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Abstract 

Mixed-methods designs, especially those where cases selected for small-N analysis (SNA) 
are nested within a large-N analysis (LNA), have become increasingly popular. Yet, since the 
LNA in this approach assumes that units are independently distributed, such designs are 
unable to account for spatial dependence, and dependence becomes a threat to inference, 
rather than an issue for empirical or theoretical investigation. This is unfortunate, since 
research in political science has recently drawn attention to diffusion and interconnectedness 
more broadly. In this paper we develop a framework for mixed-methods research with 
spatially dependent data—a framework we label “geo-nested analysis”—where insights 
gleaned at each step of the research process set the agenda for the next phase and where case 
selection for SNA is based on diagnostics of a spatial-econometric analysis. We illustrate our 
framework using data from a seminal study of homicides in the United States.  
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1. Introduction 

Spatial econometrics and multi-method research designs are methodological trends in the 

social sciences that have developed mostly in isolation of one another.1 Spatial econometrics 

have been leveraged to analyze how processes of diffusion, learning, contagion, externalities 

or interdependence more broadly bring about phenomena of interest to political science. Yet, 

these techniques rely on the often problematic assumption that the appropriate structure of 

interdependence among units, which may be based on linkages captured by geographic 

distance, communication flows or travel time, is known to the researcher and can be specified 

ex ante. While mixed-methods designs provide opportunities to test and—if necessary—

update such assumptions (Seawright 2016), to date strategies for case selection have been 

informed exclusively by unit attributes, thus limiting their ability to shed light on the nature 

of interdependence. In this paper we develop a framework for mixed-methods research with 

spatially dependent data—a framework we label “geo-nested analysis”—where insights 

gleaned at each step of the research process set the agenda for the next phase.2 Our research 

work flow, illustrated in Figure 1, consists of three steps: (1) a non-spatial large-N analysis 

(LNA); (2) diagnostics of this initial model to detect spatial dependence; and (3) a small-N 

analysis (SNA) designed to uncover sources of dependence. If the diagnostics in step (2) 

indicate a spatial lag process, the small-N analysis in step (3) focuses on identifying vectors 

of transmission, that is, the process by which an outcome in nearby areas affects that outcome 

                                                            
1 We use “mixed-methods” and “multi-method” interchangeably throughout. 
2 Similar questions could be raised with other kinds of structures of dependence, such as 
networks. Indeed, the many conceptual, theoretical, and methodological parallels between 
network and spatial analysis recommend our approach equally to scholars of network 
dependence. We focus here on spatial dependence for economy of presentation. Our approach 
also speaks to efforts to explain causal heterogeneity across units instead of relying on 
categorical variables for each unit, e.g., region dummies, and the larger methodological 
debate over fixed effects, random effects, and other non-spatial modeling strategies (Bell and 
Jones 2015; Clark and Linzer 2015; Dieleman and Templin 2014; Deaton 2010). 
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locally. Conversely, if diagnostics indicate a spatial error process, the small-N analysis seeks 

to uncover spatially clustered omitted or unobserved variables, thus shedding light on 

“contextual effects” (King 1996). 

Figure 1: Overview of Geo-Nested Analysis 

 

 

The key advantage of mixed-methods designs is the combination of quantitative and 

qualitative tools within a single unified framework. A growing literature now identifies best 

practices for systematically executing this multi-method integration (e.g. Seawright and 
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Gerring 2008; Humphreys and Jacobs 2015; Nielsen 2016; Seawright 2016). Lieberman’s 

(2005) article, which offers guidelines for case selection in research designs where cases for 

small-N analysis (SNA) are nested within a larger sample studied econometrically, was 

foundational for this growing literature.3 But in line with the dominant tradition in 

comparative research, the assumption that the variation between units in the outcome of 

interest can be explained in terms of variation in unit attributes continues to underlie large-N 

analysis (LNA). This implies that units are independent of one another and that they satisfy 

the regression assumption of being “independent and identically distributed” (i.i.d.). 

Dependence among units—if considered at all—is a threat to inference but not a subject for 

empirical or theoretical investigation.  

Yet, as Beck, Gleditsch and Beardsley (2006: 42) point out regarding many of the phenomena 

studied in political science, “we would expect units to be affected by what takes place in 

other units.” The Arab Spring—during which social protests destabilized several 

authoritarian regimes while other regimes responded with policies aimed at “diffusion 

proofing” (Koesel and Bunce 2013)—is a case in point. When conceptualizing protests and 

regime responses as a series of isolated and unrelated events, scholars risk missing important 

insights about underlying causal processes (e.g. Weyland 2012). Other examples of 

interdependence stem from research on the diffusion of liberalism (e.g. Brinks and Coppedge 

2006; Simmons et al. 2008), institutions (e.g., Graham, Shipan and Volden 2013; Ingram 

2016a), norms (e.g., Hilbink 2012; Ingram 2016b), political behavior (e.g. Huckfeldt and 

Sprague 1992) and violence (e.g., Tolnay, Deane and Beck 1996; Dube, Dube and García-

Ponce 2013).   

                                                            
3 According to Google Scholar, Lieberman’s article had been cited more than 800 times as of 
December 1, 2016. 
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For research using nested analysis, the spatial dependence of data presents two problems. 

First, nested designs are unable to answer substantive questions about the nature of 

interdependence among units as such questions are beyond the scope of the initial LNA. 

Thus, how phenomena like protest, democracy, voting, violence, or policies spread among 

units, or why they remain contained to specific areas, cannot be studied. Second, if the SNA 

identifies diffusion, transfer, spillover, learning or other interdependence among units as 

relevant causal mechanisms (Shipan and Volden 2008), LNA and SNA become disconnected. 

Indeed, the more evidence of cross-unit interdependence revealed in the SNA, the more likely 

that the LNA is misspecified. The key promise of nested research designs “that both LNA 

and SNA can inform each other” and that “the analytic payoff is greater than the sum of the 

parts” (Lieberman 2005: 436) then no longer holds. By untangling the spatial process more 

thoroughly than would be possible with quantitative or qualitative tools alone, geo-nested 

analysis offers scholars leverage to answer questions that have remained beyond the scope of 

systematic mixed-methods designs. 

The contribution of geo-nested analysis is thus twofold. The framework: (1) enables 

systematic investigation of new types of questions about the nature of interdependence; and 

(2) by offering a strategy for explicitly integrating and triangulating evidence from 

quantitative and qualitative tools, places mixed-methods research designs investigating 

interdependence on firmer ground.  

