An Unsupervised Channel-Selection Method for SSVEP-based BCI Systems

Ethan Webster*, Hadi Habibzadeh*, James J. S. Norton†, Theresa M. Vaughan†, Tolga Soyata*
*Department of Electrical and Computer Engineering, SUNY Albany, Albany, NY 12203
†National Center for Adaptive Neurotechnologies, David Axelrod Institute, Albany, NY 12208
{ewebster, hhabibzadeh, tsoyata}@albany.edu, {norton, vaughan}@neurotechcenter.org

Abstract—Brain-computer interface (BCI)-based systems have been successfully implemented as a communication tool for people with motor deficits that obstruct normal communication. The accuracy of the algorithms used for determining user-selected commands directly impact their practicality to the user. These algorithms are divided into two principal categories, supervised and unsupervised. While the former achieves higher accuracy, the latter is useful when training is not practical for the user.

In this paper, we introduce an unsupervised algorithm for steady-state visual evoked potential (SSVEP)-based BCIs, which works in three steps: (i) it selects multiple sets of EEG (electroencephalogram) channels, followed by (ii) existing feature extraction methods applied to each one of these channel sets. As its final step, (iii) it combines the extracted features from these channel sets by performing a majority vote, yielding a classification. We evaluate the information transfer rate (ITR) attained using our proposed method on a database of 35 subjects using three different (CCA, FBCCA, MSI) feature extraction methods in step (ii). We compare these results to existing methods in the literature that use a single channel set without a majority vote. The proposed method indicates an improvement in at least 7 subjects using any of the three feature extraction methods.

Index Terms—Brain-computer interface (BCI); canonical correlation analysis (CCA); electroencephalography (EEG); filter bank canonical correlation analysis (FBCCA); minimum energy combination (MEC); multivariate synchronization index (MSI); steady-state visual evoked potential (SSVEP).

I. INTRODUCTION

Brain-computer interface (BCI) systems provide a direct link between a person and a computer. This creates an alternative communication channel for people with severe motor deficits such as locked-in syndrome [1] and may also have applications for people without disabilities [2]–[4]. The underlying premise of a BCI is that electroencephalography (EEG)—or some other neuroimaging technology—is used to measure the user’s brain activity in (near) real-time. This brain activity is analyzed to determine the user’s intended actions and a computer or robotic system is used to replace voluntary muscle activity as a means of communication and/or control.

Repetitive visual stimulation is one well-established method for eliciting brain signals for use in a BCI [5]–[7]. For example, when a user attends a light source flashing at 12 Hz (a stimulus), a strong EEG signal can be observed at that same frequency (as well as at harmonic frequencies [i.e., 24Hz, 36Hz, etc.]) as the stimulus. This frequency-specific response in the EEG activity is called the steady-state visual evoked potential (SSVEP). Critically, when multiple stimuli are present, the stimulus the user attends to elicits the strongest SSVEP [8]. This can be recognized using signal processing methods, which allows the user to make a selection; for example, in a BCI speller [9] application, different stimuli can be associated with different letters, which forms the basis of a communication device that allows a person spell words through SSVEP.

When developing an SSVEP-based BCI, one challenge is to decide how many electrodes to record EEG from and where to place these electrodes on the scalp. SSVEPs, for example, are predominantly observed over the occipital region of the scalp [10]. The performance of the signal processing system and subsequently the BCI will be lower if one attempts to measure SSVEPs using electrodes over other regions. Thus, this decision—known as channel selection—can have a significant impact on the overall performance of the BCI. The two general strategies for channel selection are supervised and unsupervised channel selection. While the former results in higher performance (e.g., accuracy or ITR) [11], it requires the collection of data from the user to determine the best set of channels before they can use the BCI, which may render the BCI system less practical.

In unsupervised channel selection, the set of electrodes used are chosen without collecting any additional data. These channels are often chosen based on a priori knowledge, such as previous research on the scalp distribution of the SSVEP. While unsupervised channel selection often results in lower performance, it doesn’t require the collection of data from each user to determine the best set of EEG channels. This means that the BCI can be set up faster, which is particularly advantageous in clinical settings, where time with a participant may be limited.

