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INTRODUCTION 

 This study examines the functional anatomy of the primate postorbital bar. Postorbital bars 

are “bony arches that encompass the lateral aspect of the eye and form part of a circular orbit,” 

(Heesy 2005). They are formed by the dorsal part of 

the frontal bone and the ventral part of the zygomatic.  

Postorbital bars are not unique to primates.  In fact, 

historically, they have evolved many times in many 

different mammalian species.  However, they are 

found in all primates and, thus, are considered a 

defining characteristic of the family. Nevertheless, 

while their importance is undeniable, their reason for 

evolving and their functional role is highly debated 

among scholars.  

 There are many different theories as to the origin of the postorbital bar in primates. Some 

can be easily disregarded while others bear more weight. However, there seem to be three basic 

hypotheses that are most seriously considered by experts in the field.  

 The first was put forth by Prince (1953, 1956) and Simons (1962).  It suggests that the 

postorbital bar serves to protect against external trauma by shielding the orbit from things like 

lateral blows, bites, etc.  While this may be true to some extent, Cartmill (1970) argues that, 

considering the thickness of the bar, it would not defend very well against something like a tooth 

puncture.  Therefore, this hypothesis can be rejected.   

 The second popular hypothesis states that unilateral bite force without a postorbital bar 

present would severely increase torsional loading on the skull (Greaves 1985). This would then 

Figure 1.  This image depicts a postorbital 

bar in the skull of a lemur (Lawlor, 115). 
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be “transmitted to the facial skull and probably cause the face to bend and, to some extent, twist 

up against its moorings,” (Rosenberg, 1986).  The inference here is that the bar serves to reduce 

some of this torsion and subsequent twisting by stabilizing the skull. However, Greaves’ helices 

of tension and compression are not accurate portrayals of those in primates and anthropoid 

strains don’t support torsional loading (Hylander and Ross 1996).   

 Finally, the third hypothesis from Cartmill (1970,1972,1980) states that increasing orbital 

convergence shifts the anterior temporalis laterally, thereby distorting the lateral orbital wall.  

This distortion would then presumably disrupt oculomotor precision unless stabilized by the 

postorbital bar.  While it may be the best prediction thus far, the problem with this is that it does 

not account for the evolution of bars in other non-primate mammals that lack orbital 

convergence. 

 The reason it is so hard to prove why exactly the postorbital bar evolved is because we still 

have not proved what exactly the postorbital bar does.  What function does it serve?  Why is its 

presence essential? It has been long suggested and agreed upon that postorbital bars function to 

stiffen the lateral orbit, thereby decreasing deformation and disruption to oculomotor precision.   

However, there is very little proof on the actual mechanical function and significance of the 

postorbital bar, as it has never been experimentally tested directly.   

 

FOCUS OF THIS STUDY 

 The point of this research is to test the actual mechanical function of the postorbital bar.  In 

doing so, we hope to determine the extent to which the postorbital bar serves to absorb the 

stresses caused by mastication in Eulemur fulvus, a prosimian primate that in several critical 

respects resembles the earliest primates known from the Eocene epoch, approximately 50 million 
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years ago. Like early primates, this species possesses a postorbital bar but lacks a bony plate that 

seals the orbit posteriorly, as in the more derived anthropoid primates (including monkeys, apes 

and humans).  The null hypothesis is that the postorbital bar is functionally neutral insofar as it 

has no effect on stress and strain distributions in the skull. 

 We will test this hypothesis by using finite element analysis. (FEA).  FEA is a standard 

engineering technique used to examine how objects of complex geometry respond to loads.  In 

FEA, the object of interest (in our case, a skull) is modeled virtually as a mesh of many small 

elements, each of simple geometry, that are joined at nodes.  The mesh, representing a virtual 

model of the original object, is assigned material properties (i.e., it is given the stiffness of bone), 

forces and constraints are applied (in this case, simulating a bite on the molar teeth), and 

resulting stresses and strains are calculated.  Hypothesis testing is made possible by creating two 

skull models, one with the postorbital bar and one without, then applying equivalent muscle 

forces to each and comparing the results. The two models are exactly identical, except for the 

postorbital bar. Therefore, any differences we find can be completely attributed to this and only 

this.  

