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Abstract 

 

Hair fibers are ubiquitous to every environment and are the most commonly found form 

of trace evidence at crime scenes.  The primary difficulty forensic examiners face after retrieving 

a hair sample is determining who it came from.  Currently, the methodology of microscopic 

examination of potential hair evidence is absent of statistical probability and is inherently 

subjective.  Another method, involving DNA analysis, takes months to conduct and the majority 

of times is unsuccessful due to its degradation and absence from the hair.  Here, Attenuated Total 

Reflectance (ATR) Fourier Transform Infrared (FTIR) Spectroscopy coupled with advanced 

statistics was used to identify a hair sample within a specific confidence solely from its spectrum.   

Ten spectra were collected for each of ten human, cat, and dog donors and a single 

synthetic fiber for 310 total spectra.  A spectrum is collected by simply placing a single strand or 

patch of hair, without preparation, directly across the crystal (500μm) of the instrument. Two 

Partial Least Squares-Discriminant Analysis (PLS-DA) models were constructed: one to 

differentiate natural hair fibers from synthetic fibers and the second discriminating human hair 

from dog and cat hair.  Both internal models were successful in separating the desired class from 

another; synthetic hair was completely separated from actual hair in the binary approach and all 

human samples were predicted as human in the species specific model.   

The species specific training model was tested by loading spectra from ten external 

donors (three human, two cat and five dog) and examined the model’s ability to correctly assign 

these spectra.  The external validation confirmed our model’s ability to correctly classify a 

sample as human as well as properly predict spectra that are not human.  It also showed that a 

breed of dog not accounted for in the training data set was entirely misclassified as cat, but more 

importantly led to the possibility that different breeds of dog can be separated based on their hair 

spectra.  This preliminary investigation sheds light on the next step of the discrimination process 

to identify the gender and race of a human hair, as well as the identification of different hair 

dyes.  Overall, the method is able to quantitatively identify a sample of hair as human with a high 

degree of confidence and is of ample importance to the field of forensic science.  The method 

can be conducted without the need of a specialist, is non-destructive, is extremely quick and 

requires no sample preparation.   
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1. Introduction 

 Hair fibers are ubiquitous to every environment and are a common form of trace evidence 

found at crime scenes. The primary difficulty forensic examiners face after retrieving a hair 

sample is determining its origin; if it came from a human or an animal and, if human, what is the 

race, gender and type of body hair (e.g. head, pubic, underarm, etc.). Light microscopy is the 

most commonly employed method for the investigation of hairs in forensic laboratories[1]. 

Transmitted light and polarized light microscopes are traditionally used to analyze and identify 

the morphology of a natural fiber[2]. A comparison microscope is used when comparing 

unknown natural hairs, or fibers, recovered from a crime scene to those of a known origin.[3]  

Hair classification is dependent on the expertise of the forensic examiner, the quality of the hair 

sample and the instrumentation used[1].  DNA analysis is another common method employed for 

the identification of an unknown hair sample. DNA testing is an extensive and costly procedure 

that requires sophisticated techniques, time and resources[4]. Since hair is so abundant, crime 

scene investigators collect many unknown fibers for analysis that could have come from a 

human, an animal or even a wig.  The ability to quickly identify a hair fiber as human, animal or 

synthetic, with statistical support, would be of tremendous assistance to forensic investigations. 

 Based upon the probability theory, evidence including fingerprints, body fluids, and hair 

are considered as circumstantial[5]. Fingerprints and body fluids have established probability 

standards recognized by the criminal justice system that account for points of comparison 

between known and unknown samples of evidence[5].  The issue preventing the same type of 

standards for hair analysis is that the method is unable to directly associate the number of 

different properties between two hairs and the probability that the samples did or did not come 

from the same individual[6]. Additionally, two examiners who analyze the same hairs may 

describe the hairs in slightly different ways, placing varying emphasis on certain characteristics, 
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and often use different descriptive words in their findings[7]. Furthermore, hair comparisons may 

contain prejudice or bias, on the forensic expert’s part, due to interactions with criminal justice 

personnel[5]. In particular, police and attorneys may have preconceived beliefs on a suspect’s 

guilt, and if these attitudes are expressed to the examiner, it can greatly affect their conclusions 

when analyzing hair evidence. 