We proceed as follows. In the next section, we explain the challenge spatial dependence 

poses for traditional nested analysis and situate our contribution in the literature on mixed 

methods. We also introduce the conceptual language of spatial analysis and highlight how 

and why adding a SNA can improve on spatial-econometric analysis conducted in isolation. 

From there, we develop our framework for geo-nested analysis and walk through the steps of 

the research process. To illustrate these steps, we draw on the social science literature on 



7 
 

 

violence, a field in which the analysis of spatial effects has been particularly fruitful. More 

specifically, we follow the steps of our framework with data from a seminal study of 

homicide rates in the United States (Baller et al. 2001). We chose this example for three 

reasons. First, the data for this study are publicly available and used elsewhere in the methods 

literature on spatial analysis to illustrate key techniques (e.g., Anselin and Rey 2014). 

Second, while Baller et al.’s analysis remains one of the preeminent examples of spatial 

analysis in the social sciences, the authors explicitly acknowledge uncertainties, inbuilt 

assumptions and limitations—transparency that allows us to apply our framework to a real-

life research example. Third, case selection strategies in our framework depend on the type of 

spatial dependence encountered, since different types of dependence raise distinct questions 

to be answered during the SNA phase of the research. While models that assume a spatial lag 

process challenge researchers to identify the actual vectors of transmission, a spatial error 

process highlights the need to uncover spatially clustered omitted variables. The Baller et al. 

example contains different types of spatial dependence, with homicide rates in the South 

following a diffusion pattern and evidence for contextual effects in the rest of the country. It 

is therefore a particularly rich example for illustrating different paths in the research flow of 

geo-nested analysis. 

 

2. Case Selection in Space: Incorporating Dependence in Nested Analysis  

Lieberman’s (2005) nested approach entails beginning the analysis with a preliminary LNA, 

critically assessing the robustness of the obtained results and then—depending on the 

outcome—proceeding either with a “Model-testing Small-N Analysis” (Mt-SNA) or a 

“Model-building Small N-Analysis” (Mb-SNA). Two central tenets of Lieberman’s approach 

are particularly relevant to the framework we develop in this paper. The first is the use of 
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regression diagnostics for selecting promising cases for in-depth study. The second is the 

commitment to an iterative research process where insights gleaned at each step set the 

agenda for subsequent steps. Where Lieberman’s framework distinguishes between a model-

testing pathway and a model-building pathway based on the robustness of the results of the 

quantitative model, however, we encourage mixed-method scholars to retain the commitment 

to testing and – if necessary – updating of LNA assumptions throughout the research cycle. 

Whenever there is evidence of spatial dependence, we argue, scholars should conceive of the 

small-N analysis as an opportunity for hypothesis generation, model building and 

improvement.4 We retain the term "nested" in our approach because the cases selected for 

qualitative analysis are nested (i.e., embedded) within the same sample that is first analyzed 

econometrically. Even though we embrace the positivist commitment to causal inference, we 

therefore do not prescribe a deductive template focused primarily on hypothesis testing. 

Rather, our framework offers guidelines for integrating insights from quantitative and 

qualitative tools and for systematically and transparently refining theoretically-grounded 

arguments (Collier, Brady and Seawright 2004; Yom 2015).  

Previous guidelines for conducting nested analysis, as explained above, encounter trouble 

when data are spatially dependent. At the outset, it is therefore helpful to briefly explain what 

spatial dependence is and why it matters in the context of nested analysis. While no 

quantitative analysis in political science using time-series data can afford to ignore concerns 

about serial correlation, the issue of spatial autocorrelation in cross-sectional analysis has 

thus far received comparatively little attention.5 When comparing spatial units like countries, 

provinces or counties without considering the possibility of spatial dependence, scholars are 

                                                            
4 We thank an anonymous reviewer for highlighting this point.   
5 Following Anselin and Bera (1998) we use the terms spatial autocorrelation and spatial 
dependence interchangeably. 
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in effect assuming that neighborhood and location do not matter and that units are spatially 

independent.6 This is a strong assumption, probably one many scholars would be 

uncomfortable making explicitly. Indeed, cross-national as well as subnational quantitative 

analyses frequently include geographic dummy variables, implicitly acknowledging that—in 

addition to the variables included in the model—there are territorially specific omitted 

variables. In studies of violence and homicide rates in the United States, for instance, a 

dummy for the South is frequently included (e.g. Land, McCall and Cohen 1990), similar to 

the practice in comparative politics of incorporating regional dummies or scope exclusions 

(Ahram 2011). While such dummies often turn out to be significant, what this means 

substantively or theoretically is rarely explored. For this reason, Lieberman (2005: 438) 

cautions against the inclusion of geographic dummy variables as they “are likely to soak up 

some of the cross-country variance, leaving less to be explained in the SNA, but in the 

absence of good theory, such controls weigh against the nested approach, which aims to 

answer the very question of why groups of countries might vary in systematic ways” (see also 

Deaton 2010; Bell and Jones 2015).  

Lieberman, in effect, argues that geographic dummies reflect variables to be revealed during 

the SNA that, once identified, can be leveraged to improve the quantitative model. This is in 

line with Przeworski and Teune’s (1970) call to replace “proper names” with theoretically 

meaningful variables, and with King’s (1996: 160) commitment to show that “context” 

                                                            
6 More technically, the assumption is that connectivities are zero (i.e., all elements of W are 
0, where W identifies an n x n matrix of spatial weights). In spatial analysis, spatial weights 
define the so-called “neighborhood set” for each observation, that is, the group of relevant 
other locations with which the unit is expected to interact. For most political science 
applications, observations will be areal units captured by polygons (Darmofal 2015: 11), and 
the neighborhood relation will be based on notions of contiguity. But alternative operational 
approaches based on point patterns and distance measures are also possible. For a more 
extensive discussion on constructing spatial weights, see Anselin and Rey (2014: chapters 3 
and 4). 
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should not matter in political science analyses, i.e., that the charge of social scientists is to 

clarify the content of “context”. Indeed, regional dummies or contextual explanations can be 

seen as placeholders for variables we still need to uncover. The realization that a causal 

relationship plays out differently across space should not be considered the end point of 

analysis, but the starting point for further investigation to identify the factors underlying this 

contextual effect. Yet, while including under-theorized dummy variables is undesirable for 

the reasons outlined by Lieberman, ignoring space during the LNA runs the risk of beginning 

with a misspecified model. Rather than relying on geographic dummies, more explicit 

attention to the existence and nature of spatial dependence at the stage of a preliminary LNA 

can improve the research design and have multiple salutary effects, including improving 

existing theories and generating new ones.  

