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Abstract    

Testosterone (T) can alter sexual, social, anxiety-like, and/or cognitive behavior of male 

rodents and exert trophic effects on the prostate.  However, whether these effects are due 

to actions of T, or its 5-reduced and/or aromatized metabolites, is of interest.  We tested 

the hypothesis that T’s effects to enhance prostate proliferation, sexual, social, cognitive 

and/or anti-anxiety-like behavior require formation of 5-reduced and/or aromatized 

metabolites. Gonadectomized (GDX) or gonadally-intact rats were administered T-

containing, or empty, silastic capsules in conjunction with a 5-reductase inhibitor 

(finasteride; Experiment 1) or an aromatase inhibitor (formestane; Experiment 2). The 

performance of rats in sexual, cognitive (object recognition, object placement, water 

maze), anxiety-like (open field, elevated plus maze, light–dark transition, mirror maze, 

social interaction) tasks were examined.  Prostate mass and concentrations of T and its 

metabolites were assessed.  Rats that were GDX, compared to intact rats, had lower 

androgen levels, smaller prostates, longer latencies to initiate sexual contacts, had poorer 

cognitive performance in the object placement and water maze tasks, and demonstrated 

more anxiety-like behavior in the light/dark transition task and the mirror maze.  

Finasteride produced effects similar to GDX to decrease prostate weight and inhibit 

sexual behavior and spatial cognition, but not affective behaviors.  Formestane did not 

alter prostate mass or sexual behavior, but did enhance cognitive performance in the 

object recognition task and tended to increase central entries in the open field, an 

indication of anti-anxiety behavior.  Thus, shunting T’s metabolism from aromatization 

to favor 5-reduction had beneficial cognitive and anti-anxiety effects without negative 

effects on prostate or sexual behavior. 
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Introduction 

Aging men can experience decline in gonadal, sexual, cognitive, and affective 

function. For men, androgen levels begin to rise after puberty and remain high until 

midlife (Hiort, 2002), when a decade-by-decade decline in endogenous androgen levels 

occurs (Morley et al,. 1997). On average, this decline, involves a 0.4% reduction in total 

testosterone and a 1.2% reduction in biologically-free testosterone per year, causing mean 

total plasma testosterone levels decrease by about 35% between 25 and 75 years of age 

(Schatzl et al., 2003; Vermeulen, 2000).  Some behavioral sequelae associated with aging 

include poorer performance in spatial tasks, greater anxiety and depression, and 

decreased sexual motivation (Davidson Kwan and Greenleaf, 1982; Basaria & Dobs, 

2001; 2002; Morley et al., 2001; Janowsky Oviatt and Orwoll, 1994; Seidman, 2002). In 

addition to androgen-sensitive changes in behavior, there are physical changes, such as 

increased risk for benign prostate hyperplasia (BPH) and prostate cancer (Untergasser, 

Rumpold, Hermann, Dirnhofer, Jilg and Berger, 1999).  These physical changes worsen 

with aging, as frequency of moderate and worse urinary symptoms related to BPH rise 

from 13% in the fifth to 28% in the eighth decade of life (Kaplan, 2005).  Affective, 

cognitive, and physical decline associated with aging is of particular importance given 

that demographics suggest that older age groups are increasing as a percentage of the 

population (Nieschlag et al., 2006).  Many men seek testosterone (T) replacement therapy 

(TRT) to combat these effects (Marks & Kaplan 2009; Kaufman & Seftel, 2004). TRTs 

have successfully been used to improve spatial cognition, libido and depression (Tenover, 

1998; Janowsky, Oviatt, and Orwoll, 1994; Pope, Cohane, Kanayama, Siegel, and 

Hudson, 2003).  However, TRTs are also associated with negative consequences 
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including increased risk for prostate cancer (Raynaud, 2006). Greater understanding is 

needed of the relative trophic effects of androgens on peripheral and central tissues. 

In rodent models, decline in endogenous T can produce negative effects on 

sexual, cognitive, and anxiety-like, behavior. Older male rodents demonstrate similar 

behavioral decline to that of aging men: aged rodents display decreased sexual motivation 

and cognitive performance in spatial tasks (Chambers, Thornton, Roselli, 1991; Spruijt 

Meyerson, and Hodlund, 1989; Barnes, 1988).  Extirpation of the testes, a primary source 

of androgens, can reduce plasma levels of androgens (Krey & McGinnis, 1990).  Separate 

studies have shown that gonadectomy (GDX) of rodents produces behavioral effects 

similar to those seen with aging, including decreased sexual proceptivity, cognition, 

increased anxiety and depressive behavior (Adler, Vescovo, Robinson, and Kritzer, 1999; 

Hull & Dominguez, 2007; Aubele, Kaufman, Montalmant and Kritzer, 2008; Bernardi 

Genedani, Tagliavini, and Bertolini, 1989).  Akin to hormone replacement therapy, 

administering T to rats reinstates sexual, cognitive, and affective, performance 

commensurate to that of gonadally-intact rats (Delhez, Hansenne, and Legros, 2003; 

Kritzer, Brewer, Montalman, Davenport, and Robinson, 2007), but coincident effects of 

prostate proliferation are of interest.  Thus, utilizing a GDX model is useful for 

determining the effects of decreasing androgen levels with aging.   

  Some of T’s psychological and physiological effects may be mediated, in part, 

through actions of its 5-reduced and/or aromatized metabolites.  Testosterone is 

metabolized by 5α-reductase enzymes to form 5α-dihydrotestosterone (DHT; Handa, 

Pak, Kudwa, Lund, and Hinds, 2008).  In addition, T is metabolized by aromatase to form 

estradiol (E2: Alejandre-Gomez, Garcia-Segura, Gonzalez-Burgos., 2007; Ellem & 
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Risbridger, 2009; Lephart Lund and Horvath, 2001; Séralini & Moslemi, 2001). 

Interestingly, among rats, levels of T and its 5-reduced metabolites decline with aging 

(Frye et al., 2010).  However, with aging among men, E2 levels remain unchanged or 

increase, resulting in a decrease in the ratio of T to E2 (Ellem & Risbridger; Vermeulen, 

2000).  Thus, the ratio of T to its 5-reduced and/or aromatized metabolites in relation to 

effects on prostate and behavior is of interest.   

