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Robots rely on sensors to provide themwith information about their surroundings. However, high-quality sensors can be extremely
expensive and cost-prohibitive. Thus many robotic systems must make due with lower-quality sensors. Here we demonstrate via a
case study how modeling a sensor can improve its efficacy when employed within a Bayesian inferential framework. As a test bed
we employ a robotic arm that is designed to autonomously take its own measurements using an inexpensive LEGO light sensor
to estimate the position and radius of a white circle on a black field. The light sensor integrates the light arriving from a spatially
distributed region within its field of view weighted by its spatial sensitivity function (SSF).We demonstrate that by incorporating an
accurate model of the light sensor SSF into the likelihood function of a Bayesian inference engine, an autonomous system canmake
improved inferences about its surroundings.Themethod presented here is data based, fairly general, and made with plug-and-play
in mind so that it could be implemented in similar problems.

1. Introduction

Robots rely on sensors to provide them with information
about their surroundings. However, high-quality sensors can
be cost-prohibitive and often one must make due with lower
quality sensors. In this paper we present a case study which
demonstrates how employing an accurate model of a sensor
within a Bayesian inferential framework can improve the
quality of inferences made from the data produced by that
sensor. In fact, the quality of the sensor can be quite poor, but
if it is known precisely how it is poor, this information can
be used to improve the results of inferences made from the
sensor data.

To accomplish this we rely on a Bayesian inferential
framework where a machine learning system considers a set
of hypotheses about its surroundings and identifies more
probable hypotheses given incoming sensor data. Such infer-
ences rely on a likelihood function,which quantifies the prob-
ability that a hypothesized situation could have given rise to
the data. The likelihood is often considered to represent the
noise model, and this inherently includes a model of how the
sensor is expected to behave when presented with a given

stimulus. By incorporating an accurate model of the sensor,
the inferences made by the system are improved.

As a test bed we employ an autonomous robotic arm
developed in the Knuth Cyberphysics Laboratory at the Uni-
versity at Albany (SUNY). The robot is designed to perform
studies in autonomous experimental design [1, 2]. In partic-
ular it performs autonomous experiments where it uses an
inexpensive LEGO light sensor to estimate the position and
radius of a white circle on a black field. The light sensor
integrates the light arriving from a spatially distributed region
within its field of view weighted by its spatial sensitivity
function (SSF). We consider two models of the light sensor.
The naı̈ve model predicts that the light sensor will return
one value on average if it is centered over a black region and
another higher value on average if it is centered on a white
region. The more accurate model incorporates information
about the SSF of the light sensor to predict what values the
sensor would return given a hypothesized surface albedo
field. We demonstrate that by incorporating a more accurate
model of the light sensor into the likelihood function of a
Bayesian inference engine, a robot can make improved infer-
ences about its surroundings.The efficacy of the sensormodel
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is quantified by the average number of measurements the
robot needs to make to estimate the circle parameters within
a given precision.

There are two aspects to this work. First is the character-
ization of the light sensor and second is the incorporation
of the light sensor model into the likelihood function of
the robot’s machine learning system in a demonstration of
improved efficacy. In Section 2 we describe the robot, its light
sensor, the experiment that it is designed to perform, and the
machine learning system employed. We then discuss the
methods used to collect data from the light sensor, themodels
used to describe the light sensor, their incorporation into the
machine learning system, and the methods used to estimate
the model parameters and select the model order. Section 3
describes the resulting SSF model and the results of the
experiments comparing the näıve light sensor model to the
more accurate SSF model. In Section 4 we summarize our
results which demonstrate how, by incorporating a more
accurate model of sensor, one can improve its efficacy.

2. Materials and Methods

In this section we begin by discussing various aspects of the
robotic test bed followed by a discussion of the techniques
used to characterize the light sensor.

2.1. Robotic ArmTest Bed. Therobotic arm is designed to per-
form studies in autonomous experimental design [1, 2]. The
robot itself is constructed using the LEGONXTMindstorms
system (Figure 1).The LEGOMindstorms systemwas utilized
in part to demonstrate that high-quality autonomous systems
can be achieved when using lower quality equipment if the
machine learning and data analysis algorithms are handled
carefully. It employs one motor to allow it to rotate about a
vertical axis indicated by the black line in the top center of the
figure and two motors to extend and lower the arm about the
joints located at the positions indicated by the short arrows.
The motors are controlled directly by the LEGO brick, which
is commanded via Bluetooth by a Dell Latitude laptop com-
puter running the robot’s machine learning system, which
is programmed in MatLab (Mathworks, Inc.). The LEGO
light sensor is attached to the end of the arm (indicated by the
long arrow in Figure 1 and displayed in the inset at the upper
right). Based on commands issued by the laptop, the robotic
arm can deploy the light sensor to any position within its
reach on the playing field. The light sensor is lowered to an
average height of 14mm above the surface before taking a
measurement. The arm is designed using a trapezoidal con-
struction that maintains the sensor’s orientation to be aimed
at nadir, always normal to the surface, despite the extension
of the arm.

