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I. Abstract 

 Buckybowls are bowl-shaped aromatic polycyclic hydrocarbons that map onto the 

surface of fullerene molecules, such as C60 and C70, but lack their full closure.  They are 

revered for their ability to undergo multiple reduction reactions, accepting several 

electrons, due to their degenerate and low energy LUMO orbitals.   

 Corannulene (C20H10), the smallest buckybowl, is well known for its ability to 

accept up to four electrons.  Many studies have been performed targeting preparation and 

characterization of corannulene anions using the NMR, ESR and UV-vis spectroscopic 

techniques.  Corannulene has also been found to form a solid adduct with C60 without 

selectivity in its binding. Dibenzo[a,g]corannulene (C28H14), a larger π-bowl and focus of 

this work, contains a corannulene ring system with an addition of one peripheral benzene 

ring on each side.  Originally studied as a synthetic precursor for creating carbon 

nanotube endcaps, C28H14 contains two consecutive low energy LUMO orbitals, making 

it also capable of accepting up to four electrons.  Up until now, only NMR 

characterizations have been performed on C28H14 anions.   

 My research has resulted in the isolation of the first crystalline products of 

monoanion and dianion of C28H14 with alkali metal cations and their structural 

characterization using singe crystal X-ray diffraction technique.  Preference of metal 

binding to the exo surface of C28H14 has been revealed in the contact-ion pair of [Rb(18-

crown-6)+][C28H14
−]. The first naked dianion of C28H14 was also isolated as its sodium 

salt, [Na(18-crown-6)(DME)+]2[Na2(18-crown-6)2(DME)2+][C28H14
2−]2, and 

characterized in this study.  This allowed an evaluation of the bowl shape perturbation 

upon addition of one and two electrons. Both anions showed only small change in their 

bowl shape compared to neutral C28H14.   

 The supramolecular assembly of dibenzo[a,g]corannulene with fullerenes has 

been also investigated in this work by co-crystallization of C28H14 with C60 and C70.  

Though packing of the C28H14 and C60 molecules paralleled that of C20H10 and C60, a 

novel arrangement has been found for the solid-state structure of C28H14 and C70.  In the 

latter, selective binding of the endo surface of C28H14 to the exo surface of C70 was 

observed based on their perfect size and curvature complementarity. 
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III. Introduction 

3. Fullerenes 

 Fullerenes are a group of molecules that are becoming an increasing topic of 

study in the field of chemistry.1,2 They are an allotrope of carbon, like that of graphite and 

diamond, which conform to a very interesting structure.  Similar to graphene, fullerenes 

contain alternating double and single carbon-carbon bonds. Fullerenes however, are 

capable of forming curved structures, such as spheres or ellipsoids, due to incorporation 

of both hexagonal and pentagonal carbon rings.3 

 The two most common examples of fullerenes are C60 and C70 (Figure 1); both of 

which are referred to as a buckyball.  

 

Buckminsterfullerene, C60 C70  

Figure 1.  Schematic representation of the C60 (left) and C70 (right) fullerenes. 

 

 C60 consists of twenty hexagons and twelve pentagons, which are arranged in a 

spherical structure known as a truncated icosahedron.  Another feature that makes C60 so 

interesting is the structure of its molecular orbitals.2, 4  The LUMO of C60 is triply 

degenerate; this allows it to accept up to six electrons upon step-wise reduction.4 It 

should be mentioned, C60 is not superaromatic because it avoids having double bonds on 
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its pentagonal rings; hence C60 acts more as an alkene upon the formation of 

organometallic complexes.5 C70 is a fullerene consisting of twenty five hexagons and 

twelve pentagons that also has a degenerate set of LUMO orbitals; however it is only 

doubly degenerate.2 This molecule can also accept six electrons upon reduction due to the 

fact that its LUMO +1 orbital is very close in energy to its LUMO orbital.2 Due to both 

these remarkable electron accepting properties and the abundance of carbon in nature, 

fullerenes are currently being extensively studied to be potential electron acceptors to 

help create low cost organic solar cells and rechargeable batteries.6,7, 8 

3.1 Fullerene Fragments 

 3.1.1 Corannulene 

 Fullerene fragments are different molecules composed of carbon and hydrogen 

atoms whose carbon frameworks map onto the surface of fullerenes but lack their full 

closure.  These curved polyaromatic hydrocarbons are sometimes also referred to as 

buckybowls.9,10,11  One of the most studied buckybowls is dibenzo[ghi,mno]fluoranthene, 

also known as corannulene, C20H10 (Figure 2). 
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Corannulene, C20H10

Spoke
Hub

Rim

Flank

 

Figure 2. Schematic representation of corannulene. 

 

Corannulene was first prepared by a tedious seventeen-step synthesis in 1966 by 

Barth and Lawton.12 Corannulene remained largely unexplored until two decades later, 

when C60 was discovered by future Nobel Prize winners, Kroto, Heath, and Smalley.6 

This prompted several organic chemistry groups to look for better preparation methods. 

Although corannulene is still not commercially available, alternate and more efficient 

methods have been developed since 1966, leading to an increased opportunity for 

exploration of this unique buckybowl.7,13,14,15   

 

 3.1.1.1 Structure of Corannulene 

 Corannulene is comprised of five hexagons that are fused to a central pentagon 

ring to form a bowl. Its bowl-shaped structure was first reported back in 1967 and was 

later re-evaluated at low temperature.16 

 There are four different types of C−C bonds that are found within corannulene 

(Figure 2).  The shortened bond distances across the spoke and rim bonds suggest that 
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these are the locations of the double C−C bonds in the molecule (Table 1).  It should be 

mentioned, the bowl depth of corannulene is 0.875(2) Å.16  

 

Table 1. Key distances (in Å) for neutral C20H10. 