 The testes are a significant source of androgens, but T, its 5-reduced, and 

aromatized metabolites, are also produced in the brain.  Trophic effects of T in the brain 

may be in part dependant, and independent of, gonadal condition.  For example, GDX 

reduces the number of aromatase-positive neurons in the hypothalamus, but not limbic 

areas (Jakab, Horvath, Leranth, Harada, and Naftolin, 1993).  Within limbic regions, such 

as the hippocampus, androgen-mediated spine synapse density can be in part independent 

of systemic androgenic potency (MacLusky, Hajszan, Prange-Kiel, and Leranth, 2006).   

Interestingly, androgen-induced remodeling of spine synapses in the hippocampus and 

prefrontal cortex occur independently, and dependently, respectively of actions at 

androgen receptors (ARs; Hajszan, Milner, and Leranth, 2007).   Thus, androgens can 

exert diverse effects and mechanisms for its trophic actions in the brain. 

   We investigated the relationship between T and its metabolites on reproductive, 

cognitive, and affective behavior as well as their proliferative effects in the prostate in 

two experiments. Rats were gonadally-intact, or GDX and implanted with silastic 

capsules that were empty or contained T.  In Experiment 1, rats also had silastic capsules 

containing a 5-reductase inhibitor, finasteride or control implants.  In Experiment 2, rats 

received silastic capsules containing an aromatase inhibitor, formestane, or control 
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implants.  All rats were tested for reproductive, cognitive, and affective behavior, in a 7 

week-long battery. At the end of the battery, prostate was collected and wet weight was 

obtained as an indication of mass. Plasma and brains were collected for measurement of 

peripheral and central androgen concentrations.  We anticipated that GDX and finasteride 

would decrease, while T and formestane would increase, sexual motivation, performance 

in cognitive tasks, anti-anxiety-like behavior, and prostate weights in correlation with 

formation of T’s metabolites.  

Materials and Methods 

These methods were pre-approved by the Institutional Animal Care and Use 

Committee at the University at Albany- SUNY. 

Animals & Housing 

Male Long-Evans rats (N=250), approximately 2 months old at the start of the 

experiment, were obtained from our in-house breeding colony (original stock from 

Charles River Laboratories, Raleigh, NC). Rats were group-housed (3-4 per cage) in 

polycarbonate cages (45 X 24 X 21 cm) in the Laboratory Animal Care Facility of The 

Life Sciences Research Building at The University at Albany-SUNY.  Subjects were 

housed in a temperature- (21 ± 1 °C) and humidity- (50 ± 5%) controlled room that was 

maintained on a 12:12 h reversed light cycle (lights off at 0800 h). Throughout the 

investigation, rats had continuous access to Purina Rat Chow and tap water in their home-

cages. 

Surgery: Gonadectomy and Implantation 

 Rats were either GDX or sham-surgerized under xylazine (12 mg/kg; Bayer 

Corp., Shawnee Mission, KS) and ketamine (60 mg/kg; Fort Dodge Animal Health, Fort 
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Dodge, IA) anesthesia, 26-30 days before the start of behavioral testing.  At the time of 

GDX or sham surgery, rats were randomly assigned to receive a silastic implant (1.57 

mm inner diameter, 3.18 mm outer diameter; 10mm/rat) that was empty (vehicle), 

contained crystalline T, and/or one silastic that contained finasteride (Experiment 1) or 

formestane (Experiment 2) as modified from previous methods (Frye, Edinger, Seliga, 

Wawrzycki, 2004).  Following surgery, and prior to testing, all rats were monitored for 

neurological status by monitoring for loss of weight, righting response, flank stimulation 

response, and/or muscle tone (Marshall & Teitelbaum, 1974).  One rat (GDX with 

finasteride) did not pass these assessments and was immediately euthanized. 

Behavioral Testing  

Rats were tested in two tasks per week with a minimum of 2 days between tests. 

Behavioral data were collected by one trained, blinded, observer (DJD), using a video-

tracking system (ANY-Maze- Stoelting, Inc., Wood Dale, IL).  Unless otherwise 

indicated, testing was conducted in an open field (76 x 57 x 35 cm), situated in a brightly-

lit room. 

Sexual Behavior: Rats were tested for sexual behavior in a chamber (37.5 x 75 x 30 cm), 

per previously reported methods (Edinger & Frye, 2007). Briefly, each rat was placed in 

the chamber with a sexually-receptive female (ovariectomized rat administered 

supraphysiological levels of E2) for 10 mins. Latencies to, and frequencies of mounts, 

intromissions and ejaculations were recorded.  No significant differences were observed 

in mounting or ejaculatory behavior.  Latencies to initial intromission are indicative of 

sexual capacity.  
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Social Interaction: Testing was conducted per previously reported methods (Frye Petralia 

and Rhodes, 2000). Rats were placed in the chamber with a novel male conspecific.  

Amount of time in social interaction (sniffing, grooming, crawling over/under, following 

with contact, engaging in rough and tumble interaction) was recorded. Time spent 

interacting is an index of social/affective behavior.   

Object Recognition:  This procedure was implemented as per prior methods (Ennaceur & 

Delacour 1988; Frye & Lacey, 2001; Paris & Frye, 2008; Luine, Mohan, Tu, and Efange, 

2002; Walf, Rhodes, and Frye, 2006).     

Training: Two identical sphere-shaped objects were placed into adjacent corners of the 

open field chamber.  Rats were placed in a corner opposite the objects.  Rats were 

allowed to freely explore the chamber for 3 minutes, and time spent interacting with each 

object was recorded.  The rats were then single housed.   

Testing: Four hours later, rats were placed back into the same chamber for another 3 

minutes with one of the objects having been replaced with a novel cone-shaped object.  

Amount of time spent interacting with each object was recorded. Greater percentage of 

time spent with the novel, compared to the familiar, object was used as an indication of 

enhanced working memory.   