 

METHODOLOGY 

Terminology:  

 Before describing the methods, some terms need to be defined.  Stress is equal to the 

force being applied to an object divided by the area over which it is applied (including cross-

sectional areas).  Strain is a dimensionless measure of deformation, expressed most simply as the 

change in length of an object divided by the objects original length.  When forces are applied to 

an object, stresses are generated within the object, and the object deforms.  Thus, stress causes 
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strain.  There are many types of stresses and strains that may be expressed simultaneously at any 

given point on an object.  The simplest types of stress and strain are tensile and compressive.  

The maximal tensile strain experienced by a point on an object is called maximum principal 

strain, and the maximum compressive strain at the point is called minimum principal strain.  A 

more complicated type of strain is called von Mises strain, which refers to distortional strain 

associated with the loss of geometric similarity after loading.   

 Additional terms pertain to the material properties of substances.  The elastic modulus 

(also known as Young’s modulus) describes the axial stiffness of an object in simple tension or 

compression, and is calculated as the slope of the linear portion of the stress-strain curve for a 

substance.  As the elastic modulus increases, the object becomes stiffer.   Poisson’s ratio 

describes the lateral stiffness of an object.  For example, if a cube of rubber is compressed 

between two flat plates, Poisson’s ratio describes the degree to which the sides of the cube bulge 

out. 

Model creation:   

The basic idea behind our methodology was a geometry-based approach.  Essentially, we 

began with a stack of 1302 sequentially numbered two-dimensional images.  These images were 

in the form of bitmap slices derived from computed tomography scans of a Eulemur fulvus skull.  

Next, we turned these into a “water-tight” three-dimensional surface model, meaning we created 

a 3D hollow frame of the images covered in a stretched “material” of interlocking triangles.  

Finally, we took this hollow model and filled it in with tetrahedral “bricks” so it became a solid 

finite element model, which can be constrained and loaded with forces. 

 We began this process in the Mimics computer program.  Here, we rendered the 2D 

image stacks as volumes and then edited the surface model manually.  This included filling small 



6 

holes, removing digital “noise”, smoothing and reducing triangles, re-meshing, and segmenting 

the mandible for easier access when applying forces later on.  We used techniques like 

thresholding and region re-growing to eliminate the thinner bone and floating particles from poor 

scanning. 

 Next we brought our model, as an STL file, into Geomagics, a digital shape sampling and 

processing software, where we were able to edit and clean the polygon surface model.  In this 

step, the model was refined, decimated, and aligned until there were no intersecting triangles or 

other errors remaining. 

Then, it was brought back into Mimics once again as an STL where a volume mesh was 

now created.  The parameters we used for this were a maximum edge length of 2.5 and a shape 

quality threshold of 10.0.  It is also important to control for edge length and use edge ratio 

(max/min) (A) for the shape measure.  Once the mesh was complete, we discarded all cavities 

but the actual skull and exported as a Nastran file into Strand 7. 

Strand 7 is a state of the art Finite Element Analysis (FEA) program.  It is used for solid 

meshing and FEA.  Here, we applied a 

test force of -2.5N along the Y-axis on 

the left (working) first molar.  A 

constraint/restraint was assigned at the 

TMJ in each the X, Y, and Z directions.  

We then selected elements for each of 

the muscle attachment areas we were 

working with: the left and right masseter, 

medial pterygoid, and temporalis.  Next, a 

Figure 2.  This image depicts the selection of muscle group 

plates in the Geomagics program. 
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group was created for each separate attachment area.  For each group brick properties were 

defined as cortical bone with a Modulus value of 17.3 Gigapascals, Poisson’s ratio of 0.28, and a 

plate membrane thickness of 1.0 x10-5m.  