 

 

   

 

 

 

 

 

 

 The electrons in corannulene can delocalize putting six electrons around the 

central five-membered ring and fourteen electrons around its rim effectively creating an 

annulene-within-an-annulene (Figure 3). 17  This in conjunction with its low energy, 

doubly degenerate LUMO allows corannulene to accept up to four electrons upon 

reduction.18 

 

 

 C20H10
16b 

hub 1.411(2)−1.417(2) 

spoke 1.376(2)−1.381(2) 

flank 1.441(2)−1.450(2) 

rim 1.377(2)−1.387(2) 

bowl depth 0.875(2) 
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Figure 3.  Annulene-within-an-annulene representation of C20H10, [C20H10]
2−, and 

[C20H10]
4−.  

 

 3.1.1.2  Self-Assembly of Corannulene 

 When packed together in the solid state, corannulene molecules associate with 

one another through two different types of intermolecular interactions.  First is a π…π 

interaction between a convex and a concave facing molecule, forming a dimer (Figure 

4).19  This interaction occurs through the centers of two 6-membered rings of the concave 

side of one molecule and the 6-membered ring on the convex face of the neighboring 

molecule.  The second interaction places two of the dimers together to form a tetramer 

where two concave molecules interact through C–H…π bonding interactions from the two 

C–H bonds of a single 6-membered ring to the center of two 6-membered rings of the 

second molecule (Figure 5).16b, 20  
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Figure 4. Top-view of the corannulene dimer showing the overlap of hexagonal rings. 

 

Figure 5. Side view of the corannulene tetramer showing the shortest contacts between 

the molecules. 
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 It has been proposed for some time that the endo face of C20H10 is the ideal 

candidate for supramolecular binding to the electron-deficient surface of C60.  Although 

there are many theoretical investigations 20  that reveal the complexation of the endo 

surface of corannulene to C60 is energetically favorable, the experimental proof was not 

revealed until very recently. 21  The first X-ray structure of a stable C60:C20H10 (1:1) 

adduct complemented the previous computational studies.21 

 According to an X-ray diffraction study, the C60 molecules in the solid state 

structure of the C60:C20H10 adduct pack in a zigzag manner with centroid–centroid 

contacts of 10.04 Å.21 Notably, this packing motif has been previously seen between C60 

molecules.22  The depth of penetration of the C60 ball into corannulene is 6.94 Å (Figure 

6).  It should be mentioned, this is the distance from the centroid of the C20H10 five-

membered ring to the centroid of the C60 molecule.  The shortest distance from the endo 

face of corannulene to C60 is 3.06 Å (Figure 6). Contacts also exist from the convex face 

of corannulene to C60; the shortest distance observed at 3.18 Å.  There is no significant 

change in the geometry of corannulene upon co-crystallization with C60. The bowl depth 

of corannulene in C60:C20H10 is 0.89 Å, compared to 0.88 Å in the parent ligand.  

 



12 
 

 

Figure 6.  Three dimensional view of the packing of C60 and C20H10 showing the endo 

and exo-binding of corannulene to C60.  

 

 Due to a good size match between the concave surface of C20H10 and convex 

surface of C60 it was theorized that C60 would be able to interact with receptor C20H10 

molecules in a “ball and socket” fashion through π…π interactions.  In 2007, Sygula 

showed this was possible after creating a pair of “molecular tweezers” with the 

composition of C60H24 from two corannulene-based subunits (Figure 7). 23   In this 

structure, fullerene is observed sitting between two concave faces of corannulene pincers; 

the depth of penetration of C60 into each corannulene subunit is 6.77 Å.  This is 

noticeably shorter than the free packing of C20H10 and C60 and most likely due to C60 

having to interact with the corannulene subunits within the rigid structure of the 

“tweezers”. The application that stems from this work is to use fullerenes as guests and 

corannulene as a selective receptor in supramolecular chemistry. 
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Figure 7.  C60 coordinated to the corannulene subunits of molecular tweezers. 

 

 3.1.1.3 Metal Coordination to Corannulene 

 Corannulene is a unique and intriguing π-ligand, which provides interior and edge 

carbon atoms for binding, along with concave and convex unsaturated carbon surfaces 

(Figure 8).24  

 

 

Figure 8. Coordination possibilities of buckybowls: endo (left) and exo (right). 

 

 Complexes of transition metals with curved polyaromatic hydrocarbons have 

attracted substantial interest in recent years due to their fundamental and practical 
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importance. As mentioned previously, buckybowls, such as corannulene, are exceptional 

ligands with multiple binding sites.25 X-ray diffraction studies have indicated the strong 

preference of convex metal coordination in all discrete complexes having a single metal 

bound to C20H10 in an η6-fashion, such as in [(η6-C6Me6)Ru(η6-C20H10)][PF6]2.
26  

 Our group has been extensively involved in studying the coordination preferences 

of corannulene.24 Back in 2003, the first complexes with [Rh2(O2CCF3)4] were isolated 

and structurally characterized,27 followed by crystallization of [Ru2(O2CCF3)2(CO)4·(η2-

C20H10)2] (Figure 9) in 2006.28  All these complexes showed the preference for exo-metal 

binding to the rim sites of corannulene. 

 

Figure 9. Molecular structure of [Ru2(O2CCF3)2(CO)4·(η-C20H10)2]. 

 

 Preferential binding of the above metal centers to rim C–C bonds led our group to 

search for less electrophilic metal units for buckybowl binding.  Then again in 2006, two 

new ruthenium(I) complexes were crystallized within the same crystal of [Ru2{O2C(3,5-

CF3)2C6H3}2·(CO)5]·(¼ C20H10).
29  One of the complexes showed Ru(I) binding to the 

rim of C20H10, while the other had the Ru(I) center bound to the hub bonds of C20H10.  In 
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both of these complexes however, Ru(I) was bound to the exo surface of C20H10, further 

exemplifying the convex preference of transition metal binding to C20H10.  Until 2011, 

only discrete exo or multi-coordinated C20H10 with metals were known.  Endo 

coordination was noticed in multi-coordinated C20H10, however these contained exo 

bound metals as well so it was not clear what is the primary coordination mode and what 

is the result of packing (Table 2). 

 

 

Table 2.  Coordination modes of various metals with C20H10 with hydrogen atoms 

omitted for clarity. 

