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ABSTRACT

Motion planning is a fundamental problem in robotics, which involves finding a path for an

autonomous system, such as a robot, from a given source to a destination while avoiding

collisions with obstacles. The properties of the planning space heavily influence the per-

formance of existing motion planning algorithms, which can pose significant challenges in

handling complex regions, such as narrow passages or cluttered environments, even for simple

objects. The problem of motion planning becomes deterministic if the details of the space

are fully known, which is often difficult to achieve in constantly changing environments.

Sampling-based algorithms are widely used among motion planning paradigms because they

capture the topology of space into a roadmap. These planners have successfully solved high-

dimensional planning problems with a probabilistic-complete guarantee, i.e., it guarantees

to find a path if one exists as the number of vertices goes to infinity. Despite their progress,

these methods have failed to optimize the sub-region information of the environment for

reuse by other planners. This results in re-planning overhead at each execution, affecting

the performance complexity for computation time and memory space usage.

In this research, we address the problem by focusing on the theoretical foundation of

the algorithmic approach that leverages the strengths of sampling-based motion planners

and the Topological Data Analysis methods to extract intricate properties of the environ-

ment. The work contributes a novel algorithm to overcome the performance shortcomings of

existing motion planners by capturing and preserving the essential topological and geomet-

ric features to generate a homotopy-equivalent roadmap of the environment. This roadmap

provides a mathematically rich representation of the environment, including an approximate

measure of the collision-free space. In addition, the roadmap graph vertices sampled close

to the obstacles exhibit advantages when navigating through narrow passages and cluttered

environments, making obstacle-avoidance path planning significantly more efficient.

The application of the proposed algorithms solves motion planning problems, such as

sub-optimal planning, diverse path planning, and fault-tolerant planning, by demonstrating

the improvement in computational performance and path quality. Furthermore, we explore

the potential of these algorithms in solving computational biology problems, particularly in
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finding optimal binding positions for protein-ligand or protein-protein interactions. Overall,

our work contributes a new way to classify routes in higher dimensional space and shows

promising results for high-dimensional robots, such as articulated linkage robots. The findings

of this research provide a comprehensive solution to motion planning problems and offer a

new perspective on solving computational biology problems.
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CHAPTER 1

Introduction

In a dynamic environment, autonomous systems face challenges due to constantly changing

details. To find a feasible pathway in such a scenario, a vast amount of information needs

evaluation which can be tedious when environmental changes are frequent. The performance

of these systems also degrades, and computational costs increase with every new occurrence

in the environment. Therefore, it becomes essential to focus on gathering crucial information

from the underlying space to develop efficient solutions for these systems. Motion planning

is a problem of finding a route between two points in the planning space while ensuring

its validity. Research has shown that the planning methodologies are PSPACE-complete,

implying that planning optimal motions for simple objects, e.g., a car, is computationally

challenging. The properties of the environment play a critical role in affecting the perfor-

mance of these motion planning paradigms. To mitigate this problem, we focus on studying

and analyzing the properties of the planning space to extract the intricate details for guided,

efficient path planning. We identify and capture the features of the environment by using

Topological Data Analysis (TDA) [91] methods and approximate the mathematical repre-

sentation of the space in a roadmap (graph). In this process, we developed sophisticated

solutions to different motion planning problems, such as sub-optimal planning, diverse path

planning, and fault-tolerant planning, while also addressing issues from structural biology.

A detailed discussion is available from Chapter 3.

Studies show that motion planning can become deterministic if the properties of plan-

ning space are fully known. However, examining all possible movements of a robot in a

three-dimensional mathematical space is challenging due to the lack of minute descriptions

of the position and orientation of the robot’s joints, which makes it difficult to verify and

validate the motions or faults of high-dimensional robots, such as manipulators or humanoid

robots. We address this issue by focusing our research on the configuration space (Cspace) [82].

This space captures the environment as it is and transforms it into the robot’s dimensionality,

where the robot itself becomes a point object. As shown in Figure 1.1, the dimensionality of

space is the robot’s dimensionality, which aids in examining the robot’s orientation at each
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dimension. By analyzing our planners in the configuration space, we better understand the

motion planning of high-dimensional robots and improve their performance for real-world

applications.

Figure 1.1: On the left is a two-dimensional x-y plane having 2 DOF (degrees of freedom)
robot with joint angles, i.e., θ1 and θ2. Towards the right is the configuration space on the
θ1 and θ2 axis with the robot as a point object.

A robot is a movable object whose position and orientation can be described by n pa-

rameters, or degrees of freedom (DOFs), each corresponding to an object component (e.g.,

object positions, object orientations, joint angles, joint displacements). Hence, a robot’s

placement, or configuration, can be uniquely described by a point (x1, x2, ..., xn) in an n

dimensional space (xi being the ith DOF ). The subset of all feasible (collision-free) con-

figurations is the free space (Cfree), and the union of the unfeasible configurations (i.e., the

robot cannot traverse through these configurations) is the blocked or obstacle space (Cobst).
A Cspace consists of topological features that are defined as the basic representation of a

mathematical space and refer to features that support continuity, connectivity, and conver-

gence that are established and maintained based on geometric coincidence. The properties

of Cspace can be divided into quantitative type, i.e., geometry (relates to the measurements

of distances, angles, and areas), and qualitative type, i.e., topology (related to connectivity

and compactness).

Topological properties: Topology, sometimes even called “qualitative geometry,”is a

branch of mathematics that studies properties of space preserved under a homeomorphism.
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In other words, topology is concerned with the qualitative study of how points, sets, and

objects are internally and mutually interconnected or how they are adjacent to each other. It

is characterized by its abstract nature that is independent of the structure of a metric space,

i.e., it is very roughly what is left of geometry when we take away from it everything that

has some size. A simple example of a topological graph of a torus-shaped space is shown in

Figure 1.2. The graph represents the torus-shaped space by capturing the essential features,

i.e., topological properties, and ignoring its extraneous details.

Figure 1.2: The vertices and edges are the graph components that define the topology of a
space. The picture on the left shows the topology of the torus-shaped space.

Geometric properties: Geometry deals with the body measurement of an object con-

cerning length, shape, angle, area, volume, and distance. The “scene” in which such mea-

surements are made is space, and we declare some common geometric properties of measured

bodies to be geometric properties of this space. The geometric features of a body are the

points on its surface that define its shape. Hence, we extract these quantitative features to

describe an obstacle’s shape in the environment. Figure 1.3 illustrates the local minimum,

maximum, and saddle points detected on the object’s surface. We refer to them as critical

points.

1.1 Motivation

Topology and Geometry have together been the spine behind sophisticated motion

planning algorithms. However, it is noteworthy that the investigation of topology and ge-

ometry was relatively limited in the past. This lack of attention has hindered the study and

comprehension of the limitations of motion planners in dealing with complex regions such
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Figure 1.3: From left to right, the geometric features capture depth, peak, and uniform areas
of the surface.

as narrow passages or cluttered environments. Additionally, the inability to reuse roadmap

information of visited areas of the environment by existing planners has led to a significant

computational time and memory usage overhead. Therefore, it is imperative to develop an

algorithm that can efficiently extract the properties of Cspace while simultaneously enhancing

the performance of motion planning methods.

A widely used motion planning method is the sampling-based motion planning ap-

proach [39], which attempts to approximate the configuration space connectivity information,

with geometric properties embedded in the roadmap. The configurations are retained in free

space if the connection edge between two samples is collision-free. These algorithms have

been successful in high-dimensional environments and are known to be probabilistic com-

plete, i.e., guarantees to find a solution if one exists. However, the roadmap generated by

many sampling-based motion planning methods does not describe the configuration space,

but only a subspace of it. The relation of this subspace to the Cspace is primarily unknown,

thus making the extracted information of the underlying space of less or no use for future

analysis.

In our previous research endeavor [118], we integrated machine learning techniques,

specifically reinforcement learning, with sampling-based methods to explore their efficacy

in the performance of these planners. The results of our study demonstrated a significant

improvement in computation time when utilizing the topological information of the planning

space. However, the issue of reusing roadmap information and ensuring traversal-efficient

configuration nodes in the roadmap remained unresolved. To mitigate this problem, we

leverage the emerging application of TDA tools to enhance the quality of motion planning.
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Specifically, we propose a topology-aware sampling-based motion planner that utilizes TDA

tools, namely the Vietoris-Rips complex and discrete Morse theory, to extract the topological

and geometric properties of the configuration space (Cspace). The work contributes novel

methods and tools that improve the performance of these planners in terms of time and

space complexity and provides a comprehensive solution to various motion and path planning

problems.

1.2 Research Objective

Our research objective is to comprehend the characteristics of the robot’s environ-

ment and encapsulate these attributes into a roadmap for memory-efficient path planning.