 Hair is important to the investigation process because it may contain DNA and, in some 

cases, it is the only evidence available linking a criminal to the crime scene. In the 2009 report, 

“Strengthening Forensic Science in the United States: A Path Forward,” it was concluded that  

there are no accepted statistics about the frequency with which certain hair characteristics are 

distributed within a population and that hair comparisons for individualization have no scientific 

support without nuclear DNA[8]. In early 2013, the F.B.I. began a review of over 2000 

convictions based on hair evidence[9]. Of the first 310 cases, DNA analysis revealed that 72 of 

the convictions were grounded on faulty hair evidence[9]. One case involved a man named 

Claude Jones who was executed in 2000 after being convicted of killing the owner of a bar. His 

conviction stemmed from the belief that a hair recovered from the crime scene was his. As part 

of the F.B.I.’s review, DNA from the hair proved to not have come from Claude Jones[10]. 

Although this was only one case, there are many more examples where innocent people were 

wrongly convicted based on improper conclusions drawn by examiners, which reinforces the 

need for new methods to accurately analyze hair evidence.  

Despite its increasing popularity, the process of extracting DNA from a hair fiber is an 

extensive procedure that does not always generate usable results[11-14].  The majority of the 

genetic material in hair is located in its root which is generally absent from the hair shaft (i.e. the 

portion of hair that grows out of the skin)[4].  However, collected hairs absent of the root or 

follicle material may undergo exhaustive and laborious mitochondrial DNA analysis, even 
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though success is not guaranteed[4]. DNA analysis is extremely costly and time consuming, not 

to mention that most laboratories are currently backlogged. A method for determining the 

identity of an unknown fiber quickly, with a high degree of certainty, and eliminating examiner 

bias would be extremely useful and cost-effective for the field of forensic science. 

 ATR FTIR spectroscopy is a technique rising in popularity for analytical and biological 

purposes. It has been employed for the analysis of biomedical samples[15], paint[16, 17], 

fingerprints[18] and ink[19]. The attributes of ATR FTIR spectroscopy are very attractive for 

forensics because of its rapid and non-destructive nature, its ease-of-use and minimal to no 

sample preparation. An infrared spectrum displays the vibrational characteristics of a sample 

based on the different absorption frequencies of the individual functional groups[20]. The ATR 

attachment allows for analysis of solid samples, often with no sample preparation[21]. The 

advantage of combining ATR FTIR spectroscopy with chemometrics is its ability to enhance the 

selectivity of the instrument and create classification models[16, 22, 23]. 

Two published studies demonstrate the use of FTIR and chemometrics to differentiate the 

spectra from different types of hair. Espinoza et al. applied infrared spectroscopy and advanced 

statistics to the forensic identification of elephant and giraffe hair[24]. They visually observed a 

difference in the elephant and giraffe hair spectra at a very prominent peak (1032 cm-1), which is 

due to surface cystine oxides and the presence of cysteic acid.  Through the discriminant analysis 

of their spectral data they demonstrated a performance index of 91.8%, which specifies how well 

their algorithm can differentiate between elephant and giraffe hair.  Another group combined 

FTIR microscopy and chemometrics to differentiate Asian hair samples and black Caucasian 

hairs[25]. Using Principle Component Analysis (PCA), they were able to separate the three 

female Asian hair samples from the three female Caucasian hair samples demonstrating their 

ability to discriminate between hair from two different races. 
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Our lab has used Raman spectroscopy, in conjunction with advanced statistics, for 

differentiation purposes when spectra are visually similar. Some of these studies include body 

fluid identification[26], distinguishing between species’ blood[27], species’ bones[28], and 

mixtures of semen and blood[29]. However, Raman spectroscopy is not an advantageous method 

to use for hair analysis due to the significant fluorescence interference, as shown in the 

literature[30, 31]. For this reason our approach was to use ATR FTIR to analyze hair samples. 