Formula Coordination modes 

 

C20H10 
 

 

µ2-η
2:η2-rim  30 

µ3-η
2:η2:η2-rim 10  

 

µ4-η
2:η2:η2:η1-rim30 

 

 

 

 

η1-exo-hub 29 

η2-exo-rim 28 

 

 

 

µ2-η6:η6  31 

η6-exo 26,32 
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 Despite all prior examples of the preferential coordination of transition metal 

centers to the exo surface of corannulene, the inside endo face can also be engaged in 

metal coordination.  In our laboratory, we have recently revealed the unprecedented 

selective endo-binding of a metal to the monoreduced corannulene bowl (Figure 10). 

Single crystals of [Cs(18-crown-6)]+[C20H10]
− were grown from a diglyme solution by 

layering it with hexanes.33 

 

Figure 10.  Molecular structure of [Cs(18-crown-6)]+[C20H10]
−. 

 

 The cesium cation, bearing 18-crown-6, sits almost exactly above the center of the 

five-membered ring, representing the first example of η5-binding of a metal center to the 

corannulene moiety. This and other examples illustrate that corannulene can function in a 

variety of binding modes towards various metal centers.  

 

 3.1.1.4 Redox Properties of Corannulene 

 Corannulene can accept up to four electrons due to its doubly-degenerate and low-

lying LUMO. The first in-situ observation of the corannulene anion was in 1967 soon 
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after the preparation of corannulene.13  In 1994, Scott found, upon reduction with lithium, 

corannulene was able to be reduced to a tetraanion.18b  In 1995, Scott and coworkers were 

able to characterize each of the four reduction stages of corannulene (Scheme 1) when 

reacted with lithium through the use of UV-Vis spectroscopy and 1H nuclear magnetic 

resonance spectroscopy (NMR).34   

 The first reduction stage was noticed with a change in color in the solution to 

green (monoanion).  This was characterized through a collection of optical absorption 

data, which found maxima at the following wavelengths in THF-d8: 443, 648, 805, and 

904 nm.34  The next reduction stage was found with a color change to purple (dianion) 

and a new maximum at 503 nm.  This stage was also accompanied by a shift in the 1H 

NMR signal to −5.6 ppm, implying that the dianion has a paratropic ring current.34  This 

suggests it has a delocalized 16-electron perimeter annulene that gives it the antiaromatic 

and thus paratropic character (Figure 3).  Recently, the corannulene trianion was found 

with another shift in the optical absorption spectra to a maximum of 386 nm in diglyme 

and a lack of 1H NMR due to peak broadening.35  The final stage of the reduction, the 

tetraanion, was found with a change of color to brown and a shift in its optical absorption 

spectrum to maxima located at 460, 605, and 714 nm in diglyme. 36   This was 

characterized by the return of the 1H NMR spectra again and shift of 6.92 ppm, 

suggesting the return of the aromatic character of the perimeter annulene ring as well as 

the diatropic character of the molecule (Figure 3). 
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Scheme 1 

Li+ Li+

Li+ Li+

Li+ Li+

Li+ Li+

2 3

+ 1 e + 1 e + 1 e + 1 e

 

 

 The corannulene anions, ranging from monoanion to tetraanion, have been 

detected in solution; however, their solid-state products were not isolated in the single 

crystalline form until very recently, due to their extreme sensitivity to air and moisture. 37  

In our group, the first “naked” monoanions were found with alkali metals, Li+, Na+, and 

Rb+ when solvents or crown ethers provide full encapsulation of the metal center (Figure 

11).33, 38   When the coordination sphere of the alkali metals is incomplete, different 

binding modes can be seen in the solid-state products.  Throughout our work, the general 

trend we have observed has been lighter alkali metals, such as lithium and sodium often 

form solvent-separated products (SSIP) with “naked” C20H10
•−; whereas, heavier alkali 

metals tend to bind to the surface of the corannulene monoanion. Cesium, the largest 

alkali metal, shows preferential endo binding to the curved carbon surface.33   

 



19 
 

 

Figure 11.  Structural representation of corannulene monoanions with alkali metal ions. 

 

 This work has recently been extended to the second reduction stage of 

corannulene.  We have selectively prepared the C20H10
2− anions with the series of Group 

1 metals, Li, Na, K, and Cs (Figure 12).38, 39  These products have been characterized by 

single crystal X-ray diffraction and spectroscopic techniques.  The first “naked” 

corannulene dianion has been found with the lightest alkali metal, lithium; whereas, 

heavier alkali metals tend to form contact-ion pairs (CIP).  It was observed that the bowl 

depth of corannulene dianions is much greater than the calculated value of 0.57 Å, 

confirming the importance of experimental structural studies.40  
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Figure 12.  Structural representation of the corannulene dianions with alkali metal ions. 

 

 Based on earlier NMR studies, investigators concluded that the tetraanions of 

corannulene aggregate into supramolecular dimers charge-compensated by coordinated 

lithium ions.18  Two tetraanions in the dimer were described as “glued” together by four 

lithium ions to form a “stable high-order molecular sandwich” in solution (Figure 13) 
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Figure 13. Formal representation of corannulene tetraanions (disks) and eight lithium 

cations (balls) in a dimer. 

 

 The residual four lithium ions were suggested to bind to the dimer exterior: two 

on the top and two on the bottom of the sandwich.  Although the original NMR data were 

inconclusive about the location of the lithium ions and the depths and relative 

orientations of the two bowls, this proposed model has been largely accepted as the 

model for the assembly of reduced buckybowls with lithium ions ever since.18b   

 Since direct structural characterization of the resulting self-assembled product 

was missing, our laboratory had focused on the crystallization of this fascinating product.  