The concept of extracting the properties of the configuration space is not new, and various

studies have presented favorable outcomes [36, 153]. The concurrent development of TDA

tools has yielded some promising results [13, 3, 4] to address this problem. However, little

effort is devoted to using the capabilities of TDA tools to investigate the core issues of mo-

tion planning problems that consistently impact the performance of autonomous systems.

Specifically, the question of finding the sufficient compact representation of space required to

plan a route while disregarding extraneous details persists. By bringing theory into practice,

we concentrate on building the theoretical foundation of our algorithm to bridge the gap

between mathematical theory-heavy (data topology) research and high application content

(robot motion planning). In our initial work, we introduce a novel approach that lever-

ages the strengths of sampling-based methods and TDA tools to effectively approximate the

topological and geometric features of the planning space into a roadmap for guided path

planning. The generated roadmap has demonstrated significant potential in near-optimal

path planning, making it a valuable tool for various applications, including diverse path

planning [122], fault-tolerant path planning [121], structural biology [125, 120], and more.

The extension of our framework to an incremental path planner addresses the problem

of finding a pathway in a partially observable space. This planner finds usability in real-

time situations where the robot needs to plan its path incrementally while moving around

in its world. The potential applications are vast, including but not limited to disaster-relief

scenarios [26], self-driving cars [15], indoor assistant robots [76], warehouse robots, etc. By

incrementally planning the path, it adapts to the changing environment and determines a
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feasible and efficient route in its field of view. The planner locally extracts the topological

and geometric features of the subspace and metrically glues them together to find a global

solution between start and goal positions as the robot moves around the environment. The

incremental nature of the planner enables it to find a sub-optimal solution in the planning

space without losing critical information.

The emergence of service robots has revolutionized how humans interact with machines.

These robots, designed to perform tasks such as vacuuming, valet parking, lawn mowing,

and office assistance, represent a new generation of robots that work close to humans. It

is a significant departure from the previous industrial robots that were confined to cages

and performed repetitive tasks with minimal human interaction. In the current epoch of

human-robot interaction, it is of utmost importance to address safety concerns to ensure

that robots can operate efficiently in close proximity to humans. So, it is crucial to opti-

mize the clearance between the robot and obstacles in the environment, including humans,

while the robot is performing its designated task. The robot must possess the ability to

comprehend the features of the environment to finish its work without any hindrance while

simultaneously keeping track of safety measures as it moves around. This research devel-

ops solutions to such scenarios and provides a sophisticated motion planning paradigm with

significant contributions, as mentioned below.

• Compact representation of the space (sample-efficient sparse roadmap) that represents

topological (samples and collision-free connections), as well as geometric information

(local minima or maxima on obstacle surface).

• Geometric features of the space that governs the quality of the representation, the

space approximation, obstacle clearance, and path quality.

• A topology-based path planner that incrementally extracts and glues the topological

and geometric information of the partially observable space for memory-efficient path

planning.

• A new way to identify and classify coarsely diverse paths in high-dimensional configu-

ration space.

• A fault-tolerant planner to recover an alternate route with minimum re-configurations

using the visibility of configuration nodes, the expansiveness of edges, and path length.
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• A computational method to identify the geometrically-fitting binding position during

bio-molecule interactions.

In summary, this work provides a detailed and precise description of the fundamental

properties of the environment or Cspace. Our findings contribute to the ongoing research in

robotics and provide an algorithmic foundation for developing future robotic systems. The

theorems, lemmas, and propositions mentioned without citations are the contributions of

this research.

1.3 Outline

Chapter 2 discusses the foundational knowledge of sampling-based methods, topolog-

ical data analysis tools, and current approaches to solving the motion planning problem.

Chapter 3 discusses the algorithmic foundation for our methods to extract the topological

and geometric properties of configuration space using TDA tools with an extension to in-

cremental planning framework. The applications of our framework to the motion planning

problems are presented in Chapter 4, and we discuss extensions of the framework to compu-

tational biology in Chapter 5. Finally, we conclude and discuss future work in Chapter 6.
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CHAPTER 2

Literature Review

Data extraction tools have played a crucial role in improving path planning in robotics. The

research contributions in this area have led to the development of efficient algorithms and

tools that can navigate complex environments. In this chapter, we discuss some influential

research work in motion planning that leverage the properties of the underlying space to

generate efficient routes.

2.1 Sampling-based Motion Planners (SBMP)

Sampling-based methods are broadly classified into two main classes: graph-based

methods such as the Probabilistic Roadmap Method (PRM) [68] and tree-based methods

such as Rapidly-exploring Random Tree (RRT) [77]. In the following sections, we highlight

a few of the PRM and RRT variants most relevant to this research.

2.1.1 Graph-based Methods

PRM constructs a map of Cfree by first sampling robot configurations in Cspace and

connects them to form a graph (roadmap) containing feasible routes. These planners are

particularly suited for solving many start and goal queries in the same environment and are

easily implementable, computationally efficient, and applicable to a wide range of robots.

Various sampling strategies have been proposed to address the challenge of motion

planning in narrow passages. Each method has its advantages and limitations. The choice

of sampling method depends on the specific requirements of the application. The uniform

sampling method [68] generates nodes uniformly at random in Cspace on retaining valid ones.

However, it shows an inability to sample in narrow passages efficiently, which leads to the

chances of oversampling in other regions. Obstacle-Based PRM (OBPRM) [143] samples

configurations near Cobst surfaces by pushing configuration nodes to the Cobst boundary or

finding surface intersections of randomly placed line segments. Even if OBPRM excels in
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narrow passages, it can be expensive because it requires many validity tests. Gaussian [28]

and Bridge Test [64] filter samples with inexpensive tests to find samples near Cobst bound-

aries or directly in narrow passages, respectively. However, despite their effectiveness, both

methods perform similar sampling as uniform random sampling and suffer from needing

many samples to find one in a narrow corridor. Additionally, both approaches suffer from

parameter tuning, which significantly affects the performance and quality of the mappings

produced.

PRM∗ [67] is a PRM variant that finds asymptotically optimal paths according to some

cost function, i.e., it guarantees to find the shortest pathway if one exists as the number of

samples goes to infinity. It differs from PRM in two ways: the number of neighbors considered

for connection is a function of the current roadmap size (instead of fixed), and it attempts all

possible connections, even if they are already in the same connected component (most PRM

implementations ignore such neighbors for efficiency). The cost function is typically path

length. Two variants of PRM∗, namely k-PRM∗ [67] and LazyPRM∗ [61], were designed

to enhance the performance of PRM∗ by reducing the number of connected neighbors or

collision checks. The former variant establishes connections to k-nearest neighbors of a node

based on some distance metric, where k is a small constant. On the other hand, the latter

variant avoids checking edges that hold no potential to improve the current best path, thereby

reducing the per-sample computational cost and accelerating convergence. Although PRM∗

produces asymptotically optimal pathways, in practice, it requires a large roadmap to do so

and thus is computationally expensive.

Dynamic Region-based PRM [105] combines dynamic region sampling with PRM to

connect multiple connected components for effectual solutions with complete coverage. This

work extends from a previous work [44] that constructs Delaunay-triangulation to form Reeb

graphs for a dynamically growing region. While this method reduces the number of con-

figurations required to compute a solution, it performs computationally-intensive geometric

tests to accept samples into the roadmap, resulting in large planning times.

2.1.2 Tree-based Methods

RRT method grows a tree outwards from a root configuration and expands to the

unexplored regions of Cspace to find a path. These methods are tailored to solve single-query
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motion planning problems and have an exponential convergence to the sampling distribution

over Cfree because of Voronoi bias, i.e., RRTs explore Cfree efficiently. Despite these important

properties, RRTs suffer in the presence of narrow passages or very complex planning systems.

To solve single query problems in dynamic environments, Dynamic-Domain RRT [147]

dynamically grows Voronoi-based regions and biases the random node selection to be within a

radius r to enable expansion. The radius is determined dynamically from the failed expansion

attempts. Dynamic Region-biased RRT [44] uses the same idea to bias growth using Reeb

graphs. The algorithm performs workspace decomposition and presents the Cobst into holes

in an embedded roadmap, thus, restricting its usage in non-uniform environments.

RRT ∗ [67] is an approach to ensure the asymptotic optimality of the tree. RRT ∗

expands in the same way as RRT except that after expansion, the tree will locally “rewire”

itself to optimize the cost function. RRT ∗-Connect [69] is a variant of RRT ∗ that constructs

two trees, one rooted at a start configuration and the other at a goal configuration. Each

tree grows towards the other using a greedy heuristic. Once the two trees meet, a path gets

extracted between the start and the goal using a simple path search algorithm in the tree.

This work showed the benefit of allowing RRTs to grow bi-directionally with variable step

sizes in their greedy heuristic. Informed RRT ∗-Connect [86] operates similarly as RRT ∗-

Connect except it uses the idea from Informed-RRT [58] to expand trees within the ellipsoidal

curve that covers the start and goal configurations. Even though RRT ∗ performs quite

effectively in finding asymptotically shortest paths, it requires many iterations to produce

near-optimal solutions.

