinfdeodo = il / T(u)(s)ds = il T(u)(s)ds.
T —r T 0
One can further generalize this analysis to the non-radial case, by using
the Radon transform for the construction of the projections.

By H~1([0, 00)) we understand the space of distributions that are deriva-
tives of L? functions and are supported on [0, c0).

Conveniently, 1" is a constant times a unitary map from L? .q (the space of
radial L? functions) to H ([0, 00)) and bounded from H} , to L*([0,00)) —
the latter by Hardy’s inequality. The inverse operator 7! is also bounded
from L2([0,00)) to H!

rad*

Lemma 3.3. With T defined by (31), HT(U)HH*([O,OO)) = %HuHLzad
Moreover, [T (u)lz2(jo,00)) S lull g, and flull gy ST (w)llz2(0,00))-

Remark 3.4. This shows that [lul| := ||T(w)]12(j0,00)) = 1(rw(r))" | 2([0,00)) 18

another norm on H?!

raq €quivalent to the usual one.

Proof of Lemmal3.3. Note that u € L?_, if and only if
2 > 2,2
luliZs :477/0 ()20 dr-

In particular, HUHL?.M = 2\/EH7’U(T)HL2([O700)) = 2\/EH(Tu(r))’HH,l([Om)).
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Next, note that by Hardy’s inequality

[e.9]

9]
lufrlizs = 4m [ fu()Pdr < ullfy =dm | Jur()r? dr.
rad 0 rad 0

Therefore |[(ru(r))'ll2qocoy) < lull 2 + 170 Lz cy S Il

Finally, let T'(u) = v. Then by (3.
oo © 1 r 2
lullyy,, =4r [ lw)Pr?drs | jutr)Par+ | 5( 0 v(s)ds) " dr

Then, L [ v(s)ds = folv(ar) da and |Jv(a:)||2 = o~ Y2||v|| 12, so
1 1 1
| [ otandal|, < [ o@loe da= ollz [ a2 da 5 ol
0 Lz~ Jo 0

This proves the last statement of the lemma. O

o0

For non-radial functions, a similar decomposition into one-coordinate
functions can be obtained, but the computation is more complicated. One
restricts the three-dimensional Fourier transform along each line through
the origin, then takes the inverse one-dimensional Fourier transform. This
is related to the Radon transform.

So far, the transformation 7" is completely general; however, the subse-
quent computation is not and will be different for, say, Schrodinger’s equa-
tion.

Lemma 3.5. There exist bounded operators Py and P_ on H!

rad % L2
given by

rad’

Py (ug,uq) = (% (uo - %/07‘ sup(s) ds), %( — (uo)r — % + u1)> (3.3)
and
P_(ug,uy) = <% <u0 + % /0?“ sup(s) ds), %((uo)r + % + u1)>, (3.4)

such that I = Py + P_, P2 = Py, and P> = P_.

If ©(t) is the flow of the linear equation then fort >0 P_®(t)Py = 0 and
fort <0 PL®(t)P_ = 0. In addition, fort >0 ®(t)Py(ug,u1) is supported
on R3\ B(0,t) and fort <0 ®(t)P_(ug,u1) is supported on R3\ B(0,—t).

Definition 3.6. P, and P_ are called the projection on outgoing, respec-
tively incoming states. We call any radial (ug,w1) such that P_(ug,u1) =0
outgoing; if Py (ug,u1) = 0 we call it incoming.

Remark 3.7. Py and P_ are self-adjoint on H}ad X Lfad with the norm
o)l = (1o ()Y a0 oey) + IPa(r) 20 oey)) /% e Remark B

Proof. Given a radial solution u of the free wave equation

ug — Au =0, u(0) = ug, ut(0) = uq, (3.5)
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each of the essentially one-dimensional functions 7'(u(t))(x -w) fulfills a one-
dimensional wave equation of the form

vy — Upp = 0, v(0) = vg, v(0) = vy, (3.6)
where ) )
vo = 5= (ruo(r))’s vi = o=(rus(r))".
27 2
Indeed, in radial coordinates one has that wy — uy — (2/7)u, = 0 or equiv-
alently that (ru)y — (ru)., = 0. Since v = T'(u) = 5 (ru(r))’, taking a

derivative leads to (B.6]), which holds in the weak sense.

To fix ideas we assume that (ug,u1) € H},, x L2, s0 (vo,v1) € L? x H™!
by Lemma 33l Note that vy and v; are supported on [0, c0).

In addition, we consider equation (B.6) on a half-line only and impose
the Neumann boundary condition v,(0,¢) = 0. This is justified because for
a smooth radial solution w one necessarily has u,(0,t) = 0 and v,(0,t) =
= (ru)r(0,8) = Lu,(0,2).

The Neumann boundary condition means that the solution is reflected
back at the boundary or, in other words, that it could be extended by
symmetry to the negative half-axis.

In fact, note that we can prove some of the statements in just the case
when ug and u; are smooth functions and proceed by continuity in the
general case, since Py and P_ are bounded on H® x H5"1, 1< s < 3/2, as
we prove below.

Equation (B.6) then has solutions of the form (with » > 0)

v(r,t) = Xr>t04 (1 —t) + Xr<tv— (E—7) + Xr+t20U— (T +1) + Xrpt<ov4 (—7 — 1),

where by d’Alembert’s formula
1 1
vg(r) = 5(00(7‘) — 0, i (r)), v-(r) = §(UO(T) + 0, oi(r)). (3.7)

Here ;7' denotes the unique antiderivative of a H~' distribution that be-
longs to L?. Note that since v; is supported on [0,00), 9, vy is also sup-
ported on [0,00) (in fact it is given by w=rus(r)).

Thus both vy and v_ are supported on [0, 00).

At time t, the outgoing component of v, which moves in the positive
direction with velocity 1, consists of

’UOUt(r’ t) = Xr>max(t,0) U+ (T - t) + Xo<r<tV— (t - T)‘

The incoming component consists of

Uz’n(ra t) = Xr>max(0,—t)V— (T + t) + XOST’S—tU-‘r(_T - t)'
In particular, at ¢ = 0 the outgoing component is v, and the incoming
component is v_.

Note that as ¢t grows the incoming component hits the origin and becomes
outgoing. If we wait for long enough, most of the solution becomes outgoing.
Conversely, if we reverse time flow, as t — —oo all of the solution becomes
incoming.
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In order to obtain a general formula for the outgoing projection, without
loss of generality we restrict our attention to time 0. Let 74 (vo,v1) be the
initial data of the outgoing component, i.e.

(00, v1)(r) += (v4(r = 1) 1=0, 0 (v4-(r — 1)) li=0) = (v4-(r), =y (7))

and likewise

7 (v, v1)(r) := (v (r + 1) li=0, 0 (v — (r + 1)) t=0) = (v—(r),v_(r)).

Note that 7 (vg,v1) is the initial data for the solution v (r —t) of equation
(B8] on the time interval [0, 00) (which moves with velocity 1 in the positive
direction) and same for m on (—o0,0].

By d’Alembert’s formula ([B.7)), 7+ then has the form

74 (vg,v1)(r) := (% (vo(r) — 87,_11)1(7‘)), %( —vy(r) + vl(r)))

and the incoming component 7_ has the form

7_(vg,v1)(r) := (%(vo(r) + 07 Moi (1)), %(vé(r) + vl(r))).

Note that 7 +7_ =1, 7T_2|_ =ay, 12 =7a_,and 7ym_ =7_my =0. In

particular, note that 0, 11}6 = 19, because in any case an antiderivative of v,
must be of the form vy + ¢ and this is in L? only if ¢ = 0.

Since by definition (u,v);2 = (u/,v') -1, a simple computation shows
that 7, and m_ are bounded, self-adjoint operators on L? x H1.

Thus, both 74 and 7_ are orthogonal projections, in a proper setting (on
L? x H~! or more generally on H*® x Hs_l).

Note that a solution of the form v := vy (r — t) preserves the property
that O,v = —0,v and hence that 7_(v(t),v,(¢)) = 0 for all ¢ > 0. In other
words, if we denote by ¢(t) the flow induced by the linear equation (3.6]) on
L? x H™ Y, then for t > 0

m_¢(t)m4 (vg,v1) = 0.