After multiple attempts, the lithium salt of C20H10
4− was crystallized by the slow diffusion 

of hexanes vapors into a THF solution of the product kept at 15 °C.  In contrast to the 

previously proposed model,18b five lithium ions were found sandwiched between the two 

anionic corannulene decks in the solid-state (Figure 14).36,37  Two more lithium ions are 

bound to the external surface of this supercharged sandwich, one on the top and on the 

bottom, while the remaining lithium cation is solvent-separated.  The overall product can 

be written as [Li(THF)4]
+{[Li(THF)2]//[Li5(C20H10)2]//[Li(THF)3]}

−  
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Figure 14.  Structural representation of the C20H10 tetraanion sandwich compound. 

 

The above work revealed a novel model of lithium intercalation between highly charged 

corannulene bowls. In contrast to corannulene, these studies have yet to be accomplished 

for larger buckybowls. 

 

 3.1.2  Dibenzo[a,g]corannulene 

 Another fullerene fragment that maps onto the surface of C60 is 

dibenzo[a,g]corannulene, C28H14 (Figure 15).  Fundamental interest in this molecule 

stems from the idea that it may be used in the synthesis of specific carbon nanotube 

endcaps.41  There are three types of carbon nanotubes that are known to form, namely 

arm-chair, zig-zag, and chiral.42  Each type has its own physical and electronic properties 

that are interesting to researchers.  Scientists are looking to synthesize particular 

nanotubes by building and extending the endcap specific to that nanotube.  Scott et al. 
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found that it was possible to create the endcap for an arm-chair carbon nanotube using 

dibenzo[a,g]corannulene as the starting reagent.43 

 

 

Figure 15. Structure of dibenzo[a,g]corannulene. 

 

 3.1.2.1 Synthesis of Dibenzo[a,g]corannulene 

 The first synthesis of C28H14 was accomplished in 1994 by the group of Scott.44 In 

order to prepare, dibenzo[a,g]corannulene, its precursor 10-di(2-

bromophenyl)fluoranthene must be synthesized (Scheme 2).45  To make this molecule, 2-

bromobenzyl bromide and diironnonacarbonyl are placed in anhydrous benzene and 

refluxed forming 1,3-di(2-bromophenyl)acetone. Next, 1,3-di(2-bromophenyl)acetone is 

mixed with acenapthequinone in a basic solution to form 7,9-bis(2-bromophenyl)-8H-

cyclopenta[a]acenapthylen-8-one.  Lastly, the 7,9-bis(2-bromophenyl)-8H-

cyclopenta[a]acenapthylen-8-one is refluxed with 2,5-norbornadiene in a pressure flask in 

order to form 10-di(2-bromophenyl)fluoranthene.  This same procedure has also been 

used to convert 2-chlorobenzyl chloride into 10-di(2-chlorophenyl)fluoranthene.   
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Scheme 2.  

Fe2(CO)9

Benzene; 80 °C

O

Br BrBr

Br

KOH;
MeOH

O O

O

Br BrBr Br
90 °C

 

 

 The original synthetic method of creating C28H14 was based on the use of flash 

vacuum pyrolysis (FVP) to break the aryl-halide bonds in 10-di(2-

bromophenyl)fluoranthene and move the 2-bromophenyl units within bonding distances 

to form curved ring systems.  Though the FVP method of creating C28H14 is useful, it 

requires very high temperatures over 1000 °C (Scheme 3).  The reaction scale is also 

restricted to about 1-2 g with about 15-30% yields.  Notably, yields of the brominated 

precursor are greater than that of the chlorinated precursor.   
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Scheme 3. 

Br Br

FVP
1050 °C

-2 HBr

 

 

 Due to the above limitations, Scott’s group looked into a solution-based way of 

producing C28H14.  Their first look was the palladium catalyzed aryl-aryl coupling 

reactions.  These reactions use the elimination of HX in the arylation.  This method, 

while being successful, also resulted in the formation of a byproduct known as 

idenochrysene, which stems from reductive bromination occurring on one side of the 

molecule. The results for the brominated precursor were optimized using Herrmann’s 

palladacycle, 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), and N,N-dimethylformamide 

(DMF) at 150 °C for 72 hours.  It was also found that the use of the chlorinated precursor 

provided a greater product yield, improving the ratio of product:byproduct from 3:1 with 

the brominated precursor to 10:1 with the chlorinated one.41  Slight improvements were 

made to this procedure by substituting Herrmann’s palladacycle with Pd(PCy3)2Cl2 and 

DMF with anhydrous DMAc, which is the currently used procedure (Scheme 4).41 In our 

work, we utilized this preparation scheme, accommodating all the latest improvements.  

We have improved further on the product purity by additional washing of the final 

product with hexanes followed by acetone.  
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Scheme 4.  

Cl Cl

Pd(Cy3)2Cl2

DBU; DMAc; 150 °C

 

 

 3.1.2.2  Solid State Structure of Dibenzo[a,g]corannulene 

 The solid state structure of C28H14 was elucidated in our group back in 2005.46  

When packed together, C28H14 molecules associate with one another in a much different 

way than corannulene. The addition of two benzene rings to the core of corannulene 

causes the shape of the bowl in C28H14 to widen, resulting in a shallower bowl depth: 

0.830(3) Å vs. 0.875(2) Å in corannulene.  This change in shape as well as the addition of 

the two benzene rings is believed to be what causes the difference in packing in C28H14.
43  

In the solid state, C28H14 bowls form 1D columnar stacks, in which the molecules are 

staggered so that the outer benzene rings of C28H14 line up with the central corannulene 

core of the next molecule (Figure 16).  This is believed to maximize the π…π stacking 

interactions between the bowls.46 Moreover, the peripheral benzene rings have a much 

lower negative potential than the five-membered core so it is electrostatically favorable 

that they line up with the five-membered cores being as far apart as possible.  The 

resulting 1D stacks are also able to interact with one another using C−H…π bonding 



27 
 

between the free peripheral benzene and one of the six-membered core rings in an 

adjacent stack (Figure 11).19 

 

Figure 16. The two-dimensional packing of C28H14 from a side view showing the shortest 

contacts between adjacent stacks. 