One limitation of both strategies is that they assume that the best set of electrodes is time invariant (i.e., stays the same). It is possible, however, that due to factors such as participant movements or transient artifacts in specific electrodes that the best set of electrodes changes with time. To circumvent some of these disadvantages, randomization of electrodes is investigated in [12], in which the data is selected from a random set of electrode to reduce the dependency on single electrode failures. Here, we present an unsupervised channel selection method that relaxes the assumption that the best set of electrodes is time invariant. Our method achieves this by simultaneously considering multiple different sets of
electrodes at each time interval. Data from each of these sets are independently processed and a final selection is made using a majority vote.

The rest of this paper is organized as follows. Section II provides a review of the BCI speller system used to generate the SSVEP dataset used in our analysis. Section III details the signal processing methods used for our channel selection method. Section IV presents experimental results that evaluate the performance of our proposed work. Finally, Section V concludes our paper and includes additional remarks.

II. BCI SPELLER AND BENCHMARK DATASET

The performance of any SSVEP-based BCI—represented graphically in Figure 1—is based on the design of multiple systems that work together to elicit brain activity (stimulation system), measure that brain activity (data acquisition system), process the acquired data (signal processing system), and then provide feedback to the user (control/feedback system). These systems are connected to together in a closed-loop and each system is itself comprised of multiple components. Here, we briefly introduce each of the systems and provide an overview of the cue-guided, SSVEP-based BCI speller system used by Wang et al. [13] to generate the benchmark dataset that we use in our study.

A. Stimulation

SSVEPs are elicited by an external stimulus and manifest themselves as voltages (more specifically voltage differences) between electrodes. Thus, a stimulation system is a necessary part of any SSSVEP-based BCI. Stimulation systems may be developed using different types of light sources including computer screens or light emitting diodes. In order to elicit an SSVEP, however, this lighting system must flash at a constant rate (between 1–100Hz). Factors such as the number of stimuli, the frequency of the flashes in each of these stimuli, and even the color of the stimuli can all have an affect on the overall performance of the BCI.

As shown in Figure 1a, the target stimuli (flashing lights) are presented on a computer monitor (23.6-inch LCD display). There were 40 stimuli in total, each flashing at a unique frequency \(f_i \in \{8.0, 8.2, 8.4, \ldots, 15.6, 15.8\} \) with neighboring stimuli having different phases (using phases \(\phi \in \{0, 0.5\pi, \pi, 1.5\pi\} \)). These differences in both frequency and phase are termed joint frequency and phase modulation (JFPM) by Wang et al. in [13].

B. Data Acquisition

In SSVEP-based BCIs, the signal acquisition system is comprised of a set of electrodes (i.e., sensors, usually small metal discs), analog filters, an amplifier, and an analog-to-digital converter. Electrodes measure weak (in the \(\mu \)V range) neural signals from the surface of the scalp. Multiple electrodes (1 to 512 electrode channels [not including ground and reference electrodes]) are often used to measure neural signals from multiple locations. These small signals from the scalp are then filtered (to remove nuisance signals) and amplified (to prepare them for digitization). Finally, the signals are digitized so that they can be further processed using a computer.

The data acquisition system (see Figure 1b) includes 64 electrodes positioned over the scalp according to an extended 10/20 system [14]. The Synamps2 EEG system (Neuroscan®, Inc.) was used to record EEG data, which was digitally sampled at 1kHz. A notch filter was applied at 50Hz to remove power-line interference.

C. Signal Processing

The signal processing system then takes these digital signals and processes them in multiple steps. First, the signals are preprocessed to reduce noise or eliminate transient artifacts. Then features—numerical representations of the data—are extracted. Finally, a classifier uses these features to create a mapping from the EEG data to class labels (e.g., recognized letters in the case of a BCI speller).

The data was first preprocessed by downsampling the data from 1kHz to 250Hz. The CCA and FBCCA methods were
used to extract features (see Section III-C1 and III-C2). Signal classification was done with the maximum feature classifier, which selects the target index corresponding to the maximum correlation between a template signal and an EEG signal. Refer to Figure 1c for a depiction of the signal processing stage.

D. Control and Feedback

The last system involved in SSVEP-based BCIs is the feedback system. The purpose of the feedback system is to update the user on how the BCI is interpreting their brain activity. This may include auditory sounds, changes to the visual user interface, or even the movements of an unmanned aerial vehicle. This information then allows the user to change their behavior (attend to a new stimulus) and start the process of using the BCI over again.

The control and feedback stage (Figure 1d) of the BCI speller consists of a cue (i.e., alphanumeric character) being displayed on the monitor first, then the estimated target is displayed after the classifier makes a decision. The estimated target is recorded for analysis.