In spatial econometrics, “rather than considering N observations as independent pieces of 

information, they are conceptualized as a single realization of a process” (Anselin and Bera 

1998: 252). Spatial dependence can be a threat to inference if it is not modeled adequately. 

Akin to problems created by omitted variable bias, coefficients can become biased and 

inconsistent if spatial autocorrelation is ignored (Anselin and Rey 2014: 105). A preliminary 

LNA that fails to consider spatial dependence where it exists is thus unlikely to yield “robust 

and satisfactory results” and will most likely lead to a “model-building Small-N Analysis” 

(Mb-SNA). Researchers may find this inefficient as information contained in the data about 

the structure of spatial dependence has not been leveraged. In the worst case scenario, the 

researcher begins with a Mb-SNA but has insufficient guidance to uncover the omitted 

variables and is then forced to end the analysis without a satisfactory answer (Lieberman’s 

“scenario IV”). Considering the spatial dependence in the data during the preliminary LNA 

gives the researcher greater guidance, not only because it avoids model misspecification, but 
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because doing so indicates how unmeasured factors are clustered in space. This is valuable 

information that can be leveraged when selecting cases for SNA.  

This argument for considering spatial dependence during the preliminary LNA remains in 

line with the practice of comparative research to find the primary explanatory factors of an 

outcome of interest within the unit where the outcome is observed. But, as noted in 

introduction, for many phenomena studied in political science, “we would expect units to be 

affected by what takes place in other units” (Beck, Gleditsch and Beardsley 2006: 42). Yet, 

we often do not know how phenomena of interest spread from one unit to another. A more 

conscious consideration of spatial dependence is therefore not only about preventing 

quantitative analyses from getting wrong or incomplete answers to well-established 

questions, but about the ability to explore different types of questions (Harbers and Ingram 

n.d.). Understood in this way, the dependent structure in the data becomes a research topic in 

and of itself—one that can benefit from the systematic combination of quantitative and 

qualitative tools.  

Adopting a spatial perspective requires researchers to re-conceptualize their understanding of 

the object of study during the SNA phase. Gerring (2007: 19) defines a case as a “spatially 

delimited phenomenon (a unit) observed at a single point in time or over some period of 

time.” Lieberman (2005: 440) states that the move from the LNA to the SNA phase entails a 

shift from “dataset observations” to thicker, more heterogeneous “causal-process 

observations” (Collier, Brady and Seawright 2004). If observations during the LNA are 

countries, one or two might be selected for detailed study and analyzed over longer stretches 

of time to tease out causal mechanisms. For example, following Lieberman (2005), Ingram 

(2016) conducts a quantitative analysis of subnational judicial empowerment across states in 

two countries, followed by an in-depth analysis of three state-level cases studies in each 

country. In geo-nested analysis, where data are spatially dependent, examining individual 



12 
 

 

units, even in detail, is insufficient. By definition, spatial analysis focuses on the 

interdependence of units. Therefore, a “case” for the SNA is better conceptualized as a set of 

units: a focal unit (e.g., county, city, neighborhood or other unit depending on the research 

question and theory) and the neighboring units with which it is connected. 

In sum, if spatial dependence exists in the data, geo-nested analysis has advantages over both 

non-spatial nested analysis and non-nested spatial analysis. We now turn to how space may 

be considered more explicitly and the steps in our proposed framework for geo-nested 

analysis.  

3. Conducting Geo-Nested Analysis 

While our geo-nested framework assumes an initial sequence from LNA to SNA, we readily 

acknowledge that most research does not proceed in a simple, linear fashion; the process is 

frequently iterative, with each stage informing and improving the next as theoretical hunches 

and intuitions develop into fully-specified causal models and mechanisms (Yom 2015). 

Although nested designs may be both “regression-based” and “case study-based” (Rohlfing 

2008), we begin with the same idealized sequence from LNA to SNA used by Lieberman to 

streamline our discussion. The starting point of analysis is thus a rectangular data set. But 

departing from Lieberman, our data need to be geo-referenced, that is, observations must be 

associated with locations in physical space.   

Our discussion of specification searches and diagnostics during the LNA phase builds on 

Anselin and Rey (2014).7 While we highlight the main steps involved in specifying a spatial 

model, we refer readers looking for a more thorough discussion of diagnostics and models to 

texts on spatial econometrics (e.g., Anselin 1988; Anselin and Rey 2014; Darmofal 2015). 

                                                            
7 Our Figure 1 is a nested adaptation of Figure 5.1 in Anselin and Rey (2014: 110). 
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Throughout, we draw on an extended example of homicide rates at the county level in the 

United States (Baller et al. 2001).  

Step 1: OLS Regression with Theoretically Relevant Variables 

The construction of the rectangular dataset for the initial OLS requires the researcher to 

choose the spatial scale for analysis. In some instances, the appropriate scale may be obvious. 

To analyze welfare policies in American states, the jurisdictions making the policy decisions, 

i.e. states, are most likely the relevant units (Berry, Fording and Hanson 2003). Often, 

however, the phenomenon of interest is studied at some level of aggregation and different 

types of aggregation are possible. For instance, violent conflict has been studied at the 

country level (Fearon and Laitin 2003), the province level (Østby, Nordås and Rød 2009; 

Fjelde and von Uexkull 2012), and at the level of gridcells (Pierskalla and Hollenbach 

2013).8 The choice of scale, and associated concerns about the modifiable areal unit problem 

(MAUP), have received considerable attention in the literature on spatial analysis (e.g. 

Anselin 1988). Briefly, if the spatial scale is too large, the researcher is unable to detect 

diffusion or contextual effects even where they exist. Moreover, over-aggregation may create 

an ecological inference problem by obscuring relevant variation at lower levels (King 1997). 

Scaling down, however, can be equally problematic. If the units are too small, the researcher 

will observe spatial autocorrelation that is neither theoretically meaningful nor substantively 

interesting, but which exists purely because the appropriate unit of analysis was artificially 

cut up into smaller pieces. The problem of identifying the appropriate scale is by no means 

unique to spatial analysis, but arises whenever an outcome is studied at some level of 

                                                            
8 In another example, turnout has been analyzed fruitfully at the neighborhood level (Cho, 
Gimpel and Dyck 2006), the precinct level (Brady and McNulty 2011), the municipal level 
(Trelles and Carreras 2012), the county level (Darmofal 2006), the state level (Erikson and 
Minnite 2009) as well as the country level (Powell 1986; Kasara and Suryanarayan 2015).  
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aggregation. To minimize the risk of misspecification during the LNA phase, explicit 

attention to the scale of analysis is needed at an early stage in the research process.  