Furthermore, in this case ¢(t)m4 (vg,v1) is obviously supported on [t, 00).
Likewise, for t < 0 7wy ¢(t)m—(vo,v1) = 0 and supp ¢(t)m— (vo,v1) C [—t,0).
The outgoing component of u corresponds to the outgoing component

m4+(v,v) of v traveling in the positive direction. Conjugating the projec-

tions w4 and m_ by the transformation 7" defined by (3.2]), we obtain the

corresponding operators for radial functions in R3. Letting P, := T~ ‘7, T,

P_ := T7'7_T, we obtain formulas ([33) and (34)). Both operators are

bounded on H} , x L2, , due to Lemma 331
As an easy consequence of the properties of my and 7w_, we get that

P.+P =1 PP =0, Per = P,, P2 = P_, and all the other stated

properties of P, and P_. O

We now prove some properties of the nonlocal operator that appears in
the definition of the projections on incoming and outgoing states. This leads
among other things to the boundedness of the projections on outgoing and
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incoming states. Also note that if the initial data (ug, u1) are purely outgoing
or are purely incoming, then uy determines u; and vice-versa. Furthermore,
this can be made into a quantitative estimate.

Lemma 3.8. For radial f € L?

|5 [ ororao,, <171,
0 rad

r

More generally, for 0 < s < 3/2

7 [ eroa],... <151, (35)

rad

Consequently, Py and P_ are bounded on H® x H*' for1<s < 3/2.
Furthermore, if (ug,u1) are purely outgoing or purely incoming, then
HUOHHS ~ HulHHs,l fOT’ 1<s< 3/2.

Proof of Lemma[3.8. By differentiation we see that

Hl/ pf(p p” z(’f—r—lg/orpf(p)dp( L
and then
r 1
I [} e, <l [ esoas] g = [ arstenraal o
< /01 Harf(aT)HL%([O,oo)) = lImf (")l 2(0,00)) /0104_1/2 do S\ fllze
(3.9)

By the same reasoning, ([3.8) follows for 0 < s <1 from

| [ o], <1515

This in turn follows by interpolation between the s = 0 case proved above
(seel30) and the s = 1 case, which is implied by Hardy’s inequality || f/|z||| 2 <

”f”;p and
H_/ pile —H /f %/Orf(p)dp(
B H/o far)dal| 5 151 /0 a2 da 5 Il

In the same manner one proves that for 1 < s < 3/2

|5 [ o], < |3 [ r0a],. <1510

which implies that (3.8) is true for 0 < s < 3/2.

The H® x H*~! boundedness of P, and P_ for 1 < s < 3/2 is a conse-
quence of their definition, of (3.8)), and of Hardy’s inequality || f/[z|[| g1 S
| f1l z7s- The same is true for the final conclusion. O

16,2




16 MARIUS BECEANU AND AVY SOFFER

Next, we state the most important (and somewhat trivial) identity for
outgoing solutions.

Proposition 3.9. If u is a radial solution to the free wave equation (3.13)
with outgoing initial data (ug,uq), then forr >t >0

—1
u(r,t) = i up(r —t)
r
and u(r,t) =0 for 0 <r <t.

Note that, as ¢ increases, an outgoing solution keeps constant sign. The
computation is different, so this is not true, for negative ¢t. Equivalently, the
incoming component need not keep a constant sign for positive t.

Also note that by a direct computation one can check the outgoing prop-
erty P_(u(t),us(t)) =0, i.e. uy + ur +u/r = 0.

Proof. This follows from the one-dimensional reduction. Indeed, let v =
T(u), where T is given by ([B.2]). Since u is outgoing, by definition v is also
outgoing, i.e. v(r,t) = vy(r —t) for all ¢ > 0 and some vy supported on

[0,00). Then by (B1))

ru(r,t) = /OT v(s,t)ds = /OT vi(s —t)ds = /Or—t v4(s)ds,

which only depends on r — t. Therefore ru(r,t) = (r — t)u(r —¢,0). The
second conclusion follows because the integral is zero when r < ¢. O

This identity immediately leads to improved Strichartz and decay esti-
mates for outgoing solutions.

Corollary 3.10 (Uniform bounds). If u is a radial solution to the free wave
equation (33) in three dimensions with outgoing initial data (ug,uy), then
if ug € L™

[ull g, < lluollzoe (3.10)

and if ug € LP then |lul|peopp < [luol|ze for 2 < p < oo. In particular, the L?
norm |lu(z,t)||p2 is constant with respect to time for t > 0. Furthermore,
Julleypne < ol o for2 < p < 3.

Note that the last estimate is better than one would expect from scaling.
Proof. Inequality ([B.I0) follows directly from Proposition B.9] since for 0 <
t<ro< TT_t < 1. Concerning the L? norm, for 2 < p < o0

o0
Hu(az,t)”’ig = 477/0 lu(r,t)[Pr? dr = 471/

t

[e.e]

() tuotr = s ar

< 477/ g () [Pr? dr
0

since (Z)Pr? < (r —t)? for p > 2.
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Note that by dominated convergence, when 2 < p < oo, in fact |ju(x,t)||,» —
0ast — oco. When p = oo [|u(z,t)||pe — 0 as t — oo for ug € L, the
closure in L* of the set of bounded functions with compact support.

Regarding the Sobolev norms, again by Proposition

o o
e Oy, =47 [ it 02 ar = 4 [
’ 0

t

r—t

(o) (1) —guo(r—1)| 12 dr.

We bound the first term exactly as above and for the second term we use
Hardy’s inequality, i.e.

t\P luo(r)[\»
— _ P2 < LRSI 2 < p
/t <r2) lug(r —t)[Pr dr_/o < . > rodr S luoll3i .y,

since t < r and p > 2. O

Corollary 3.11 (Decay and reversed Strichartz estimates). Suppose that
the initial data (ug,u1) is outgoing and suppug C B(0, R). Then fort >0
and 2 < p < oo, the solution to the free wave equation (I.1]) satisfies

RN\ —142/
) lluollzs. (3.11)

e, )l < min(L, (5
Suppose that suppug C B(0,R). Then for 3 < q < oo (and L>*® or L> at
the endpoints) and 1 < p < o0

lull gy < BY/5Pljug] (3.12)

and for 1 <p <2
- < 1/p—1/2
Hu”Li P~ R lluol| 2.
More generally, suppose that suppuy C B(0, R1)\ B(0, Rg) for Ry > Ry and
ug € L®. Then for 3 < q < oo (and L>> or L* at the endpoints) and
I<p<o
lull po2pp S RYI(Ry = Ro)' /P |l e (3.13)
Also, for 1 <p<2and3 < q< oo (and L>>® for q=3)

— —1+3
lull o pp S (Ra = Ra) P 2R5 2 g 2.

Proof. Estimate (B.11]) is an obvious consequence of Proposition when
p = oo and we interpolate with p = 2 (for which |lu(z,?) 12 = [[uol|2) to
get all the other cases.

Next, ([B.12) follows because, when suppug C B(0, R) and ug € L, by
Proposition (where we use the fact that ’%t < 1 on one hand and that
r —t < R on suppug on the other hand)

R+1/p

lu(r, )]z S min(RY?|ug | o<, [[uol| Lov)-

Likewise, for 1 <p <2

Rl/p—1/2
futr Bl S 2 ol
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Finally, (8.I3)) is true because, when suppug C B(0, Ry) \ B(0, R2) and

ug € L,

Ri(R — Ry)Y/

r

[u(r, )|l p < min((Ry = Ra)'/Plug| £oe, [[uoll o= )-

Also, for the last inequality, by Proposition

(Lo B, = BT
r 0l1L2>» Ro

Juollzz)-
(]

Ju(r,t)]l» < min

We next state some Strichartz estimates that hold only for outgoing so-
lutions. For simplicity, we state them only for the scaling-invariant norms
of our problem (L.T]).

Corollary 3.12 (Strichartz estimates). For any 4 < N < oo, if ug € L™
and (ug,u1) € (H1 X L2)Out are radial and outgoing, then the corresponding
solution u to the free wave equation (32) in three dimensions fulfills

1-4/N
all gy v Ml vz oo+ Nll oo a2 S ||uOH Yol (3.14)

LNW, LW,

and
N+14N N+1 1 4/N
el el g e S Traoll Sy ™ fhuo ) fer =4, (3.15)

Note that the bounds (3:14) hold for less than the full range of scaling-
invariant norms.

