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Abstract 

With the rise in popularity of the Internet, data describing unique types of items has been collected 

into easy to access sources. Using this newly acquired data, is it possible to predict if an item will become 

a bestseller while another fade away with time? Popularity prediction is a problem that has attracted a 

great deal of research recently, and for good reason. The ability to predict an items future rise to 

popularity or fall to obscurity is a possibly priceless skill and sought out in many different industries such 

as sales, investments, and marketing.  

 This report enumerates and analyzes a number of factors assumed to be an indicator of popularity. 

Additionally, we propose a number of popularity prediction methods, and evaluate using a cohost of 

evaluation metrics, and state of the art baselines. Our findings show promising potential for popularity 

prediction, based on a combination of structural and temporal properties indicative of popularity. The 

key proposed metrics include a measure of similarity between two items, and various definitions of 

popularity evolving with time. Experiments on a large scale real dataset from Yelp allow us to 

demonstrate the performance of our methods on predicting the popularity of businesses. We believe the 

methods described below can be extended to be used for diverse types of data.  
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Chapter 1 

Introduction 

 

 It is not difficult to imagine the benefits of predicting the future popularity of an item. Imagine a 

company with two products, but only one opening in the next catalog. With the ability to know which 

product will sell better, the company can guarantee the greatest possible revenue. However, popularity 

prediction comes with difficult obstacles that are hard to quantify. A correct forecast of popularity is 

valuable to a variety of different industries and products, and may very well be possible. 

First and foremost, what defines popularity? Take YouTube videos for example, is number of 

views, number of likes, or number of times shared indicative of popularity? On the other hand, the 

popularity of a product on Amazon.com may be measured as the number of units sold. Unclear definitions 

of popularity by itself makes the problem of prediction challenging [1]. To add another layer of 

complexity, knowing that a product will become popular may not be enough; predicting the time that it 

will become popular may be just as important. Some items are ‘fads’ and become popular very quickly, 

then just as quickly fade away. Some may start slow and progressively become more popular throughout 

time.  

In this thesis, we tackle the problem of popularity prediction by studying both, descriptive, and 

temporal data. Specifically, we consider the network of interactions between users and businesses in Yelp 

and use this to predict both if, and when an item will become popular. In Chapter 2, we discuss research 

related to the concepts used in this thesis, such as measurements of similarity and attributes indicative of 

popularity. In Chapter 3, we explain the problem we wish to accomplish, and the difficulties related to 

popularity prediction. Chapter 4 is composed of a formal outline of the experiments that we perform, the 

results and analysis of which are in Chapter 5. Finally, Chapter 6 is a conclusion and a plan for extending 

this work. We believe that our proposed method described in this thesis is generalizable, and as such it 

can be applied to a diverse set of items.  
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Chapter 2 

Related Work 

 

The idea of popularity prediction for various items has been researched thoroughly. The following 

are ideas from papers that has significantly inspired our work. 

 One of the integral metrics used in the methods proposed in this report is a measurement of 

similarity between two items. This is a challenging problem to generalize as items of different types may 

not have the same metrics of similarity. To combat this, many methods generalize data into graphs and 

use common attributes that relates nodes in the graph. As the size of the graph rises (as large datasets are 

common in problems like this) there is a significant increase in computational complexity for calculating 

graphical attributes. One method used to circumvent this problem is using random walks to compute 

approximations close enough to the true values. Yin, Gupta, and Han [3] investigated the use of random 

walks to measure the relevance of attributes such as centrality, preferential attachment, and influence in 

social graphs. There use of random walks over weighted social graphs composed of users lead to success 

in link recommendation. Benchettara, Kanawati, and Rouveirol [4] were able to use a supervised machine 

learning approach instead of random walks to measure the same neighborhood based metrics along with 

other topological attributes to group similar nodes and predict links in co-authorship graphs.  

Similarity is the building block of our method of popularity prediction, but other papers have also 

investigated prediction of popularity using different methods. [1] and [2] both deal with popularity 

prediction related to various online items. He, Gao, Kan, and Liu [1] propose a method that predicts 

popularity of Web 2.0 items based on user comments of YouTube videos. They create a user-item ranking 

system based on bipartite graph structure to capture the temporal, social, and current factors related to 

popularity. Westwood, Johnson, and Bunge [2] focus their workon popularity of clusters in the social 

network as their work deals with popularity of communities rather than singular items.  Lastly, [3] is a 
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survey of 19 recent papers that deal with popularity prediction of various web 2.0 items using 5 distinct 

prediction models, which speaks to the importance and amount of research put into the problem at hand.  