 

 3.1.2.3 Redox Properties of Dibenzo[a,g]corannulene 

 Like corannulene, C28H14 can accept and delocalize multiple electrons.47  Though 

its LUMO orbital is not doubly degenerate, the two lowest LUMO orbitals are close in 

energy, theoretically allowing C28H14 to accept up to four electrons upon step-wise 

reduction.47a   

 In 1998, Scott reduced C28H14 using lithium and potassium metals. With lithium, 

he noticed that C28H14 underwent a maximum of three reduction states.  The first led to a 

change of color to green, resembling that of a corannulene monoanion, which is also 

supplemented with the loss of an NMR spectrum, consistent with the formation of a 

monoanion-radical.  The second reduction of C28H14 came with a color change to purple 

and a return of NMR spectra.  The upfield shifts of protons of C28H14 came to resemble 
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that of the paratropic corannulene dianion with slight dampening, an effect thought to be 

due to quenching from the attached benzene rings (Figure 17).   

 

+

[C28H14]2C28H14  

Figure 17. Schematic representations of the superaromatic structures of C28H14 and 

[C28H14]
2−

. 

 

 C28H14 can be readily reduced to the dianion stage with lithium metal.47 However, 

after extended time, slow disappearance of the NMR spectrum may suggest the formation 

of radical trianions.  For potassium, the first three reduction stages showed very similar 

results.  However, in addition, a fourth stage was noticed with a color change from purple 

to brown, and the return of a NMR spectrum.  This new 1H NMR spectrum however was 

different from the C28H14 dianion.  It exhibited much broader peaks as well as a larger 

downfield shift suggesting the return of the diatropic character as seen in the neutral 

molecule.  It is theorized that the further reduction is due in part to the use of a stronger 

reducing metal, potassium, which is able to bind more tightly to the anion in solution.47  

So far the reduction reactions of C28H14 have been investigated only in situ using 

spectroscopic methods. None of the products have been isolated in the solid state. 
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Therefore the effects of adding multiple electrons to this bowl core have not been 

evaluated. In this work, we have targeted isolation of the first crystalline solid products of 

the reduced dibenzo[a,g]corannulene bowl (Part 4.2).  We have also investigated self-

assembly of C60 and C70 fullerenes with C28H14 (Part 4.1) and compared that with the 

corannulene adducts.  

 

IV.  Results and Discussion  

4.1 Co-crystallization of C28H14 with Fullerenes 

 4.1.1 C28H14 and C60  

 Since no differentiation between the concave-convex and convex-convex binding 

was observed in the solid structure of the C20H10-C60 adduct,21 in this work we set to 

investigate if C28H14 is a better host for fullerene guests.  Single crystals of the product 

were obtained by the slow evaporation of the chlorobenzene (C6H5Cl) solution containing 

C60 and C28H14 (1:1) in a sealed ampoule over 5 days. The X-ray crystallographic study 

confirmed the formation of the product having a 1: 1 composition of C28H14 to C60 (1).  

Analysis of the structure shows the endo face of the C28H14 molecule is interacting with 

the convex C60 molecule (Figure 18).  
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Figure 18.  Molecular structure showing a formation of an inclusion complex of C60 and 

C28H14 in a 1:1 ratio. 

 

 The depth of penetration of the C60 ball into the C28H14 bowl is 6.71 Å, measured 

from the centroid of the C28H14 five-membered ring to the centroid of C60, and 3.137(3) 

Å, measured from the shortest distance from the concave surface of the C28H14 to a C60 

surface.  A notable difference is observed in the increased length of the spoke and flank 

bonds of C28H14.
46 However, the bowl depth of dibenzo[a,g]corannulene in 1 is similar to 

that observed in C28H14 (Table 2). 
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Table 2. Key distances of 1 and 2 (Å). 

 C28H14
46 1 2 

hub 1.4208(2)–1.428(2) 1.4157(1)–1.4273(1) 

 

1.404(1)–1.431(2) 

1.410(1)–1.429(2) 

rim 1.385(2)–1.447(2) 1.3760(1)–1.4431(1) 1.378(1)–1.448(2) 

1.382(1)–1.439(2) 

spoke 1.367(2)–1.380(2) 1.3680(1)–1.4732(1) 1.362(1)–1.377(2) 

1.367(1)–1.382(2) 

flank 1.435(2)–1.472(2) 1.4317(1)–1.4862(1) 1.418(1)–1.481(1) 

1.426(2)–1.476(1) 

peripheral 

rings 

1.382(2)–1.407(2) 1.3641(1)–1.4096(1) 1.372(1)–1.405(1) 

1.373(2)–1.413(1) 

bowl depth 0.83 0.802 0.790 

0.796 

 

After expanding the asymmetrical unit, it was noticed that the C60 molecules in 1 pack in 

a zig-zag manner just as they did in the C20H10:C60 crystals (Figure19).21  The distance 

between consecutive C60 molecules is 13.13 Å and the angle between three successive 

molecules is 142.81°.  The C28H14 molecules along the row interact with C60 through 

convex-convex π…π interactions with the shortest distance being 3.2207(2) Å. 

 The formation of a 2D structure was observed with the anti-parallel aligning of 

the neighboring 1D strands (Figure 19).  These strands exhibit π…π interactions between 

neighboring C60 molecules, with the shortest distance being 3.074(2) Å.  An extended 

structure is formed by the translation of these strands forming a sheet.  Three different 

interactions were observed within this network.  The first exists as π…π interactions 

between the exo faces of adjacent C28H14 molecules at a distance of 3.2485(3) Å.  The 
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second, a C−H…π interaction, is also found between these faces at a distance of 2.8009(3) 

Å.  The last is a C−H…π between the peripheral ring of C28H14 and C60 at a distance of 

2.5723(2) Å. 

 

Figure 19.  A 2D representation of 1 with C6H5Cl omitted for clarity. 

 

 Through expansion of these sheets along the b crystallographic axis, a 3D 

structure is formed for the crystal (Figure 20).  The sheets appear to be held together by 

the π…π interactions between neighboring C60 molecules; the shortest distance observed 

at 3.277(3) Å.  A C–H…π interaction also exists between C28H14 and C60, adding extra 

connectivity and supporting growth in the third dimension.   
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Figure 20.  Space-filling model of the 3D structure of 1. 