The choice for a specific spatial scale is often guided by a combination of theory and 

pragmatism (Soifer n.d.). In their analysis of homicide rates, Baller et al. recognize that 

“counties are arbitrary units of analysis”; the “selection of the unit of analysis should ideally 

be determined by theoretical considerations, but in practice, data availability imposes severe 

constraints” (Baller et al. 2001: 568-569; also Darmofal 2006: 126). We would add that even 

if data are available at multiple scales, theory may offer insufficient guidance to dispose of 

the issue. Scholars are therefore likely to rely on a combination of theoretical hunches and 

case knowledge when deciding at which scale to collect their data. We encourage researchers 

to make their considerations explicit, to do robustness tests, be open to revisiting the issue at 

a later stage during the research process, and to collect data at the lowest level of aggregation 

possible, acknowledging that it is easier to aggregate up from collected data than to collect 

new data in order to disaggregate.  

Once the dataset has been constructed, the first step in geo-nested analysis is to begin with a 

preliminary large-N analysis with theoretically relevant variables. At this stage, researchers 

should ensure the model reflects the theoretical “state of the art” and that it is properly 

specified.9 In our homicide example, the explanatory variables come from an influential 

study of homicide rates (Land, McCall and Cohen 1990). Baller et al. (2001) use Land et al.’s 

specification as their baseline model but seek to identify and incorporate spatial effects.10 The 

                                                            
9 We assume that researchers are mindful of the uncertainty inherent in all models (Rohlfing 
and Starke 2013) and have diligently tested their models for misspecification (Rohlfing 
2008). 
10 Data are publicly available along with documentation at: 
http://spatial.uchicago.edu/sample-data (last accessed Nov. 28, 2016). Baller et al.’s analysis 
spans four decennial years (1960, 1970, 1980, and 1990). We focus only on the latest period, 
1990. The county-level data set covers all 3,085 counties in the continental United States 
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dependent variable of the analysis is homicide rate (per 100,000 people); key predictors are 

resource deprivation (rd90), population structure (ps90), median age (ma90), divorce rate 

(dv90), unemployment rate (ue90), and a dummy variable for the southern part of the country 

(south). Baller et al. begin with the following baseline model: 

𝑦𝑦𝑖𝑖 =  �𝑥𝑥𝑘𝑘𝑘𝑘𝛽𝛽𝑘𝑘 +  𝑢𝑢𝑖𝑖
𝑘𝑘

 

In the model, y is the outcome of interest (homicide rates) at location i, x is an i x k matrix of 

k independent variables for each location i, β is a k x 1 vector of coefficients for each of the 

independent variables, and u is a normally distributed random error term for each location i. 

Note that in the original baseline model, the matrix x includes a regional dummy variable. In 

this basic, global model, there is a single coefficient β for each predictor across the entire 

sample of geographic units. That is, each coefficient is uniform or stationary across the entire 

space, assuming that the same relationship holds in unit 1 as in unit 3,085. 

As outlined above, research on violence in the U.S. has generally included a dummy variable 

for the South. But despite research on a southern culture of violence (e.g., Nisbett 1993), a 

well-developed theoretical explanation for its significance is still lacking (Baller et al. 2001). 

Following Lieberman, we run the baseline model again, but without the regional dummy.  

[Table 1 about here] 

Step 2: Identify Existence and Nature of Spatial Dependence 

The next step is to determine the presence and nature of remaining spatial autocorrelation 

once the covariates in the model have been considered. This can be done in the first instance 

                                                            
(Baller et al. 2001: 568-569). Replication materials are available on Harvard Dataverse; see 
Harbers and Ingram (2016).  
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by examining the Global Moran’s I, a statistic that identifies spatial autocorrelation, for 

residuals of the OLS model (Moran 1950; Cliff and Ord 1981). A more complete check for 

the presence and nature of spatial dependence in the data consists of Lagrange Multiplier 

(LM) diagnostics that indicate not only whether there is spatial dependence but, if so, how it 

should be modeled in a spatial regression (Anselin 1988). Multiple methods exist to diagnose 

spatial dependence and to determine appropriate modeling strategies. Despite the availability 

of more complex and computationally intensive tests, the classical spatial diagnostics based 

on LM tests remain among the most efficient and consistent methods (Florax, Folmer and 

Rey 2003).  

In order to detect spatial dependence, the researcher must specify the connectivity matrix, W, 

which expresses the structure of interdependence between observations. For all pairs of 

observations, W determines whether or not they interact and, if so, how intensely. 

Interdependence may in principle be specified on the basis of location in physical space, such 

as contiguity or Euclidean distance, or on the basis of social distance, such as travel time, 

road networks or channels of communication (Beck, Gleditsch and Beardsley 2006). Without 

strong theoretical priors about the nature of dependence among units, most analysts start with 

spatial weights specified on the basis of geographic contiguity.11  

Following Anselin and Rey (2014), two primary approaches to modeling spatial dependence 

can be distinguished. First, a “spatial lag” captures spatial homogeneity in the outcome of 

interest, suggesting a possible diffusion or spillover process, where “events in one place 

predict an increased likelihood of similar events in neighboring places, net of the effect of 

structural covariates” (Baller et al. 2001: 566). Anselin and Bera (1998: 247) refer to this as 

                                                            
11 This may later turn out to be a placeholder for other, more social forms of connectedness. 
Again, as when selecting the spatial scale, researchers are likely to rely on a combination of 
theoretical hunches, case knowledge, and data availability to make their choice of spatial 
weights during the LNA phase. 
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“true contagion or substantive spatial dependence” which “measures the extent of spatial 

spillover, copy-catting or diffusion.” Substantive spatial dependence may also work in the 

opposite direction, with events in one place decreasing the likelihood of similar events 

nearby. Second, a “spatial error” process captures exposure to a common yet unmeasured 

factor and “is indicative of omitted (spatially correlated) covariates that if left unattended 

would affect inference” (Baller et al. 2001: 566). It may therefore be “interpreted as a 

nuisance…in the sense that it reflects spatial autocorrelation in measurement errors or in 

variables that are otherwise not crucial to the model” (Anselin and Bera 1998: 249). 