The research described above allowed us to draw inspiration for the proposed method and allowed 

for a solid framework to build off. The method described in this report not only expands the ideas 

conveyed here but also adds the use of temporal data to create an entirely new method. There is a distinct 

lack of papers that combine similarity metrics with temporal attributes to achieve popularity prediction.  

We propose a method in chapter 4 that combines concepts from these papers along with unique ideas to 

create a new model for prediction of future popularity.  
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Chapter 3 

Problem Formulation 

 

 We formulate the popularity prediction task as a categorical-classification problem. Specifically, 

given an item A at time t, our goal is to predict which category item A will most likely fall into. We 

consider three categories:  increase in popularity, decrease in popularity, and stagnate. To address the 

classification problem posed above, we begin by calculating the similarity between items by using a 

random walk framework over a bipartite graph constructed of items and their corresponding descriptive 

attributes (section 3.1). Next, we track changes in popularity over logical time intervals to get a sense of 

item’s past popularity (section 3.2). As popularity is not an instantaneous property that fluctuates in short 

periods, the intervals must be long enough to be dense with interactions, but fine enough to not lose the 

overall pattern. Finally, we classify an item’s future popularity based on its past popularity, and the past 

popularity of “similar” items (section 3.3). 
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Chapter 4 

Proposed Approach 

 

  We propose an approach based on two concepts: first, items that have been previously popular 

will be popular in the future. Second, if an item is related to a recently popular item, that item will soon 

become popular. The steps needed are therefore: group related items, measure their past popularity, and 

predict the popularity of the items in the future.  

 

 

4.1 Static Network 

We consider the bipartite graph G(I, A), of a set of items I, and a set of descriptive attributes A, 

of items in I. Each item is associated with a list of attributes from A. For example, a Chinese Food 

restaurant may possess the list of items: take-out, delivery, restaurant, etc. Figure 3.1 demonstrates a toy 

bipartite graph where nodes A-D represent Items, whereas nodes marked as 1-6 represent attributes.  

 

Fig 3.1: Toy Bipartite Graph 
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 The bipartite graph G allows us to measure “similarity” between items based on network 

structural properties [3]. Next, we discuss the attributes extracted from the bipartite graph of businesses 

from Yelp that we consider in our approach:  

1) Homophily: Tendency of items to associate with “similar” others. Items that share a common 

attribute are more likely to be similar compared to items that share no common attributes. The 

more attributes shared further strengthens the possibility of similarity.  

 

2) Rarity: Attributes with a high degree (i.e. more common attributes such as “restaurant”) are 

connected with more items in I, which may dilute the importance of two nodes sharing the 

same attribute. Thus we consider common attributes to be less indicative of “similarity” as 

opposed to “rare” attributes. 

 

3) Common Neighbors: We call two items that share the same attribute “neighbors”. Two items 

that do not directly share an attribute are more likely to be “similar” if they share many 

common neighbors as opposed to none.    

 

We propose a variable-step random walk based algorithm across G(I, A) to compute the similarity 

between items in I as a function of homophily, rarity, and common neighbors. Specifically, for each 

item in I, we perform a random walk of the form ik -> aj -> il -> … -> im, where aj ε A, and ik, il, and 

im ε I. The number of steps is randomized to take a value in the set [1,5]. This range allows for a good 

tradeoff between connecting items that are multiple steps away, but also prioritizing closer items. We 

denote the algorithm for a random walk on item i ε I by Si, a vector containing the approximate 

similarity between item i and all other items. Formally:  
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  Si = [P1, P2, …, Pn ] where Pk  = 
frequency of i −> k  

total trials
  and i = ii, k = ik ε I  (1)

  

 

All values in Si are in the range of [0,1], where 0 denotes least similarly, and 1 represents highest 

similarity. When sorted, Si represents a list of items in descending order of similarity rating compared 

to item i. Because of the stochasticity of random walks, we run the random walk until Si is stable 

between iterations, i.e. Sk
i ≈ Sk+1

i, where Sk
i denotes Si at iteration k. Our intuition is that 1) Items that 

are directly connected via an attribute are ‘close’. The closer an item is the better chance the random 

walk will end there. 2) Common attributes have many outlinks, therefore items connected by rare 

attributes are more likely to be connected on the walk. 3) Since we use a variable step random walk, 

some pairs of items will have a non-zero similarity with no shared attributes. In this case, the items 

that are more likely to be connected are items that share common neighbors. 