Object Placement: Methods were as previously described (Ennaceur & Delacour 1988; 

Frye, Duffy, and Walf, 2007; Frye & Lacey, 2001; Luine et al., 2003; Paris & Frye, 

2008). Training was the same as for object recognition and testing involved the same 

objects with one moved to the corner opposite its starting position.  The amount of time 

spent with each object was recorded.  Greater percentage of time spent with the object in 
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the novel/displaced location, compared to the object in the familiar location, was used as 

an indication of enhanced spatial cognition.   

Morris Water Maze: This was conducted as described previously (Vongher & Frye 1999; 

Frye, Edinger, Lephart, and Walf, 2010).  

Habituation: On day one, rats were allowed to swim for 60 secs, in a large circular tank 

(175 cm. diameter, 71 cm deep), with water (24-26oC), that had white, non-toxic, tempera 

paint added to make it opaque.   

Training: On day two, a clear Plexiglas platform, with a top that measures 5.3cm x 

5.3cm, was placed in one of the four quadrants 30 cm from the side of the pool.  The 

water level was filled so that it was 2.5cm above the top of the hidden platform.  Rats 

were given two minutes to find the platform during two trials.  Each trial was initiated 

from a different quadrant. If the rat did not reach the platform within 120 secs, it was 

guided to it and remained on the platform for 45 secs.   

Testing: On day three, rats were allotted 120 secs to find the platform during each of four 

trials.  Each trial was initiated from a different quadrant. The latency to find the hidden 

platform and the distance traveled were recorded.  Shorter latencies and distances are 

considered indicative of better spatial performance.   

Open Field: This was conducted per previous methods (Frye et al., 2000; McCarthy, 

Felzenberg, Robbins, Pfaff, and Schwartz-Giblin, 1995). A grid of 48 squares (9.5 cm 

width each) was superimposed on the floor of the test chamber by the video-tracking 

system.  Entries into outer squares (those adjacent to the outer wall; n=24), central 

squares (all other squares apart from the outer; n=24), are recorded.  The number of 

central square entries is used as an index of anti-anxiety-like behavior. 
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Light-Dark Transition: This task was conducted per previously described methods (Walf 

& Frye, 2005). Rats were placed on the light side of a two-chambered compartment (30 

X 40 X 40 cm), which has white walls and floor, and is illuminated from above by a 40-

watt light. The opposing side of the chamber is black and has a lid. The number of entries 

between the light and dark side of the chamber was recorded for 5 mins.  An entry into 

the light side of the chamber is considered an indication of anti-anxiety behavior. 

Mirror Maze: As per previous methods (Frye et al., 2006), the testing chamber is 52 x 57 

x 52 cm.  It has within it, a mirrored-compartment (52 x 5 x 52 cm) and an alleyway 

without mirrors.  Rats are placed in the alley section, and the number of entries to the 

mirrored chamber were recorded. More entries to the mirror chamber is an indication of 

anti-anxiety behavior.   

Tissue Collection 

 Immediately following testing, subjects were terminated by rapid decapitation. 

Trunk blood was collected and centrifuged (10 mins at 3000 x g).  Brain and prostates 

were extracted, weighed, and flash frozen on dry ice. Brain, prostates, and plasma were 

stored at -80C. Before radioimmunoassay, hypothalamus, hippocampus, frontal cortex, 

and midbrain, were grossly dissected on ice as previously described (Frye, Paris, and 

Rhodes, 2007).  

Radioimmunoassay 

 T, DHT, and E2 concentrations were assessed by radioimmunoassay as previously 

described (Edinger Lee and Frye, 2004; Frye & Bayon, 1999; Frye, McCormick, 

Coopersmith, and Erskine, 1996).  Briefly, the T antibody (T3-125; Endocrine Sciences, 

Calabasas Hills, CA) was diluted 1:20, 000 and binds between 60% and 65% of [3H] T 
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(NET-387: specific activity = 51.0 ci/mmol). The DHT antibody (DT3-351; Endocrine 

Sciences) was diluted 1:10,000 and binds between 60% and 65% of [3H] DHT (NET-302: 

specific activity = 43.5 ci/mmol). The E2 antibody (Dr. Niswender, #244, Colorado State 

University, Fort Collins, CO) was diluted 1:30, 000 and binds approximately 90% of [3H] 

E2 (NET-317: specific activity = 51.3 ci/mmol). Standard curves for all steroids were run 

in duplicate and ranged from 50 - 2000 pg in concentration. Standards were added to 

BSA assay buffer, followed by addition of the appropriate antibody and [3H] steroid. The 

T and DHT assays were incubated overnight at 4C.  The E2 radioimmunoassay was 

incubated at room temperature for 50 min. Separation of bound and free steroid was 

accomplished by the rapid addition of dextran-coated charcoal. Samples were centrifuged 

at 3000 X g for 10 min, following incubation with charcoal. Supernatant was decanted 

into 5 ml scintillation cocktail. The intra- and interassay coefficients of variance were: T 

= 0.09 and 0.04, DHT = 0.08 and 0.09, E2 = 0.09 and 0.09.   

5-reductase activity 

As per previously methods (Kellogg & Frye 1999), the turnover ratios of T to 

DHT were calculated and used as an index of 5-reductase activity. 

Statistical Analyses 

Three-way analyses of variance (ANOVAs) with between-subjects factors of, 

gonadal status (intact, GDX), T condition (T-containing or empty silastics), and enzyme 

inhibitor (vehicle, 5-reductase inhibitor, finasteride or aromatase inhibitor, formestane) 

were utilized for each measure examined. Interactions were assessed via one-way follow-

up ANOVAs with alpha level conditions corrected for multiple comparisons. Where 

appropriate, Fisher’s protected least significant differences post-hoc tests were utilized to 
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determine group differences. Simple regressions were used to assess the amount of 

variance that could be explained for each behavior by 5-reductase activity in the 

hippocampus. The alpha level for statistical significance was p < 0.05. Trends towards 

significance are noted when p < 0.10. A few samples ( < 10), were lost during 

radioimmunoassay causing slight variation in degrees of freedom. 