However, the spatial structure in this unexplained component of the model can also be highly 

informative. To be sure, both spatial lag and spatial error processes may be present, which 

can be identified by LM tests. In any case, LM diagnostics indicate which of the two 

alternatives is more prominent, or best fits the data.  

As indicated in Figure 1, LM diagnostics can suggest three main possible outcomes. The first 

is that there is no spatial dependence, in which case the researcher keeps the OLS results and 

does not need to worry about spatial dependence. Our framework becomes relevant only in 

situations where LM diagnostics detect spatial dependence. In the second scenario in Figure 

1, LM diagnostics detect spatial dependence that should be modeled as a spatial lag process. 

In the third scenario, LM diagnostics suggest that spatial dependence should be modeled as a 

spatial error process. Figure 1 presents decision rules for each of these cases.12  

To illustrate step 2 in the framework, we return to Baller et al.’s homicide study. The 

significance of the dummy variable for the South in Table 1 hints at the presence of spatial 

                                                            
12 While the spatial error and spatial lag processes constitute the two main effects of spatial 
interaction/interdependence, the SEM and SLM are not the only specifications of spatial 
regressions. Other specifications include mixed-effects models like the spatial Durbin model 
(SDM) and geographically-weighted regressions (see Anselin and Rey 2014; Darmofal 
2015). 
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effects. Baller et al. specify spatial weights on the basis of the distance-related “nearest 

neighbor criterion,” using both 5 and 10 nearest neighbors (Baller et al. 2001: 572). In their 

data, the Global Moran’s I for 1990 is 0.37 and statistically significant at the .001 level. To 

visualize the spatial pattern of homicide rates, Figure 2 replicates the LISA cluster map 

reported as “Map 4” in Baller et al. (2001: 577).13 LISA stands for “local indicator of spatial 

autocorrelation” (Anselin 1995) and provides information on the correlation of an outcome of 

interest among a focal unit i and the units to which i is connected, j (e.g., i’s neighbors, j). It 

also indicates whether the association is positive (i.e., similar values) or negative (i.e., 

dissimilar values), and whether it is statistically significant. LISA statistics thus serve to 

identify local clusters. While the Global Moran’s I may suggest little spatial autocorrelation 

in the data overall, LISA values can identify smaller geographic areas where positive or 

negative clustering occurs.14 In this case, the map shows clusters of high homicide rates 

across the South (black) and clusters of low homicide rates in the Upper Midwest and 

Northeast (grey). The overall higher incidence and spatial association of homicide in the 

South—clearly apparent in the map—is one of the reasons why scholars generally include a 

dummy for this region. The different clustering patterns across different parts of the U.S. also 

suggest two different spatial processes in the data. 

Figure 2. LISA Cluster Map 

                                                            
13 Baller et al. use a permutation-based approach. As small differences emerge with each 
permutation analysis that generates the significance estimates for these cluster maps, it should 
not be surprising to see minor differences between this map and the map in Baller et al. Here, 
we report a cluster map using a more conservative saddlepoint estimation (Tiefelsdorf 2002) 
using the spdep package (Bivand and Piras 2015) in R (R Core Team 2016). In any case, the 
major geographic patterns remain unchanged. 
14 The global Moran’s I is the mean of all LISA values (Anselin 2005: 141). 
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Once spatial dependence has been detected, the next step in the analysis depends on the 

nature of this dependence. More specifically, the question is which type of spatial 

dependence—spatial lag or error—best fits the data according to LM diagnostics. Although 

conceptually distinct, both processes may be happening at the same time. In such cases, LM 

diagnostics indicate which is more prominent. To determine the appropriate modeling 

strategy, researchers must assume that the same data-generating process is at work 

throughout the territory under study, and thus that coefficients are stable. 

Returning to our homicide example, close inspection of the initial OLS diagnostics and the 

LISA map in Figure 2 lead Baller et al. (2001) to question their assumption of coefficient 

stability and to suspect spatial heterogeneity between the South and non-South. Diagnostics 

indeed revealed that no one spatial regime fits the sample as a whole. They therefore decided 

to pursue a disaggregated modeling strategy and to estimate separate models for the South 

and non-South. LM diagnostics indicated that homicide follows a spatial lag structure in the 
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South and a spatial error structure in the non-South.15 Stated differently, Baller et al. find that 

once the variation in violence explained by other predictors of interest is considered, the 

remaining variation in homicide in any one unit in the South is best explained by the 

homicide rate in surrounding locations, suggesting the diffusion of violence from nearby 

communities and the need to identify vectors of transmission. Conversely, the remaining 

variation in homicide in any one location in the non-South is best explained by the remaining, 

unexplained component in nearby units, suggesting the need to identify previously 

unexamined or omitted variables.  

The different spatial regimes in the two regions of the U.S. investigated by Baller et al. allow 

us to illustrate both the spatial lag and spatial error pathways in Figure 1, with each type of 

spatial dependence raising specific questions for the SNA. If a lag process is detected, the 

SNA provides the opportunity to uncover the mechanisms of diffusion—that is, what Baller 

et al. refer to as “vectors of transmission.” If dependence comes in the form of a spatial error 

process, the SNA can be leveraged to identify spatially clustered omitted variables. For both, 

insights from a geographically weighted regression (GWR) provide leverage for case 

selection. More specifically, geographically weighted regression (Brunsdon, Fotheringham 

and Charlton 1996; Fotheringham, Brunsdon and Charlton 2002; Charlton, Fotheringham and 

Brunsdon 2009) enables exploring spatial heterogeneity in the data and investigating whether 

the magnitude, direction or significance of predictors and the spatially-lagged dependent 

variable is uneven across units. Formally, the baseline model would be adjusted as follows, 

so that a coefficient β is estimated at each location i, contrasting with the single coefficient 

estimated in the baseline model: 

                                                            
15 Baller et al. (2001: 578-580) detect the different spatial regimes with a Chow test for 
coefficient stability across regimes, but also draw on tests for the stability of individual 
coefficients and the equality of error variances across spatial regimes to support their 
decision. 
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𝑦𝑦𝑖𝑖 =  �𝑥𝑥𝑘𝑘𝑘𝑘𝛽𝛽𝑘𝑘𝑘𝑘 +  𝜀𝜀𝑖𝑖
𝑘𝑘

 

 

In contrast to OLS or even conventional spatial regressions that assume a single, uniform 

relationship holds across all units, GWR allows “different relationships to exist at different 

points in space” (Brunsdon, Fotheringham and Charlton 1996: 281), thereby facilitating the 

analysis of spatial heterogeneity (Shoff, Chen and Yang 2014: 558). More specifically, GWR 

models estimate local coefficients and standard errors for each predictor of interest, 

generating information about the local statistical significance and substantive magnitude and 

direction of these predictors. To be clear, where Baller et al. were examining a discrete form 

of spatial heterogeneity by dividing the U.S. into two discrete spatial regimes, GWR 

examines a continuous form of spatial heterogeneity, allowing coefficients to vary not just 

across pre-identified regions (South and non-South) but across all individual units (on 

discrete spatial heterogeneity, see Anselin and Rey 2014, ch. 12, 13). 