2.1.3 Hybrid Techniques

Sampling-based Roadmap of Trees (SRT) [99] approaches proposed in the past have

successfully combined PRMs and RRTs to achieve scalability on high-performance comput-

ers or more effectively explore narrow passages. These approaches provide a powerful tool

for motion planning in complex environments. The SRT approach utilizes global sampling

techniques, such as PRM, to cover the configuration space (Cspace), followed by local explo-

ration using RRTs to achieve high roadmap connectivity. One example of such a method

is SparkPRM [109], which employs PRM to quickly cover large areas of the planning space

while RRT locally explores narrow passages.
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2.2 Topological Properties in Motion Planning

There has been a growing interest in utilizing topological features to improve the perfor-

mance of machines in various areas. These features can be extracted using mathematical con-

cepts such as sheaf theory [31], persistent homology [49], Vietoris-Rips (VR) complexes [13],

and landmarking approach [152]. Sheaf theory provides a framework for studying topological

spaces that allows for the extraction of global features, and persistent homology is a tool

for analyzing the evolution of topological features over different scales. The Rips complex

is a family of simplicial complexes used to capture the topology of a point cloud, and the

landmarking approach is a method for selecting a set of representative points that captures

the topology of a space.

Topological features have shown benefits for object recognition in images, anomaly de-

tection in time series data [102], and identifying homotopy classes of routes [101] in robotics.

The notion of topological properties helps differentiate the path categories into homotopy

classes, as discussed next.

Definition 2.1 Homotopy Class: Two trajectories are said to be in the same homotopy

class [20] if one can be smoothly deformed into the other without intersecting with obsta-

cles. Otherwise, they belong to different homotopy classes. Figure 2.1 shows an example of

different path classes.

Figure 2.1: Paths τ1 and τ2 belong to same homotopy class, whereas τ3 belong to different
homotopy class.

The work in [21, 23, 24] represents homotopy classes of trajectories in 2D and 3D con-

figuration space by using the line integral of “Obstacle Marker Function” over the path in
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2D space or by exploiting laws from the theory of electromagnetism to routes through 3D

objects with genus K (holes in the obstacles) to categorize pathways for K genus. The per-

sistent homology notion used in [22] finds the homology class of trajectories most persistent

for a given probability map. The work applies persistent homology to solve the fundamen-

tal problem of goal-directed path planning in an uncertain environment represented by a

probability map.

Research in [100] considered homotopy classes of trajectories in general configuration

space using Delaunay-Cech Complex filtration and abstracted the global information about

routes using persistent homology. Another extension in [101] showed the application of

a sampling-based approach to topological motion planning that is data-driven in nature.

The work uses the Delaunay-Cech method to filter the data from the point-cloud dataset

and improvises Dijkstra’s algorithm to generate distance-vector terminology for a source

vertex. Our research avoids using Delaunay-Cech Complex filtration due to the difficulty in

computing complexes in high-dimensional Cspace, i.e., the curse of dimensionality.

TARRT ∗ in [148] provides an efficient sampling structure for exploring a topological

constraint over multiple homotopy classes. TARRT ∗ enforces sampling that honors a set of

possible homotopy classes and rewires the RRT ∗ tree to explore multiple homotopy classes in

parallel. The topological information can either be assigned prior to the planning or queried

during posterior path selection.

The online TIGRE algorithm in [55] solves the problem of autonomous robotic ex-

ploration. It builds a map with high-level information captured during online topological

segmentation that incrementally generates an undirected connected graph of the environ-

ment. It formulates the exploration problem as the traversal of all the edges of the online

roadmap. The work integrates Graph-SLAM features, contour-based topological segmenta-

tion, incremental graph construction, and online decision-making with an adaptation of a

constrained depth-first search-based graph traversal algorithm for exploration tasks.

Although, the discussed methods provide ways to extract a topological description of

the space and approximate sampling to achieve performance guarantees. It does not focus

on the approximate measure of the extracted topological information needed to represent

the planning space.

12



2.2.1 Topological Approaches

In recent years, the Vietoris-Rips complex has emerged as a promising alternative

to the Čech complex. It is due to several advantages, including its ability to construct

quick complexes from point clouds, avoid voids in the resulting complexes, and be easily

implementable. As a result, researchers have increasingly turned to the Rips complex as a

means of obtaining topologically correct approximations of metric spaces. For the sake of

brevity, we refer to the Vietoris-Rips complex as the Rips complex.

The sparse Vietoris-Rips filtration method was designed to approximate the persistent

homology of the Vietoris-Rips filtration in [107]. The approximate persistence diagrams

computed at all scales showed the potential to make persistence-based methods tractable

for much larger inputs. The persistence diagram of this new filtration did not deviate much

from that of the Vietoris–Rips filtration and could also adapt to the Čech filtration. Shadow

complexes introduced in [36] produce a projected shadow map from Rips complex to an

n-dimensional Euclidean space that has its image captured with a more accurate approxi-

mation to the homotopy type of n-dimensional sampled space. More precisely, the projection

map represents a simple planar graph of the Rips complex that accurately captures the con-

nectivity for a planar point set in a free space. However, the map failed to preserve the

higher-order topological data in dimensions greater than three. Another work in [152] pro-

posed three different strategies, i.e., inductive approach, incremental approach, and maximal

method, for faster computation of the Rips complex from a generated neighborhood graph

of topological space. The maximal algorithm showed the most intriguing results by generat-

ing maximal cliques in a shorter time than the other two algorithms and provided a better

approximation of the environment.

Some other research work approached the approximation of topological space by focus-

ing on improving the accuracy of the Rips complex in the high-dimensional plane. One such

study [13] presented mathematical proofs to show Rips complexes can provide topologically

correct approximations of shapes for the notion of distances between points in the metric

space. The work provides conditions under which the Rips complex of the point set at some

scale reflects the homotopy type of the shape for a finite point set that samples a shape.

For the infinite set of points in space, Čech and Rips complexes coincidentally degenerate

to a trivial form and, thus, the hypothesis was stable only under small metric perturbation.

13



Another study showed the application of metric graph gluing in topological analysis of metric

spaces [4]. It proved that the wedge sum of Vietoris-Rips (resp. Čech) complexes is homo-

topy equivalent to the corresponding complex for the metric wedge sum and generalized this

result in the case of Vietoris-Rips complexes for certain metric space gluing. The results

in this paper constituted a step towards understanding the greatest extent possible for the

topological structure of a large class of metric graphs via persistent homology. It provides

a characterization of the persistence profiles of metric graphs obtained via certain types of

metric gluing. But the work limits its application to two-dimensional vertices of path.

In this research, we apply and extend the notion of the Rips complex to acquire the

topological approximations of Cspace and use its metric gluing property to incrementally plan

a path in difficult and complex regions of the environment.

2.3 Geometric Properties in Motion Planning

Finding a safe and optimal path in the presence of obstacles has been an important

research topic in robot motion planning. Recall that the geometric features define the shape

of an object using critical points information, i.e., local minima, local maxima, etc. Planning

a path or motion near obstacles becomes possible by leveraging the geometric properties of

the Cspace. Many researchers have employed the advantage of mathematical tools to improve

the quality of paths by sampling-based planners.

Early research work [71] in the 90s presented an online motion planning algorithm for

right-handed manipulators in 2D Cspace. The work identifies critical points on the boundaries

of obstacles in Cspace using line-of-sight and wall-following methods. Work in [12, 3, 2] pro-

posed an exact cellular decomposition for the coverage task. It used Morse function critical

points to partition the space into cells such that the structure of each cell enables a planner

to use simple control strategies such as back-and-forth motions for coverage tasks. It modi-

fied the complete coverage problem to an incremental construction of a graph representation

that encodes the topology of the Morse decomposition with changes occurring at the critical

values. Thus, the method guaranteed coverage in an unknown space.

Crawling Probabilistic RoadMap (CPRM) [110] was introduced to perform real-time

motion planning in the configuration space. The work defined a varying potential field f on
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∂O as a Morse function where O is the obstacle in Cspace and combined it with the naive

PRM algorithm to reduce the computation time needed. CPRM is applicable for mechanisms

whose Cspace are algebraically known.

Motion planning explorer proposed in [94, 93] visualizes the local minima tree of a path

that is invariant under minimization of a cost function (e.g., minimum-length, minimum-

energy, or maximum-clearance). Using the Morse theory, the work defined a local minimum

and utilized a fiber bundle construction (i.e., a sequence of admissible lower-dimensional

projections) to organize them into a tree. Based on the user’s input on the specification of a

fiber bundle for each robot, the algorithm provided a tree with lower-dimensional projections

allowing the user to visualize, debug and interact with a planning problem. Our developed

approach differs by applying discrete Morse theory [56] to the extracted topological infor-

mation that aids in overcoming the differential topology constraints for high-dimensional

robots.