Results  

Procedure 

  Gonadally-intact and gonadectomized rats with silastic implants that were empty 

or containined T (Edinger & Frye 2006) had effects of 5-reductase and aromatase 

enzyme inhibitors examined in Experiments 1 and 2, respectively.  Sexual, social, 

cognitive, and anxiety behaviors were examined.  Following completion of the testing 

battery, prostate, plasma and brains were collected for endocrine analyses   

Experiment 1: The importance of T’s 5-reduced metabolites was examined with 

a 5-reductase inhibitor, finasteride (Steraloids, Newport, RI).  Finasteride blocks both 

type I and type II isoforms of the 5-reductase enzyme, such that it can decrease 

metabolism of T by ~75% (Finn et al., 2006; Rittmaster, 1994; McConnell & Stoner, 

2001).  There were eight experimental groups: intact rats implanted with finasteride 

(n=20), intact rats implanted with control silastics (n=20), intact rats implanted with T 

(n=15), intact rats implanted with T and finasteride (n=15), GDX rats implanted with T 

(n=16), GDX rats implanted with finasteride (n=15), GDX rats implanted with both T 

and finasteride (n=17), and GDX rats implanted with control/empty silastics (n=14).   
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Experiment 2: The importance of T’s aromatized, metabolites was examined with 

an aromatase inhibitor, formestane (Sigma, St. Louis, MO).  Formestane is a selective 

steroidal aromatase inhibitor, such that it can decrease E2 levels in circulation and brain 

(Martínez-Mota et al., 2008; Lenning et al., 2001).  For Experiment 2, there were eight 

treatment groups: intact rats implanted with formestane (n=16), intact rats implanted with 

control silastics (n=18), intact rats implanted with T and formestane (n=15), intact rats 

implanted with T (n=15), GDX rats implanted with T (n=15), GDX rats implanted with 

formestane (n=13), GDX rats implanted with both T and formestane (n=13), and GDX 

rats implanted with control silastics (n=13).   

Experiment 1 

GDX decreased  levels of T and DHT, while increasing E2 levels. 

There were significant main effects of GDX to decrease T and DHT levels in 

plasma [T: F(1,123) = 335.28, p < 0.05; DHT: F(1,123) = 77.67, p < 0.05], hypothalamus 

[T: F(1,124) = 13.36, p < 0.05; DHT F(1,123) = 7.54, p < 0.05], hippocampus [T: 

F(1,123) = 20.37, p < 0.05; DHT F(1,123) = 34.80, p < 0.05], cortex [T: F(1,122) = 

18.19, p < 0.05; DHT: F(1,123) = 12.60, p < 0.05], and midbrain [T: F(1,122) = 33.61, p 

< 0.05; DHT: F(1,122) = 51.86, p < 0.05]. GDX increased E2 levels in plasma [F(1,123) 

= 58.01, p < 0.05], hypothalamus [F(1,123) = 7.45, p < 0.05], and midbrain 

[F(1,121)=13.92, p < 0.05].  See table I. 

T administration increased levels of, T and DHT E2 

T implants increased T levels significantly in plasma [F(1,123) = 14.15, p < 0.05] 

and tended to increase T levels in the cortex [F(1,122) = 2.88, p < 0.10.  T implants 
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significantly increased DHT levels in the midbrain [F(1,122) = 5.270, p < 0.05]. T 

implants decreased E2 levels in plasma [F(1,123) = 16.664, p < 0.05] and increased levels 

of E2  in the hippocampus [F(1,122) = 5.338, p < 0.05].  See table I.   

5-reductase turnover, as indicated by T to DHT ratios, are in table I (bottom). 

GDX and/or Finasteride Decreased Prostate Weight, Sex, and Social Behavior  

 Prostate weight was significantly decreased by GDX [F(2,124) = 36.97, p < 0.05] 

and finasteride  [F(1,124) = 18.37, p < 0.05] and increased by T [F(1,124) = 11.71, p < 

0.05]  (Figure 1; top panel).   

 Latencies to initial intromission were significantly increased by GDX [F(1,124) = 

77.07, p < 0.05] and finasteride  [F(1,124) = 4.129, p < 0.05] (Figure 1; middle). 

 The duration of time spent in social interaction with a conspecific was decreased 

by GDX [F(1,124) = 77.07, p < 0.05] (Figure 1; bottom).   

T improved working memory, GDX or Finasteride Decreased Spatial Performance 

 In the object recognition task, rats with T-containing compared to empty silastic 

implants spent significantly more time with the novel object [F(1,124) = 3.87, p = 0.05], 

an indication of better working memory (Figure 2; top).   

In the object placement task, GDX compared to intact rats spent significantly less 

time with the displaced object [F(1,124) = 5.14, p < 0.05], a measure of poorer spatial 

memory (Figure 2; middle).   

In the Morris Water Maze, finasteride-administered rats tended to have longer 

latencies to find the hidden platform [F(1,124) = 2.80, p < 0.10], a measure of poorer 

spatial memory (Figure 2; bottom).   

GDX Produced Anxiety-Like Behavior in the Light/Dark and Mirror Mazes 
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In the light/dark transition task, GDX rats made fewer entries into the light 

chamber [F(1,124) = 17.85, p < 0.05], an indication of anxiety-like behavior (Figure 3; 

middle).  

In the mirror maze, GDX rats spent less time in the mirrored chamber [F(1,124) = 

23.223, p < 0.05], indicative of anxiety-like behavior  (Figure 3; bottom).  

No differences were seen in the open field task (Figure 3; top). 

5a-reduction in the Hippocampus Accounts for Variable Effects in Behavior 

Simple regressions revealed the 26% of the variance could be explained for all 

behaviors examined in total by 5-reductase activity in the hippocampus (table II, left). 

Results Experiment 2 

GDX decreased  levels of T and DHT, while increasing E2 levels. 

GDX decreased T and DHT levels in plasma [T: F(1,112) = 176.46, p < 0.05;  

DHT  [F(1,112) = 9.619, p < 0.05], hypothalamus [T: [F(1,112) = 17.10, p < 0.05];  DHT 

[F(1,112) = 63.454, p < 0.05], hippocampus [T: [F(1,112) = 65.47, p < 0.05]; DHT 

[F(1,112) = 35.66, p < 0.05], cortex [T: [F(1,112) = 44.38, p < 0.05]; DHT: [F(1,112) = 

57.70, p < 0.05], and midbrain [T: [F(1,112) = 3.95, p < 0.05]; DHT: [F(1,112) = 51.01, 

p < 0.05]. GDX increased E2 levels in the hippocampus [F(1,112) = 11.25, p < 0.05] and 

midbrain [F(1,112) = 9.93, p < 0.05] (table III). 