 

Step 3a: Conduct SNA to Identify Vectors of Transmission for the Spatial Lag 

In geo-nested analysis, insights gleaned at each stage of analysis set the agenda for the 

following stage. In situations where the spatial dependence in the data follows a spatial lag 

process, the SNA, we argue, may provide guidance for identifying vectors of transmission. In 

the homicide analysis, Baller et al. (2001: 538) note that—despite statistical evidence for 

diffusion in the South—advancing a definitive argument “will require the identification and 

measurement of the precise mechanisms involved.” The SNA provides analytic leverage to 

pin down these mechanisms—that is, to identify how what happens in nearby places 

influences what happens locally, either simultaneously or sequentially over time.  
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Note that vectors of transmission are distinct from the spatial weights specified in the 

connectivity matrix. Spatial weights define other units with which any given unit is expected 

to interact, but say nothing about a causal process. Uncovering a vector of transmission 

therefore goes further than specifying a spatial weight. To identify a vector of transmission, 

we have to answer two questions: (1) in which other units will the outcome from the focal 

unit also appear; and (2) how and why is the appearance in both the focal unit and other units 

connected? Vectors of transmission are thus similar to causal mechanisms. While a causal 

mechanism in a non-spatial analysis specifies how X caused Y within the same unit (e.g., 

Falleti and Lynch 2009), a vector of transmission indicates how an outcome in one place 

influenced an outcome elsewhere. The purpose of case selection for the SNA is thus to 

identify units in which we are most likely to uncover these vectors.   

GWR provides a powerful tool to select these cases. By calculating the spatial lag of the 

outcome of interest and including this term as one of the predictors, we can specify a GWR-

spatial lag model (GWR-SL; see Páez et al. 2002; Shoff, Chen and Yang 2014) and generate 

local estimates for the spatial lag term (ρ, rho). That is, we can estimate the locally-varying 

effect of diffusion. Returning to our example, we specify the following model, where the 

spatial lag term (Wy) is first estimated using the first-order and second-order lags of the 

explanatory variables as instruments (Anselin and Rey, 160-161; Kelejian and Prucha 2010, 

esp. fn 13): 

𝑦𝑦𝑖𝑖 =  �𝜌𝜌𝑖𝑖𝑊𝑊𝑖𝑖𝑦𝑦 +  �𝑥𝑥𝑘𝑘𝑘𝑘𝛽𝛽𝑘𝑘𝑘𝑘 +  𝜀𝜀𝑖𝑖
𝑘𝑘

 

 

Figure 3.1. Map of Local Rho (positive values) 
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Figure 3.2. Map of Local Rho (negative values) 

 

Figures 3.1-3.2 map the local coefficients for the spatial lag term (rho) in a GWR-SL model 

of the data in Table 1 but only for the 1,412 southern counties in the U.S. where Baller et al. 
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find a spatial lag process (Model 3 in Table 1).16 Whereas the results in Table 1 show a 

single, uniform, positive coefficient for the diffusion parameter (rho) in a standard spatial lag 

model (0.297 in Model 3), the maps in Figures 3.1-3.2 illustrate the locally-varying intensity 

or magnitude, statistical significance, and direction of diffusion in a geographically-weighted 

model of the same process. Figure 3.1 shows that rho has a statistically significant and 

positive effect across large portions of the southern region of the U.S. This relationship is 

particularly strong in a large set of dark grey counties straddling several states, including the 

western parts of Virginia, North Carolina, and South Carolina, almost all of West Virginia, 

and the eastern parts of Kentucky and Tennessee. Interestingly, in Figure 3.2, a set of 

counties in southern Florida exhibits a negative rho coefficient, suggesting obstacles to 

diffusion. In a substantial number of blank counties (i.e., white), homicide in nearby counties 

does not have a statistically significant relationship with homicide in a focal county. 

How can insights from the GWR-SL model guide case selection? And, following Lieberman, 

should case selection be deliberate or random? The answer to the second question depends on 

the outcome of the GWR, and whether or not meaningful variation in the spatial lag process 

can be identified. If the GWR suggests very little or no variation in rho throughout the 

sample, cases may be selected from the sample randomly, as each focal unit and its neighbors 

provide opportunities to examine the spatial process. But if the GWR reveals variation in the 

                                                            
16 Optimal bandwidth selected for southern counties was 212 with a bisquare kernel and the 
GWR model reduced the value of AIC substantially, indicating the GWR model fit the data 
better than the comparable OLS model (i.e., model covering same sample of units and 
including same variables). With a larger bandwidth, potentially half of all observations in 
southern counties could be included in each local estimate. This large bandwidth would likely 
generate much smoother values of local rho than those reported in Figure 3. In practice, the 
bandwidth could vary, and we recommend researchers conduct sensitivity tests with different 
bandwidths (at least one smaller and one larger bandwidth) and with different kernel types 
(e.g., Gaussian, bisquare) prior to selecting a case for SNA based on a single GWR model. 
Ideally, a core set of units would be consistently identified across all bandwidths and kernel 
types even as other units drop in or out. 
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intensity of the spatial lag, as in Figures 3.1-3.2, case selection should be deliberate. In these 

instances, variation in rho can be leveraged to identify promising cases for identifying vectors 

of transmission. More specifically, a researcher may want to analyze cases with high rho 

values to uncover how the outcome of interest in a focal unit interacts with the outcome of 

interest in neighboring units. Notably, all five of the top values are counties in the state of 

West Virginia, marked by the darkest colors in Figure 3.1. Returning to our example, Table 2 

identifies the five counties with the highest rho values—good candidates to serve as focal 

units for the SNA. Rho values can be positive, where an outcome in one unit increases the 

likelihood of similar outcomes in neighboring units, or negative, where an outcome decreases 

the likelihood of a similar outcome nearby. If rho is negative, as in Figure 3.2, the findings 

suggest barriers to diffusion or, even more provocatively, negative feedback effects (see 

“barrier counties” in Messner et al. 1999; also “diffusion proofing” in Koesel and Bunce 

2013). The identified counties in southern Florida, then, would be promising locations in 

which to explore the sources of this phenomenon. 