2.3.1 Coverage Path Planning

Coverage path planning determines a route that guarantees an agent will pass over

every point in a given environment. It also requires that the algorithm covers the curva-

tures of the underlying space. Two new algorithms proposed for coverage path planning in

agricultural fields uses a top-down approach to split the high-dimensional structure of the

field and a bottom-up approach to cover the environment using prediction and brute-force

methods [92]. A survey in [57] discussed several techniques that produce optimal coverage

paths in planar spaces and reduce localization errors during coverage. Optimal coverage

methods used numerous strategies such as line-sweep, genetic algorithm, and classical Morse

decomposition. However, these techniques fail in their performance when processing a vast

space. In this research, we achieve the near-optimal properties by preserving the essential

topological and geometric information of Cspace making it robust to varying space sizes (large

or small).

Coverage planning algorithm with adaptive viewpoint sampling constructs accurate 3D

models of large complex structures using Unmanned Aerial Vehicles (UAV) for inspection

purposes [8]. The integrated sensor models generate a coverage path offline to compute the

prediction of the coverage percentage. A study in [33] presented a survey on coverage path
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planning with UAVs, addressing simple geometric flight patterns, such as back-and-forth

and spiral, and more complex grid-based solutions considering full and partial information

about the area of interest. The study showed that coverage planning methods focused

on minimizing the path length, the mission execution time, and the number of turning

maneuvers to save energy. However, in some cases, the performance metrics such as path

length and energy consumption conflicted with scenarios where shorter paths contained more

abrupt maneuvers leading to more energy consumption.

The discussed methods provide maximum coverage of the underlying space while re-

ducing the robot’s energy consumption. In this research, we provide a roadmap that covers

all sub-regions of the Cfree, i.e., it encloses the entire Cfree with samples at a safer distance

from Cobst. The roadmap is a complete coverage graph of the Cspace representing a homotopy-

equivalent topology of it. As a result, our roadmap generated with reduced computation

time and low memory usage inferred low energy consumption during robot navigation.

2.4 Path Diversity in Motion Planning

Some real-world applications emphasize the need for diverse paths, e.g., route plan-

ning [38], navigation of mobile robots among dynamic obstacles [95], protein folding [79]

where different fold configurations of the protein mean distinct function representations, etc.

We next discuss some past research work presented in this area.

Path diversity introduced in [70] defines a path set as a collection of feasible pathways

and their corresponding control sequences. A path set contains high path diversity if there

is an improved performance in the presence of obstacles and goal-seeking behaviors. Hav-

ing a variety of path options is essential. When a robot or self-driving car has access to a

motion planning algorithm that can generate different paths, it reduces the computational

complexity and the need for re-planning by giving more flexibility and adaptability in dif-

ferent situations. Path diversity lends itself naturally to the dynamic planning paradigm,

which means having different pathways that lead to the same goal determines that if one

path becomes inaccessible due to a sudden appearance of obstacles, alternative routes still

exist in the set and, thus, the need for re-planning gets reduced. Research has more recently

gone into formalizing path diversity and the best ways to characterize and produce them

during a path planning event.
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A Cspace diverse path planner proposed in [135] returns low-cost distinct paths from a

graph by calculating the distance between path curves using the Fréchet distance measure.

The method tunes two parameters, i.e., branching factor and ball radius, to retrieve diverse

paths from a sparse roadmap. A suitable balance of values for the branching factor and ball

radius is needed to produce trajectories without exhausting the queue or removing a vast

collection of edges along and near the ancestor path. The filtering criteria reject routes that

are either too close to a previously accepted pathway or too long.

For a graph with a broad explicit set of paths, work in [30] provided two approximate

algorithms (Inner-Product and Inclusion-Exclusion) that pruned large sets of candidate paths

or trajectories down to smaller subsets while maintaining desirable characteristics in terms of

overall reachability and path length. The methods discretized the environment into square

segments and then greedily chose paths that minimized the number of squares the trajectories

hold in common. Its extension in [52] further analyzed the survivability of the pathways from

the collection of diverse routes w.r.t. random placement of the robot into an obstacle field

in a static or dynamic space.

To simplify the problem of diverse path planning for high-dimensional robots, the

method in [134] iteratively found different paths in the Cspace for a simplified multiple path

problem by reducing the size of the robot (called inhibited regions). Although their method

provided an increased success rate for new solutions, the oversimplification of the robot’s

dimension reduced the robustness of their approach. One key difference with our method is

that our graphs originate from the Cspace, where we capture the necessary topology informa-

tion like corners of obstacles, boundary information, and nearness of vertices regardless of

how they are connected in the graph. This is crucial because local changes in the planning

space can affect multiple vertices close to each other in the Cspace. As a result, our approach

maximizes the use of non-degenerate critical points to compute and distinguish diverse paths

in the environment.

2.5 Motion Planning for Articulated linkage robots

The ability to automatically plan a motion task given geometric models of the manip-

ulator (articulated linkage robot) is critical for redundant manipulators. However, motion

planning failures are common due to the PSPACE completeness of the motion planning prob-
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lem and complexity of the planning environments [67]. To address these issues, researchers

use two main approaches: 1) causality analysis, which identifies the causes of planning fail-

ures and suggests recovery actions [9]; and 2) avoidance, which leverages domain or historical

information to classify planning spaces and problems as easy or difficult [113].

Minimum Constraint Removal (MCR) problem presented in [62] aims to remove the

fewest geometric constraints necessary to enable a collision-free path between the start

and goal configurations. It proves that determining the minimum number of restrictions

needed to resolve a failed planning problem is an NP-hard problem. The work presents

a sampling-based algorithm with greedy heuristics to cluster connected configurations in

each region of the obstacle partition to compute parsimonious explanations for path plan-

ning failures. In comparison, our research utilizes node visibility and edge expansiveness to

narrow down the re-configuration search set and prioritize the topological information for

faster re-computation of relative paths for fault-tolerant path planning. Our planner can be

used, in conjunction with the MCR problem, to provide a solution by re-using the roadmap

information once the constraint is analyzed.

The Combined Task and Motion Planning (CTAMP) problem introduced in [75] refers

to finding a geometrically feasible plan by pointing out a culprit detection problem at the

interface between the symbolic and geometric search spaces. The challenge of isolating the

minimal number of factors explaining the failure is the culprit detection problem. The work

proposes two techniques to address it. The first method is a geometric reasoner that computes

minimal explanations for faults occurring in the process of geometrically instantiating a

symbolic sequence of actions. The method detects culprits in a constraint network with the

relaxed version of the geometric part of CTAMP. The second algorithm involves constructing

a graph of geometric dependencies between the actions of unfeasible symbolic plans to extract

sub-sequences of activities as potential culprit sub-sequences.

More recently, the work in [16] proposed a fault-tolerant control scheme for robot

manipulators based on active inference of sensory fault. The proposed solution uses the

sensory prediction errors in the free energy to generate residuals and thresholds for fault

detection and isolation of sensory faults. While it succeeds in achieving the recovery by

reducing the precision of the faulty sensor to zero, the method has difficulty extending past

2-dimensional robotic manipulators.
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Some other approaches perform fault tolerance planning [131, 81, 132] by classifying

and analyzing the planning space problems based on historical or domain knowledge. One

such approach is an active fault-tolerant control scheme that uses a neural network-based

fault diagnosis module and a reinforcement learning-based fault-tolerant control module to

produce compensation torques to guarantee the system’s safety and maintain control perfor-

mance [146]. A Support Vector Machine (SVM)-based fuzzy back-stepping variable structure

controller proposed in [98] diagnoses the fault and fine-tunes the variable structure coefficients

to reduce the effect of failures on the robot manipulator. While these methods successfully

detect system faults, they require extensive supervised training to identify failures efficiently.

In this research, we do not focus on learning-based fault detection and instead use the

minimum path violation framework to find a feasible path in the changed Cspace. We define

a “change” in the Cspace as the inclusion or exclusion of Cobst that invalidates the existing

solution.

2.6 Topology and Computational Biology

A particular domain of molecular modeling relates to predicting the binding conforma-

tion (configuration) for protein-ligand or protein-protein complexes; this problem is usually

addressed with computational methods. These methods are required to accurately predict

the 3D structure of the bio-molecule upon binding to the target receptor. A new research area

has tried applying robotics-based motion planning techniques to this problem [6, 133, 5, 53],

where it randomly samples alternative conformations, in consideration of the position and

orientation of the bio-molecule inside the receptor’s binding cleft and plans a feasible path

to the binding site. We leverage the emerging application of robotics-inspired methods in

computational biology to apply our method to study and examine the association behavior

of bio-molecules using our method-identified features. An extensive discussion is available

in chapter 5.