T administration increased levels of T and decreased levels of DHT. 

T implants increased T levels significantly in hippocampus [F(1,112) = 4.97, p < 

0.05] and decreased DHT levels in plasma [F(1,112) = 7.377, p < 0.05] See table III.   
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Formestane tended to increase central levels of T. 

 Formestane tended to increase T levels in the hippocampus [F(1,112)=3.50], p < 

0.1] (table III). 

GDX Decreased Prostate Weight, Sex, and Social Behavior  

 Prostate weight was significantly decreased by GDX [F(1,111) = 369.43, p < 

0.05] and increased by T administration [F(1,111) = 11.593, p < 0.05]  (Figure 4; top).   

 Latencies to initial intromission were significantly increased by GDX  [F(1,112) = 

11.916, p < 0.05] (Figure 4; middle). 

 The duration of time spent in social interaction with a conspecific was decreased 

by GDX [F(1,112) = 12.823, p < 0.05] (Figure 4; bottom).   

Formestane improved working memory and GDX Decreased Spatial Performance 

 In the object recognition task, formestane increased time spent with the novel 

object [F(1,112) = 5.72, p < 0.05], indicating better cognitive performance (Figure 5; 

top).   

In the Morris Water Maze, GDX tended to increase latencies to the hidden 

platform [F(1,112) = 3.14, p < 0.10], suggesting poorer spatial memory (Figure 5; 

bottom).   

No differences were seen in the object placement task (Figure 5; middle) 

 Formestane increased, and GDX decreased, anti-anxiety like behavior 

In the open field task, formestane tended to increase the number of central entries 

[F(1,112) = 3.09, p < 0.10], indicating more anti-anxiety-like behavior (Figure 6, top).   
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In the light/dark transition task, GDX rats made fewer entries into the light 

chamber [F(1,112) = 31.67, p < 0.05], an indication of anxiety-like behavior (Figure 6; 

middle).  

In the mirror maze, GDX rats spent less time in the mirrored chamber [F(1,112) = 

46.5, p < 0.05], indicative of anxiety-like behavior  (Figure 6; bottom).  

5a-reduction in the Hippocampus Accounts for Variable Effects in Behavior 

Simple regressions revealed the 36% of the variance could be explained by 5-

reductase activity in the hippocampus (table II, right). 

 

Conclusions 

These findings partly supported our hypothesis that T’s 5α-reduction mediates 

some of its behavioral and peripheral effects.  We found that reducing androgens via 

GDX decreased prostate weight, sexual interest in the standard mating paradigm, 

cognitive performance in the object placement task, and anti-anxiety-like behavior in 

social interaction, light-dark transition, and mirror maze tasks. Systemic administration of 

T significantly increased prostate weight, and enhanced cognition in the object 

recognition task. Blocking T’s metabolism to its 5-reduced metabolites via systemic 

finasteride administration significantly decreased prostate weight, and increased latencies 

to sexual behavior supporting a role for trophic effects of 5-reduced androgens. In 

addition, there were tendencies for finasteride to reduce cognitive performance in the 

water maze task.  Blocking T’s metabolism to E2, via systemic formestane 

administration, did not significantly alter prostate mass or sexual behavior, but it did 

improve cognition in the object recognition task, and tended to decrease anxiety-like 
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behavior in the open field task.  As such, these data support a role for gonadal status in 

sexual, affective, and cognitive behavior, and suggest that centrally routing T’s 

metabolism toward 5α-reduction improves behaviors.   

 Castration reduced prostate proliferation while producing negative effects on 

behavior.  As hypothesized, GDX significantly decreased prostate weight, consistent with 

past studies (Brooks Primka, Berman, Krupa, Reynolds, and Rasmusson, 1991; Borst et 

al., 2007), and this was associated with lower levels of DHT and T in plasma.  Notably E2 

levels remained the same or were increased with GDX. We observed a decrease in sexual 

motivation in the present study similar to that of prior investigations (McGinnis, Mirth, 

Zebrowski, and Dreifuss, 1989; Hull & Dominguez, 2007; Davidson 1966).  One 

structure that may be particularly important in this effect is the midbrain which is thought 

to mediate sexual behavior of rodents (Murphy, Rizvi, Ennis, and Shipley, 1999; Brackett 

& Edwards, 1984). Herein, we find that reduced androgen formation in the midbrain 

correlated with decreased sexual motivation. Indeed, decreases in androgen formation 

with GDX were also observed in hippocampus and cortex, regions that are critical for 

cognitive and anxiety-like behavior. (Aubele et al., 2008; Sandstrom, Kim, and 

Wasserman, 2006; Kritzer, McLaughlin, Smirls, and Robinson, 2001). In the present 

study, GDX decreased cognitive performance, which has been associated with androgen 

milieu in cortex and hippocampus (Kaut & Bunsey, 2001; Brown, Wilson, and Riches, 

1987). Notably, androgens in the cortex and hippocampus are implicated in anxiety-like 

behaviors (Bannerman, Deacon, Offen, Friswell, Grubb, and Rawlins, 2002; Frye & 

Edinger 2004). In the present investigation, GDX increased anxiety-like behavior in the 

light/dark maze, mirror maze, and social interaction tasks supporting past findings of 
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GDX to increase anxiety-like behavior in rodents (Edinger & Frye; 2004, Bitran, 

Kellogg, and Hilvers, 1993; Frye & Seliga, 2001, Fernández-Guasti & Martínez-Mota, 

2003; Adler et al., 1999), and reductions in these behaviors correlated with decreases in 

androgens in hippocampus and cortex. Thus, GDX decreased androgen levels, prostate 

weight, sexual performance, anti-anxiety behavior, and spatial cognition. 