Proof. Strichartz estimates for the free wave equation (see [GiVe| or [KeTa],
as well as [KIMa] for the radial endpoint estimate) ensure that

[ 1 S ol g +llwall 2 S Hluoll g1

LW,
where we also used Lemma [3.8 Interpolating (see Theorems 5.1.2 and 6.4.5

in [BeLd| for the interpolation results) with the supremum estimate (BI0I),
we obtain that for N > 4

4/N 1-4/N
all e gz llll pvre oo+ Null poyarvnz S ol luoll o™,

LNW, LW,

which is the scahng—lnvarlant estimate (B.14)).
By the Leibniz rule (only here we use that N is an integer and it is
probably unnecessary), for any integer N > 4

N —2 N—2
il all gy S Ml e el e el 2522 S Mol luollZs (3.16)
and by Hoélder’s inequality
N— N—
el ull a2 < Nullzg prollull T S lluollGy lluollzs. (3.17)

In particular, since s,—1 = 1/2—2/N and 3(3 — %) +5(3+%) = (N+1)4/N,
by interpolation between ([B.16]) and ([B.I7) we obtain (B.13]). O
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4. STANDARD EXISTENCE RESULTS

We first state some standard Strichartz estimates, see [KeTal, that hold
in scaling-invariant norms for equation (L.IJ).

Proposition 4.1. Consider a solution u of the linear wave equation in three
dimensions with a source term

uy — Au = F, u(0) = ug, ue(0) = uy.

Then
[[u |’LooHsmL4Wsc V240 N2 oo HUtHLOOHSC LA AN/ (V=) AN V) S
S ol grse + Nluallgroc—1 + IE N Ly prae-1-

Another simple linear estimate we shall use is

| D )% bl e 1)

We next state some reversed-norm Strichartz estimates, following [BeGo].
Again we only state those estimates which hold in scaling-invariant norms

for equation (LT]).

Proposition 4.2. Consider a solution u of the linear wave equation in three
dimensions with a source term

uy — Au = F, u(0) = ug, u(0) = uy.
Then

loll e S ol + lnllgecs +1P] e (0

ull o 372 S Ilutoll e + [lunl] groc—1 + HFH 321 N/2

Note that these reversed-norm estimates also hold (for the projection on
the continuous spectrum) if the Hamiltonian is —A+V instead of —A, where
V is a Kato-class potential, if there are no eigenvalues or resonances in the
continuous spectrum.

Remark 4.3. The following strictly stronger (in our context) inequalities are
also true:

—1 —1
105l e S ol e + il gees + 105 Fll o
and
-1 —1
1D ullpge 2 < luoll ree + lunll e + 1D Fll 372112
It is also possible to base a fixed point argument on these inequalities.

Although we don’t use them, we next state some standard well-posedness
results for the semilinear wave equation (L)

ugy — Au [ulNu =0, u(0) = ug, us(0) = uy.
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The first existence result is one that holds in the standard Strichartz
norms.

Proposition 4.4. Assume that N > 4 and |lugl| g + |[u1]] gee—1 s suffi-
ciently small (or N = 4 and the data are small and radially symmetric).
Then equation (I.1]) admits a global solution u with (ug,u1) as initial data,
such that

[ AN/(N=) AN/(N+0) S

L HsnLAWse /2L N/ 2[00 + ||utHLtooH;cflmLt
S llwoll grse + [l ll groe—-

In addition, u scatters: there exist (ugy,u11) € H® x H%~1 such that
i [ (u(t), g (1)) — D) (w14 e s = 0

and likewise as t — —o0.

More generally, if (ug,u1) € H?e x H*~! are not small, then there exist
an interval I = (=T,T) with T > 0 and a solution u to (I1) defined on
R3 x I, having (ug,u1) as initial data, such that

Hu”LgOH;(RB x DNLAWSe /24 R3 x LY/ Lo (R3 «nT

+ ||ut||LtooH;c*1(R3XI)OL?N/(N*‘QLiN/(N+4)(R3XI) < 0.

Proof. This is a consequence of the standard Strichartz estimates for the
free wave equation of [KeTal, see Proposition [4.1]

The proof works by a contraction argument in the L H? N LfW;C_l/ 240
Liv / 2L§° norm. Indeed, note that the nonlinearity can be bounded in the
dual Strichartz norm by

[l Y S A N2 Nzt

UHL%H;C* LN/ e LgOLiN/Z”uHLfoHi < Hu”Li\’/ngo”uHL?H;’

See [Tay] for mixed fractional Leibniz rules such as we are using here. A
rather general statement is the following:

Lemma 4.5. Let 1 < p,p1,p2 < 00, 1 < q,q1,92 < 00, a € [0,1], D* be the
Fourier multiplier |£|%, and %1 + %2 =5 T ﬁ% =, = L1l
Then

G2 q’

i
4
<
—
=
¥
2
(=

I1D*(f)llra S D fllevanl|gllLezaz + 1| £l 151 .a [ D% gll 522 -

This can be easily proved by complex interpolation between the @ = 0
and o = 1 cases; see [BeLd], p. 153.
Concerning scattering, we define

e /OO sin(sv/—A)
e VA
U4 = Ug —I—/O cos(svV—A)(|u(s)|Nu(s)) ds.

(Ju(s)[Vu(s)) ds,
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Then

B sin(tv/—A) b rsin(ty/—A)

u(t) = cos(tv/—A)ug + ﬁul + /0 <ﬁ cos(sv—A)—
cos(t\/z)%) (Ju(s)[Vu(s)) ds,

_sin(tv—=A) / o0 N
u(t) — ®o(t)(uot, ur+) Nav ! cos(svV=A)([u(s)[Vu(s)) ds
* sin(sv/—A) N
cos(tvV=A) . T /=& (lu(s)[ M u(s)) ds,
where ®¢(t) is the first component of ®(¢). This expression goes to zero in
the H® norm. The same is true for Us.

In case the initial data is not small, the global L}V Sem1/24 Liv / 2L§°
Strichartz norm of its linear development is still finite, hence it becomes
small on some sufficiently small interval (—T',T"), and we run the contraction
argument on that interval. In the same way one can prove the uniqueness

SO

of the solution in L{°H?(R3 x I)N Lﬁngo (R3 x I), where I is the maximal
interval on which the solution is defined. O

The second existence result holds in the reversed Strichartz norms in-
troduced in [BeGa], being a straightforward generalization of Proposition 5
from that paper.

Proposition 4.6. Assume that N > 4 and |[uol| gs. + ||u1]| gse—1 @5 suffi-
ciently small. Then equation (I1) admits a global solution u with (ug,uy)
as initial data, such that

Vol 72 g g2 S Wl + e

Moreover, if the initial data (ug,uy) € H#e x H~1 are not small, there exist
an interval I = (=T,T) and a solution u to (I1]) on R® x I such that

Hu”LiN/QL;w(RSxl)ngOLim(Rle) < o0

Proof. The proof is based on the reversed-norm Strichartz estimates of
Proposition and on a contraction argument in the LiN/ 2L§° N LU?COLiV /2
norm. Indeed, note that the nonlinearity can be bounded in the dual

Strichartz norm by

N
A R Wl

VD Y
x
N N
lul ™ ull par21 vz S HUHLgm,ngoHUHL?Liv/z.

One can obtain the large data local well-posedness result as follows: by
means of smooth cutoffs, we restrict the initial data to sets on which their
norm is small and solve the initial value problem with this restricted data.
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The solutions obtained will agree on some small time interval with the so-
lution of the original problem due to the finite speed of propagation. Since
there is a lower bound on how small the diameter of the sets is required to
be, by piecing together all these partial solutions we obtain a global in space
solution on some nonempty time interval.

In the same way one can prove that the solution is unique in 3 2L§° (R3x
I), where [ is a small interval (or I = R for small norm solutions). ]

5. PROOF OF THE MAIN RESULTS

Proof of Theorem [1.2. This is a direct consequence of the standard existence
theory, in view of the Strichartz estimates (3:14) and (3.15]).