 

 4.1.2 C28H14 and C70 

 Single crystals of the product were obtained by slow evaporation of the 1,2-

dichlorobenzene (DCB) solution containing C70 and C28H14 (1:1) in a sealed ampoule 

over 5 days. The X-ray crystallographic study confirmed the formation of the product 

having a composition of [(C70)(C28H14)2]·3C6H4Cl2 (2).   

 Analysis of the structure reveals the formation of a unique self-assembly in which 

the endo face of two C28H14 molecules embraces the C70 spheroid along its elongated 

major axis (Figure 21).  This could be expected because unlike C60, which provides a 

uniform ball surface for C28H14 to interact with, C70 exhibits two distinctly different 

surfaces along the minor and major axes.  This selective interaction between C70 and 
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C28H14 is very interesting and most likely due to the decreased bowl depth of C28H14, 

providing a perfect complementary surface and curvature match towards C70. 

 

 

Figure 21. Molecular structure showing the encapsulation of C70 between two C28H14 

units. 

 

 The depth of penetration of C70 into the closer C28H14 bowl is 6.95 Å, measured 

from the centroid of the bowl five-membered ring to the centroid of the C70 molecule, and 

3.258(1) Å, measured from the shortest distance from the concave surface of the C28H14 

to a C70 surface.  The other independent C28H14 molecule has very similar distances with 

a penetration of 7.00 Å measured to the centroid of C70, and 3.267(1) Å as its shortest 

contact to the C70 surface (Figure 21).  The hub C–C bond lengths of C28H14 in 2 are 

notably shorter than in the parent ligand.46  The bowl depth of dibenzo[a,g]corannulene 

in 2 is similar to that observed in the C28H14  (Table 2).   

Key distances in C70 were also checked to determine if the interaction had an 

effect on the structure of C70 as well (Figure 22).  The first, A, is the distance along the 

major axis from the centroid of each five-membered ring to the centroid of the C70 
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molecule.  The second, B, is the distance along the major axis between the centroids of 

the two five-membered rings.  The last distance, C, is measured along the minor axis and 

is the average distance of the equatorial six-membered rings’ centroid to the centroid of 

C70.  Comparison of the C70 distances in 2 to the distances of C70•{2,3,6,8,11,12,15,17-

octamethyldibenzo-[b,i]1,4,8,11-tetraaza(1,4)annulene} nickel(II), Ni(OMTAA), and 

{C70·C9Cl6Br3N} present the idea that the C–C bonds of C70 were affected very little by 

the interactions with C28H14 (Table 3).48, 49   

 

 

Figure 22.  Depiction of distances A, B, and C in C70. 
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Table 3.  Key distances along the major and minor axes of C70. 

Centroid Distances (Å) 2 C70·Ni(OMTAA)48 C70·C9Cl6Br3N
49 

A 3.950, 3.955 3.924, 3.950 3.961, 3.965 

B 7.905 7.874 7.926 

C 3.330 3.326 3.330 

 

 After expanding the asymmetrical unit in two directions, interactions between the 

adjacent C28H14 bowls as well as between C70 with an C28H14 molecule creating a 1D 

strand have been identified.  The C28H14 molecules along the strand interact through 

concave-convex C–H…π interactions in which the distances alternate between 2.87 Å and 

2.83 Å.  The opposite end of the concave face of C28H14 is what binds to an adjacent C70 

molecule with C–H…π interactions at alternating distances of 2.89 Å and 2.85 Å (Figure 

23). 

 

 

Figure 23. 1D stacking of 2 with DCB molecules omitted for clarity. 
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 In addition, DCB molecules interact with the convex side of each C28H14 

molecule through π…π interactions, with the shortest distance measured at 3.268(1) Å.  

Each DCB molecule interacts differently with the two adjacent C28H14 bowls; on one side 

it interacts with the hub bond of C28H14 and the other interacts with the rim bond attached 

to the a peripheral ring. Through these interactions multiple strands come together to 

form a 2D network of C28H14, C70, and DCB (Figure 24).   

 

 

Figure 24. 2D stacking in 2. 
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 Unlike the adduct with C60, a 3D packing structure is not observed for 2.  In this 

case, the sheets seem to be loosely held together through C–Cl…π interactions with DCB 

molecules surrounding the C70 molecules.   

 

4.2  Characterization of Dibenzo[a,g]corannulene Anions 

 4.2.1  Rb Salt of C28H14 Monoanion 

 Single crystals of [Rb(18-crown-6)+][C28H14
–], 3, were grown from the DME 

solution of the monoreduced polyarene by layering with hexanes.  The X-ray diffraction 

study of 3 revealed the formation of a contact-ion pair built on the symmetric central η5-

binding of the Rb+ ion to the exo surface of the dibenzocorannulene core (Figure 25). 

Notably, in the contact-ion pair complexes of rubidium with monoreduced corannulene 

(C20H10
–), a preferential convex metal binding was seen at the benzene ring site (exo η6). 

32 

 

Figure 25. Molecular structure (left) and solid-state packing (right) of 3.  

 

The [Rb(18-crown-6)]+ cation sits almost exactly above the center of the five-

membered ring. The Rb···Chub and Rb···Ccentroid bond lengths separations (3.161–3.326 
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and 3.018 Å, respectively) are indicative of the strong binding of the metal to the π-bowl. 

Notably, the Rb···C distances in 3 are slightly shortened compared to those observed in 

the rubidium salt with corannulene monoanions.33 The Rb+ ion is also bound to six 

oxygen atoms of the 18-crown-6 ether with the corresponding Rb···O bond length 

distances (2.806(9)−2.989(10) Å) being close to those previously reported.33,50  

Moreover, interactions between the Rb+ ions with the peripherial rings of the 

neighboring C28H14
•− moieties were also observed in the crystal lattice of 3 (3.334 Å, 

Figure 26).  