 Administration of T increased prostate proliferation while improving cognitive 

behavior.  Others have demonstrated that prostate mass is increased with T administration 

(Borst et al., 2008). We found that prostate mass correlates with increased levels of DHT 

and T found in plasma, indicating an important role for ARs in these effects. Androgens 

are often utilized to treat sequelae of aging, including decreased libido. While past studies 

have found that systemic T administration can reinstate sexual behavior commensurate to 

levels akin to gonadally-intact rats (McGinnis et al., 1989), we did not observe this 

enhancement. This may be due to the fact that our hormone regimen aimed to produce 

low physiological levels of T and its 5-reduced metabolites in brain (Edinger & Frye, 

2004), whereas others that have demonstrated sexual enhancement via T replacement to 

GDX rats have utilized regimen that are approximately twice what was used in the 

present study (McGinnis et al.). As such, even low levels of androgen reinstatement that 

do not readily produce expected behavioral enhancement may be relevant for prolific 

effects on prostate. Notably, it is rare to observe sexual behavior among GDX rats that 

did not have sexual experience prior to GDX, as was the case in this investigation 

(Retana-Marquez & Velazquez-Moctezuma, 1997) which likely contributed to the 

observed lack of sex effects in our model.  Contrary to our hypothesis, administration of 

T did not have any effects on anxiety-like behavior.  This dosage of T, 10mm silastic 
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implant, has been shown to not alter behavior in the open field and social interaction 

tasks (Frye & Seliga, 2001), which may be due to this regimen only producing low 

physiological levels of T and its 5-reduced metabolites in brain (Edinger & Frye, 2004).  

Thus, we found clear effects of T-replacement to increase prostate mass and improve 

cognitive performance. 

Finasteride decreased prostate proliferation and decreased sexual behavior, 

whereas formestane enhanced cognition without altering prostate weight.  Finasteride, 

decreased prostate weight, as it has been shown to do in past studies (Borst et al., 2008); 

yet, formestane administration did not have any effect on prostate.  Of interest, finasteride 

administration decreased sexual motivation in the standard mating paradigm, supporting 

past findings wherein administration of T’s 5α-reduced metabolites have been shown to 

increase mounting behavior (Butera & Czaja, 1989). Men have also shown slightly 

decreased sex drive with finasteride administration, which were reversed when treatment 

was ceased (Amory et al., 2008).  Formestane administration did not produce any 

significant effects on sexual behavior; however, formestane significantly increased time 

spent with an object in a novel location in the object recognition task. These beneficial 

effects observed with formestane administration may be due to its tendency to increase T 

produced by the hippocampus.   Finasteride’s effects on cognition tended to support this 

hypothesis in that there was a trend for increased latencies to find the hidden platform in 

the water maze task indicating poorer cognitive performance.  We have previously 

observed T’s 5α-reduced metabolites to increase cognition (Frye, Koonce, Edinger, 

Osbourne, and Walf, 2008).   These findings suggest that the presence and importance of 
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androgens in the prostate, the putative effects of DHT’s actions at these targets, and the 

effectiveness of finasteride in reducing prostate proliferation.   

 It important to understand the extent to which T’s 5-reduced, versus aromatized 

metabolites, mediate trophic effects in the brain and periphery, as these androgens can 

have different targets.  While both T and DHT bind with high affinity to intracellular 

ARs, DHT binds with a higher affinity than does T (Roselli, Horton, and Resko, 1987).  

Among GDX rats, administration of DHT produces similar effects to administration of T, 

for reinstatement of cognitive, affective, and depressive performance to levels akin to 

those observed among intact rats (Edinger and Frye, 2005; Frye et al., 2004; Edinger and 

Frye, 2004; Frye & Walf, 2009).  However, DHT is highly active in prostate where it 

may cause harmful proliferation (Tindall & Rittmaster, 2008).  As such, some of the 

prostatic trophic effects of T’s metabolites may outweigh their beneficial actions for 

sexual behavior, affect, and cognition.  Because of the importance of DHT in prostate 

proliferation, 5α-reductase inhibitors have been used as a treatment for BPH and prostate 

cancer (Marks et al., 1999, Fleshner, Trachtenberg, Walsh, and Crawford, 1995; Brufsky, 

1997).  Finasteride’s inhibition of T’s 5α-reduction, and formestane’s inhibition of 

aromatase, may alter actions at intra-cellular receptors (ARs and ERs), as well as at 

membrane receptors, due altered levels of DHT and E2.  In addition, past findings have 

demonstrated the importance of actions at these receptors, and other targets, in the brain 

in the mediation of cognitive, anxiety-like, and sexual behavior (Naghdi, Nafisy, and 

Majlessi, 2001; Frye et al., 2008; Edinger &  Frye, 2006; Weiser, Foradori, and Handa 

2008; Phillips-Farfán, Lemus, and Fernandez-Guasti, 2007).  Of interest in future 
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investigations is the relative roles of T and its metabolites at these receptor targets in the 

brain and peripheral, androgen-sensitive tissues, such as the prostate.  

In conclusion, these results suggest that some of T's behavioral and trophic effects 

may be mediated largely through its metabolites, and that shifting T’s metabolism 

towards 5α-reduction can improve behaviors. This is supported by correlations seen 

between varying levels of these metabolites in the brain and behavior, and correlations 

between the reduction in prostate weight and the levels of these metabolites in plasma.  

This also suggests finasteride to be useful for treating BPH, and prostate cancer, because 

it produced much more salient effects on the prostate than on behavior, and it did not 

alter hormone levels in any brain regions.   Concerning formestane, these results suggest 

that reducing aromatization may be beneficial because it produces positive effects on 

behavior without negative effects on the periphery.  Formestane improved cognition, and 

tended to decrease anxiety like behavior.  While TRT also improves behaviors, it 

produces negative effects on the prostate, which we did not see with formestane 

administration, suggesting the utility of formestane co-administration with androgen 

therapies.  Castration-resistant prostate cancer, a leading cause of death among men, 

underscores the importance of understanding androgen actions and receptor mechanisms, 

as such cancers typically progress despite low levels of T (Mostaghel, Montgomery and 

Nelson, 2009).   
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Figure Legends- Experiment 1 

Figure 1: Depicts the average prostate weight (SEM) and represents the sociosexual 

data.  This includes the latency ( SEM) to intromission for the sex testing and the mean 

interaction time ( SEM) for the Social Interaction task for gonadectomized (GDX) or 

intact male rats (n=14-20/group) implanted with vehicle, finasteride, and/or testosterone. 