Explicitly, we write the solution w as the sum of the free evolution of
the outgoing initial data and a small perturbation, to which we apply a
contraction argument. Let u(x,t) = v(x,t) + w(x,t), where

v — Av =0, v(0) = vo, v(0) = vy

and

wy — Aw % v+ wN (v 4+ w) =0, w(0) = wy, w(0) =w. (5.1)
We linearize equation (5.1]) by writing it as

wy — Aw % v+ BN (v 4+ W) = 0, w(0) = wy, w(0) =wi, (5.2)
and solving for w = F(w), while treating w as given. The subsequent

argument is the same if instead of null initial data we take small (wg,w;) €
H%e x H*~1 initial data in (5.1)), i.e. if we allow for a small perturbation of
the outgoing initial data (vg,v1).
By a standard contraction argument we proceed to show that there exists
W of bounded L Hze N Lf‘Wst_lpA N Liv/2L§° norm such that @ = F().
The source term in equation (5.) is |v|Yv, which is controlled in the
appropriate norm by ([B.I5]): if we denote

4/N 1-4/N
K = Jluol[ 2 leoll =™,
then
N N
ol oll e S KN (5.3)

The other (mixed) terms are bounded in the critical norm by (3I4]) because
for N <12

Sce—1=1/2—-2/N < 4/N. (5.4)
Indeed,

v+ @M (v +) — [v[No = (Jv+ BN = 0|V (v+ D)+ o]V

1
= 12)(/ N|v + aw|N 2 (v 4 o) doz) (v + @) + o]V .
0
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Furthermore, note that

N+1 N/2 N/2 N/2 N/2+1
™ e S Ml R0 Nl el onivneso S Nl 28l 00N
and more generally (here we use that IV is an integer, though it is probably
unnecessary)

lur - unallrgrset S Tl pooyipoc—rionn 72 poe -+ 1N+l pooyirec—ri60 572 e
Then for 0 < a <1
HHNJI’U + OAZ}’N_2(U + OAZ})(U + TI))HL%H;cfl 5

5 Hw”LOOWsc 16mLN/2Loo(” ”LOOW‘SC 160LN/2 +” HLOOWSC 160LN/2 )

S P <||v||LwW4/NN/QmLN/2Lw+|| I o)

(5.5)
where H% C W16 and W4/N-N/2 < 1yse=16 A similar estimate holds
for |v|Nw

Note that, for (5) to hold, each factor on the left-hand side must have
at least s, — 1 derivatives. There are some monomials in (5.5]) with only one
power of v; since all the other factors (powers of w) can only be bounded in
scaling-invariant norms, due to scaling we must also bound v in a scaling-
invariant norm. Since by (BI4]) v only has % derivatives in a scaling-
invariant norm, condition (5.4]) is necessary.

From (53) and (5.5]), combined with standard Strichartz estimates, we
get that

N+1

N
||w||L°°HSCﬂL4WSC 1/24 N/2Loo ~ ||w0||Héc+||w1||H5c 1+K +1+||w||L°°HScﬂL

N/2p
If we assume that ||| N2, . < K and that wp, wi, and K are

N/2f - < K as well.

L H3eNL,
sufficiently small, it follows that Hw”

Note that
[v + w1 [N (v 4+ 1) — v+ DN (v + b2) =

L°°H5cr"|L

1
d
- / (o + iy + (1= )oY (v + by + (1 - a)i)) da
0

1
— (71)1—71)2)/ (N + 1)|v + aady + (1 — )| da.
0

One then shows that, given two pairs w', @' and w?, @w? that both ful-

fill (2),

lw' = w?|

L HienLiWwse /24 N/2

ol o (BN |

LOO/\J

S ot —w L H3NLY L3 L HzenLN 2 Lo + @ ”LOOJLFCHLN/2 =)

It follows that the mapping w — w is a contraction in the sphere of radlus

Kin LOOH Se ﬂLN/ 2LOO when wq, wi, and K are sufficiently small. The fixed
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point w = w then gives rise to a global solution u = v + w to (ILI). As a
byproduct we can also obtain the L H®~! norm of w;.

Estimate (I.3]) is true because we can separately bound v (by ([3.14])) and
w (by the fixed point argument) in the Liv / 2Lg° norm.

Concerning scattering, define

wei= - [ %uuw%@)) ds,

wiy = wy + /000 cos(sv—A)(Ju(s)|Nu(s)) ds.

Since |u(s)|Nu(s) € LI HS™', it is easy to show ().
If the initial data are in ((H'NL>®) x L?),u + H® x H*~!, but not small,
then still the norm ||v|| [ N/2p o < 00 is finite, so there exists an interval I =
t x

[0, 7] on which ||v]| LY/ Lo (w3 1) is small and same for the linear evolution

of (wp,w1). We then run the previous argument on this interval.
In the same manner one can prove the uniqueness of the solution in

L H (R x I)N Liv / 2L§°(}R3 x I), where I is the maximal interval of exis-
tence. 0

Proof of Corollary [I3. This follows from Theorem [[:2 and the R3 radial H!
Sobolev embedding

lug(r)] < 7‘_1/2HUOHH3M.
Given that wg is supported outside the sphere B(0, R), this embedding im-
plies that

luollze S B2 luoll .

Therefore HuoﬂégvauoHIL;‘l/N < uo || o R~=4/N)/2. The conclusion follows
by applying Theorem O

For the sake of completeness, we also state some local existence results.
We begin with a simple, but weak result that holds for bounded initial data.

Proposition 5.1. Suppose that N > 0, the initial data (ug,u1) are radial
and outgoing, and ug € L°°. Then there exists a corresponding solution u

to (I1) on R® x I, I =1[0,T], such that T > C’||u0\|zg/2 and
HU”L;g(wa) S lluol|Lee-

Note that one cannot repeat this argument for later initial times because
the nonlinearity generates incoming terms and for incoming initial data it
is not enough for it to be in L°.

Proof of Proposition [5.1. We apply a fixed point argument. Linearize equa-
tion (LI) to
uy — Au |aNa =0, u(0) = ug, u(0) = uy. (5.6)
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Then, taking into account (3.I0) and (&.I)),
lullge, moxry < lluollzee + T2al™ s moxry < lluollze +T2(lalz2E"
Thus, if ||| g r3x1) S [[to|zoe and T < CHUOHLOO with ¢ sufficiently small,

we retrieve the same conclusion for . In addltlon the mapping u U 1s

a contraction. Indeed, given two pairs @' and u', respectively @2 and u?,
which fulfill (5.6]),

lut =g sy S T2 — a@||zgs, (@11 25, + 1@%]Zee,)-

Thus, if T < ¢||ug]|;. Loo ? with sufficiently small ¢, then the mapping @ > u is

a contraction on {u ] HuHLoo ®3x1) S lluollzgs, - The fixed point is a solution
of (ILI) with the desired properties. O

We next state another existence result in the subcritical sense, for large
(H'NL®) x L) + (H>* N H') x (H' N L?) initial data (and in particular
for ((H' ML) x L?)yy initial data). The solution remains in the same class
for some finite positive time and for all time if the initial data are small.

Proposition 5.2. Assume N > 2 and consider initial data (ug,u;) =
(vo,v1) + (wo,wr), where (vo,v1) € (H N L®) x L?)oy are radial and
outgoing and (wo,w) € (H2NHY) x (H' N L?) are radial. Then there exists
a corresponding solution u to (I1) on R3 x I, where I = [0,T)] and

T > C(|woll grampm + 1wl gz + 1voll giaze) ™™

)

such that u =v + w and
”(UvUt)”L§<>((HlmLoo)><L2)out(R3XI) + ”U”LngO(R%d) S lvollgippe,  (5:7)

H(wvwt)HLgo(HgnH;ngwH;ng)(RSx[) S
S llwoll grong + lwill gaage + lvoll gazee-
Assume in addition that N > 4 and

—4)(N-1)

N— N
lwoll g + 1wl g + HvoH5 Hlwo | +

(5.8)
+ JJwi

+ ool F llvoll 7= + (lwoll [[voll g << 1.

H10L2)
Then there exists a global solution u, forward in time, with this initial data,
such that u = v +w, v fulfills (57), and

HZOH1

”(’U%wt)HLgo(HgmH;XH;ng) + H"‘UHLngo S ”w0”H2mH1 +llwill o2+
N—
lvoll G ol z=" + llvoll3: llvoll 7.