In the following sections, we discuss some previous research works that focused on

the experimental evaluation of binding behavior during protein-ligand interaction, protein-

protein interaction, or interaction with Intrinsically Disordered Proteins (IDPs).
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2.6.1 Protein-ligand Interactions

Proteins do not function in isolation, and interactions help reveal vital functions and

properties. However, the efficiency of these interactions depends on the dynamic and kinetic

features of any pairs. Protein-ligand interactions are often analyzed using a theoretical

(physics-based) or statistical (knowledge-based) approach. A ligand is any molecule or atom

which binds reversibly to a protein to form a coordination complex. The geometric features

exploration of the surface of a protein molecule enhances the understanding of molecular

morphology and molecular mechanism that allows significant applications to drug design

and protein-ligand interactions.

A hypersurface function in [17] demonstrates minimal molecular surfaces of bio-molecules

that deal with internal and open cavities of the biomolecular structure to avoid geometric

singularities for theoretical modeling of bio-molecules. The variational multiscale strategy

in [54] combined the geometric and physical modeling of a biomolecular structure in the La-

grangian representation to study the protein-ligand interaction. Another approach [144] used

cartesian representation to evaluate the second-order differential of six different 3D struc-

tures of the biomolecules. It identifies the structure curvature descriptors to help predict

good protein-ligand binding sites. However, the evaluation metric of the geometric proper-

ties proved expensive, limiting the robustness in the interaction analysis of macromolecules,

e.g., proteins, membranes, DNAs, and RNAs.

Geometric features often involve too much structural detail and are frequently compu-

tationally intractable for biological macromolecule data sets [34]. Our research addresses the

problem by efficiently extracting and processing protein geometric features using the discrete

Morse function. These features provide maximum and minimum curvatures information of

the protein surface that is beneficial in scouring geometrically favorable protein-ligand inter-

action binding sites.

2.6.2 Protein-Protein Interactions

An important area of study includes understanding how a protein binds to another

protein’s active site and what structural changes both molecules undergo during docking to

the active site or its exit from it. Such information allows for predicting the possibility of an

association between protein-protein pairs, the strength of their association, and the protein
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activity level.

Protein function evaluation is a challenging task approached by various sequence-based

and structural-based methods [10]. However, the fact that the function of a protein is

intrinsically related to its 3D conformation (more than to its primary sequence) motivates the

use of structure in predicting protein function [111, 128]. During protein-protein interactions,

the geometrical structure of the underlying topological manifold play crucial roles that affect

specific biologically related functions, such as driving the cellular immune response [104].

To this end, various developed computational approaches predict the 3D conformation for

molecular docking [83, 85, 32, 89], where the bio-molecules bind to the protein regions with

potential coherence of matching (concave) curvatures.

Several rigid-body docking techniques have emerged as helpful tools to assess the

prediction of possible interacting pose between two protein bio-molecules for global dock-

ing [117, 45, 112]. These docking servers sample conformations of the smaller protein bio-

molecule around the larger one and use scoring functions to determine the top docking

predictions. AutoDock-based incremental protocol (DINC) [46] addresses the limitations of

AutoDock’s standard protocol by enabling improved docking of large bio-molecules. DINC

performs docking using AutoDock incrementally instead of in one single step by dividing

the docking problem into smaller sub-problems. HawkDock [136] integrates the rigid-body

docking protocol of ATTRACT [42] docking algorithm to predict several binding poses and

determines the near-native docking using HawkRank score. HDOCK [145] is a hybrid docking

algorithm that combines template-based modeling and template-free docking. The method

overcomes misleading templates by switching to a template-free docking protocol and calcu-

lates the docking energy score using a knowledge-based iterative scoring function. However,

these docking servers are limited to the number of residues or the size of the receptors, which

results in failure or degradation of their performance. Our method overcomes this limitation

by focusing on the features of the protein surface model independent of its size.

2.6.3 Biological mechanism of Intrinsically Disordered Proteins (IDPs)

Intrinsically Disordered Proteins (IDPs) are involved in many biological processes,

such as cell regulation and signaling, and their malfunction gets linked to severe patholo-

gies [40, 14, 127]. Understanding the functional roles of IDPs requires studying their in-
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teractions with other proteins, which is very challenging and needs a tight coupling of ex-

perimental and computational methods. In contrast to structured/globular proteins, it is

not easy to represent IDPs by a single conformation, and their models require ensembles of

conformations representing a distribution of states that the protein adopts in solution. Thus,

investigation of IDP interaction with structured/globular proteins is indispensable for un-

derstanding many biological mechanisms [116]. In terms of applications, understanding such

molecular interactions is essential for drug design in pharmacology or protein engineering in

biotechnology.

Studying the conformation of highly dynamic IDPs is a challenge in structural biol-

ogy [96]. Nuclear Magnetic Resonance (NMR), often used in the study of IDPs [65], is a

versatile spectroscopy method for studying proteins that, importantly, do not require crys-

tallization. However, NMR spectral data from IDP ensembles have provided conformational

constraints. The NMR-constrained molecular dynamics (MD) [7] simulations need multiple

copies of the protein (known as replicate exchange MD) to generate possible structural mod-

els which fail to ensure the validity of the result regardless of the method used to sample

the conformations using NMR data. The work in [90] uses the NMR tool to characterize the

structure and dynamics of IDPs in various functional states and environments. It describes

the NMR parameters of the structural ensemble to quantify the conformational propen-

sities of IDPs and the challenges associated with obtaining structural models of dynamic

protein-protein complexes involving IDPs.

A method combined the molecular dynamics simulations with circuit topology (CT) to

analyze the biological behavior of a human androgen receptor with a large N-terminal domain

(AR-NTD) in [108]. The method constructed the circuit topology of a potentially charged

bio-molecule to analyze the fluctuations in the chain using the root-mean-square-fluctuations

(RMSF) and root-mean-square-deviations (RMSD) metrics. Although the interaction of

IDPs with other bio-molecules is a critical problem that needs a good understanding of IDP’s

functionality for drug design, there is little effort devoted to investigating the behavior of

IDPs using the surface properties of the binding protein. Through this research, we take the

first step to evaluate the association behavior of IDPs through our algorithm by using the

topological and geometric properties of the bio-molecular surface.
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CHAPTER 3

Approximating the properties of the configuration space

In this chapter, we describe and discuss our approach to extracting topological and geometric

information from the configuration space and its impact on robot motion planning problems.

3.1 Topological Feature Extraction

Our work in [126] introduced a new roadmap construction approach to preserve the

topological properties of the underlying space. Our method first generates and connects sam-

ples to construct the Vietoris-Rips complex and, then, verifies a set of properties describing

the convexity of the occupied subspace. These properties guarantee that the constructed

Rips complexes are homotopy equivalent to the underlying space. It then trims the samples

of the Rips complex using a sequence of simplicial collapses, resulting in a sparse roadmap

representation of the Cfree space that still captures the topological information of the environ-

ment while being sparse. Thus, the resulting set of samples gives a roadmap representation

of the Cfree space. Figure 3.1 shows the workflow of our approach.

Figure 3.1: Workflow of topological data extraction

In the following sections, we define the mathematical concepts applied in this work to

capture the topological information of the Cspace and discuss some of its experimental results.

3.1.1 Mathematical Definitions

3.1.1.1 Abstract simplicial complex

An abstract simplicial complex K is a collection of subsets of a given set X closed under

the subset operation. It is a generalization of a graph representing higher-than-pairwise
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connectivity relationships. The elements of any set are called vertices, and the set itself

is called a simplex. A simplex is a notion of the simplest possible polytope in any given

dimension. For example, a 0-dimensional simplex is a point, a 1-dimensional simplex is a

line segment, a 2-dimensional simplex is a triangle, and so on.

Definition 3.1 (Vietoris-Rips Complex): Given a set X of points in Euclidean space E,

the Rips complex R(X) is the abstract simplicial complex whose K-simplices are determined

by subsets of K+1 points in X with a diameter that is at most α. Figure 3.2 shows the Rips

complex construction process as the value of α increases.

Figure 3.2: The points start forming connections as the α value increases, and the distance
between two points is within the threshold α. It terminates the process when no more
simplices are possible to construct, thus, resulting in a fully-connected graph.

Definition 3.2 (Čech Complex): It is the abstract simplicial complex C(X) whose K-

simplices correspond to subsets of K + 1 points that can be enclosed in a ball of radius α/2,

as shown in Figure 3.3.

Topological thinning (simplicial collapse) [25] is an operation that shrinks simplicial

complexes to homotopy-equivalent sub-complexes. This work applies simplicial collapses to

reduce the complexity of simplexes through vertex deletion down to a core simplex (or skele-

ton) to maintain the topological structure of the configuration space by removing redundant

information. The resulting roadmap represents a maximal clique graph of the Cfree region.