The LEGO light sensor (LEGO Part 9844) consists of a
photodiode-LED pair. The white circle is the photo diode,
and the red circle is the illuminating LED. Note that they
are separated by a narrow plastic ridge, which prevents the
LED from shining directly into the photo diode. This ridge,
along with the plastic lenses and the presence of the illu-
minating LED, affects the spatial sensitivity of the sensor.
When activated, the light sensor flashes for a brief instant

Figure 1: A photograph showing the robotic arm along with
the circle it is programmed to characterize. The robotic arm is
constructed using the LEGO NXT Mindstorms System. It employs
one motor to allow it to rotate about a vertical axis indicated by the
black line in the top center of the image and two motors to extend
and lower the arm about the joints located at the positions indicated
by the short arrows.The LEGO light sensor, also shown in the inset,
is attached to the end of the arm as indicated by the long arrow.

and measures the intensity of the reflected light. The photo
diode and its support circuitry are connected to the sensor
port of the LEGOBrick (LEGOPart 9841), which runs on a 32
bit ARM7 ATMELmicrocontroller.Themeasured intensities
are converted by internal software running on the ATMEL
microcontroller to a scale of 1 to 100, which we refer to as
LEGO units. The light sensor integrates the light arriving
from a spatially distributed region within its field of view.The
spatial sensitivity of the sensor to light sources within its field
of view is described by the spatial sensitivity function (SSF).
This function is unknown, but if it were known, one could
weight the surface albedo field with the SSF and integrate to
obtain an estimate of the recorded intensity of the reflected
light.

2.2.The Circle Characterization Experiment. The robotic arm
is designed to deploy the light sensor to takemeasurements of
the surface albedo at locationswithin a playing field of dimen-
sions approximately 131× 65 LEGOdistance units (1048mm×
520mm), within an automated experimental design para-
digm [1–3].The robot is programmedwith a set of hypotheses
of what shapes it could find placed on the playing field.
Instead of being programmed with a specific set of strate-
gies for characterizing the hypothesized shapes, the robot
utilizes a generalized Bayesian Inference Engine coupled to
an Inquiry Engine to make inferences about the hypotheses
based on the recorded data and to use uncertainties in
its inferences to drive further exploration by autonomously
selecting a new measurement location that promises to pro-
vide the maximum amount of relevant information about the
problem.

In this experiment, the robotic arm is instructed that
there is a white circle of unknown radius arbitrarily placed on
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the black field. Such an instruction is encoded by providing
the robot with a model of the surface albedo consisting of
three parameters: the center location (𝑥

𝑜
, 𝑦
𝑜
) and radius 𝑟

𝑜
,

written jointly as

C = {(𝑥
𝑜
, 𝑦
𝑜
) , 𝑟
𝑜
} , (1)

so that given a measurement location (𝑥
𝑖
, 𝑦
𝑖
) the albedo 𝑆 is

expected to be

𝑆 (𝑥
𝑖
, 𝑦
𝑖
;C) = {1 if 𝐷((𝑥

𝑖
, 𝑦
𝑖
) , (𝑥
𝑜
, 𝑦
𝑜
)) ≤ 𝑟

𝑜
,

0 if 𝐷((𝑥
𝑖
, 𝑦
𝑖
) , (𝑥
𝑜
, 𝑦
𝑜
)) > 𝑟

𝑜
,

(2)

where

𝐷((𝑥
𝑖
, 𝑦
𝑖
) , (𝑥
𝑜
, 𝑦
𝑜
)) = √(𝑥

𝑖
− 𝑥
𝑜
)
2

+ (𝑦
𝑖
− 𝑦
𝑜
)
2 (3)

is the Euclidean distance between the measurement location
(𝑥
𝑖
, 𝑦
𝑖
) and the center of the circle (𝑥

𝑜
, 𝑦
𝑜
), and an albedo of

1 signifies that the surface is white and 0 signifies that the
surface is black. Precisely how these expectations are used to
make inferences from data is explained in the next section.
Keep in mind that while the circle’s precise radius and posi-
tion are unknown, the robot has been provided with limited
prior information about the allowable range of radii and
positions.

Again, it is important to note that the robot does not scan
the surface to solve the problem nor does it try to find three
points along the edge of the circle. Instead, it employs a gen-
eral system that works for any expected shape or set of shapes
that autonomously and intelligently determines optimalmea-
surement locations based both on what it knows and on
what it does not know.The number of measurements needed
to characterize all three circle parameters within the desired
accuracy is a measure of the efficiency of the experimental
procedure.

2.3.TheMachine Learning System. Themachine learning sys-
tem employs a Bayesian Inference Engine to make inferences
about the circle parameters given the recorded light intensi-
ties, as well as an Inquiry Engine designed to use the uncer-
tainties in the circle parameter estimates to autonomously
select measurement locations that promise to provide the
maximum amount of relevant information about the prob-
lem.