E. Benchmark Dataset

The benchmark dataset is comprised of experimental data collected from 35 participants. Each of the participants was asked to complete a cue guided target selection task. A cue was first displayed on the screen and then the user was asked to gaze at that character (i.e., the target). This data was recorded in 6 s epochs (i.e., trials). The cue was displayed for 0.5 s, the participant was given 5 s to gaze at the target, and then the subject was given 0.5 s to rest their eyes. Six blocks of data were collected, each including data obtained from 40 trials, where each of the trials involved the cue of one of the 40 stimuli.

III. METHODS

Here we detail the signal processing techniques we used to evaluate our majority vote channel selection method.

A. Preprocessing

A bandpass filter is applied to raw signals to remove the unwanted frequency components that do not contribute to the classification results, but preserve the harmonics of the SSVEP [6], [15]. We applied a zero-phase 7–90 Hz Butterworth infinite impulse response (IIR) filter of order 20 to EEG signals. The first cut-off frequency is set to 7 Hz, which is the lowest target frequency. The second cut-off frequency is set to 90 Hz to include the fifth harmonic of the maximum stimulation frequency ($f_{\text{max}} \times 5 < 90$).

B. Channel Selection

1) Standard Methods: Standard channel selection is performed by using a fixed set of 9 electrodes in the occipital region, which is the visual processing region of the brain; therefore, this region has the highest information content relevant to SSVEP.

2) Our Method: In our method, we generate multiple sets of electrodes from a pool of 10 electrodes. In each set $\{E_1, E_2, \ldots, E_v\}$, 3 electrodes are fixed (Oz, O1, and O2), however, the other 7 (PO3, PO4, PO5, PO6, POz, CB1, CB2) are used to generate a random population of 5 electrodes. The combination of 3 fixed electrodes and 5 random electrodes generate a total of 8 electrodes to form each set. The 3 fixed electrodes are from the most central occipital electrode channels: Oz, O1, and O2 (previous research has confirmed that these three channels normally have the strongest SSVEP for healthy subjects [16]).

For example, $\{\text{Oz, O1, O2, PO3, PO4, PO5, PO6, POz}\}$ denotes a valid set, conforming to all aforementioned rules for our selection.

Equation 1 formulates the total number of unique combinations that can be generated using our methodology,

$$V = \frac{Q!}{K!(Q-K)!} = \frac{7!}{5!(2)!} = 21,$$

where Q is the pool of random electrodes and K is the number of selected electrodes from Q.

C. Feature Extraction

We chose three well-known multichannel feature extraction methods to evaluate our majority voting scheme; namely, CCA [5], FBCCA [6], and MSI [7].

All three of these feature extraction methods involve finding a measure of correlation between template signals and EEG signals. These template signals are defined as:

$$Y_i = \begin{bmatrix} \sin(2\pi f_i t) \\ \cos(2\pi f_i t) \\ \vdots \\ \sin(2\pi N_h f_i t) \\ \cos(2\pi N_h f_i t) \end{bmatrix}, \quad t = \frac{1}{F_s} \frac{2}{F_s} \cdots \frac{N_i}{F_s}, \quad i = 1, 2, \ldots, N_I,$$

where f_i is the SSVEP stimulation frequency to model, F_s is the sampling frequency of the SSVEP data, N_h is the number of harmonics to consider ($N_h = 5$ in this study), N_i is the number of signal samples, and t is the vector of time points. A reference signal is found for N stimulation frequencies as $Y = \{Y_1, Y_2, \ldots, Y_N\}$.

1) CCA: For SSVEP detection, CCA [5] is a statistical method that finds an optimal linear combination to maximize the correlation between a set of template signals (Y) and multichannel EEG signals.

Let $X \in \mathbb{R}^{N_c \times N_t}$ be a multichannel EEG signal and $Y \in \mathbb{R}^{N_m \times N_t}$ be a corresponding reference signal, where N_c is the number of electrode channels used for analysis and $N_m = 2N_h$. The weights W_x and W_y are found in order to achieve the maximum correlation between $x = X^T W_x$ and $y = Y^T W_y$. These weights are found by solving the following problem:

$$\max_{W_x, W_y} \rho(x, y) = \frac{W_x^T X Y^T W_y}{\sqrt{W_x^T X^2 X^T W_x \cdot W_y^T Y^2 Y^T W_y} \cdot W_y^T W_y}, \quad (3)$$
A solution to (3) is found using the singular value decomposition (SVD) of
\[
\Omega = C_{XX}^{-1/2} \cdot C_{XY} \cdot C_{YY}^{-1/2},
\]
where \(C\) is the correlation matrix of \(X\) and \(Y\), detailed in (7). The singular values \(\rho_1, \rho_2, \ldots, \rho_M\) of matrix \(\Omega\) are the canonical coefficients (\(M\) is the smaller of \(N_c\) and \(N_m\)). The maximum canonical coefficients correspond to the maximum correlation between \(X\) and \(Y\), thus \(\kappa_i = \rho_i = \rho_{\text{max}}\) are used as features for \(N\) stimulus frequencies.