3.1.1.2 Hausdorff Distance

The Hausdorff distance measures how far two subsets of a metric space are from each

other [138]. In this work, we measure Hausdorff distance (ε) between set P – sampled robot
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Figure 3.3: The figure shows Čech Complex construction for the value of α. The points start
forming connections only when the balls of radius α/2 centered at these points intersect.

configurations and set X – the Cfree space. The algorithm uses a convex hull method to find

the boundary points of set P to compute the closest distance ε between sample points and

Cspace boundary. The convex hull of a points set is the smallest convex polygon that encloses

all of the configuration points in the set. In Figure 3.4, the blue line represents the boundary

of the Cspace, and the green line is the boundary of the point cloud set P (calculated using

convex hull). As the sample points get denser in the Cspace, the value of ε decreases and

becomes constant above a definite sampling density.

Figure 3.4: Hausdorff distance for set P and X
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3.1.2 Algorithmic Foundation

We next describe the algorithmic foundation of our approach for memory-efficient

roadmap construction using Rips complex and simplicial collapse.

3.1.2.1 From Rips complex to sampled-space topology

Generally, a Rips complex does not preserve the topology of the underlying sampled

space. However, in [13], the authors showed that a Rips complex could be retracted to a

Čech complex to approximate the topology of the underlying sampled space. Let us define

the flag complex of a graph G, denoted Flag G as the maximal simplicial complex whose

1-skeleton is G. More precisely, this is the largest simplicial complex sharing with the Čech

complex the same 1-skeleton. In addition, let us denote the Rips-complex R(P, t) as the

abstract simplicial complex whose k-simplices correspond to subsets of k + 1 points in P

with a diameter that is at most 2t. The Čech complex C(P, t) is the abstract simplicial

complex whose k-simplices correspond to subsets of k + 1 points that can be enclosed in a

ball of radius t. Define α as an inert value of P if Rad(δ) 6= α for all non-empty subsets

δ ⊂ P . Rad(δ) denotes the radius of Hull(δ).

Then, given any point set P ∈ Rn and any real numbers α, β ≥ 0 with α ≤ β, define

the flag complex of any graph G satisfying R(P, α) ⊂ Flag G ⊂ R(P, β) an (α, β)-quasi Rips

complex of P . Also, let vn =
√

2n
n+1

. We follow the property in Theorem 7 from [13], which

reads as follows.

Theorem 3.1 Let P ⊂ Rn be a finite set of points. For any real numbers β ≥ α ≥ 0 such

that α is an inert value of P and cP (vnβ) < 2α − vnβ, there exists a sequence of collapses

from any (α, β)-quasi Rips complex of P to the Čech complex C(P, α).

The measure of convexity defects of X at a given scale is determined by the function

cp as given below.

cp(t) = dH(Centers(X, t)|X) (3.1)

Further, the graph can be shown to be homotopy equivalent to η-offset of the sampling

space X, from Theorem 10 in [13], as follows.
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Theorem 3.2 Let ε, α and β be three non-negative real numbers such that α ≤ β and

η = 2α− vnβ−2ε > 0. Let P be a finite set of points whose Hausdorff distance to a compact

subset X is ε or less. Then, any (α, β)-quasi Rips complex of P is homotopy equivalent to

the η-offset of X whenever α is an inert value of P and hX(vnβ + ε) < 2α− vnβ − 2ε.

Here, Hull(X) denotes the convex hull of X, and

hX(t) = dH(Hull(X, t)|X) (3.2)

Hull(X, t) =
⋃
∅6=δ⊂X
Rad(δ)<t

Hull(δ). (3.3)

From the theorem, we can derive that in order to use a graph-like structure to ap-

proximate the homotopy of the sampling space we need to ensure sufficiently dense samples

in Cfree so that P is no more than ε away from the set X based on Hausdorff distance. Here,

X is the set we would like to approximate using samples in P . Recall, Hausdorff distance

dH(X, Y ) is

dH(X, Y ) = max{sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)}

d(y,X) = inf
x∈X

d(y, x)

dH(Y |X) = sup
y∈Y

d(y,X)

Therefore, if the samples P satisfy the above properties, we can construct a graph based

on P and use the relations to approximate the underlying homotopy of X, even when the

number of samples is small. In the case of the sampling-based motion planning approaches,

where the connectivity is guaranteed when the number of samples reaches infinity, we can say

our proposed method yields a bound on the number of samples. On the other hand, given a

set of sample configurations P , we can also compute the relevant parameters to derive how

much of the sample space X has the samples covered, where X can be Cfree in the case of

motion planning.
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3.1.2.2 Roadmap construction

To construct the roadmaps that approximate the topology of the underlying config-

uration space, we first densely place samples that will satisfy the parameters presented in

Theorem 3.2. We then use the samples to construct a Rips complex, which approximates the

homotopy of the underlying Cfree space. Finally, we perform simplicial collapse to remove

the unnecessary samples from the Rips complexes to output a sparse roadmap.

The sampling process is similar to that of a PRM algorithm [68], with additional

requirements, mainly the conditions mentioned in Theorem 3.1 and 3.2. During the sam-

pling process, the Hausdorff distance are computed between the samples set P and set X,

where X is the Cfree space in our application. In [13], the authors stated that if the Haus-

dorff distance is smaller than the parameters measuring the space, the resulting point cloud

(sampled points) approximates the topology of the space. Taking this into consideration

(Theorem 3.2), we validate the expression 2ε < 2α − vnβ, where β = α in our experiments.

On verifying the sampling condition in the workspace, the output is a densely sampled Cspace
graph G.

3.1.2.3 Collapsing a Rips-complex

The convex hull of any nonempty subset of the n+ 1 points that define an n-simplex is

called a face of the simplex (complex). A maximal face (facet) is any simplex in a complex

that is not a face of any larger simplex. Given τ, δ ∈ K, if τ ⊂ δ, in particular dim τ < dim δ,

and δ is a maximal face of K and no other maximal face of K contains τ , then τ is called a

free face. A simplicial collapse of K denotes the removal of all pairs of simplices in γ such

that τ ⊆ γ ⊂ δ. The work in [152] and [153] explains the equivalence between maximal faces

in abstract simplicial complexes and maximal cliques in graph theory.

Given a simplicial complex K of dimension n ≥ d, a d-skeleton of K is the subcomplex

of K consisting of all the faces of K having dimensions at most d. Then, a graph representing

the 1-skeleton ofK can be referred to as the underlying graph and denoted asGK . For brevity,

we will refer to the 0-skeleton of K as vertices of GK and 1-skeleton of K as edges of GK .

Then, we can derive the following results.

Lemma 3.1 Given a complex K and its underlying graph GK, let δ be a maximal face of
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K if a vertex v of GK is a subset of δ (v ⊂ δ) and no other maximal face of K contains v

then there exist a sequence of simplicial collapses on K that can remove vertex v.

Proof : Let there exist a sequence of free faces s0, s1, s2, . . . , sm, so that s0 ⊂ s1 ⊂
s2 ⊂ . . . ⊂ sm ⊂ δ and s0 = v. Let s1 be one of the edges on GK with v being one endpoint

of the edge, let s2 be the tetrahedron containing s1, etc. Because each si is a free face, a

simplicial collapse can remove it. Then, assuming the sequence of collapses start from sm

and moves towards s0. Each collapse of si will not change the fact that si still is a free face

of δ. Therefore, v is removable.

Hence, we can extend the results to get the following theorem.

Theorem 3.3 Given a complex K and its underlying graph GK, let δ be a maximal face of

K, and let Vs be the set of all the vertices v where v is a subset of δ and no other maximal

face of K contains v. Then, after removing all vertices in Vs, there are no free faces in δ.

Proof : Let us assume that after removing all vertices of Vs, at least one free face τ ⊂ δ

exists. If τ is of dimension 0, then it is a vertex that only belongs to δ, so it must have been

part of Vs, so τ can not be of dimension 1 or above. If τ is of 1-dimension, i.e., an edge on

GK , then at least one vertex of the edge will belong only to δ. Otherwise, the edge cannot

be a free face. Therefore, removing all vertices of Vs will remove this edge. Inductively, we

can extend this to higher dimensions. Therefore, there cannot be any free face left once all

the vertices in Vs get removed.

3.1.2.4 Removing topologically unimportant vertices

Similar to the work in [152], Algorithm 1 first constructs a Rips complex using the

maximal clique technique for faster computation. After generating the cliques, we transform

the cliques’ representation into binary form. Each node in the graph was represented based

on the simplex to which it belongs. Given a graph with n nodes, the binary representation

of a clique (or a sub-graph) is the binary string of length n in which the ith character is 1 if

the simplex (sub-graph) contains the ith node and 0 otherwise. We then perform a bit-wise

operation to find potential simplicial collapses using results from Lemma 3.1. As a result, it

removes the vertices that are part of more than one clique after the operations.
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Algorithm 1 Graph-Collapse(G)

Input: G: sampled graph from the point cloud; M: maximal clique, B: set of binary repre-
sentation for each clique; T: set of vertices after topological collapse.