Similar work has been done as part of two theses projects, “Vibrational spectroscopy of keratin 

fibres: A forensic approach” by Helen Panayiotou[32] and “A forensic investigation of single 

human hair fibres using FTIR-ATR spectroscopy and chemometrics” by Paul Barton[33], at 

Queensland University of Technology in Australia. Our study is an expansion upon their work, 

primarily Panayiotou’s 2004 thesis, in a few different ways. First, they treat their hair samples by 

flattening with a roller[32] prior to analysis whereas we have analyzed all hairs without any 

sample preparation. Second, our data analysis was performed using a different statistical 

algorithm better suited for class separation, PLS-DA, and we used ATR FTIR spectroscopy for 

data collection, rather than Panayiotou’s approach of using FTIR micro-spectroscopy in the 

transflection mode. With ATR FTIR, there is no need for sample preparation and allows for the 

potential opportunity of on-field analysis due to the availability of portable instruments[34].  

Finally, our sample size for species differentiation is over fourteen times larger, focusing on 

humans, dogs and cats.   

 Our analysis for the present study is bimodal where the first model discriminates natural 

hair from synthetic and the second discriminates human hair from other common natural hair 

sources (i.e. dog and cat hairs).  Hair samples were collected from a synthetic wig and a diverse 

population of humans, dogs, and cats. The spectra were differentiated using Partial Least 

Squares-Discriminant Analysis (PLS-DA) classification models which were built from a training 
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dataset of human, dog, and cat spectra. An external validation step was also carried out to test the 

model’s ability to accurately predict a sample to its actual class.  

 

2. Methods and materials 

 

2.1 ATR FTIR spectrometer and hair samples 

 

 A PerkinElmer Spectrum 100 FTIR spectrometer with an attenuated total reflectance 

(ATR) attachment was used for data collection for all experiments. Spectra were collected over a 

range of 650-4000 cm-1 with 10 scans per sample. For each donor, ten averaged spectra were 

collected. The chemical composition of hair, primarily its proteins, is subject to change after 

being exposed to various chemical reactions such as bleaching, waving, straightening and 

extensive sunlight exposure[30, 35-37]. Of the many variables that can influence the chemical 

make-up of hair only chemically treated (i.e. dye, bleaching, etc.) hairs were excluded from this 

study. A single hair was placed over the diamond/ZnSe crystal of the instrument in order to 

obtain a spectrum with optimal signal. For animal donors consisting of only fur hairs, multiple 

hairs were required because they are fine and shorter compared to that of an animal’s guard 

(outer) hair[38]. For each donor, ten spectra were acquired at various points along several hair 

fibers, and each spectrum was treated as its own sample. In the case where multiple fur hairs 

were placed over the crystal, spectra were obtained over different patches of the fur hair.   

 Spectra from ten different human, dog and cat hair samples were collected as well as 

from one polyester synthetic hair fiber.  The race, gender, and age of the human donors, as well 

as the breed of dog and cat, were taken into consideration for sample collection. These individual 

characteristics can be seen in Table 1.   
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Table 1:  The background information of the thirty human, dog and cat donors used in the 

training data set for all PLS-DA models.   

Donor # Human (age) Dog Cat 

1 Asian female (18) Barbet Maine Coon 

2 Caucasian female (20) Maltese Ragdoll 

3 Caucasian male (20) A Cocker Spaniel Domestic Short Hair (Grey A) 

4 Caucasian male (20) B Dachmund Mini Domestic Short Hair (Black A) 

5 Caucasian female (40) Pug Domestic Short Hair (black-and-white A) 

6 Hispanic female (20) Golden Retriever  Domestic Short Hair (White) 

7 Hispanic male (20) Unknown Dog Domestic Short Hair (Brown) 

8 African American  female (21) Yorkshire Terrier Domestic Short Hair (Black B) 

9 Egyptian male (20) Briard Domestic Short Hair (Grey B) 

10 Ecuadorian male (20) Beagle Domestic Short Hair (black-and-white B) 

 