Proof of Proposition[2.2. As before, we write the solution as a sum of two
terms, u(x,t) = v(x,t) + w(x,t), where v is the linear evolution of (vg,v;)
and w is the contribution of (wg,w;) and of the nonlinear terms:

Ut — Av = 07 U(O) = Yo, Ut(o) =
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and we linearize the second equation to (5.2)), that is
wy — Aw £ v+ @\N(v +w) =0, w(0) = wy, w(0) = w;.
Then clearly (v,v;) satisfy (B5.1), see (B10) and Lemma B8 In addition,
1w, wi)ll oo (2 x 2 nL2)®IXT) S
S lwoll gagn + lwillgaaze + Tl + @1 (0 + @)l o (rr1n22) R 1y
Here

N
llo + B (v + D)l e Lawasny S NI oy 107 1 oy

+||w||L°° (R3xT) ||w||L°°H1(R3><I)
and
o+ @™ (v + w)||L°°H1(R3><I) (||U||L°<> ®3x1) T ||w||L°° (R3x1))
(”U|’L§>°H;(R3x1) + ”wHLgOH;(WxI))'
Also note that
0] g raxry S N0l Lo pr2nmny 3w (5.9)
In conclusion, if
||1D||L§°(H30H;)(RSX1) S llwoll gz + lwill grnze + llvoll grapee
and if

T < c(llwoll gramgmn + lwill gz + 1voll grapee) ™

with ¢ sufficiently small, then we retrieve the same conclusion for w. Un-
der the same condition one can prove that the mapping @ — w is a con-
traction on the set {w | ||1Z)||L§O(H30H%)(R3X1) S lwoll e g + lwill giqpe +
lvoll gr1qpee }- The fixed point w gives rise to a solution u = v + w with the
required properties. In particular, we also retrieve a bound for w;.

For the global existence result, we use the following estimates:

N ~
1w, w)ll oo g1 2y Hlwllz2pee S Nwoll g +llwrll 2 +[[lv+ @™ (0 +@) | 2 2,
where

~IN ~ N— ~
[lv+w]™ (o) || L1z S IIUII?;?OH;IIUIIingollvlngferllwll ooHlIIWIILszIIWIILoo :
together with

[(w, we)ll oo g2 ity S llwoll e + lwill g+ [[lo + @[ (v + D) L1 g1,

£ ( ) tHy

where
o+ [(v+@) 11 S (IlvlleLoollvll +||w||LzLoo||w|| 2) (10l oo gra 10 e 1)

Also note (B.9) and that [|v|[re < ”'UOHLoo and HUHL?OH% S llvollga- It
follows that whenever



SUPERCRITICAL WAVE EQUATION 27

and

lwoll i + w1l gnze + ool ool s + lwolly lvollfe® S ce,

ool FpallvollZ? + € Hlvoll << 1,

with ¢ sufficiently small (not depending on €), then we retrieve the same
conclusion (5.10]) for w.

In particular, for this to happen it is necessary that (||vol|%, [[vo 13N ol gr <<
1, which is part of our condition (5.8)).

Next, we prove that the mapping W — w is a contraction. In the same
manner as above it can be shown that, when w! and @', respectively w?
and @2, satisfy the linearized equation (5.2) and condition (5.10), then

ot = w? e e S 18" — @21 e s Qleolp ol + €)
and
! w2l gz S 10" =021 e sy (o W ool 2 ol ool = +€).
Thus, as long as ¢ is sufficiently small and
lvollZ llvoll7=? + llvolIF ool << 1,

the mapping is a contraction. The ensuing fixed point w gives rise to a
solution u of (II]) with the desired properties.

As part of the contraction argument we can also bound wy;. Putting
together all the conditions we use, we obtain (B.8]). O

We continue with the proof of Theorem [L5], concerning global existence
for bounded compact support initial data.

Proof of Theorem[1.3. This follows by a standard fixed point argument in
the L2V/*21%0 n L LN norm.

Let u(z,t) = v(x,t) + w(z,t), where

vy — Av =0, v(0) = ug,v(0) = uy
and
wy — Aw + v+ w|N (v +w) =0, w(0) =0, w(0) =0. (5.11)
As in the proof of Theorem [[.2] we linearize (5.11) to
wy — Aw % v+ BN (v + @) =0, w0) =0, w(0) =0

and then we prove by a contraction argument that there exists w € LQ?ZN/ 2’2Lt°° N
LgOLiV/z for which w = w.

Note that by (B.12])

[vll /2.2 v2 < RYN|jug|| 1 = K.

LML L,
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Then, since the initial data are zero,

Sl + @™+ D) _ax

”w”LiN/“meLOOL LZVFT)

L°°ﬂL3/2 1 N/2

N+1 N+1
SK * + ||| 341:7/22L°°mL°°LN/2

Thus, when K is small, the mapping @ — w leaves a sufficiently small sphere
in LiN/ 2’2L§° N L;OL,{V /? invariant.

Furthermore, considering two auxiliary functions w; and s that give rise
to solutions wi, respectively ws,

lwr = wall oz oo poopire S

S o+ @1 [N (v +d1) — o+ @] (v + do) |

3N
2(N+1) 3/2,1 N/2

meL
SJ ”wl - w2”LiN/2 QLOOOLOOLN/2(K + ”wl” 3N/2 QLOOOLOOLN/2 + ”w2H SN/2 2LoomLooLN/2)’
Thus the mapping @w — w is a contraction in a sufficiently small sphere when

K is also small. It therefore has a fixed point w = w, such that u = v + w
is a solution to (LI). O

We finally construct true large initial data global solutions to (L.IJ).

Proof of Theorem[I.8. For o« > 0 and ¢ << 1, consider outgoing initial
data (ug, u1) supported on B(0,1+ ¢€) \ B(0, 1), such that ug(r) = Le~* for
r € [1,1 + ¢€]. Then ||ug||zee ~ Le™® and ||ug|[;1/a ~ L. Let v be the linear
evolution of (ug,u;), that is

vy — Av =0, v(0) = up, v(0) = uy.

By (.13)

[ll o2z oo S Hluollzoe ~ Le™, lu] N ug|| e ~ LN

<
LeerN? S

Letting € go to zero, we cannot make the scaling-invariant L3N/ 2 2L°O

versed Strichartz norm of v small. This is why we examine one more iterate
in the nonlinear contraction scheme.

Note that by PropositionB9v(r, t) is supported on B(1 4+t +¢€) \ B(1 +t)
and

Le™ < Le®
14+t+a 1+1¢
Let n > 2. Therefore v"(r = 1+t+a,t) issupported on B(1 +t +¢€) \ B(1 +t)
and bounded by £ T n - L; To help with computations, we write this bound as

€ LTL —no 3 1 t _A
v"(1+t—|—a,t),§/ € 1s1n(( +t+a)v—A)
o (I+t+a)"~ vV—A
where dg is Dirac’s delta and we have taken advantage of the special form

of the kernel of Smf;—V_A) (7,y) = 7570|z—y|=¢ for t > 0.

v(l+t+a,t) < (5.12)

50 da,

47rt
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Let us estimate the Duhamel term
t o _ TR
/ sin((t — ») A)v"(s) ds. (5.13)
0 vV=A

Since we use absolute values, not cancellations, we bound this from above by

/t sin((t — s)v/—A) Le " /E sin((1+ s+ a)\/—A)(S dads —
V- A (L+s)»1 Jo VA 0 B
cos((t—1—2s—a)vV/—A) cos((1+t+a)V/—A)
-] (T R s
Note that COS(tV )(x y) = m)ﬂm y|>t- We obtain a bound of
Ln —no
/ / 1+ s 17,X[|t 1-2s—al, 1+t+a}( r)dsda =
min(t, 5 ‘1+T Le e X[max(0,14-a—t),14+t+a] (7")
ds da
max(0,t=tza=r - 3 ) 1+S)n_1 r
max a— a Ln —no Ln —no
< / X[max(0,1+a—t),1+t+a] () < Et_l_ _ B t_1€_ ) da
0 r (1 + max(0, EL5a=r)yn—2 (1 4 =L adryn—2

1
< L"el_"ax[ogﬂ} (r) min (;, 1),

(5.14)
the second part using the mean value theorem.