1: for all nodes in graph G do
2: compute maximal clique M.
3: while M is not empty do
4: for each clique in M do
5: if node in clique then
6: Set binary value ’1’ for node in B
7: else
8: Set binary value ’0’ for node in B
9: if B is not empty then
10: T = B ⊕ B
11: for each node in T do
12: project node in graph Gnew.
13: return Gnew

Finally, the algorithm returns a sampled graph Gnew with vertices of non-colliding

regions of Cspace, i.e., inclusive-maximal simplex. This resulting graph gives an approximate

measure of the topological space (i.e., Cfree) in the Cspace.

3.1.3 Experimental Setup

We executed all experiments on a Dell Optiplex 7040 desktop machine running the

OpenSUSE operating system, and the code was developed in C++ using the PMPL li-

brary [74]. We performed experiments in three different environments, as shown in Fig-

ure 3.5, and generated samples ranging from 100 to 10,000 nodes. We used the brute force

k-closest neighbor finding technique [88], the Euclidean distance metric, and a straight-line

local planner for sampling and connection stages. We used the RAPID [60] collision detection

method during the sampling, connection, and query stages.

• ZigZag environment: 2D environment with structured obstacles placed randomly

as shown in Figure 3.5a and 3.5b. We tested for two configurations, one with a 2 DOF

robot and one with a 4 DOF robot.

• Heterogeneous 3D: 3D maze environment with walls and narrow passages between

the walls. A robot with a toroidal shape has to pass through maze-like tunnels to reach

the goal, as shown in Figure 3.5c.
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• Helico: A city representation with tall buildings and wires between buildings (Fig-

ure 3.5d). The robot is a rigid body representation of a helicopter and can change its

vertical orientation based on the goal position.

(a) 2 DOF ZigZag (snake-like) (b) 4 DOF ZigZag (snake-like)

(c) Heterogeneous 3D (toroidal plus)

(d) Helico (helicopter)

Figure 3.5: Environments Studied

3.1.4 Results

3.1.4.1 Rips Complex computation

We performed preliminary experiments with two libraries that generate Rips complexes.

We compared results to determine which library is most suited for our approach. We used

the Rips-complex package of the GUDHI library [27] to construct simplicial complexes. The

algorithm’s time complexity is O(v2d+m2d), where d is the dimension of the complex, v is

the number of vertices, and m is the number of maximal simplices in the graph.

The Quick-cliques library [50, 51] generates maximal cliques using a modified Bron-

Kerbosch algorithm by Tomita et al.[115]. We used a hybrid algorithm that applies a Rips-
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complex approach to construct simplices. The algorithm’s time complexity is O(3d/3nd)

with n vertices and degeneracy d. Since Rips complexes, also known as clique complexes,

the algorithm tries to generate maximal cliques as an output.

Table 3.1 and 3.2 compare results for GUDHI and Quick-cliques library in 2 DOF

ZigZag environments with and without obstacles present. One can see that the Quick-

cliques library computes maximal cliques faster than the GUDHI library as the number of

nodes increases. Hence, we use the Quick-cliques library for the Rips complex construction.

Table 3.1: Constructing Rips complex in a 2 DOF ZigZag environment without obstacles

Library Number of Nodes Cliques Time taken (sec)

GUDHI 100 210 0.01
Quick-Cliques 100 51 0.042274

GUDHI 10000 33552695 289.31
Quick-Cliques 10000 892190 0.014901

Table 3.2: Constructing Rips complex in 2 DOF ZigZag environment with obstacles

Library Number of Nodes Cliques Time taken (sec)

GUDHI 100 268 0.02
Quick-Cliques 100 1378 0.042939

GUDHI 10000 81463172 675.6
Quick-Cliques 10000 1443062 50.072735

3.1.4.2 Sampling at different densities

We conducted two rounds of experiments on our three testbeds, one with obstacles

and one without. We first performed experiments for the sampling conditions of P based

on the 2ε < 2α − vnβ; where β = α, preconditions discussed previously in Section 3.1.2.2.

Another condition, as illustrated in [13], states that as the sampling space becomes denser,

the Hausdorff distance (ε) reduces or approaches a constant value. Once both conditions

are satisfied, we construct a graph G of the densely sampled point cloud of the space and

perform topology collapse to remove extraneous details. Our results show that the roadmap

preserves the necessary topological information after the simplicial collapse, and the coverage

of Cspace is not compromised.
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(a) 2 DOF ZigZag (b) 4 DOF ZigZag

(c) Heterogeneous 3D (d) Helico

Figure 3.6: ε and α trends in obstacle and free environments

Sampling conditions: In Figures 3.6 and 3.7, we observed that the Hausdorff distance

(ε) converges more gradually in an obstacle-free environment than in an environment with

obstacles. The trend as shown in Figure 3.6 satisfies the conditions mentioned in [13], which

states that the value of ε gradually decreases and becomes constant as the radius of the circle

covering the Cspace and the number of configurations increase. Here, we can deduce from the

plots 3.6a to 3.6d that the value of ε decreases as the value of α and vn increases. The

purple and blue bars (2ε)(E) and the green and yellow bars (2α− vnβ) (A) in the histogram

represented in Figure 3.6a to 3.6d show that in all cases both the pre-conditions are satisfied.

In the particular case of the Helico environment, as seen in Figure 3.6d, the ε value

initially remains low and increases as the graph becomes denser before leveling off and

becomes constant. The position of a robot in this environment is at the corner of the Cspace,
so when the samples are computed initially, they are generated only near the boundary of the
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Cspace, and, hence, ε value is low until the number of samples increases in the environment

to produce better coverage. The ε values converge to constant as it reaches 10000 sampled

nodes in all the planning space, as shown in Figure 3.7.

(a) Cfree environment (b) Cobst environment

Figure 3.7: Convergence of Hausdorff distance in obstacle and free environments

Topology Collapse: Table 3.3 contains results for topology collapse experiments that

utilize theorems and algorithms presented in Section 3.1.2.3 and 3.1.2.4. The results sub-

stantiate the ability to delete vertices, thus, confirming Lemma 1. We show a 40 to 90%

reduction across all the environments, which indicates that our method can delete vertices

while retaining the topological information of the space.

Table 3.3: Results after the Topology Collapse in the Free and Obstacle Environment

Environment Nodes Before Nodes After- Free % Reduction Nodes After- Obstacle % Reduction

2DOF Zig Zag 10,000 5081 49.2 4826 51.7
4DOf Zig Zag 10,000 637 93.6 896 91.1

Heterogeneous 3D 10,000 4968 50.3 5061 49.3
Helico 10,000 5041 49.6 5023 49.8

Figure 3.8 gives a pictorial representation of one studied environment after the graph

simplicial collapse. The sub-figures show the process of performing a topological collapse

and getting a path for a simple robot. The figures indicate the following: (i) a Cspace with

obstacles, (ii) a 1-skeleton with five or few samples in Cfree, (iii) a 0-skeleton densely sampled

graph, (iv) the structure that remains after the topological collapse, and (v) a successful path

through the Cspace.
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Figure 3.8: Phases of topological path planning

In addition, the samples generated to construct a Rips complex consists of locally

complete subgraphs (cliques). After the collapse, the roadmap skips the edge information

and captures only the vertices of a unique inclusive-maximal clique. Therefore, the memory

needed to store the resulting roadmap scales linearly to the number of samples left after the

collapse. Our constructed roadmap is comparable to k-nearest neighbor PRM roadmap but

provides much richer topological information [152].

3.1.4.3 Planning with homology equivalent samples

Table 3.4 and 3.5 compare paths generated by PRM∗ [67] using (i) the original point

cloud and (ii) the vertices of the Rips-complex after the topological collapse in different

environments in terms of total path cost and time needed to build a path. We report time

to connect and query the environment alone to allow for fairness in our comparisons. The

results show a significant improvement in all environments studied.

Overall, we observed that the reconstructed Cspace provides an η-offset approximation

of Cfree region and has proven to be helpful in path planning while reducing the computation

time and memory usage.
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Table 3.4: Path planning time (in seconds) in the Free and Obstacle environments

Cfree Environment Our Approach PRM∗ Cobst Environment Our Approach PRM∗

2DOF ZigZag 62.1342 229.922 2DOF ZigZag 53.0861 129.904
4DOf ZigZag 64.7357 11146.4 4DOf ZigZag 2.52541 24089.9

Heterogeneous 3D 62.6602 DNF Heterogeneous 3D DNF DNF
Helico 55.8919 DNF Helico 58.4688 82967

Table 3.5: Path planning cost in the Free and Obstacle environments

Cfree Environment Our Approach PRM∗ Cobst Environment Our Approach PRM∗

2DOF ZigZag 1003 1438 2DOF ZigZag 827 1553
4DOf ZigZag 916 1324 4DOf ZigZag 893 1258

Heterogeneous 3D 3714 DNF Heterogeneous 3D DNF DNF
Helico 1806 DNF Helico 1338 2698

3.2 Geometric Feature Extraction

The work in [124] focuses on identifying the geometric features of Cspace from the

extracted topological information, as mentioned previously. Specifically, we define a discrete

Morse function on the simplices of Vietoris-Rips complex that captures the local minima

and maxima, i.e., critical points, of the obstacles’ surface in Cspace.