2) FBCCA: FBCCA [6] extends CCA [5] by combining the maximum CCA coefficients from multiple frequency sub-bands of EEG. These sub-bands of EEG are extracted using a filter bank. The maximum coefficients \(\hat{\beta}_1, \hat{\beta}_2, \ldots, \hat{\beta}_{N_c}\) are combined according to [6]:
\[
\hat{\rho}_i = \sum_{n=1}^{N_c} w(n) \cdot (\hat{\beta}_n^i)^2,
\]
where \(n\) is the index of \(N_c\) sub-bands and
\[
w(n) = n^{-a} + b, \quad n \in [1, 2, \ldots, N_c].
\]
The parameters \(a\) and \(b\) can be determined using a grid search, and were set to 1.25 and 0.25, respectively (according to previous research [6]). The weighted coefficients \(\kappa_i = \hat{\rho}_i\) are used as features for \(N\) stimulus frequencies.

3) MSI: MSI is a measure of synchronization between two signals [7]. In this method, the correlation matrix between \(X\) and \(Y\) is found as:
\[
C = \begin{bmatrix}
C_{XX} & C_{XY} \\
C_{YX} & C_{YY}
\end{bmatrix}.
\]
To reduce autocorrelation within \(X\) and \(Y\) (which can cause false detections of SSVEP), the correlation matrix is whitened using the following linear transformation (zero-phase component or ZCA whitening [17]):
\[
U = \begin{bmatrix}
C_{XX}^{-1/2} & 0 \\
0 & C_{YY}^{-1/2}
\end{bmatrix}.
\]
The whitened correlation matrix is calculated as
\[
C' = UCU^T.
\]
The eigenvalues \(\lambda_1, \lambda_2, \ldots, \lambda_G\) (where \(G = N_c + N_m\)) of \(C'\) are then normalized according to
\[
\lambda'_k = \frac{\lambda_k}{\text{tr}(C')}.
\]
Finally, the synchronization index is:
\[
\beta = 1 + \frac{\sum_{k=1}^{G} \lambda'_k \log(\lambda'_k)}{\log(G)}.
\]

D. Classification

The third and final signal processing step is classification. The features are used by the classifier to assign a class label (a number) between 1 and \(N\) to the filtered signals. Here, we review the maximum feature classification method used by [5]–[7] and describe our majority voting classification method to combine the classification results obtained using the signals from multiple sets of EEG electrode channels.

1) Maximum Feature Classification: The maximum feature method uses the maximum feature extracted using \(N\) template signals for classification (this is referred to as the original classifier hereafter). The target frequency is estimated as
\[
\hat{f}_{\text{target}} = \max_i \kappa_i, \quad i = 1, 2, \ldots, N,
\]
where \(\kappa_i\) are the features extracted from the \(N\) template signals corresponding to each of the target stimulus frequencies. The numeric index of the estimated target frequency is the class label output by the maximum feature classifier \((L_1, L_2, \ldots, L_N)\).

2) Majority Voting Classification: Majority voting is a method for combining the outputs of multiple classifiers [18]. For example, consider three classifiers for use in an SSVEP-based BCI: one using CCA, another using FBCCA, and a third using MSI for feature extraction. For a given target, each classifier outputs a class label \((L_1, L_2, L_3)\). The majority vote is the class label occurring the most frequently in that set.

We use majority voting to combine the outputs of multiple classifiers, each using a different electrode set (but the same feature extraction method).
The enumeration of these sets was found using the function `combnk` in MATLAB® [19]. For a given target, each of the classifiers corresponding to a single electrode combination outputs a class label. The final classification result is determined as the majority vote of the 21 labels (see Figure 2).