The core of the Bayesian Inference Engine is cen-
tered around the computation of the posterior probability
Pr(C | D, 𝐼) of the albedo model parameters, C in (1) given
the light sensor recordings (data) 𝑑

𝑖
recorded at locations

(𝑥
𝑖
, 𝑦
𝑖
), which we write compactly as

D = {(𝑑
1
, (𝑥
1
, 𝑦
1
)) , . . . , (𝑑

𝑁
, (𝑥
𝑁
, 𝑦
𝑁
))} (4)

and any additional prior information 𝐼. Bayes’ Theorem
allows one to write the posterior probability as a function of
three related probabilities

Pr (C | D, 𝐼) = Pr (C | 𝐼) Pr (D | C, 𝐼)
Pr (D | 𝐼)

, (5)

where the right-hand side consists of the product of the prior
probability of the circle parameters Pr(C | 𝐼), which describes
what is known about the circle before any sensor data are
considered, with a ratio of probabilities that are sensor data
dependent. It is in this sense that Bayes’ Theorem represents
a learning algorithm since what is known about the circle
parameters before the data are considered (prior probability)
is modified by the recorded sensor data resulting in a quan-
tification of what is known about the circle parameters after
the data are considered (posterior probability). The prob-
ability in the numerator on the right is the likelihood
Pr(D | C, 𝐼), which quantifies the probability that the sensor
data could have resulted from the hypothesized circle param-
eterized by C. The probability in the denominator is the
marginal likelihood or the evidence, which here acts as a
normalization factor. Later when estimating the SSF of the
light sensor (which is a different problem), the evidence,
which can bewritten as the integral of the product of the prior
and the likelihood over all possible model parameters, will
play a critical role.

The likelihood term, Pr(D | C, 𝐼), plays a critical role in
the inference problem, since it essentially compares predic-
tions made using the hypothesized circle parameters to the
observed data. A näıve light sensor model would predict that
if the sensor was centered on a black region, it would return
a small number, and if the sensor was centered on a white
region, it would return a large number. A more accurate light
sensor model would take into account the SSF of the light
sensor and perform an SSF-weighted integral of the hypoth-
esized albedo field and compare this to the recorded sensor
data. These two models of the light sensor will be discussed
in detail in the next section.

The robot not only makes inferences from data, but
also designs its own experiments by autonomously deciding
where to take subsequent measurements [1–6]. This can
be viewed in terms of Bayesian experimental design [7–13]
where the Shannon entropy [14] is employed as the utility
function to decide where to take the next measurement. In
short, the Bayesian Inference Engine samples 50 circles from
the posterior probability using the nested sampling algorithm
[15, 16]. Since these samples may consist of replications,
they are further diversified by taking approximately 1000
Metropolis-Hastings steps [17, 18]. Figure 2 illustrates the
robot’s machine learning system’s view of the playing field
after severalmeasurements have been recorded.The 50 circles
sampled from the posterior probability (blue circles) reflect
what the robot knows about the white circle (not shown)
given the light sensor data that it has collected.The algorithm
then considers a fine grid of potential measurement locations
on the playing field. At each potential measurement location,
the 50 sampled circles are queried using the likelihood
function to produce 50 samples of what measurement could
be expected at that location given each hypothesized circle.
This results in a set of potential measurement values at each
measurement location. The Shannon entropy of the set of
potential measurements at each location is computed, which
results in an entropy map, which is illustrated in Figure 2 as
the copper-toned coloration upon which the blue circles lie.
The set of measurement locations with the greatest entropy
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Figure 2:This figure illustrates the robot’smachine learning system’s
view of the playing field using the näıve light sensor model. The
axes label playing field coordinates in LEGO distance units. The
previously obtained measurement locations used to obtain light
sensor data are indicated by the black and white squares indicating
the relative intensitywith respect to the näıve light sensormodel.The
next selectedmeasurement location is indicated by the green square.
The blue circles represent the 50 hypothesized circles sampled from
the posterior probability. The shaded background represents the
entropy map, such that brighter areas indicate the measurement
locations that promise to provide greater information about the
circle to be characterized. Note that the low entropy area bounded
by the white squares indicates that this region is probably inside
the white circle and that measurements made here will not be
as informative as measurements made elsewhere. The dark jagged
edges at the bottom of the colored high entropy regions reflect the
boundary between the playing field and the region that is outside of
the robotic arm’s reach.

are identified, and the next measurement location is ran-
domly chosen from that set. Thus the likelihood function
not only affects the inferences about the circles made by
the machine learning algorithm, but also affects the entropy
of the measurement locations, which guides further explo-
ration. In the next section, we describe the two models of the
light sensor and their corresponding likelihood functions.

The efficacy of the sensor model will be quantified by the
average number of measurements the robot needs to make to
estimate the circle parameters within a given precision.

2.4. Models Describing a Light Sensor. In this section we dis-
cuss two models of a light sensor and indicate precisely how
they are integrated into the likelihood function used by both
the Bayesian Inference and Inquiry Engines.

2.4.1.TheNaı̈ve Likelihood. Anäıve light sensormodel would
predict that if the sensor was centered on a black region (sur-
face albedo of zero), the sensor would return a small number
on average, and if it were centered on a white region (surface
albedo of unity), it would return a large number on average.
Of course, there are expected to be noise variations from
numerous sources, such as uneven lighting of the surface,
minor variations in albedo, and noise in the sensor itself.
So one might expect that there is some expected squared
deviation from the two mean sensor values for the white and
black cases. For this reason, we model the expected sensor
response with a Gaussian distribution with mean 𝜇