 

 

4.2 Dynamic Network 

In order to track popularity as it evolves over time, we consider the dynamic network of user 

interactions at it follows, let U be the set of users, I be the set of items as before, and T be as a set of 

intervals, i.e., T = {t1, t2, …, tn}, where n is the number of intervals. For any given interval t ε T, we have a 

list of users Uj
t that interacted (e.g. reviewed business j) during the interval t. We consider users in Uj  to 

be connected with item j until either of the following two conditions are met: 1) they interact with a 

different item k, in which case they “move” from j to item k, or 2) 𝛾 time-intervals is observed with no 

new interaction. We introduce variable 𝛾 to reduce the effects of users with low number of overall 

interactions ‘sticking’ to users. Without this variable, users with low amount of interactions will stay 

attached to one item, potentially resulting in erroneous popularity estimates over time. As time progresses 
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users interact with, and therefore “move” to different items, as demonstrated in Figure 3.2. Intuitively, 

items that are consistently associated with many users are considered to remain popular; such items are 

gaining new interactions in each time interval.  

 

 

Fig 3.2: Example dynamic bipartite graph, evolving over two time intervals. 

 

As mentioned in chapter 1, different metrics of popularity can be used given the problem on hand. 

Two commonly used metrics are the amount of interactions (views, purchases, etc.) and ratings 

(Good/Bad, 1-5-star rating, etc.) [1]. In our approach, we track both metrics to study popularity from 

multiple lenses. 

The cumulative number of interactions for i ε I during interval t is represented by Ui(t). We capture 

the history, Hui = {Ui(t-1), Ui(t-2), …, Ui(t- β)}, of the number of interactions for item i in the past β 

time intervals and the change in between consecutive intervals, Hu*i = {Ui(t) -Ui(t-1), Ui(t-1)- Ui(t-

2), …, Ui(t- β+1) - Ui(t- β)}, to identify items increasing in popularity, i.e. being marked mostly with 

positive entries in Hu*i. Similarly, unpopular items can be identified by mostly zeroes or mixture of 

positive and negative entries in Hu*i. We use the history if interactions over time to estimate 

popularity as a single quantity, denoted as Ω. This method is easily adjusted from popularity defined 

by number of interactions to an items rating, simply let Hui be the star rating of i at each interval and 
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change Hui* accordingly. To ensure that more recent time-intervals are given a higher priority in 

calculating Ω, we experiment two different methods of aggregation. Specifically: 

1. Summation of Hu*: Naively sum the past β intervals as (2). A positive value indicates 

an increase in popularity. 

Ω = ∑ β i=0 Hu*(i)        (2) 

 

2. Exponential Decay (ED): To signify the importance of recent intervals, we will use an 

exponential decay function (3) to weaken the bias of older intervals. The variable α 

signifies the decay parameter, a value between 0 and 1. 

Ω = ∑ β i=0 (α
i * Hu*(i))        (3) 

 

 

4.3 Combination and the Classification Tree 

 Given the information derived from sections 4.1 and 4.2, we formulate a method of classification 

for the future popularity of an item.  Our method of prediction considers a few assumptions. First, item’s 

past interactions are an important attribute when considering future popularity. Different research [6] in 

items such as YouTube videos and Digg stories have found strong correlation between past and current 

popularity. Second, items that have a high similarity metric will correlate in popularity.   This derives 

from the definition of homophily [3], which says related items in a network will act accordingly. Two 

very similar items will behave in a more analogous manner compared to two items that have little or no 

similarity. Using these assumptions, we use a classification tree to classify an item into one of three 

groups: 

1. Increase: an item is predicted to show significant increase in ratings or number of interactions in 

the following time intervals 
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2. Decrease: an item is predicated to show significant decrease in ratings or number of interactions 

in the following time intervals 

3. Stagnate: an item is predicated to show negligible increase or decrease in the number of 

interactions in the following time intervals. 