In addition to selecting focal units with large positive or negative rho values, another 

promising case selection strategy is to analyze cases with significant rho values alongside 

those with non-significant rho values where both diffusion and negative feedback are 

presumably absent. The researcher would then be well placed to detect vectors of 

transmission among units with significant rho values and barriers to transmission in those 

where rho is not significant. Awareness of patterns in rho is valuable as it increases the 

likelihood of fruitful analysis during the SNA phase. Without knowledge of variation in rho, 

a researcher analyzing homicide diffusion might have chosen counties colored white in 

Figures 3.1-3.2 only to be disappointed by the results of the SNA.  

 Table 2. Top 5 largest local rho coefficients 
# County name State name FIPSNO Local Rho 
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1 Monongalia West Virginia 54061 1.1116 
2 Preston West Virginia 54077 1.1048 
3 Taylor West Virginia 54091 1.1025 
4 Barbour West Virginia 54001 1.0885 
5 Marion West Virginia 54049 1.0808 

 

Questions about substantive spatial dependence have generally remained outside the scope of 

systematic mixed methods designs. To illustrate the added value of the SNA in a study of 

substantive spatial dependence—and the types of questions the SNA may address in the 

research process—we draw on another example of research on violence in the US South. 

Tolnay, Deane and Beck (1996) conduct a quantitative analysis of spatial effects in the 

incidence of lynchings between 1890 and 1919. They argue that lynchings were a form of 

political violence—part of a state-tolerated repressive strategy to terrorize African-Americans 

and to preserve white supremacy. The authors find evidence for substantive spatial 

dependence as the likelihood of lynchings in a county is negatively associated with mob 

violence nearby. They hypothesize that this pattern can be explained by a “deterrence effect” 

as “whites were satisfied that local blacks were sufficiently threatened by nearby lynchings” 

and “blacks altered their behavior to minimize conflict with local whites” (788). A 

prerequisite for both mechanisms is that news about violent events spreads beyond the 

counties where they occurred. Tolnay et al. expect proximity to be associated with “more 

efficient transmission of information about lynchings” (792). In their quantitative analysis, 

geographic distance serves as proxy for channels of communication that cannot (yet) be 

adequately measured. To pin down a vector of transmission, a SNA would then aim to 

uncover whether and how news about violent incidents spreads from a focal unit to nearby 

counties. One possibility is that news about violence traveled primarily by word of mouth, in 

which case travel time or road networks may better capture the vector of transmission than 

Euclidean distance. Alternatively, lynchings may have been publicized in local newspapers, 
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so that newspaper circulation or common membership in a regional media market may better 

capture the mechanisms underlying the spatial process.  

The identification of vectors of transmission during the SNA entails a shift from data-set to 

causal process observations (Collier, Brady and Seawright 2004). The appropriate technique 

for process tracing depends on the research question at hand (Bennet and Checkel 2015). To 

probe the plausibility of the “deterrence effect” hypothesized by Tolnay et al., researchers 

would most likely rely on archival research—evidence of how news about lynchings spread, 

as well as how this was received by populations in surrounding counties. More contemporary 

research questions can make use of qualitative techniques including interviews, focus groups 

and participatory observation. Qualitative work can take place at a distance (e.g., examining 

secondary literature or journalistic accounts online) or can be fieldwork consisting of 

personal interviews, observation and visits to local archives. Crucially, the SNA focuses on 

linkages and interactions between units to better understand the spatial pattern.  

In studies of substantive spatial dependence, the contribution of the SNA to the overall 

analysis is twofold. First, the SNA probes the plausibility of the causal claim underlying the 

LNA by identifying how an outcome in one place influenced events elsewhere. Second, the 

SNA can inform future iterations of the LNA by refining the specification of the connectivity 

matrix. Without a thorough understanding of the relationship between units, researchers often 

begin their analysis with a weights matrix specified on the basis of geographic space. This 

may ultimately turn out to be a placeholder for other forms of connectedness to be uncovered 

during the SNA phase. As noted earlier, researchers working in the reverse order—from SNA 

to LNA—would be advised to pay special attention to identifying vectors of transmission and 

optimal specifications of the connectivity matrix during the qualitative phase of work in order 

to develop better models during the large-N phase. 
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Step 3b: Conduct SNA to Identify Spatially Clustered Omitted Variables  

While a spatial lag process reflects a substantive relationship between units, a spatial error 

process suggests the presence of spatially clustered omitted variables. These variables may 

jeopardize inference if their presence is not modelled adequately, even though the spatial 

process is generally not of substantive interest. Variation in the error term, identified through 

GWR, provides leverage for informed case selection. More specifically, by calculating the 

spatial lag of the residuals and including this term as one of the predictors in a GWR model, 

we can specify a GWR-spatial error model (GWR-SE). The GWR-SE model generates local 

estimates for the spatial error term (λ, or lambda) and estimates the locally-varying effect of 

unexplained, contextual factors. Returning to the homicide example, we specify the following 

model: 

𝑦𝑦𝑖𝑖 =  �𝜆𝜆𝑖𝑖𝑊𝑊𝑖𝑖𝑢𝑢 + �𝑥𝑥𝑘𝑘𝑘𝑘𝛽𝛽𝑘𝑘𝑘𝑘 + 𝜀𝜀𝑖𝑖
𝑘𝑘

 

Figures 4.1-4.2 map the local coefficients for lambda in the 1,673 non-southern counties and 

shows where lambda is significant and whether it is positive or negative.17 In theory, it is 

possible that the GWR-SE model might not find variation. However, this is unlikely if the 

omitted variable is different across space, or if the effect of the omitted variable is uneven, 

i.e., the effect of the unobserved variable is itself non-stationary. 

Figure 4.1. Map of Local Lambda (positive) 

                                                            
17 Optimal bandwidth selected was 168 (still with bisquare kernel), which is substantially 
smaller than the bandwidth of the GWR-SL model. The GWR model reduced the value of 
AIC as in the case of the GWR-SL model, indicating the GWR model offers a better fit of the 
data. As stated earlier regarding the GWR-SL model, we recommend conducting sensitivity 
tests with other bandwidths and kernel types (see note 16 above). 
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Figure 4.2. Map of Local Lambda (negative) 
 

 

Based on the calculation and visualization of local lambdas, a researcher may pursue two 
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distinct case selection strategies. The first is analogous to Lieberman’s Model-testing SNA; 

the second is in line with a Model-building SNA. The first strategy is particularly useful if the 

researcher is not interested in spatial relationships, but in the causal mechanisms underlying 

the theoretical variables already in the model. To conduct a Model-testing SNA, a researcher 

may then want to select cases from among the observations where lambda is not significant. 