IV. EXPERIMENTAL RESULTS AND INSIGHTS

A. Experimental Setup

The algorithms explained in Section III were implemented using MATLAB® [19]. The built-in `canoncorr` and `eig` are the principal functions used for the CCA and MSI algorithms, respectively. The scripts were run remotely on an Oracle® Linux Server (Release 7.5) powered by two Intel® Xeon® E5-2680 v4 processors, 256 GB of memory, and two Nvidia® Tesla® K80 GPUs with driver version 396.26.

B. Performance Evaluation

The performance metric used in this study is the information transfer rate (ITR) [20], which was calculated for each subject on a per-trial basis. The formula for ITR is

\[
R = \log_2 N + P \cdot \log_2 P + (1 - P) \cdot \log_2 \frac{1 - P}{N - 1},
\]

where \(R \) is the ITR (bits/target) and \(P \) is the target classification accuracy for a single subject. The ITR (bits/min) is calculated as \(R \cdot 60 / T \), where \(T \) is the total classification time in seconds, and is equal to the gaze shifting time added to the stimulation time needed for a classification. In this analysis, the time required for a subject to shift their gaze to a symbol following the cue was assumed to be 0.55 s. The size of the EEG signal time interval (\(\Delta t \)) used for classification was ranged from 0.25 s to 5 s in 0.25 s intervals.

C. Results

The classification results from the majority vote classifier and the original classifier were found for each of the three feature extraction methods under study (a total of six unique methods). The majority vote classifiers are denoted as MV-CCA, MV-FBCCA, and MV-MSI (MV for majority vote). The average ITR for all classifiers is shown in Figure 3. These results show that the average ITR of the majority vote classifiers is \(\approx 4\% \) higher than that of the standard classifiers.

Figure 4 depicts individual differences in performance between the majority vote classifiers and the standard classifiers. Refer to Table I for significance test results of these differences. The statistical distribution of ITR among test subjects is shown in Figure 5. Outliers are data points that fall outside the inner fence of \(1.5 \times IQR \), where the interquartile range (IQR) is the likely range of variation.

The Lilliefors test for normality [21] was applied to the per-trial ITR distribution for each subject, and it indicated that these distributions were not normal at the 5% significance level. Therefore, to evaluate the significance of the ITR differences between the majority vote classifiers and the original classifiers for each subject, two-sided sign tests were used to calculate the \(p \)-value of these difference distributions. The \(p \)-values of these tests were used to determine whether the majority vote channel selection method significantly improved or decreased the ITR distribution for each subject. We report this improvement or reduction as significant if \(p < 0.05 \). No significant change is reported if the per-subject ITR distribution was not significantly improved or reduced. The results for this individual analysis are shown in Table I.

The differences in cumulative ITR between the majority vote classifiers and original classifiers are evaluated using paired \(t \)-tests, to determine if the majority vote channel selection method significantly improves overall ITR. When all subjects are included in analysis, the only classifier showing a significant improvement is CCA, with \(p < 0.01 \). Because the performance for subject 18 can be considered as a significant outlier, the paired \(t \)-tests were also performed with the exclusion of that subject. This provides values of \(p < 0.05 \) for FBCCA and \(p < 0.01 \) for MSI.

V. DISCUSSION AND CONCLUSION

In situations when a patient needs access to a BCI system and there is not adequate time for finding optimal electrode channel selections, the proposed majority vote channel selection method can prove useful by utilizing the information from...
Fig. 4. Individual differences in ITR between majority vote FBCCA (MV-FBCCA) and original FBCCA methods (top), MV-CCA and original CCA methods (middle), and MV-MSI and original MSI methods (bottom). The red lines indicate the average ITR difference.

Fig. 5. Subject ITR distributions for each of the classifiers under study. The whiskers show the extreme accuracies excluding outliers. Outliers are shown as individual “+” marks. Boundaries are determined by the 25th and 75th percentiles.

As we observed with the performance of some test subjects, notably subject 18, the method fails in cases when maximum features extracted from the majority of electrode combinations consistently produce the same wrong result. Our hypothesis is that a soft voting process like a random forest would improve the worst cases observed for our majority vote classifier without negatively impacting the best cases. An implementation of this would involve applying weights to the maximum features extracted from the multiple electrode combinations. Another possibility to enhance the performance of our method is increasing the number of electrode channel combinations. This will be the topic of future research.

In this paper, we proposed a majority vote classifier based on a new channel selection method for SSVEP-based BCIs that does not require calibration data or optimization, and our evaluation using a benchmark dataset shows that this new method can significantly outperform the a priori channel selection method when using CCA for feature extraction.

REFERENCES