2.2 Data preparation and statistical treatment 

 

 All data preparation and statistical models were performed with the PLS Toolbox 7.0.3 

(Eigenvector Research, Inc.) operating in MATLAB version R2010b. The model for 

differentiating natural hair from synthetic hair was built using the full spectrum collected (650-

4000 cm-1). All 310 spectra were imported into a dataset; the dataset was preprocessed using 

transmittance log, second-order derivative, normalization by total area and finally mean 

centering.  The model created for discriminating human hair from animal hair (species specific) 

was built using spectra truncated to the data range of 650-1827 cm-1. The 300 total spectra 

(excluding the ten synthetic fiber spectra) were imported into a data matrix and preprocessed the 

same way as the binary model. All models were cross-validated using the venetian blinds 

method. 
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2.3 External validation 

 

 The training model was tested by loading external donors (three human, two cat and five dog) 

into the model to test its ability to correctly predict the identity (class) of an untrained sample. 

All external samples were preprocessed in the same manner as the training data but not included 

as part of the training dataset used to build the models.   

 

3. Results 

 

The main objectives of this study were to discriminate natural hair from a synthetic fiber 

and differentiate human hair from animal hair using chemometric modeling of ATR FTIR 

spectroscopic data. Preliminary experimentation determined the model selection and data 

processing steps. PLS-DA models were chosen to build simple classification models using the 

infrared spectra of a synthetic fiber and human, dog, and cat hair.  The number of latent variables 

for each model was selected by choosing a local minimum of total data variance captured using a 

scree plot (not shown). The PLS-DA models were constructed in two fashions, first by 

classifying each spectrum as either natural or synthetic and secondly, focusing on the individual 

species, to determine if a more specific assignment could be made. The second model was used 

to make class predictions of 10 external natural hair donors that were not accounted for in the 

training dataset.   
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3.1: Natural hair v. synthetic hair (binary) 

 

The prominent features of an infrared spectrum of natural hair correspond to specific 

vibrational modes of the amino acids and lipids present[39]. The averaged raw spectra for 

human, dog, cat and synthetic hair, as shown in Figure 1, reveal visual differences between 

natural hair and synthetic hair. These differences include the absence of the Amide A peak at 

3300 cm-1 and the more intense CH3/CH2 (alkane stretching) peak at 2950 cm-1 in the averaged 

synthetic hair fiber spectrum.  Additionally, various spectral inconsistences exist between the 

two hair types in the fingerprint region (650-1827cm-1) including peaks at ~1400 and ~1450 cm-1 

for synthetic hair and peaks at ~1520 and ~1620 cm-1 only present in natural hair spectra. These 

peaks most likely correspond to C=N and C=O respectively[32]. Due to these spectral 

differences, the polyester synthetic hair spectrum can be visually differentiated from a spectrum 

of natural hair quite easily. 

 
Figure 1: The raw mean spectra of human, cat, dog, and synthetic hair samples. 
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For statistical analysis, all 310 spectra from the 31 donors were used to build a Partial 

Least Squares-Discriminant Analysis (PLS-DA) model using four latent variables. Before the 

model was built, all spectra were preprocessed as described in Section 2.2. Initially, the human, 

cat, and dog samples were grouped together as one class (natural hair) and compared to synthetic 

hair in a binary approach. Under cross-validation (CV) all of the synthetic hair samples were 

correctly classified as seen in Figure 2. A cross validation model works by treating all of the 

trained spectra as unknowns, and tries to properly predict them. The results of perfect separation 

between the synthetic hair and natural hair were not surprising since the averaged natural hair 

spectra looked visually different from the averaged synthetic hair spectrum. These results 

demonstrate that our model can efficiently discriminate samples of natural hair from synthetic 

hair with 100% accuracy. 

 
Figure 2: Cross-validated synthetic hair class predictions for all 310 spectra analyzed in the 

binary model (natural v. synthetic). All spectra above the red threshold line are predicted to the 

synthetic class and all below are predicted as not synthetic. 
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3.2: Human, cat, and dog hair (species specific) 

 

The 300 spectra of the human, cat, and dog hairs were truncated to 650-1827 cm-1. An 

artifact around 2350 cm-1, consistent with atmospheric CO2[40], is not a vibrational mode of hair 

and to ensure that the air did not influence our results we only analyzed the specified region. 