 

. The input variable, ɸ, used for the classification tree is formulated of Si and Ω from sections 4.1 and 

4.2 respectively. It measures the summation of the past popularity of the n most similar items. We 

combine them as: 

 

 ɸ(i) = x(
(∑ j=0(Ω(Sj)))

𝑛
) * y(Ω(i))  where x+ y = 1, and n = length of Sj      (4) 

 

This metric is a linear combination of an items past popularity along with the average past popularity of 

the most popular businesses. The variables x and y are used to control the trade-off of both factors. The 

metric (4) is inputted to the classification tree modeled in figure 4.1. The classification tree categorizes 

each item according to their value compared to two parameters A and B such that A< B and A,B are real 

numbers. The value of the two parameters are dependent on the type of item being studied, definition of 

popularity, and variation of the values in HU*.  

 

Fig 4.1: Classification Tree 
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Chapter 5 

Experimental Evaluation 

 

 In this section, we test our methods on a large-scale real dataset and measure the effectiveness of 

our approaches using common metrics for classification problems. 

 

5.1 Dataset Description 

 To test our proposed method of prediction, we use data provided by the 2017 Yelp Dataset 

Challenge [7]. Businesses from the dataset make a viable candidate for prediction because: they have a 

list of descriptive attributes, they have time-stamped user interactions (in the form of reviews/check-ins), 

and they go through periods of popularity. Interactions through the form of reviews are especially 

valuable to this research because they provide not only a time-stamped interaction between a business 

and user, but also a rating between 1 and 5. The dataset comprises business ratings spanning 12 locations 

across 4 different countries. For our evaluations, we used data from the state of Ohio. We chose this state 

for its large representation in the Yelp dataset; over 100,000 businesses are included with information 

for businesses in many cities spread across the state.   

 The data from Yelp spans 13 years, from early 2004 to the middle of 2017. Since Yelp's start in 

2003, the amount of traffic has increased exponentially causing an increase in the amount of reviews 

received. This caused an imbalance in the frequency of reviews throughout the 13-year span, with the 

amount of reviews per interval increasing throughout time, as shown in Figure 5.1.  
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Figure 5.1: Reviews of Yelp businesses over time 

 

5.2 Accuracy Metrics 

 We perform a 75/25 split of the time-stamped interactions, the first group for training (Ttrain), the 

second for testing (Ttest). We use data in the training interval to gain a sense of past popularity, and we 

use the testing interval to make predictions and evaluate our method. Our model (Section 4.3) is evaluated 

using metrics commonly used in classification tasks, i.e., Precision, Recall and F1-Score: 

• Precision: represents the percent of correctly classified instances out of the guesses 

Precision  = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝐼𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑒𝑑 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠
 , 

 

• Recall: represents the percent of correct instances guessed  

Recall = 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑒𝑥𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 , 

 

• F1-Score: represents the average of Recall and Precision 
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F1-Score = 
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 . 

 

 

5.3 Analysis and Results 

 To evaluate the proposed method, we perform the classification task for two definitions of 

popularity, ratings and number of reviews, for the businesses during the time interval Ttest. We aggregate 

the Test intervals, into two sets: Ttest 1 and Ttest 2. Ttest1 is the first half of Ttest or the interval right after 

Ttrain, and Ttest2 is the interval after the first. This method allows us to interpret how accurate a prediction 

is with a large gap in time.  

 Throughout chapter 4, we have described multiple variables that alter how we predict popularity, 

below are values tested for each variable: 

• Variables (X,Y), which control the tradeoff of importance between a business’s past popularity 

and the past popularity of similar businesses (section 4.3), were set to be (0.75, 0.25), (0.5, 0.5), 

(0.25, 0.75). These values weight the two variables equally, give more importance to an item’s 

own past over the past of similar businesses, and weight the past of similar businesses greater 

than the past of the business in question accordingly. 

• The decay parameter α used when valuing the weight of a business’s past was set to 0.5, 0.75, 

and 0.9. The lowest value will decay faster, which gives diminishing importance to businesses 

less similar. In the highest value of α, the importance decays slower, thus giving less similar 

businesses a larger input. 