𝐵
and

standard deviation 𝜎
𝐵
for the black surface and a Gaussian

distribution withmean 𝜇
𝑊
and standard deviation 𝜎

𝑊
for the

white surface. The likelihood of a measurement 𝑑
𝑖
at loca-

tion (𝑥
𝑖
, 𝑦
𝑖
) corresponding to the näıve light sensor model,

Prnaive({(𝑑𝑖, (𝑥𝑖, 𝑦𝑖))} | C, 𝐼), can be written compactly as

Prnaive ({(𝑑𝑖, (𝑥𝑖, 𝑦𝑖))} | C, 𝐼)

=

{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{

{

(2𝜋𝜎
𝑊
)
−1/2 exp[−

(𝜇
𝑊
− 𝑑
𝑖
)
2

2𝜎
2

𝑊

]

for 𝐷((𝑥
𝑖
, 𝑦
𝑖
) , (𝑥
𝑜
, 𝑦
𝑜
)) ≤ 𝑟

𝑜
,

(2𝜋𝜎
𝐵
)
−1/2 exp[−

(𝜇
𝐵
− 𝑑
𝑖
)
2

2𝜎
2

𝐵

]

for 𝐷((𝑥
𝑖
, 𝑦
𝑖
) , (𝑥
𝑜
, 𝑦
𝑜
)) > 𝑟

𝑜
,

(6)

where C = {(𝑥
𝑜
, 𝑦
𝑜
), 𝑟
𝑜
} represents the parameters of the hy-

pothesized circle and 𝐷((𝑥
𝑖
, 𝑦
𝑖
), (𝑥
𝑜
, 𝑦
𝑜
)) is the Euclidean

distance given in (3).The joint likelihood for𝑁-independent
measurements is found by taking the product of the 𝑁
single-measurement likelihoods. In a practical experiment,
the means 𝜇

𝐵
and 𝜇

𝑊
and standard deviations 𝜎

𝐵
and 𝜎

𝑊

can be easily estimated by sampling known black and white
regions several times using the light sensor.

2.5. The SSF Likelihood. A more accurate likelihood can be
developed by taking into account the fact that the photo diode
performs a weighted integral of the light arriving from a
spatially distributed regionwithin its field of view, theweights
being described by the spatial sensitivity function (SSF) of the
sensor. Since the SSF of the light sensor could be arbitrarily
complex withmany local peaks, but is expected to decrease to
zero far from the sensor, we characterize it using a mixture of
Gaussians (MoG) model, which we describe in this section.

The sensor’s response situated a fixed distance above the
point (𝑥

𝑖
, 𝑦
𝑖
) to a known black-and-white pattern which can

be modeled in the lab frame by

𝑀(𝑥
𝑖
, 𝑦
𝑖
) = 𝐼min + (𝐼max − 𝐼min) 𝑅 (𝑥𝑖, 𝑦𝑖) , (7)

where 𝐼min and 𝐼max are observed intensities for a completely
black surface (surface albedo of zero) and a completely white
surface (surface albedo of unity), respectively, and 𝑅 is a
scalar response function, varying between zero and one that
depends both on the SSF and the surface albedo [19]. The
minimum intensity 𝐼min acts as an offset and (𝐼max − 𝐼min)
serves to scale the response to LEGO units.

The response of the sensor is described by𝑅(𝑥
𝑖
, 𝑦
𝑖
), which

is a convolution of the sensor SSF and the surface albedo
𝑆(𝑥, 𝑦) given by

𝑅 (𝑥
𝑖
, 𝑦
𝑖
) = ∫𝑑𝑥𝑑𝑦SSF (𝑥 − 𝑥

𝑖
, 𝑦 − 𝑦

𝑖
) 𝑆 (𝑥, 𝑦) , (8)

where the SSF is defined so that the convolution with a com-
pletely white surface results in a response of unity. In practice,
we approximate this integral as a sum over a pixelated grid
with 1mm square pixels

𝑅 (𝑥
𝑖
, 𝑦
𝑖
) = ∑

𝑥,𝑦

SSF (𝑥 − 𝑥
𝑖
, 𝑦 − 𝑦

𝑖
) 𝑆 (𝑥, 𝑦) . (9)
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We employ a mixture of Gaussians (MOG) as a param-
eterized model to describe the SSF in the sensor’s frame co-
ordinates (𝑥󸀠, 𝑦󸀠) = (𝑥 − 𝑥

𝑖
, 𝑦 − 𝑦

𝑖
)

SSF (𝑥󸀠, 𝑦󸀠) = 1

𝐾

𝑁

∑

𝑛=1

𝑎
𝑛

× exp [− {𝐴
𝑛
(𝑥
󸀠

−𝑢
󸀠

𝑛
)

2

+𝐵
𝑘
(𝑦
󸀠

− V
󸀠

𝑛
)

2

+ 2𝐶
𝑛
(𝑥
󸀠

−𝑢
󸀠

𝑛
) (𝑦
󸀠

−V
󸀠

𝑛
) } ] ,

(10)

where (𝑢󸀠
𝑛
, V󸀠
𝑛
) denotes the center of the 𝑛th two-dimensional

Gaussian with amplitude 𝑎
𝑛
and covariance matrix elements

given by𝐴
𝑛
, 𝐵
𝑛
and𝐶

𝑛
. The constant𝐾 denotes a normaliza-

tion factor, which ensures that the SSF integrates to unity [19].
The model is sufficiently general so that one could vary the
number of Gaussians to any number, although we found that
in modeling this light sensor testing models with 𝑁 varying
from𝑁 = 1 to𝑁 = 4 was sufficient. The MoG model results
in a set of six parameters to be estimated for each Gaussian

𝜃
𝑛
= {𝑎
𝑛
, 𝑢
󸀠

𝑛
, V
󸀠

𝑛
, 𝐴
𝑛
, 𝐵
𝑛
, 𝐶
𝑛
} , (11)

where the subscript 𝑛 is used to denote the 𝑛th Gaussian in
the set. These must be estimated along with the two intensity
parameters, 𝐼min and 𝐼max in (7) so that an MoG model with
𝑁 Gaussians consists of 6𝑁 + 2 parameters to be estimated.