 

 

Figure 26. Space filling depiction of 3. 18−crown−6 molecules have been removed 

for clarity.  

 

 The first structural characterization of C28H14
•– allows us to analyze the core 

perturbations in comparison to the parent bowl.46  The spoke C−C bonds (av. 1.390(4) Å) 

are slightly elongated in 3 vs. those in neutral dibenzocorannulene (av. 1.372(2) Å).43 The 

average hub and flank C−C bond distances are essentially the same in C28H14
•− and 

C28H14 (1.410(4) Å and 1.446(4) Å vs. 1.418(2) Å and 1.453(2) Å, respectively) (Table 
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4). The acquisition of one electron by dibenzocorannulene does not result in noticeable 

flattening of the corannulene core of the bowl (0.77 Å vs. 0.83 Å in the neutral ligand).

 In the solid state structure, relatively short C−H···π separations are found between 

the 18-crown-6 molecules and adjacent C28H14
•− bowls (2.711(2)–2.877(2) Å, Figure 25). 

It is worth mentioning that several C–C contacts between two adjacent 

dibenzocorannulene bowls fall in the range 3.245(2)−3.370(2) Å (Figure 26). These 

values are shorter than the shortest C–C distances found in neutral C28H14 (3.34−3.60 

Å).46 

 

Table 4. Ranges for key distances for C28H14, 3, and 4 (in Å).  

 C28H14 
46 3 4* 

hub 1.4208(2)–1.428(2) 1.400(4)–1.427(4) 1.393(3)–1.438(3) 

1.392(3)–1.431(3) 

rim 1.385(2)–1.447(2) 1.407(4)–1.456(4) 1.418(4)–1.471(4) 

1.431(3)–1.466(3) 

spoke 1.367(2)–1.380(2) 1.381(4)–1.398(4) 1.393(3)–1.415(3) 

1.394(3)–1.417(4) 

flank 1.435(2)–1.472(2) 1.412(4)–1.489(4) 1.408(4)–1.488(4) 

1.402(3)–1.488(3) 

peripheral 

rings 

1.382(2)–1.407(2) 1.367(4)–1.416(4) 1.377(4)–1.417(3) 

1.376(3)–1.415(3) 

bowl depth 0.83 0.77 0.75 

0.74 

* Two crystallographically independent C28H14
2− anions with essentially close 

geometrical parameters have been observed in the unit cell. 
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 4.2.2 Na Salt of C28H14 Dianion 

Dark purple blocks of [Na(18-crown-6)(DME)+]2[Na(18-crown-6)+][C28H14
2−]2, 4, 

were grown by the slow diffusion of hexanes into the DME solution of doubly-

reduced polyarene. According to an X-ray diffraction study, the [Na(18-crown-

6)(DME)]2
+ and [Na(18-crown-6)]+ cations are solvent-separated from C28H14

2– 

anions (Figure 27), allowing the first structural evaluation of the “naked” C28H14
2– in 

which geometric parameters are not influenced by direct metal binding.   

 

Figure 27. Molecular structure of 4.  

 

 The sodium ion in [Na(18-crown-6)(DME)]2
+ is bound to one DME (2.341(2) 

and 2.472(2) Å) and one 18-crown-6 molecule (2.427(2)−2.798(2) Å). It is worth 

mentioning, the 18-crown-6 ether is bent and only five of its oxygen atoms are bound 
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to the Na+ ion. The Na···O distances in the [Na(18-crown-6)(DME)]2
+ cation are 

longer that those in [Na(18-crown-6)]+ (2.365(2)−2.684(2) Å) having all six oxygen 

atoms coordinated to the Na+ cation.  

 In addition, the Na+ ion is bound to the oxygen atom of the adjacent 18-crown-

6, in [Na(18-crown-6)(DME)]2
+, with the corresponding distance 2.380(2) Å. The 

observed full encapsulation of Na+ centers precludes any interactions between the 

alkali metal ions and -surface of C28H14
2−. 

 As shown in Table 4, the flank C−C bond lengths of C28H14
2− in 4 (av. 

1.444(3) Å) are essentialy the same as in C28H14 (av. 1.453(2) Å).46 The average 

spoke and rim C−C bonds (1.440(3) Å and 1.400(3) Å, respectively) are slightly 

elongated vs. those in neutral dibenzocorannulene (1.372(2) Å and 1.418(2) Å, 

respectively). The acquisition of two electrons by dibenzocorannulene results in the 

flattening of the curved carbon surface compared to the neutral bowl (0.75 Å (av.) vs. 

0.83 Å). At the same time, the bowl depth of C28H14
2− remains close to that in 

C28H14
•− (0.75 Å vs. 0.77 Å). For comparison, the addition of one and two electrons to 

C20H10 resulted in more pronounced changes (C20H10
•−: 0.834−0.855 Å and 

0.785−0.811 Å, respectively vs. 0.875 Å in neutral C20H10).
38 

 In the solid state structure of 4, both the concave and convex faces of C28H14
2− 

are involved in C−H…π interactions with the adjacent 18-crown-6 moieties. The 

shortest corresponding distances are 2.656 Å and 2.695 Å, respectively.  
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V. Experimental Part 

5.  Materials and Methods 

 Synthesis of dibenzo[a,g]corannulene was performed according to the established 

procedures, using the pathway stemming from the carbonylation of 2-chlorobenzyl 

chloride and diironnonacarbonyl.38  The crude product was then purified further by 

washing it with hexanes followed by acetone.  C60 was purchased from TCI and C70 was 

purchased from Sigma Aldrich; both were used as received.  Anhydrous chlorobenzene 

and 1,2-dichlorobenzene was purchased from Sigma-Aldrich and degassed three times 

prior to use.  