•  The variables t and 𝛾, which represent the length in days of the time intervals, and the number 

of intervals until an interaction ‘expires’ accordingly, used are t =30 days and  𝛾  = 6. The 

importance of 𝛾 was described in chapter 4, and only applies to the experiments associated with 
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popularity defined by the number of interactions. We choose these values as it provides an ideal 

balance of aggregation without losing finer details.  

• The variables A and B represent the bounds of the classification tree illustrated in figure 4.1. We 

choose values of (-2, 2) for the bounds. These bounds are large enough that items that show little 

movement will be classified correctly as stagnating, rather increasing or decreasing.  

 

 

Figures 5.2 and 5.3 show results for the prediction of number of reviews, while Figures 5.4 and 

5.5 show results for the prediction of ratings. 

 

Figure 5.2: Performance of classification for number of reviews in Ttest 1 
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Figure 5.3: Performance of classification for number of reviews in Ttest 2 

 

 Observation 1: Figures 5.2 and 5.3 indicate the most effective values of (X,Y), in decreasing 

order are: (0.75, 0.25), (0.5, 0.5), (0.25, 0.75). This suggests that an item’s own past is more important 

than the past of similar items when considering popularity in the form of number of interactions.  It is 

worth noting that Figure 5.3 shows the results obtained for (X= 0.5, Y= 0.5) are comparable to (X= 0.75, 

Y= 0.25) in the second interval. This suggests that similar items’ popularity may be more of a factor in 

continuous popularity, rather than instantaneous. In both cases setting X and Y to 0.75 and 0.25 

respectively resulted in promising results, which further strengthens the hypothesis that an item’s own 

past outweighs the past of similar items. 

 Observation 2: Figures 5.2 and 5.3 suggest that our model is less accurate at predicting 

popularity farther in the future. This is expected, as our predictions are based on past measurements of 

each item in the training set only. Thus, when trying to predict the number of reviews for the second 

interval, the additional information about “movement” that occurred in the first testing interval is ignored. 
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Observation 3: Figure 5.3 shows that the difference in accuracy between values of α decreases 

with time, which correlates with our model’s accuracy decreasing over longer periods of time. Figure 5.2 

has differences in precision as large as 0.24, while Figure 5.3 only has businesses as big as 0.15.  

 

 

 

Figure 5.4: Performance of classification for star ratings in Ttest 1 
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Figure 5.5: Performance of classification for star ratings in Ttest 2 

 

 

 Observation 4: The prediction of future star rating is less accurate than the prediction of number 

of reviews. In the first time interval of the first experiment, we received an average F1-Score of 24.6%, 

while the current experiment produced only an F1-score of 19.33%. In addition, the highest levels of 

precision were found in the first experiment. In contrast, the prediction of star rating ‘aged’ better, 

meaning that the results from the first and second time interval are more similar. This implies that star 

rating is a more stable score. 
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Observation 6: The values of α = 0.5, and α  = 0.75 perform the best in the first interval. In the 

second interval, the values of α = 0.5, and α = 0.75 show better performance than the others, but the 

difference in accuracy is small (±0.05). Additionally, we see that the method of purely summation 

performs consistently the worst, which reaffirms our belief that there is diminishing value to the 

similarity metric.  
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Chapter 6 

Conclusion 

 

 In this thesis, we have studied the predictability of an item’s popularity, and demonstrated using 

business from Yelp. We investigated multiple definitions of popularity, and shown their differences. The 

method proposed combined historical observations of similar items, along with the history of a given 

item, to classify an item as increasing, decreasing or stagnating. We evaluated our methods using a subset 

of the Yelp Challenge Dataset and showed that accurate popularity prediction can be significantly 

improved. 

 Future work in this subject would first include working on improving the accuracy of our 

proposed method. To achieve this a wide range of features could be considered in addition to the set we 

explored in this thesis. Furthermore, the number of categories used in the classification tree could be 

separated for a finer granularity. We hope that by expanding the number of classifications, more accurate 

predictions can be achieved. Finally, the next step is to test the methods used with other forms of e-

commerce items. Since the methods used in this paper are not specified to one data type, we believe we 

can expand our model to predict popularity for a wide array of items.  
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