It follows that
NGB oy 110, S L
Setting n = N + 1, we obtain for example that this norm can be made
arbitrarily small by letting € go to zero if a < ﬁ
We write the solution u as a sum of two parts, u(z,t) = v(x,t) + w(z,t),

where v is the linear evolution of the initial data and w is the contribution
of the nonlinear terms:

wy — Aw % (v +w)N L =0, w(0) =0, wy(0) =0. (5.15)

Recall that for simplicity we assumed that IV is even.
We then have to obtain similar bounds for the terms

/t sin((t — s)v—A4A)
0 v—=A
for 0 < n < N+ 1. For n > 0 we proceed in the same manner as in

(5I4). Note that v™(t)w™N*T1="(t) is supported on B(1 +t +¢)\ B(1 +1t)
and therefore has size

("™ (s)w™N 7" (s)) ds (5.16)

n N+1—-n te " N+1 n
v (r, t)w (T7t)5TH\\ \ —ipee -

In the same way as above we then obtain a bound Of
NI sy, S L7 ol
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For the last term corresponding to n = 0, we use a different method, namely

(S a5 [

Note that for n > 3, by subdividing the integration domain into |z —y| < 7
R
| (z)"

_/ 1
s |7 — Y|
Consequently, for N +1 > 3
sin( t —s)V—-A
H/ )wN+1(S) dSH ) < HwHN+11Loo )
<SE> t,:c b

We linearize equation (IB]E) to
wy — Aw + (v 4+ @)V =0, w(0) =0, w(0) =0. (5.17)

Putting everything together, since this equation has null initial data, we
have obtained that

looll oy e,  EVHE D Ll |

and |z — y| > %, we obtain

1

1

(x)

y s

y)"

L,
Assuming that [[@][4)-1200 < €0 << 1, we retrieve the same for w if we

assume that € is small enough and that a < ﬁ
Consider two pairs w; and w1, respectively wq and wq, which fulfill (5.17)).
In the same manner as before we obtain that

lwr = wall(zy-1250, < Il —’lf)zH< ~ipge (LN TN Let ™o (|| |7 1Loo+
+ 2| 5 1Loo )+ gy -1 e, + Hw2\|<x>—1Lgfz)-

We obtain that the mapping @ — w is a contraction on {w | [|w||(zy-1p00 <

€0} if €g and € are sufficiently small and if o < % Consequently it has a
fixed point w such that v = v 4+ w is a solution to (LTI

Since we want to obtain a dispersive solution, we shall also keep track
throughout the contraction scheme of the L°L} norm (in fact we can do
better and we shall bound the (z)~!L°L} norm). This is sufficient in view
of the fact that

(2) 'L, N LYLE C LY
Note that
N
lollgery S M+ @) s,

However, this estimate is insufficient in view of the fact that v is large.

Returning to our computation (5.14]), we extract some better bounds. Note
that (5.13]) is zero for ¢t < r — 2 and that for t > r — 2

1 1
(m) 5 Lnel—na mln( —— , 5= >
r(1 + max(0, %))"‘2 (1 + max(0, ¢ % )t
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the latter by using the mean value theorem. It follows that for n > 3
1—
[CI ) zy-1250p2 S L "

We again set n = N+1 and use a similar method (considering their support)
to evaluate the terms (5.16]) for 0 < n < N + 1, resulting in

o [Py e T eyl
For the remaining term of the form (5.16)), in which n = 0, i.e. for
/t sin((t — s)v _A)wN-l—l
0 V-A

we use the fact that for N +1 > 3

(s)ds, (5.18)

~N ~ N ~
IEIB -1 poerr SN0y w1 pers S [@01lzy-1 £pe 10Nl @y -1 L0 13-
In conclusion
N (N —a|~|N ~N ~
lwll(g)-1porr S L Hlel=(VHDay el aHw||<m>*1L§f’x+||w||<m>*1L§f>x||w||<:c)*1Lg°L%'

Thus the mapping w —  takes the set {w [ [wl|(zy-17001 < R, [[wll(z)-115e, <

€0} into itself for sufficiently large R and sufficiently small € and €.
Similarly we obtain that for two pairs wy and wy, respectively wo and ws,

that satisfy (517,

w1 = wall )1 pery S 01 — @allmy-12g0 (LY ™M + Let (| 57 oo +
o N2l G e D) + 1 = Bl gy e (DI -1, + D2y -

It follows that the sequence wg = 0,

t .
Wn41 = :F/o Sm((t\/%\/—A) (v(s) + wn(s))N+1 ds
converges in (z) "1 L° L} for sufficiently small € and €q (in addition to (x) 'L
which we already knew).

In particular we can take a@ = plc = & < ﬁ so that |lug| Lee ~ L is
arbitrarily large.

The linear evolution v of the initial data dominates all other terms, hence

when estimating the norm of the solution it is enough to consider v, which
is of size Le™® in Ly, see (5.12)).

[e.e]
t,xo

O

Remark 5.3. The proof works more generally whenever (ug,u1) are radial
and outgoing, supported on B(0,1+¢€) \ B(0,1) and
1/ (N+1

Nuol|pe << 1.

This means that the LV*! norm of ug must be small (though it does not
vanish), but the LP(B(1,2)) norms for p > N + 1 (in particular the LP¢
norm) become arbitrarily high as e — 0 for p > N + 1.
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Remark 5.4. A more interesting case should be taking large initial data sup-
ported on the union of two thin neighboring spherical shells, with opposite
signs. This should lead to improved estimates due to cancellations.

APPENDIX A. USING CHOQUET SPACES IN THE STUDY OF THE WAVE
EQUATION

In this section we undertake a more detailed study of equation (L)
ug — A+ JulNu =0, w(0) = ug, u(0) =uy
with spread-out initial data of the form (L.g])
J J
up =Y dlx—y;), w =Y v(x—y5), ly; — yjn| >> 1 Vi1 # jo
j=1 j=1

by means of the Choquet integral.

The Choquet integral, introduced by Choquet in [Chol, is defined similarly
to the Lebesgue integral, but is more general, in that it applies to outer
measures (also to capacities). In some cases of interest, these outer measures
do not give rise to a nontrivial o-algebra of measurable sets, but we can still
use the Choquet integral to integrate with respect to them.

Definition A.1 (See |Cho] and [Adal]). An outer measure ;1 on a o-algebra
A C P(A) is a function p : A — [0, +0o0] such that:

1) p(@) = 0;

2) Monotonicity: if A; C Ay C A, then (A1) < p(Az);

3) Subadditivity: for a countable family of sets (A,,), C A,

M<LnJAn> < Zn:u(An)-

Then the Choquet integral of a nonnegative function f: A —» R, f > 0,
with respect to the outer measure p is defined as

/ f(x)dp = /OO u({x e A: f(x) > t})dt.
A 0

The Choquet integral is in general not linear or even subadditive. Note,
however, that if supp f Nsupp g = & then

/f+gdu§/fdu+/gdu-

It also has the following useful properties:
1) [afdu=af fdu;

2) [fdp=0=f=0 pae;

3)If f < g, then [ fdu < [gdu.

Also, it is trivial to prove, using

{x: flx)+g(x) > 2"} C {a: f(x) > 2"y U {z: g(z) > 271,
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/f+gdu§2/fdu+2/gdu.

A similar analysis shows that, since

{z:> ful@) =2 < ([ J{z: fr =277},

k>1 k>1

that

therefore

Lemma A.2.

/(%:ﬁ)d,uéQ/fld,u+4/f2d,u_|_”"

meaning that any geometric series with ratio less than 1/2 converges.
Also note that

/fl—|—...+de;¢§N</f1du+...—|—/f]vdu>.

Since the right hand side constant grows with the number of terms, in general
it may be difficult to sum an infinite series.

Definition A.3. For 1 < p < oo, let the Choquet space LP(u) be the space
of functions such that

11 = [ 1@ du < o,

with L>°(u) also defined using the essential supremum with respect to p.

In general || f||z»(,) is only a quasinorm, not a norm (except for p = o). A
quick computation, based on Newton’s binomial formula, shows that, when
p > 1 is an integer,

1+ gllzoy < @+ D2 Flloeq + 19llmrg)-

Thus, a geometric series with ratio less than (p + 1)~'/? converges in LP(p)
when p > 1 is an integer (and less than |p+ 1|~/[?] in general).

A quasinorm (raised to a suitable power) induces a metric structure, see
[BeLol, so LP(u) are also metric spaces. Consider any Cauchy sequence in
LP(u); one can extract a subsequence such that the difference of successive
terms has a small ratio, so it converges. Hence LP(u) is a complete metric
space, for 1 < p < co.

In some cases there exist equivalent norms, so the spaces are normable
(Banach spaces). However, although we shall point out when equivalent
norms exist, quasinorms are also adequate for our purpose, see below.