* indicates main effect of gonadal condition, p < 0.05, ^ indicates main effect of T 

condition, p < 0.05, # indicates main effect of inhibitor condition, p < 0.05. 

 

 

Figure 2: Represents the cognitive data.  This includes the percentage of time ( SEM) 

for the Object Recognition and Object Placement tasks and the mean average ( SEM) 

latency to the hidden platform in the Morris Water Maze. * indicates main effect of 

gonadal condition, p < 0.05, ^ indicates main effect of T condition, p < 0.05, ## indicates 

a tendency for main effect of inhibitor condition, p < 0.05. 

 

Figure 3 Represents the anxiety data.  This includes the mean central entries ( SEM) for 

the Open Field task, the mean white chamber entries ( SEM) for the Light/Dark 

Transition task, and the mean time spent in the mirror chamber ( SEM) for the Mirror 

Maze task.  * indicates main effect of gonadal condition, p < 0.05. 
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Table I: Concentrations of testosterone, dihydrotestosterone, and estradiol in midbrain, hypothalamus, cortex, hippocampus, 

interbrain, and plasma, of gonadectomized (GDX) or intact male rats (n=14-20/group) implanted with vehicle, finasteride, and/or 

testosterone (mean±SEM). * indicates main effect of gonadal condition, p < 0.05, ^ indicates main effect of T condition, p < 0.05, ^^ 

indicates tendency for a main effect of T condition, p < 0.1 

Gonad GDX Intact 

Gonadal 

Condition 

T 

Condition 

T Vehicle Testosterone Vehicle Testosterone     

Inhibitor Veh Fin veh Fin veh Fin veh Fin     

T Levels       

Plasma 28.128 28.447 32.377 33.609 43.865 40.717 41.13 43.525 *   

± Std error 0.56 0.255 0.51 0.676 1.263 0.884 0.772 1.272     

Hypothalamus 3.966 3.977 3.958 4.09 4.46 4.322 4.26 4.373 *   

± Std error 0.163 0.099 0.105 0.053 0.122 0.059 0.253 0.161     

Hippocampus 1.633 1.593 1.641 1.744 1.806 1.844 1.703 1.833 *   

± Std error 0.028 0.035 0.024 0.042 0.041 0.04 0.078 0.062     

Cortex 1.545 1.646 1.637 1.692 1.866 1.752 2.106 1.806 * ^^ 

± Std error 0.03 0.026 0.034 0.034 0.032 0.026 0.236 0.04     

Midbrain 1.914 1.957 2.051 2.079 2.326 2.228 2.347 2.275 *   

± Std error 0.048 0.044 0.05 0.091 0.063 0.034 0.119 0.091     

DHT Levels       

Plasma 150.68 133.937 308.286 301.875 849.76 710.651 450.821 547.135 *   

± Std error 9.63 15.756 47.769 32.898 119.591 59.446 44.865 58.194     

Hypothalamus 95.086 46.365 56.34 39.919 90.757 107.877 100.787 91.857 *   

± Std error 41.424 14.486 18.786 3.905 18.01 22.705 24.1 12.263     

Hippocampus 21.775 30.598 20.642 33.068 67.674 62.954 66.648 71.315 *   

± Std error 6.778 11.006 4.203 9.915 8.815 13.669 4.834 6.4     

Cortex 29.345 16.955 30.453 26.459 45.703 49.792 48.646 42.583 *   

± Std error 10.17 5.116 11.019 5.445 6.16 9.46 5.364 4.009     

Midbrain 14.565 14.427 20.243 40.14 63.25 51.039 66.464 65.021 * ^ 

± Std error 3.407 2.746 3.232 13.297 9.613 6.328 5.622 5.468     

E2 Levels       

Plasma 17.913 17.153 17.357 17.391 16.175 16.306 14.063 13.632 * ^ 
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± Std error 0.33 0.369 0.317 0.287 0.671 0.269 0.578 0.464     

Hypothalamus 2.507 2.694 2.584 2.712 2.206 2.146 2.102 2.503 * ^ 

± Std error 0.128 0.189 0.145 0.111 0.128 0.102 0.162 0.431     

Hippocampus 1.025 1.034 1.058 1.124 0.941 0.888 0.989 1.302     

± Std error 0.05 0.04 0.047 0.049 0.043 0.04 0.083 0.223     

Cortex 1.001 1.012 1.026 1.118 0.888 0.826 1.075 0.972     

± Std error 0.059 0.06 0.054 0.053 0.046 0.034 0.227 0.192     

Midbrain 1.286 1.347 1.357 1.337 1.116 1.071 0.97 1.212 *   

± Std error 0.084 0.072 0.087 0.088 0.055 0.061 0.08 0.166     

5α-reductase 

activity   

Hypothalamus 19.909 11.874 14.645 9.774 19.745 24.247 22.341 20.477     

Hippocampus 13.018 18.281 12.547 22.523 37.546 32.414 39.855 38.696     

Cortex 18.359 10.104 17.923 15.851 24.227 28.349 23.364 23.466     

Midbrain 7.882 7.274 9.611 18.344 26.527 22.508 28.17 28.578     
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Table II:  Simple regressions for all behaviors examined in total by 5-reductase activity in the hippocampus for GDX or intact male 

rats (n=14-20/group) implanted with vehicle, finasteride, and/or testosterone (left), and GDX or intact male rats (n=13-18/group) 

implanted with vehicle, formestane, and/or testosterone. 