 All manipulations were carried out using break-and-seal1 and glove-box 

techniques under an atmosphere of argon.  Solvents (THF, DME, and hexanes) were 

dried over Na/benzophenone and distilled prior to use.  THF-d8 was dried over NaK2 

alloy and vacuum-transferred.  Crown ether, 18-crown-6 (99%), was purchased from 

Strem Chemicals and dried over P2O5 in vacuo for 24 h. Alkali metals were purchased 

from Strem Chemicals.  Dibenzocorannulene was prepared as described previously and 

sublimed at 220 °C prior to use.  The UV-vis spectra were recorded on a PerkinElmer 

Lambda 35 spectrometer.  The 1H NMR spectra were measured on a Bruker AC-400 

spectrometer at 400 MHz and were referenced to the resonances of the corresponding 

solvent used.  The X-ray intensity data for 1 were measured on a Bruker Kappa APEX 

DUO diffractometer equipped with a Cu INCOATEC ImS micro-focus source (λ= 

1.54178 Å).  The X-ray intensity data for 2 were measured on a Bruker D8 VENTURE 

with PHOTON 100 CMOS detector system equipped with a Cu INCOATEC ImS micro-

focus source (λ = 1.54178 Å). Data collection of 3 and 4 were performed on a Bruker 
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SMART APEX CCD-based X-ray diffractometer with graphite-monochromated Mo Kα 

radiation (λ = 0.71073 Å). 

 

 5.1  Preparation of [C60·C28H14] (1) and [(C70)(C28H14)2]·3C6H4Cl2  (2). 

To form 1, dibenzocorannulene (3.0 mg, 0.009 mmol) and C60 (6.18 mg, 0.009 mmol) 

were dissolved in chlorobenzene (2.2 mL).  The purple solution was filtered into a “L-

shaped” ampoule (shown below), degassed three times, and sealed under vacuum.  The 

ampoule was slightly tilted and the end without any solution was placed into an ice bath. 

The ice was placed in an insulated container and replenished when necessary (Figure 28).  

Crystals were present in low yield in 120 hours.  The solution was decanted away from 

the crystals, and the crystals were sealed under vacuum.  

 Synthesis of crystals of 2 followed the same procedure, substituting C70 (7.2 mg, 

0.009 mmol) in place of C60 and 1,2-dichlorobenzene(2.2 mL) for chlorobenzene.  

 

Figure 28. Depiction of the slow evaporation using a sealed “L-shaped” ampule and ice 

bath. 
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 5.2  Preparation of [Rb(18-crown-6)+][C28H14
−] (3) 

DME (3 mL) was added to a flask containing Rb metal (3.6 mg, 0.042 mmol, 1.5 eq.), 

dibenzocorannulene (10 mg, 0.0286 mmol), and 18-crown-6 (8 mg, 0.0286 mmol). The 

resulting deep green-blue solution was stirred at room temperature for 5 hours.  The blue-

green mixture was filtered, layered with hexanes (3 mL) and kept at 10 °C. Green crystals 

(blocks) were present in 48 hours.  The green solution was decanted, and the crystals 

were washed several times with hexanes and dried in vacuo. Yield: 17 mg, 85%. Uv-vis 

(THF, nm): 469, 656 (Figure29). 1H NMR (400 MHz, THF-d8, 15 mM, 25 °C, ppm):   = 

3.25, 3.42; 1H NMR (400 MHz, THF-d8, 15 mM, −60 °C, ppm):   =3.25, 3.42. 

 

 

Figure 29. Uv-vis spectrum of 3 (THF).  
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 5.3 Preparation of [Na(18-crown-6)(DME)+]2[Na2(18-crown-6)2(DME)2+] 

[C28H14
2−]2 (4) 

DME (3 mL) was added to a flask containing excess Na metal, dibenzocorannulene (10 

mg, 0.0286 mmol), and 18-crown-6 (8 mg, 0.0286 mmol). The deep green solution was 

stirred at room temperature for 8 hours resulting in a deep purple mixture. The purple 

mixture was filtered, layered with hexanes (3 mL) and kept at 10 °C. Purple crystals 

(blocks) were present in 36 hours. The solution was decanted, and the crystals were 

washed several times with hexanes and dried in vacuo. Yield: 45 mg, 70%. UV-vis (THF, 

nm): λmax = 544, 655 (Figure 30).  

 

 

Figure 30. Uv-vis spectrum of 4 (THF).  
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VI. Conclusions 

 With the preparation of [C60·C28H14] (1) and [(C70)(C28H14)2]·3C6H4Cl2 (2), we 

have produced the first two examples of co-crystallization of dibenzo[a,g]corannulene 

with fullerenes.  Upon analysis of each crystal structure, a remarkable difference was 

noticed between the two packing patterns.  Adduct 1 exhibits packing similar to that of 

C60·C20H10 in which a 1:1 ratio of fullerene:buckybowl has been previously observed 

with a lack of differentiation between concave-convex and convex-convex binding.  The 

structure of 2 exhibits a completely different and unique packing motif.  In this assembly, 

two C28H14 molecules interact with C70 only through concave-convex interactions, 

essentially encapsulating each C70 molecule by two bowls in the crystal.  Also unique to 

this self-assembly, C28H14 exclusively interacts with the elongated major axis of C70, 

suggesting a preferential binding mode between these two molecules.  Future applications 

of these interactions may include using dibenzo[a,g]corannulene as the receptors in a pair 

of “molecular tweezers” to selectively capture the C70 guest molecules in the presence of 

C60. 

 With the preparation of crystals of [Rb(18-crown-6)+][C28H14
−] (3) and [Na(18-

crown-6)(DME)+]2[Na2(18-crown-6)2(DME)2+][C28H14
2−]2 (4), we have characterized the 

first mono and dianion of dibenzo[a,g]corannulene.  The single crystal X-ray diffraction 

study of 3 revealed the presence of a contact-ion pair for the monoanion, with the 

preferential metal binding to the exo face of C28H14
−.  The structural analysis of 4 

demonstrated the presence of a “naked” dianion of C28H14.  In each of these anions, the 

bowl depth of C28H14 showed a negligible change upon addition of electrons as compared 
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to neutral C28H14.  Successful isolation of these anions provides a solid foundation toward 

future use of dibenzo[a,g]corannulene in electron storing materials.  
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