In this group, following Lieberman, cases “on the line” with low residuals in the spatial error 

model are good candidates. Because lambda is not significant, the researcher might expect 

that—despite the presence of spatial dependence in the sample—the units selected for SNA 

are unaffected by the spatial process. Note that these units can be examined individually, 

without considering the relationship with their neighbors.  

Second, researchers may want to uncover the omitted variables underlying the spatial process 

to generate new hypotheses, improve the model, and build theory. This is akin to a Model-

building SNA. A promising case selection strategy would then be to select focal units with 

large (positive or negative) and significant values for lambda, and examine them along with 

their neighbors. This facilitates the identification of omitted variables that are causally linked 

to the dependent variable and present in similar forms or at similar levels in nearby units. 

While positive values for lambda suggest the presence of unmeasured covariates that increase 

the score on the dependent variable, in this case homicide rate, negative lambda values 

suggest the presence of factors that decrease the score. Illustrating this on the basis of our 

example, Tables 3 and 4 report the five largest and significant values for lambda for the 

sample, and the five lowest and significant values of lambda, respectively.  

The identification of previously omitted variables has the potential to generate new 

hypotheses and thus to contribute to theory building. Once identified, these factors can be 

included in an expanded quantitative model (see Figure 1). During this next iteration of the 

LNA phase, LM diagnostics may no longer be able to detect spatial dependence. That is, the 
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inclusion of previously omitted, spatially clustered variables may erase contextual effects 

previously captured by the spatial error term. Spatial dependence may thus disappear once 

new variables are added. To emphasize this last point, researchers interested in spatial 

processes may ultimately find that, at least for some portion of their phenomenon of interest, 

space does not matter. In other words, space was serving as a catch-all variable for 

mechanisms that were not fully modeled initially.   

Table 3. Five Largest and Significant Values of Local Lambda 
# County name State name FIPSNO Local lambda 
1 Kenosha Wisconsin 55059 1.0211 
2 Racine Wisconsin 55101 1.0171 
3 Lake Illinois 17097 1.0090 
4 Milwaukee Wisconsin 55079 0.9954 
5 Waukesha Wisconsin 55133 0.9838 

  

Table 4. Five Smallest and Significant Values of Local Lambda 
# County name State name FIPSNO Local lambda 
1 Haakon South Dakota 46055 -1.7650 
2 Ziebach South Dakota 46137 -1.7517 
3 Jackson South Dakota 46071 -1.6463 
4 Stanley South Dakota 46117 -1.5154 
5 Perkins South Dakota 46105 -1.4939 

 

4. Conclusion 

In this paper, we have outlined case selection techniques for what we label “geo-nested 

analysis”—where case selection for small-N analysis is based on diagnostics of a previously 

executed spatial-econometric analysis. We emphasize our commitment to an iterative 

research process, acknowledging that earlier stages of research generally inform later stages, 

but that later stages can also help evaluate earlier stages, leading researchers to revisit earlier 

analytic decisions.  

With this iterative process in mind, Figure 1 offers a step-by-step overview for conducting 

geo-nested analysis. The first step is an OLS analysis containing only theoretically relevant 
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variables. The second step is to check whether there is spatial dependence in the data and, if 

so, whether it follows a spatial lag or a spatial error process. If there is evidence for spatial 

lag, the SNA can be leveraged to identify vectors of transmission—that is, the causal 

mechanisms underlying diffusion. If there is evidence for spatial error, the purpose of the 

SNA is to uncover spatially clustered omitted variables, generate new hypotheses, and build 

theory. To be clear, both types of processes may be present in the data; while LM diagnostics 

help guide researchers about which process is most prominent, researchers need to remain 

aware of settings in which both processes are present. Still, in both scenarios, insights from 

geographically-weighted regressions (GWR) can be used to select promising cases for in-

depth analysis. With a GWR-spatial lag model (GWR-SL), we can detect clusters where the 

diffusion process is particularly pronounced, thus facilitating the identification of vectors of 

transmission. With a GWR-spatial error model (GWR-SE), we can identify clusters of local 

contextual factors not yet included in the model. In both scenarios units should be examined 

along with their neighbors to better understand the origins and substantive meaning of spatial 

dependence. In sum, we advocate a mixed-methods strategy that emphasizes the need to 

examine sets of interdependent units, rather than individual units in isolation.  
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Table 1: Replication of Core Results in Baller et al. (for 1990 only) 
 1 

OLS 
2 

OLS Without 
Regional 
Dummy 

3 
Lag Model 

South 

4 
Error Model 
Non-South 

Resource Dep. (rd90) 3.872*** 4.655*** 3.882*** 2.823*** 
 (0.143) (0.121) (.231) (0.214) 
Population Structure (ps90) 1.353*** 1.570*** 1.703*** 0.955*** 
 (0.100) (0.099) (0.202) (0.116) 
Median Age (ma90) -0.101*** -0.092*** -0.008 -0.067* 
 (0.0274) (0.028) (0.048) (0.032) 
Divorce (dv90) 0.583*** 0.613*** 0.486*** 0.571*** 
 (0.0545) (0.055) (0.112) (0.062) 
Unemployment (ue90) -0.306*** -0.406*** -0.411*** -0.042 
 (0.0409) (0.040) (0.069) (0.051) 
South 2.194***    
 (0.220)    
Rho (ρ)   0.297***  
   (0.042)  
Lamda (λ)    0.264*** 
    (0.047) 
Constant 6.517*** 7.659*** 4.128* 3.266*** 
 (1.024) (1.034) (1.818) (1.240) 
     
Observations 3,085 3,085 1,412 1,673 
R-squared 0.436 0.418   
Adj. R-Squared 0.435 0.417   
AIC   8961.6 9397.1 
AIC of OLS model   9008.7 9422 
Standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1 



 

 41 

 


	Geo-Nested Analysis: Mixed-Methods Research with Spatially Dependent Data
	Please share how this access benefits you.
	Recommended Citation
	Rights Statement
	License


	tmp.1642523944.pdf.CzMti