Finasteride-

Task vs. 
hippocampal T 
5 Reduction 

R 
Squared 

Regression 
P-Value  

Formestane-

Task vs. 
hippocampal T 
5 Reduction 

R 
Squared 

Regression 
P-Value 

Lat to Intro 0.075 0.0015  Lat to Intro 0.226 <0.0001 

Central entries 0.006 0.3824  Central entries 0.003 0.5287 

Interaction Time 0.014 0.1812  Interaction Time 0.094 0.0007 

Mirror Entries 0.071 0.002  Mirror Entries 0.005 0.442 

White Entries 0.029 0.053  White Entries 0.021 0.1116 

Obj Rec % Novel 0.042 0.019  Obj Rec % Novel 0.009 0.311 

Obj Place % Novel 0.025 0.0736  Obj Place % Novel 
9.83E-

05 0.9148 

H20 Avg Lat 0.001 0.6782  H20 Avg Lat 0.001 0.7356 

FST Struggling 0.022 0.0833  FST Struggling 0.003 0.5287 
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Figure 2 
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Figure 3 
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Figure Legends- Experiment 2 

Figure 4: Depicts the average prostate weight (SEM) and represents the sociosexual 

data.  This includes the latency ( SEM) to intromission for the sex testing and the mean 

interaction time ( SEM) for the Social Interaction task for gonadectomized (GDX) or 

intact male rats (n=13-18/group) implanted with vehicle, formestane, and/or testosterone. 

* indicates main effect of gonadal condition, p < 0.05, ^ indicates main effect of T 

condition, p < 0.05. 

 

Figure 5: Represents the cognitive data.  This includes the percentage of time ( SEM) 

for the Object Recognition and Object Placement tasks and the mean average ( SEM) 

latency to the hidden platform in the Morris Water Maze. ** indicates a tendency for 

main effect of gonadal condition p < 0.10, # indicates a significant difference for the 

inhibitor condition p < 0.05. 

 

Figure 6 Represents the anxiety data.  This includes the mean central entries ( SEM) for 

the Open Field task, the mean white chamber entries ( SEM) for the Light/Dark 

Transition task, and the mean time spent in the mirror chamber ( SEM) for the Mirror 

Maze task. * indicates main effect of gonadal condition, p < 0.05 ## indicates a tendency 

for main effect of the inhibitor condition. 
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Table III: Concentrations of testosterone, dihydrotestosterone, and estradiol in midbrain, hypothalamus, cortex, hippocampus, 

interbrain, and plasma of gonadectomized (GDX) or intact male rats (n=13-18/group) implanted with vehicle, formestane, and/or 

testosterone (mean±SEM). * indicates main effect of gonadal condition, p < 0.05, ^ indicates main effect of T condition, p < 0.05, ^^ 

indicates tendency for a main effect of T condition, p < 0.1, and ## indicates tendency for a main effect of inhibitor condition, p < 0.1 

Gonad GDX Intact 

Gonadal 

Condition 

T 

Condition 

Inhibitor 

Condition 

T Vehicle Testosterone Vehicle Testosterone       

Inhibitor veh Form veh Form veh Form veh Form       

T Levels         

Plasma 25.661 25.787 29.267 30.19 45.213 46.837 42.453 40.365 *     

± Std error 0.669 0.328 0.685 0.498 2.406 3.091 1.433 0.622       

Hypothalamus 3.134 3.396 3.375 3.641 3.849 3.965 4.419 3.798 *     

± Std error 0.286 0.133 0.152 0.15 0.175 0.102 0.332 0.266       

Hippocampus 0.01 0.011 0.011 0.012 0.014 0.013 0.014 0.014 * ^ ## 

± Std error 0.001 3.90E-04 4.79E-04 4.15E-04 3.67E-04 3.24E-04 0.001 3.77E-04       

Cortex 0.01 0.011 0.011 0.012 0.013 0.013 0.012 0.012 *     

± Std error 3.41E-04 4.11E-04 2.89E-04 2.12E-04 3.19E-04 2.68E-04 4.13E-04 4.47E-04       

Midbrain 1.803 1.798 1.75 1.86 1.957 2.089 1.867 1.777 *     

± Std error 0.069 0.084 0.08 0.037 0.061 0.063 0.073 0.161       

DHT Levels         

Plasma 2139.227 1503.359 1681.376 1670.884 2846.934 2724.256 2072.533 1773.293 * ^   

± Std error 275.988 391.94 269.121 385.3 194.511 147.792 242.12 172.43       

Hypothalamus 34.91 25.899 35.966 37.89 178.756 207.481 225.274 167.426 *     

± Std error 2.531 4.543 3.398 4.615 38.025 47.473 67.229 16.138       

Hippocampus 14.602 14.715 16.861 21.959 48.494 69.982 37.45 40.313 *     

± Std error 1.826 1.651 2.677 4.561 9.08 14.903 3.027 6.333       

Cortex 14.791 11.768 14.071 19.82 57.538 75.165 53.107 59.006 *     

± Std error 1.907 1.687 1.959 3.856 11.392 16.074 4.803 7.236       

Midbrain 14.638 14.841 18.237 19.146 59.497 93.98 58.189 53.064 *     

± Std error 1.706 1.948 2.741 2.286 11.901 20.799 3.545 5.393       

E2 Levels         

Plasma 18.187 18.407 17.892 18.284 18.433 17.976 20.52 20.321       
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± Std error 0.282 0.376 0.387 0.33 0.55 0.283 1.256 1.559       

Hypothalamus 2.807 2.83 2.88 2.947 1.66 2.696 0.267 0.285       

± Std error 0.123 0.181 0.179 0.068 0.305 0.108 0.022 0.025   ^^   

Hippocampus 1.185 1.195 1.156 1.068 0.932 1.081 0.749 0.929 *     

± Std error 0.054 0.071 0.063 0.042 0.084 0.026 0.045 0.22       

Cortex 1.102 1.159 1.095 1.081 1.047 1.073 0.992 1.018 *     

± Std error 0.048 0.059 0.038 0.033 0.054 0.029 0.123 0.11       

Midbrain 1.382 1.468 1.422 1.414 1.213 1.304 1.263 1.099 *     

± Std error 0.065 0.097 0.054 0.05 0.101 0.06 0.109 0.136       

5α-reductase 

activity   

Hypothalamus 10.564 7.762 10.802 10.559 45.703 50.942 45.684 43.873       

Hippocampus 1506.632 1332.824 1569.924 1882.994 3547.376 5109.681 2719.581 2795.789       

Cortex 1460.975 1114.081 1251.234 1707.829 4542.731 5432.153 4281.126 4746.839       

Midbrain 8.252 8.165 10.699 10.308 31.217 45.189 31.829 30.728       
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Figure 4  
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