We want a norm that accounts for the fact that initial data of the type
(L8]) are locally small and spread out, converts this sparseness into smallness,
and within which we can close the loop in a fixed point argument for equation

(1)
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By necessity, such a norm cannot be invariant under symmetric rearrange-
ment, since symmetric rearrangement makes the initial data (L8] large.
We start with the Kato-type norm, introduced in [RoSc] and [GoSd],
1fllca := sup [[lz =y~ f(x)ll L1,
yER3
where o € [0,3). More generally, for 1 < p < 00, 1 < g < o0, let K p =
Ka.pps Where
[l Kapq 3= sup [z —y[~*f(@)[[ Lz
yeR3
Since LP? are normed spaces for 1 < p < oo, 1 < ¢ < o0, it follows that
Ka,p,q are also normed spaces in the same range (together with K, and
Ko,00)-
Restricted to characteristic functions of Lebesgue measurable sets (or even
Borel sets), the K, norm gives an outer measure

ta(A) = lIxa(@)lxa-
It is easy to check that there are no nontrivial measurable sets for this outer
measure (except for & = 0, when pg is the usual Lebesgue outer measure),
so we need to use the Choquet integral.

The outer measures i, constitute a different class from previously studied
examples in the context of the Choquet integral, such as [Chol, [Ada] (in
the context of capacity theory), or [DoTh] (tent spaces).

We next establish the properties of the quasinormed Choquet spaces
LP(pa), 1 < p < oo, to which we add L>®(pa) := L. Real interpola-
tion (see [BeLo], Chapter 3) works for these spaces in the same manner as
for Lebesgue spaces, namely

(LOO7 Ll (Na))(@,q) = Ll/e’q(ﬂa)’

We obtain a larger family of quasinormed Lorentz—Choquet spaces LP4(u,,),
I1<p<oo,1<g<oo.

The K functional (see [BeLd|, p. 38) has the same form as for the usual
Lorentz spaces, namely

Lemma A 4. .
KU (). ) = [ fato)ds.
where fX is the decreasing rearrangement of f, but with respect to p,:
fa(s) =inf{u > 0: po({z : | f(2)] = u}) < s}.
Thus the LP9(p,) quasinorms also have the usual definition:
Definition A.5. For 1 <p < o0, 1 <¢q < o0,

q

ey = ( /Ooj“‘l’fé(t))th/t) 1 (0,00),

sup tP fx(t) q = oo.
t>0
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Therefore the spaces LP4(p,,) have some of the usual properties of Lorentz
spaces, such as LPP(u,) = LP(pe) and LP% (u,) C LP%2(pg) for 1 < go. As
usual, the spaces L°>9(u,,), ¢ < 0o, behave differently and we won’t study
them.

We next define an LP(u,) atom.

Definition A.6. For 1 < p < oo, we say that a is an LP(u,) atom if a
is essentially bounded, has a support of finite u, outer measure, and is
LP(uq )-normalized, i.e.

all¥ « - pa(suppa) = 1.

It is useful to extend the following simple atomic characterization, de-
veloped in [Bec| for the usual Lorentz spaces, to these Lorentz—Choquet
spaces:

Proposition A.7. Fiz 1 <p < oo, 1 < q<oo. Then f € LPYpu,) if and
only if it admits an atomic decomposition

f=Y" ca,

keZ
where ¢, € R, each atom ay, has size ||ag||p~ ~ 2F, their supports are pair-
wise disjoint, and then HfH%p,q(ua) ~ Yoelerl® (or || fllppoe (o) ~ supg [ckl
when ¢ = 00).

For each z € R3 at most one term is nonzero. The sum above is in-
terpreted in this pointwise finite sense, but clearly it also converges in the
LP%(u,,) norm (if there is one) unless ¢ = co. For the converse, it is not
necessary that the supports of the atoms «; should be pairwise disjoint.
The proof is identical to the one in [Bec].

We next establish the relation between the quasinorm of LP9(u, ) and the
norm of Ky 4 4. There is a clear relation for functions localized in height:

Lemma A.8. Let 1 <p < oo, 1 < q1,q2 < o0 and f € LPY (u,) be such
that M < |f| <2M almost everywhere. Then

1Lt o) ~ 1y ~ Miptalsupp )77,

with bounds independent of M > 0.

Obviously L'(us) C K, and at the other endpoint L = Ko,00- Straight
from the definition, we then have that for 1 < p < oo

Lp(:“’oc) - K:a/p,p’

Using the atomic decomposition above, we more generally obtain that

Lemma A.9. The quasinorm of LP%(u,) can be expressed as

1/q
1l zragua) ~ (Z le|f<m>em1,zk><fv>f<w>ll?ca/p,p>

keZ
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for g < oo and
I £l Lpoo (ua) ~ Sup X2y er2r—1,20) (@) f (@)K

for ¢ = co. Consequently, for 1 < p,q < oo,
LP9(110) € Kayppg © L7 (). (A1)

Proof. The equivalence of the quasinorms follows from Lemmas and[A_8

The first inclusion is obvious. For the second one, let f € K/ 4 and

Ak = X|f(2)|ef2r1,2%) (@) f ().

Then, by Lemma[A8 [lakllze(ua) ~ lakllic, 0 < 1 fllKapp,- We conclude
that

”f”Lp’oo(Ma) ~ Sl]’};p ”ak”lca/p,p S ”f”lca/p,p,q'
0

Remark A.10. 1. In particular, (A.I) means that Ko/ppoo = LP(1a),
with equivalent quasinorms. Therefore LP*°(u,,) is normable (and a Banach
space) for 1 < p < oo.

This makes LP*°(u,) convenient to work with, but we shall also need
other values of ¢, in particular LP!(u,,).

For any 1 < p < o0, take 1 < p; < p < p2 < oo; then by interpolating
again (see the reiteration theorems in [BeLo|, Theorem 3.5.3, p. 50 and
Theorem 3.11.5, p. 67, as well as the discussion on p. 63) we get

(LPLOO(MQ)’ LP%OO(/JQ))G’(] — vaq('ua)’

where p = (1 — 6)py + Opa, 6 € (0,1). Interpolating between two Banach
spaces we are bound to obtain another Banach space, not a quasinormed
space. Thus, all spaces LP%(pu,), 1 < p < 00, 1 < g < oo are Banach spaces,
i.e. they possess norms equivalent to the original quasinorms. The norms are
obtained by interpolation and are not explicit at this point, but one could
extract an explicit formula, see [BeLd].

2. The spaces LP9(juq) and Ky p p q

rescaling and have the same scaling as L3P/

1F ()l iz oy = €PN f vagua)-

3. One of the more useful properties of these Lorentz—Choquet spaces,
which follows trivially from the definition, is that (LP9(ua )" = LP/™9/7 (11g,).
More generally, the usual Holder’s inequality holds for fixed « (and it has a
generalization for varying o).

4. We now have several ways of approaching the convergence of Cauchy
sequences. For example, (A1) means that a Cauchy sequence in LPY9(u,)
converges in K/, , and in LP°°(u,), which are both Banach spaces for
p > 1. Furthermore, also for 1 < p < oo, LP%(u,) is a Banach space, so
a Cauchy sequence converges. Finally, L!(j,) is not a Banach space, but

are invariant under translation and

(3-2) namely
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it is a quasinormed space, so Cauchy sequences converge by the argument
mentioned above.

The sums of successive iterates, > p_; T uy, produced by a contraction
mapping T on LP9(p, ), are not guaranteed to form a Cauchy series in the
same space, but will converge due to (A1) in K, /ppq and LP*° (), which
are Banach spaces. If the contraction ratio is sufficiently small, then this
will be a Cauchy series and will converge in the original quasinorm.

Next, we establish a form of Young’s inequality for these Lorentz—Choquet
spaces. We first prove a weak-type inequality in some extreme cases, then
we upgrade the result by interpolation.

Lemma A.11 (Young’s inequality). Let f € LP%(juy), 1 <p<oo, 1 <qg<
oo or (p,q) € {(1,1), (0c0,00)}, and g € L*. Then f*g € Ko/pp,q and

1 gllpoe o) < N gl sy < IflLragua) lgllzr- (A.2)
Moreover,

1 * gllzragua) S 1fllLragua 9l (A.3)
forl<p<oo,1<qg<o0. Ifl1<p,qg<o0, then

1£ 5 gl < 1 imaulally oy (A4
Finally, for 1/p=1/p1 +1/p2 —1, 1 < p,p1 <00, 1 < py < 00,
”f *g”L?”Oo < HfHLPl"X’(ua)Hg|"y|fa(1fl/pz)[,52’1' (A.5)

This is probably not a complete list of cases in which Young’s inequality
is valid, but it suffices for our purposes.