We assign a Student-𝑡 distribution to the SSF model
likelihood, which can be arrived at by assigning a Gaus-
sian likelihood and integrating over the unknown stan-
dard deviation 𝜎 [16]. By defining D = {(𝑑

1
, (𝑥
1
, 𝑦
1
)),

(𝑑
2
, (𝑥
2
, 𝑦
2
)), . . . , (𝑑

𝑁
, (𝑥
𝑁
, 𝑦
𝑁
))} and writing the hypothe-

sized circle parameters as C = {(𝑥
𝑜
, 𝑦
𝑜
), 𝑟
𝑜
}, we have

PrSSF (D | C, 𝐼) ∝ [
𝑁

∑

𝑖=1

(𝑀 (𝑥
𝑖
, 𝑦
𝑖
) − 𝑑
𝑖
)
2

]

−(𝑁−1)/2

, (12)

where𝑁 is the number of measurements made by the robot,
and the function𝑀, defined in (7), relies on both (8) and (10).
Note that in practice, the MoG SSF model described in (10)
is used to generate a discrete SSF matrix which is used in the
convolution (9) to compute the likelihood function via the
sensor response model𝑀 in (7).

2.6. Data Collection for SSF Estimation. In this section we
describe the collection of the light sensor readings in the lab-
oratory that were used to estimate the SSF of the light sensor.
The SSF is a function not only of the properties of the photo
diode, but also of the illuminating LED and the height above
the surface. For this reason, measurements were made at a
height of 14mm above a surface with a known albedo in a
darkened room to avoid complications due to ambient light
and to eliminate the possibility of shadows cast by the sensor
or other equipment [19].

The surface, which we refer to as the black-and-white
boundary pattern, consisted of two regions: a black region on
the left and a white region on the right separated by a sharp

(a)

0
∘

90
∘

180
∘

270
∘

(b)

Figure 3: (a) This figure illustrates the laboratory surface, referred
to as the black-and-white boundary pattern, with known albedo,
which consisted of two regions: a black region on the left and a white
region on the right separated by a sharp linear boundary. (b) This
illustrates the four sensor orientations used to collect data for the
estimation of the SSF along with the symbols used to indicate the
measured values plotted in Figure 5. The top row views the sensors
as if looking up from the table so that the photodiode placement in
the sensor package can be visualized. Below these the gray sensor
shapes illustrate how they are oriented looking down at both the
sensors and the albedo surface. Measurements were taken as the
sensor was incrementally moved, with one-millimeter steps, in a
direction perpendicular to the boundary (as indicated by the arrow
at the bottom of the figure) from a position of 5 cm to the left of
the boundary (well within the completely black region) to a position
5 cm to the right of the boundary (well within the completely white
region).This process was repeated four times with the sensor in each
of the four orientations.

linear boundary as shown in Figure 3(a). Here the surface
and sensor are illustrated as if viewing them by looking up at
them from below the table surface, so that the placement of
the photodiode in the sensor package can be visualized. The
lab frame was defined to be at the center of the black-white
boundary so that the surface albedo, 𝑆BW(𝑥, 𝑦), is given by

𝑆BW (𝑥, 𝑦) = {
1, for 𝑥 > 0,
0, for 𝑥 ≤ 0.

(13)

Measurements were taken as the sensor was incrementally
moved, with one-millimeter steps, in a direction perpendic-
ular to the boundary from a position of 5 cm to the left of
the boundary (well within the completely black region) to a
position 5 cm to the right of the boundary (well within the
completely white region) resulting in 101 measurements.This
process was repeated four times with the sensor in each of



6 Journal of Sensors

40

(0, 0)

(a)

39

(0, 0)

(b)

35

(4, 4)

(c)

32
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Figure 4: Four additional symmetry-breaking albedo patterns were
employed. In all cases, the sensor was placed in the 0∘ orientation
at the center of the pattern, indicated by (0, 0). In the two lower
patterns, the center of the white square was shifted diagonally from
the center by 4mm as indicated by the coordinates (white text) of
the corner. The recorded intensity levels are displayed in the white
albedo area.

the four orientations (see Figure 3 for an explanation), giving
a total of 404 measurements using this pattern.