After checking that our model solved, it was brought back to Geomagics as an STL 

again. Muscle attachment area plates were selected, turned into individual objects, and renamed 

and saved as STLs accordingly.  They were then all imported back into Strand yet again and 

“zipped” together so that the plates were actually attached to the model and shared nodes with 

the bricks.  The same Young’s Modulus and 

Poison’s Ratio values were assigned to each 

set of plates and used for the bricks, as well as 

the material property and plate membrane 

thickness.  At this point, any unused plates 

and all bricks were deleted so that only the 

muscle attachment area plates remained.  

Each was assigned a number to be used in 

Boneload to assign muscle forces. 

Boneload works via an excel spreadsheet in which you enter all your force and focal 

coordinate data for each muscle group from Strand.  After we compiled this, Boneload was run 

using a tangential traction loading method.  When complete, these loaded muscle attachment 

areas plates were then imported back into Strand7 one last time onto our original FE model (with 

the bricks still intact and the previous plates all deleted).  These were once again “zipped” 

together and then solved linear statically.  Below is a graph of all the forces plugged into 

Boneload, and the resultant vectors it produced for both models. 

Figure 3.  The image above depicts the muscle group 

plates alone, with no skull bricks present in the Strand7 

program. 
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Group # Muscle Input Force Applied Force Mag Vector Force Mag Without Bar Vector Force Mag With Bar 

  **All muscle forces measured in Newtons (N)** 

1 WMasseter 40.8 40.8 31.81955515 30.50516428 

2 WMedPtery 19.2 19.2 19.05559248 19.01145377 

3 Wtemporalis 60.9 60.9 56.96154734 56.8274099 

4 Bmasseter 20.4 20.4 8.68109665 16.42494335 

5 BMedPtery 9.6 9.6 9.549641388 9.520150028 

6 Btemporalis 30.45 30.45 28.70913848 28.32154188 

      

 

 

Figure 4. This is an image of the resultant vectors produced in Boneload for each muscle group.  

 

RESULTS & DISCUSSION 

 Results of FEA can be depicted visually as color maps illustrating the magnitudes of stress 

and strain at each element in the model.  Below are several figures that depict the three different 

strains discussed above on the surface of the two models in various views.  Figure 1 shows A) 

minimum principal/compressive strain, B) maximum principal/tensile strain, and C) von Mises 

strain on a Eulemur fulvus skull with the postorbital bar intact. Figure 2 shows A) minimum 

principal/compressive strain, B) maximum principal/tensile strain, and C) von Mises strain on a 

Eulemur fulvus skull without the postorbital bar present.  
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Figure 5.  The above shows A) minimum principal/compressive strain, B) maximum principal/tensile strain, 

and C) von Mises strain on a Eulemur fulvus skull with the postorbital bar intact. 

 

Figure 6.  The above shows A) minimum principal/compressive strain, B) maximum principal/tensile strain, 

and C) von Mises strain on a Eulemur fulvus skull without the postorbital bar present. 



10 

 According to our findings, the model with the postorbital bar present showed high strain on 

the zygomatic arch and low strain on the orbital walls.  On the contrary, the model without the 

postorbital bar had low strain on the zygomatic arch, but high strain on the zygomatic root and 

the medial wall of the orbit. 

 The implications of this finding are profound. The wall of the orbit is particularly thin bone 

and high strain could severely deform or damage it.  It goes without saying, that this would 

presumably affect vision. Lemurs, like all primates rely greatly on sight in order to survive, 

therefore they evolved a postorbital bar.  The function of this bar is to transfer the strain caused 

by masticatory muscles forces from the wall of orbit and the root of the zygomatic throughout 

the entire zygomatic arch, a much thicker (and therefore sturdier) bone. 
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