Proof. The first inequality in (A.2]) comes from ([A.I]). Concerning the second
inequality, for fixed zg € R3

|z — x| /P /R3 flx—y)g(y)dy

= s ol @ = )gola(o)
Ly ye

= 1 fllKappllgllr < NFLeaqua gl
(A.6)
Here we used Minkowski’s inequality. Since ([A.G) holds uniformly for xg €
R3, we have proved the second inequality in (A.2]).
By real interpolation, we can strengthen this to (A.3))

1S * 9llLraua) S I1Fllzragua)llgllzr

for 1 < p < oo, 1< ¢q < oo (ie. everything except the endpoints), at the
price of a constant.

When ¢ = oo and 1 < p < oo (A.3) follows directly from Minkowski’s
inequality, since LP**°(u,) are Banach spaces with norms invariant under
translation.

The proof of ([A.4) is based on duality:

Hf*gHL‘X’ < HfH’Ca/p,p,q”gH —a/pppd < HfHLW(ua)”gH —a/ppd -
] Ly |y] Ly
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Finally, ([A.5]) is proved by complex interpolation, which we can use here
because all the spaces are Banach spaces. O

We next use Young’s inequality to obtain fractional integration bounds.
Proposition A.12 (Fractional integration).

I1f |2l L) SNl (ua)s
where 0 < a < 3, 1 <p<r<oo,1<qg<o0, and (1 —«a/3)/r =
(I—-a/3)/p+B/3—1
Proof. One endpoint we use for interpolation is (A.3]):

1 * gllpagua) S 1 Fllzragua) 9l Lo
The other endpoint is (A.4):

Hf *gHLOO < HfH’Ca/p,p,q”gH|y‘—a/pL§’»Q’ < HfHLP’q(ua)”gH|y‘7a/pL§’,q"

Since we are dealing with quasinorms, we can only use real interpolation,
but the real interpolates of L' and |y|~*/PLP" are in general badly behaved
spaces (because we are changing both the exponent and the measure). How-
ever, at this point we are no longer interested in optimal conditions for g,
since we only need to perform fractional integration.

Define the following L°°- and dyadic partition-based family of spaces:

27 (L) = {9 - 2 Ixpyepr .2 W) Iy € 4.
By rescaling, we identify the set of bounded functions on any dyadic annulus,
Le(ly| € [2F71,2F)), with A := L®(|y| € [1/2,1)). In other words, the
mapping

T:2 %A — 2R (L), T((ar)k) =Y ar(x/2")
k

is an isomorphism, where
2_5k€ZA = {(ap) : 2°%||arlla € >y

This second formulation is more suitable for interpolation.
Note that
2730 (L) C L,
and
9—(a/p+3/p )ngO(LZO) C ,y‘—a/pLg 00

Using these more restrictive spaces, we rewrite (A.3) and (A4) as
1 * gllrr ) S et ua) 19ll2-202 (o0
and
Hf *gHL‘X’ 5 HfHLPJ(ua)|’9H2*(&/p+3/p’)kgzo([§0)'

Thus, we can apply Theorem 5.6.1 from [BeLd| and obtain that

1 * gllree ua) < I 1Let (ua) l9ll2-srege (250),
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where the relation between 7, p, and  is dictated by scaling. In other words,
we have proved that fractional integration takes LP''(pq) to L™ (ja). By
using real interpolation again, for f this time, we obtain the LP%(u,) —
L™9(p,,) boundedness everywhere except at the endpoints. O

The optimal condition on ¢ involves an LP"?-based dyadic decomposi-
tion, instead of an L°°-based one. However, we do not need such a sharp
statement.

Now we have the tools needed for a contraction-based solution to our
problem. The point is that we can use a contraction argument and bootstrap
in the LY (116) L$° norm below, for sufficiently small/sparse initial data.

Proposition A.13 (Small data global well-posedness). Assume that N > 4
and take N +1 <p < 3N/2, a =3 —2p/N. Then initial data of the form
(L3), for sufficiently small (¢,v) € By, X B;fo_ol and sufficiently large

|Yj, — Yjnl, lead to a small global solution of (L)) in L™ (ua)L7°.

The range of N in this statement is not optimal. Note that p > N + 1
is equivalent to « < 1 —2/N, so a > 0 only requires N > 2. However, the
necessary Strichartz-type inequalities were only proved in [BeGo| for the
range N > 4 (and here we interpolated again to get Besov spaces, which
excludes the endpoint N = 4).

Proof. The linear evolution of the initial data ([L.8]) is small in the LP*°(pu,,) L$°
norm, where a = 3 — 2p/N is dictated by scaling. Indeed, for « > 0 and
sufficiently far apart centers,

[P0 (w0, wr)l| oo (uoyzoe S 11P0(0: )| 220 (o)L + €

But the linear evolution of each bump is small in L2/ 20000« LB, ) LE°.

Here L3N/2:%0 Ka/ppoo = L7 (o) by Holder’s inequality and (A.T).

Clearly, the t coordinate no longer matters. All we need to prove is that
the mapping

w— uN T 2]

is a contraction (with sufficiently small ratio) on some small neighborhood
of zero in LP*°(uy,).

Indeed, assume w is small in this norm. Raising it to the N + 1-th power,
we get something even smaller in LP/(N+1):%0(;, ). Then by Young’s inequal-

1ty
1F #1212l oo () S I Loravanyoo gy
where £ is required by Proposition [A.12] to be

(1-a/3)/p=>0-a/3)(N+1)/p+5/3-1.

But (1 — «a/3)N/p = 2/3, so we get 8 = 1, which is the value that enables
us to close the loop in this quasinorm. O
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To interpret Proposition [A.13] take (e¢,e)) small bump functions, i.e.
smooth and compactly supported. We can allow for infinitely many such
bumps in the initial data, centered at (y;)jen, as long as for some o €
(0, %5%)

sup Y (j, —j) * << L.

I Gatg
This is because a bump supported far away from others contributes |y|~¢
to the quasinorm. Thus

H(IDO(umul)HLg(ua)Lgo S el/p(l +sup Z (Yo — yj1>_a)1/p,
I jatin
uniformly for p € [1, 00].
In other words, fix (¢,1), take a € (0, %), and € < ¢(a) (depending
on the fractional integration bound, which gets worse as p — N + 1 and
a— %) Consider a sequence (y;); such that

sup Z Yjz — Yj |~ < o0,
ot
One can take for example y; = j 1/a0 g for some fixed vector € € R? and fixed

ay < a < % Then, for sufficiently large R > Ry >> 1, the initial data
(uop,u1) with bumps centered at Ry;

w=ey ¢z —Ry;), ui=cy_ ¢(x— Ry))
j j

yield a small global solution in L™ (uq)L5°.

These bumps are asymptotically spaced no closer than j 7 — J %*711/2
In the radially symmetric setting one may perhaps do better: in [LOY],
se = 3/2 and the initial data can be taken as a sum of spherical shells
of uniform width and height, spaced like j'T¢. However, the result is not
directly comparable, since initial data are specified on a light cone.

All solutions constructed in this manner are required to have at least one
small LY (1) LY° norm, where N+1 < p < 3N/2, o = 3—2p/N. However,
the other norms in this family need not be small and can even be infinite
(e.g. for a > ay).

By contrast, the large solutions constructed in Theorem are uniformly
large in all these norms.

Future research directions. In this paper we only used the Choquet
and Lorentz—Choquet spaces to provide a response to the referee’s remarks.
Interesting questions that remain open are:

1. What kind of initial data lead to solutions to wave and Schroédinger
equations in these spaces?

2. Do small LY (11,)L$° solutions preserve regularity? I.e., assuming more
regularity (but no extra smallness) for the initial data, can one show that
u € Lfg ?
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3. Can these norms and quasinorms be used in the study of multisoliton
solutions?

4. When are these Lorentz-Choquet spaces Banach spaces (i.e. when is there
a norm equivalent to the quasinorm)?

5. For what exponents does Young’s inequality hold?

6. How do Morawetz and Strichartz inequalities look like in these norms?
These and other questions will be addressed in subsequent papers.
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