The black-and-white boundary pattern does not provide
sufficient information to uniquely infer the SSF, since the
sensor may have a response that is symmetric about a line
oriented at 45∘ with respect to the linear boundary. For this
reason, we employed four additional albedo patterns consist-
ing of black regions with one white quadrant as illustrated in
Figure 4, which resulted in four more measurements. These
have surface albedos defined by

𝑆
𝑎
(𝑥, 𝑦) = {

1, for 𝑥 > 0mm, 𝑦 > 0mm,
0, otherwise,

𝑆
𝑏
(𝑥, 𝑦) = {

1, for 𝑥 < 0mm, 𝑦 > 0mm,
0, otherwise,

𝑆
𝑐
(𝑥, 𝑦) = {

1, for 𝑥 > 4mm, 𝑦 > 4mm,
0, otherwise,

𝑆
𝑑
(𝑥, 𝑦) = {

1, for 𝑥 < −4mm, 𝑦 > 4mm,
0, otherwise,

(14)

where the subscripts relate each albedo function to the
pattern illustrated in Figure 4.

2.7. Estimating SSF MoG Model Parameters. In this section
we describe the application of Bayesian methods to estimate
the SSF MoG model parameters. Keep in mind that in this
paper we are considering two distinct inference problems: the
robot’s inferences about a circle and our inferences about

the light sensor SSF. Both of these problems rely on making
predictions about measured intensities using a light sensor.
For this reason many of these equations will not only look
similar to what we have presented previously, but also depend
on the same functions mapping modeled albedo fields to
predicted sensor responses, which are collectively repre-
sented using the generic symbol D. It may help to keep in
mind that the robot is characterizing a circle quantified by
model parameters represented jointly by the symbol C, and
we are estimating the SSF of a light sensor quantified bymodel
parameters represented jointly by the symbol 𝜃 below. With
the exception of the evidence, represented by function 𝑍
below (which is not used by the robot in this experiment),
all of the probability functions contain the model parameters
in their list of arguments making it clear to which inference
problem they refer.

Theposterior probability for the SSFMoGmodel parame-
ters, collectively referred to as 𝜃 = {𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑁
}, for amodel

consisting of𝑁 Gaussians, is given by

Pr (𝜃 | D, 𝐼) = 1
𝑍

Pr (𝜃 | 𝐼)Pr (D | 𝜃, 𝐼) , (15)

where here D refers to the data collected for the SSF
estimation experiment described in the previous section, 𝐼
refers to our prior information about the SSF (which is that it
may have several local peaks and falls off to zero far from the
sensor), and𝑍 refers to the evidence𝑍 = Pr(D | 𝐼), which can
be found by

𝑍 = ∫𝑑𝜃Pr (𝜃 | 𝐼)Pr (D | 𝜃, 𝐼) . (16)

In our earlier discussion where Bayes’ theorem was used to
make inferences about circles, the evidence played the role
of a normalization factor. Here, since we can consider MoG
models with different numbers of Gaussians and since we
integrate over all of the possible values of the parameters,
the evidence quantifies the degree to which the hypothesized
model order𝑁 supports the data.That is, the optimal number
of Gaussians to be used in the MoG model of the SSF can be
found by computing the evidence.

All five sets of data D described in the previous section
were used to compute the posterior probability. These are
each indexed by the subscript 𝑖 where 𝑖 = 1, 2, 3, 4, so that𝐷

𝑖

refers to the data collected using each of the four orienta-
tions 𝜙

𝑖
= {0
∘

, 90
∘

, 180
∘

, 270
∘

} to scan the black-and-white
boundary pattern resulting in 𝑁

𝑖
= 101 measurements for

𝑖 = 1, 2, 3, 4, and where the value 𝑖 = 5 refers to the 𝑁
𝑖
= 4

measurements attained using the 0∘ orientation with the set
of four additional patterns.

We assign uniform priors so that this is essentially a
maximum likelihood calculation with the posterior being
proportional to the likelihood. We assign a Student-𝑡 distri-
bution to the likelihood, which can be arrived at by assigning
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a Gaussian likelihood and integrating over the unknown
standard deviation 𝜎 [16]. This can be written as

Pr (𝐷
𝑖
| 𝜃, 𝐼) ∝ [

[

𝑁𝑖

∑

𝑗=1

(𝑀
𝑖𝑗
(𝑥
𝑖𝑗
, 𝑦
𝑖𝑗
)−𝐷
𝑖
(𝑥
𝑖𝑗
, 𝑦
𝑖𝑗
))

2

]

]

−(𝑁𝑖−1)/2

,

(17)

where 𝑖 denotes each of the five sets of data and 𝑗 denotes
the 𝑗th measurement of that set, which was taken at position
(𝑥
𝑖𝑗
, 𝑦
𝑖𝑗
). The function𝑀

𝑖𝑗
(𝑥, 𝑦) represents a predicted mea-

surement value obtained from (7) using (9) with the albedo
function 𝑆(𝑥, 𝑦) defined using the albedo pattern 𝑆BW(𝑥, 𝑦)
with orientation 𝜙

𝑖
for 𝑖 = 1, 2, 3, 4 and the albedo patterns

𝑆
𝑎
, 𝑆
𝑏
, 𝑆
𝑐
, 𝑆
𝑑
for 𝑖 = 5 and 𝑗 = 1, 2, 3, 4, respectively. As such

the likelihood relies on a difference between predicted and
measured sensor responses.