Although not shown here, the full hair spectrum was also analyzed and the results were very 

similar, informing us that the air artifact would not significantly alter our results. From visual 

inspection, all natural hair spectra shown below in Figure 3 appear to be identical in terms of the 

number of spectral features and their location. For this reason we utilized classification statistical 

analysis in an attempt to extract any differences which could not be visualized. 

 
Figure 3: The truncated, raw mean spectra of human, cat, and dog hair samples. 
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class predictions, which assigns a sample to its nearest class and samples with a large uncertainty 

are unassigned, all of the human and cat spectra in the training dataset were correctly assigned to 

their proper class. Only one dog (Cocker Spaniel) spectrum was predicted incorrectly, as 

unassigned. Using this approach both the human and cat classes showed 100% correct 

classification while the dog class showed a marginally lower rate at 99%. Although these strict 

predictions are informative, cross-validated analysis provides more reliable classification results. 

Figure 4 shows the cross-validation prediction plot which illustrates the probability that a 

given spectrum will be classified as human. All of the human hair spectra lie above the 

classification threshold (red dotted) line, signifying a 100% correct class prediction rate. 

However, one cat (Ragdoll) and one dog (Barbet) spectrum are above the threshold line and are 

therefore false positive predictions. This means that 90% of the spectra from the Ragdoll and 

Barbet donors were correctly classified as opposed to 100% classification rate for all other 

donors’ spectra. The single misclassified spectra could be due to any sudden instrument 

movements or background contaminants since nine out of ten spectra along the same hair fiber 

were properly predicted. Overall this represents a correct classification rate of 99% for both the 

cat and dog classes as not human under cross-validation.  These results conclude that our model 

has no false negative assignments and is capable of predicting a sample of human hair as human 

with 100% accuracy.  
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Figure 4: The cross-validated model predictions for human hair. The red threshold line 

represents the default classification threshold where all spectra above are predicted as human and 

all below are predicted as not human. 
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Table 2: The new donors collected for the external validation 

 

 

Examining the prediction plot for the species specific model demonstrates how well the 

model correctly predicted for the human class.  Figure 5 shows complete separation between the 

classes and all 130 human spectra (100 in the training set and 30 external) lie above the threshold 

(red dotted) line, with one external sample lying close to it. In addition, all of the cat and dog 

spectra (training and external) are well below the threshold line signifying zero false positive 

predictions for the human class. Therefore, the accuracy of the model for predicting a hair 

sample as human or nonhuman under strict class prediction conditions was 100%.  

External Donor (Class) Description 

Human Hispanic Female, age 24 

Human Caucasian Female, age 22 

Human Caucasian Male, age 30 

Cat Calico  

Cat Domestic Short Hair (Grey C) 

Dog Maltese B 

Dog Maltese C 

Dog Maltese D 

Dog Golden Retriever B 

Dog Pomeranian 
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Figure 5: Human class predictions for all 400 samples analyzed, including untrained donors, in 

the species specific PLS-DA model.  Red line represents the default classification threshold 

where all spectra above are predicted to the human class and all spectra below are predicted as 

not human. 
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Figure 6: Strict class predictions for the external validation samples loaded into the species 

specific PLS-DA model. Deviations from each class’ horizontal line represent a 

misclassification. 
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Figure 7: Strict class predictions for the individual dog donors. Deviations from each class’ 

horizontal line represent a misclassification. 