The joint likelihood for the five data sets is foundby taking
the product of the likelihoods for each data set, since we
expect that the standard deviations that were marginalized
over to get the Student-𝑡 distribution could have been
different for each of the five data sets as they were not all
recorded at the same time

Pr (D | 𝜃, 𝐼) =
5

∏

𝑖=1

Pr (𝐷
𝑖
| 𝜃, 𝐼) . (18)

We employed nested sampling [15, 16] to explore the pos-
terior probability since, in addition to providing parameter
estimates, it is explicitly designed to perform evidence calcu-
lations, which we use to perform model comparison in iden-
tifying the most probable number of Gaussians in the MoG
model. For each of the four MoG models (number of Gaus-
sians varying from one to four) the nested sampling algo-
rithm was initialized with 300 samples and iterated until the
change in consecutive log-evidence values is less than 10−8.
Typically one estimates the mean parameter values by taking
an average of the samples weighted by a quantity computed
by the nested sampling algorithm called the logWt in [15, 16].
Here we simply performed a logWt-weighted average of the
sampled SSF fields computed using the sampled MoG model
parameters (rather than the logWt-weighted average of the
MoG model parameters themselves), so the result obtained
using an MoG model consisting of a single Gaussian is not
strictly a single two-dimensional Gaussian distribution. It is
this discretized estimated SSF fieldmatrix that is used directly
in the convolution (9) to compute the likelihood functions as
mentioned earlier in the last lines of Section 2.5.

3. Results and Discussion

In this section we present the SSF MoG light sensor model
estimated from the laboratory data and evaluate its efficacy by
demonstrating a significant improvement of the performance
in the autonomous robotic platform.

3.1. Light Sensor SSF MoG Model. The light sensor data col-
lected using the black-and-white boundary pattern are illus-
trated in Figure 5. One can see that the intensity recorded
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Figure 5: This figure illustrates the intensity measurements,
𝐷
1
, 𝐷
2
, 𝐷
3
, 𝐷
4
from the four sensor orientations, recorded from

the sensor using the black-and-white boundary pattern. Figure 3
shows the orientations of the sensor corresponding to the symbols
used in this figure.

Table 1: A comparison of the tested MoG SSF models and their
respective log evidence (in units of data−408).

MoG model order Log evidence Number of parameters
1 Gaussian −665.5 ± 0.3 6
2 Gaussian −674.9 ± 0.3 12
3 Gaussian −671.9 ± 0.4 18
4 Gaussian −706.1 ± 0.4 24

by the sensor increases dramatically as the sensor crosses the
boundary from the black region to the white region, but the
change is not a step function, which indicates the finite size of
the surface area integrated by the sensor. It is this effect that is
to bemodeled by the SSF function.There is an obvious asym-
metry between the 90∘ and 270∘ orientations due to the shift
of the transition region. In addition, there is a significant dif-
ference in slope of the transition region between the 0∘, 180∘
orientations and the 90∘, 270∘ orientations indicating a sig-
nificant difference in the width of the SSF in those directions.
Note also that the minimum recorded response is not zero, as
the reflectance of the black surface is not completely zero.

The nested sampling algorithm produced the mean SSF
fields for each of the MoG models tested, as well as the
corresponding log evidence. Table 1, which lists the log evi-
dence computed for each MoG model order, illustrates that
the most probable model was obtained from the single two-
dimensional Gaussian models by a factor of about exp(9),
which means that it is about 8000 times more probable than
the MoG consisting of two Gaussians. Figure 6 shows the
mean SSF fields described by the MoG models of different
orders. In all cases, the center of the SSF is shifted slightly
above the physical center of the sensor package due to the
placement of the photodiode (refer to Figure 1) as indicated
by the data in Figure 5. In addition, as predicted, one sees
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Figure 6: This figure illustrates the SSF obtained from the four MoG models along with their corresponding log-evidence values.

that the SSF is wider along the 90∘–270∘ axis than along the
0
∘–180∘ axis. Last, Figure 7 demonstrates that the predicted
light sensor output shows excellent similarity to the recorded
data for the black-and-white boundary pattern.

In the next section, we demonstrate that explicit knowl-
edge about how the light sensor integrates light arriving from
within its field-of-view improves the inferences one canmake
from its output.

3.2. Efficacy of Sensor Model. The mean SSF field obtained
using a single two-dimensional Gaussianmodel (Figure 6(a))
was incorporated into the likelihood function used by the
robot’s machine learning system. Here we compare the
robot’s performance in locating and characterizing a circle by
observing the average number of measurements necessary to
characterize the circle parameters within a precision of 4mm
(which is one-half of the spacing between the holes in the
LEGO technic parts).

The three panels comprising Figure 8(a) illustrate the
robot’s machine learning system’s view of the playing field
using the naı̈ve light sensor model. The previously obtained
measurement locations used to obtain light sensor data are
indicated by the black and white squares indicating the
relative intensity with respect to the näıve light sensor model.
The next selected measurement location is indicated by the
green square. The blue circles represent the 50 hypothesized
circles sampled from the posterior probability. The shaded
background represents the entropy map, which indicates the
measurement locations that promise to provide maximal
information about the circle to be characterized. The low
entropy area surrounding the white square indicates that the
region is probably inside the white circle (not shown) and
that measurements made there will not be as informative as
measurementsmade elsewhere. Note that the circles partition
the plane and that each partition has a uniform entropy. All
measurement locations within that partition, or any other
partition sharing the same entropy, all stand to be equally
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Figure 7: A comparison of the observed data (red) with predictions
(black) made by the SSF field estimated using the single two-
dimensional Gaussian MoG model.

informative. Here it is the fact that the shape is known to be
a circle that is driving the likelihood function.