 

To further investigate the Pomeranian dog breed misclassification, we also created a 

second binary PLS-DA to differentiate dog hairs from cat hairs and included the Pomeranian dog 

donor in the dog class. An influence plot was analyzed, which groups spectra similar to each 

other within a 95% confidence interval and all spectra plotted outside the interval are considered 

extremely different. Analysis of the model revealed all ten Pomeranian spectra had higher 

Hotelling T2 values, and were grouped together, separate from all other hair spectra. Hotelling T2 

values are directly related to the amount of variation in each sample. So, higher Hotelling T2 

values suggest that those spectra are somehow inherently different than the other spectra, yet 

similar within themselves because of their close grouping. Although the Pomeranian dog was 

shown to be different from the other dog and cat spectra, it still does not explain its 

misclassification as cat, but rather illuminates the unique characteristics in the chemical spectra 

for the Pomeranian dog donor. 
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Figure 8: The influence plot for the dog v. cat binary model. All spectra to the left of the vertical 

blue line are within a 95% confidence interval.  

 

4. Discussion 

 The differentiation of human hair from cat and dog hair is difficult to observe from their 

raw spectra, unlike for synthetic hair from natural hair. The species specific PLS-DA model was 

able to successfully make this differentiation based on the shape of each component latent 

variable (Figure 9). These variables represent the prominent discriminating factors between 

spectra and are denoted by different peaks in the fingerprint region. This observation implies that 

there is more than one characteristic peak which differentiates the individual classes of hair from 

one another; latent variables one, two and three as shown in Figure 9 depict where these 

characteristic peaks are. The dominant features are in the regions 1739-1742 cm-1 (C=O stretch), 

1467-1477 cm-1 (CH2 bend) and 1230 cm-1(amide III). One possible explanation for the model’s 
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discriminatory power is based on the different combinations of amino acids that form keratin, the 

structural protein from which hair is constructed. Hair is chemically composed of 65-95% 

proteins and the content of the different proteins vary among different donors[41]. The 2004 

study conducted by Panayiotou at Queensland University of Technology determined differences 

between the relative intensity areas of various peaks for seven different samples: human, cat, 

dog, horse, cow, feather, and wool[32]. As it pertains to our project, that study found that human 

and dog hairs have lower Amide I (α-helix) content than cats and that humans have lower Amide 

II (α-helix) content than cats and dogs. Based off this research and the complex nature of keratin, 

it can help explain the subtle differences identified by the species specific model. Here, we show 

that spectra collected from multiple points along a donor’s single hair fiber can still be predicted 

as its correct species (class).   

 The most important results are that a sample of human hair can be quickly and non-

destructively analyzed, and subsequently identified with a high degree of confidence. Our rapid 

analysis and superb probability prediction results have been accomplished without human bias, 

and could potentially be of great use for the forensic investigative process. The non-destructive 

nature of using ATR FTIR spectroscopy makes this method ideal for the forensic identification 

of an unknown hair sample. The developed methodology has the potential to differentiate 

gender, race, other animal species, and even hair dyes. Furthermore, the presence of portable 

FTIR instrumentation supports the idea that on-field analysis of a hair fiber is feasible.  

 

Conclusions 

 The combination of ATR FTIR spectroscopy and chemometrics was demonstrated to be a 

powerful tool toward the differentiation of hair samples from three species. Two PLS-DA 

models were constructed: one focusing on the differentiation of natural hair fibers from synthetic 
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fibers and the second discriminating human hair from animal hair. Both models were successful 

in separating the desired class from another; synthetic hair was completely separated from 

natural hair in the binary approach and all human samples were predicted as human in the 

species specific model. The external validation step confirmed our model’s ability to correctly 

predict a sample as human with zero false positives. A larger sample size for the dog class would 

help account for the misclassified Pomeranian donor, but this is beyond the scope of this project. 

Of the many variables that can alter one’s hair chemistry, only chemically treated hairs 

(i.e. dye, bleaching, etc.) were excluded. All other potential external interferences (e.g. sun 

damage, type of shampoo, physical treatment, etc.) were not taken into account for this study and 

did not preclude a high differentiation efficiency of the method. Overall, this demonstrates the 

significance of the model’s unique ability to quantitatively identify a sample of hair as human 

with a high degree of confidence. But, most importantly, the method can be conducted without 

the need of a trained expert, is non-destructive, requires no sample preparation, with rapid 

identification, making it of ample importance to the field of forensic science.  
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