In contrast, the three panels comprising Figure 8(b)
illustrate the playing field using themore accurate SSFmodel.
Here one can see that the entropy is higher along the edges
of the sampled circles. This indicates that the circle edges
promise to provide more information than the centers of
the partitioned regions. This is because that the SSF model
enables one to detect not only whether the light sensor is
situated above the circles edge but also how much of the SSF
overlaps with the white circle. That is, it helps to identify not
onlywhether the sensor is inside the circle (as is accomplished
using the naı̈ve light sensor model), but also the extent to
which the sensor is on the edge of the circle. The additional
information provided about the functioning of the light
sensor translates directly into additional information about
the albedo that results in the sensor output.

This additional information can be quantified by observ-
ing how many measurements the robot is required to take
to obtain estimates of the circle parameters within the
same precision in the cases of each light sensor model.
Our experiments revealed that on average it takes 19 ± 1.8
measurements using the näıve light sensor model compared
to an average of 11.6± 3.9measurements for themore accurate
SSF light sensor model.

4. Conclusion

Thequality of the inferences onemakes froma sensor depend,
not only on the quality of the data returned by the sensor,
but also on the information one possesses about the sensor’s

performance. In this paper we have demonstrated via a case
study, how more precisely modeling a sensor’s performance
can improve the inferences one can make from its data. In
this case, we demonstrated that one can achieve about 18%
reduction in the number of measurements needed by a robot
to make the same inferences by more precisely modeling its
light sensor.

This paper demonstrates how a machine learning system
that employs Bayesian inference (and inquiry) relies on
the likelihood function of the data given the hypothesized
model parameters. Rather than simply representing a noise
model, the likelihood function quantifies the probability that
a hypothesized situation could have given rise to the recorded
data. By incorporating more information about the sensors
(or equipment) used to record the data, one naturally is
incorporating this information into the posterior probability,
which results in one’s inferences.

This is made even more apparent by a careful study of
the experimental design problem that this particular robotic
system is designed to explore. For example, it is easy to
show that by using the naı̈ve light sensor model, the entropy
distribution for a proposed measurement location depends
solely on the number of sampled circles forwhich the location
is in the interior of the circle and the number of sampled
circles for which the location is exterior to the circle. Given
that we represented the posterior probability by sampling
50 circles, the maximum entropy occurs when the proposed
measurement location is inside 25 circles (and outside 25
circles). As the robot’s parameter estimates converge, one can
show that the system is simply performing a binary search
by asking “yes” or “no” questions, which implies that each
measurement results in one bit of information. However, in
the case where the robot employs an SSF model of the light
sensor, the question the robot is essentially asking is more
detailed: “to what degree does the circle overlap the light
sensor’s SSF?”The answer to such a question tends to provide
more information, which significantly improves system per-
formance. One can estimate the information gain achieved
by employing the SSF model. Consider that the naive model
reveals that estimating the circle’s position and radius with a
precision of 4mmgiven the prior information about the circle
and the playing field requires 25 bits of information. The
experiment using the SSFmodel requires on average 11.6mea-
surements, which implies that on average each measurement
obtained using the SSF model provides about 25/11.6 = 2.15
bits of information. One must keep in mind, however, that
this is due to the fact that the SSF model is being used not
only to infer the circle parameters from the data, but also to
select the measurement locations.

Because the method presented here is based on a very
general inferential framework, these methods can easily be
applied to other types of sensors and equipment in a wide
variety of situations. If one has designed a robotic machine
learning system to rely on likelihood functions, then sensor
models can be incorporated in more or less a plug-and-play
fashion. This not only promises to improve the quality of
robotic systems forced to rely on lower quality sensors, but it
also opens the possibility for calibration on the fly by updating
sensor models as data are continually collected.
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Figure 8: (a)These three panels illustrate the robot’s machine learning system’s view of the playing field using the näıve light sensor model as
the system progresses through the first three measurements. The previously obtained measurement locations used to obtain light sensor data
are indicated by the black-and-white squares indicating the relative intensity with respect to the näıve light sensor model. The next selected
measurement location is indicated by the green square. The blue circles represent the 50 hypothesized circles sampled from the posterior
probability.The shaded background represents the entropymap, which indicates themeasurement locations that promise to providemaximal
information about the circle to be characterized. Note that the low entropy area surrounding the white square indicates that the region is
probably inside the white circle (not shown) and that measurements made there will not be as informative as measurements made elsewhere.
The entropy map in Figure 2 shows the same experiment at a later stage after seven measurements have been recorded. (b)These three panels
illustrate the robot’s machine learning system’s view of the playing field using the more accurate SSF light sensor model. Note that the entropy
map reveals the circle edges to be highly informative. This is because it helps to identify not only whether the sensor is inside the circle (as is
accomplished using the näıve light sensor model on the left), but also the extent to which the sensor is on the edge of the circle.
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