3.2.1 Discrete Morse Theory (DMT)

Discrete Morse theory, originally defined by Forman [56], is a discrete analog of the

classical smooth Morse theory. It is used in applications, such as ours, to simplify the

topological information about the space by decreasing the size of the representation without

affecting crucial properties such as the homotopy type. The context is either a simplicial or

more general cellular complex.

Discrete Morse theory is a recent development in topology that has resulted in an

explosion of applications in a wide range of fields. This paper is an example of such a

robotics application. DMT should not be confused with discretized smooth Morse theory

because it is a genuinely combinatorial subject and is thus amenable to efficient computer

implementations. It is a theory that defines all of the trappings of smooth Morse theory

and, so, can be used in place of the smooth theory. The benefits are enormous. It is purely

a discrete theory, that is, applied directly to simplicial or more general cellular complexes.

The ability to generate discrete functions from samples, such as the density-based function,
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which is unavailable in a smooth context, is one of the many additional applications that can

be particularly useful for our work. Before getting into the details of our approach, we will

first illustrate the essence of the discrete Morse theory in a simple example, which includes

the discovery of critical points crucial for this work.

3.2.1.1 Critical simplex in discrete Morse theory

Consider the simple but topologically non-trivial shape called the 2D torus as an ob-

stacle model in the free space of 3D Euclidean space (shown in Fig. 3.9). It is impossible to

embed the torus in the plane, but we can draw its planar triangulation by indicating parts

of the boundary glued together when the labels match.

Figure 3.9: A planar triangulation of a Torus

Suppose we have meaningful assigned values to the vertices in this triangulation (shown

in red in Fig. 3.10). We argue that these values can be extended to values on all simplices so

that altogether we get a so-called discrete Morse function. Once a discrete Morse function

Figure 3.10: Assigned values on all simplices.

is defined, the theory gives the construction of a consistent flow indicated with arrows (see
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Fig. 3.11). There are several critical cells of various dimensions but only one critical point d.

As a result, we see that the discrete flow identifies the critical simplices. When the critical

Figure 3.11: Identified critical point d.

simplex is 0-simplex, we refer to it as a critical point.

3.2.1.2 Constructing a discrete Morse function in Cspace

We adopt a discrete Morse theoretic view to enumerate the critical points of Cobst.
We define a density-based discrete Morse function on the constructed simplicial complex to

extract the geometric property.

Definition 3.3 (Distance function): Let D(x) denote the distance between the point x ∈
Cfree and the nearest point y on the closest obstacle Oi ∈ Cobst, that is, D(x) = miny∈Oi

‖x−
y‖.

Definition 3.4 (Density function): Let Γ(y, %) be a density function where % > 0 and

y is the point on the obstacle surface. Our choice of the function Γ counts all neighbors in

R(X) ⊆ Cfree close to y within distance %.

Our function is, in fact, defined at any point in Cspace and is given by

f(x) = D(x) · Γ(y, %). (3.4)

Theorem 3.4 (discrete Morse function): The restriction of f to the vertices of the

Vietoris-Rips complex is the restriction of a discrete Morse function defined on all of the

complex R(Cspace). The critical points of this function identify features of the obstacles.
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Proof : We first argue the second statement, then show how to obtain the Morse

function. Let ω ≥ 0. We consider any closest obstacle O from the robot and the subset

X = D−1([0, ω]). We denote Hull(X,ω) as the convex hull of the set X at scale ω from O,

where t and s are the random vertices/points that define the elements in X. In other words,

Hull(X,ω) =
⋃
t,s∈X

[t, s]. (3.5)

Taking the obstacle O, the local maxima and minima of the function f occur on the surface

of the obstacle O. They will be critical points of f in τ ⊂ O (as objects are assumed to

be polyhedral) when f → 0. The Hull(τ) determines the boundary of the obstacle surface

containing these critical points. Let us take point p ∈ X. When D(p) = 0, that is ω → 0,

the distance between point p and closest obstacle O becomes negligible. The density of

neighboring points in Cfree decreases on approaching closer to the obstacle O. However, the

value of Γ(y, %) has a very meaningful limit. It is easy to see that the features on the surface

of the polyhedron O can be detected as critical points of f on the Hull(X,ω). Thus, we

determine them as critical points which satisfy the following conditions,

1. ∀ points p ∈ X; ∃ point y ∈ O such that f(p) ≤ f(y),

2. ∀ points y ∈ O; ∃ point p ∈ X such that f(y) ≥ f(p).

The identified critical point p will satisfy the equation

lim
ω→0

f(p) = D(p) · Γ(y, ω). (3.6)

Figure 3.12 shows an example of identified critical point on the obstacle surface.

To apply discrete Morse theory to identify the critical points of f restricted to Hull(X,ω),

we represent f given on the vertex set of the Vietoris-Rips complex as the restriction of a

discrete Morse function f defined on all of the complexes. It is a well-studied problem in

discrete Morse theory with many solutions.
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(a) (b)

Figure 3.12: The figure shows the identified critical points on the boundaries of the Cobst in
(a) and the feasible critical points (as denoted by p) in Cfree closer to the critical points at
a distance ω from the Cobst, in (b).

3.2.2 Methodology

To extract the geometric information, we perform two associated steps. First, we

abstract the topological representation of the Cspace using the Rips complex. Second, we

apply the discrete Morse function to this representation. Here, we describe implementation

details to identify critical points and feasible critical points information for our topology

map.

3.2.2.1 Feasible Critical Points in Cspace

Let Φ = D−1([0, %]) be the compact set of points in Cfree at most distance % from the

obstacle boundary such that the computed % value can be given as

% =
1

n

∑
D(s);∀s ∈ Hull(R(X)), (3.7)

where C denotes the set of identified critical points, R(X) denotes simplicial complex vertices

set, n is the cardinality of set C and D(s) = miny∈C ‖s−y‖ from Def.3.3. The term clearance

defines the offset distance of point p from the obstacle boundary, thus shifting p away from

Cobst to Cfree. We say p becomes a feasible critical point with a maximum %-clearance from

the obstacle boundary if p ∈ Cfree. An example is shown in Figure 3.12(b).

For comparison, the Generalized Voronoi Diagram (GVD) provides a roadmap to ex-

tract high-clearance paths. The GVD defines the maximum clearance for a pathway from the

Cobst, as utilized in the Medial-Axis PRM [141]. An exact computation of the medial-axis dis-

tance is not practical for problems involving many DOFs (degrees of freedom) and a cluttered
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environment with many obstacles, as this requires an expensive and intricate calculation of

the Cobst. We have proven in previous work that on reaching a needed sampling condition,

the Vietoris-Rips complex provides a topologically equivalent representation of the space as

the Čech complex. After the simplicial collapse, the resulting simplicial complex is a sparse

sub-sampled graph that reconstructs the surfaces equivalent to the Delaunay complex, sim-

ilar to those explained in [47]. Instead of computing the medial-axis distance from Cobst to

the boundary of the Voronoi cell, we considered the closest distance from each critical point

to the convex hull of the simplicial complex to find the clearance values from Cobst. The

minimum clearance is the average of all calculated offset distance values. In this work, we

used the computed mean value as the clearance distance from the Cobst, i.e., %.

3.2.2.2 Generating %-clearance samples in the Cspace

Algorithm 2 provides a roadmap with configurations at a distance % from the obstacle

in the Cfree, i.e., feasible critical points, by applying the discrete Morse function f on the

constructed Rips complex S. The algorithm considers the convex hull of invalid nodes set as

the Cobst boundary, returned by the function GetObjectConvexHull and computes the Morse

values of these nodes to identify the potentially critical points on the Cobst surfaces, from

equation (3.4). When the collapses in Rips complex S get close to the Cobst boundary, the

distance becomes an equalizer making density the most important contributing factor. Thus,

the local minima and maxima of f depend on the lowest and highest density value achieved

by f at a point y ∈ Cobst, in line 10. The algorithm inspects computed Morse values (in

line 11) to identify the critical points for each Cobst in line 12. It captures the set of feasible

critical simplices in S ⊆ Cfree at clearance % from the identified critical points in lines 14-

15. The greater the value of % decides the maximum clearance of a configuration from a

Cobst. Finally, the algorithm outputs a new graph Gfcp having configurations in the Cfree at

%-clearance from the Cobst and the set of identified critical points of Cobst in C.

3.2.3 Experimental Setup

We perform experiments in simulation as a proof of concept of our methodology. The

simulation experiments were performed in five different environments with robots ranging

from 2 DOF to 14 DOF, as shown in Figures 3.5 and 3.13.

41



Algorithm 2 %-clearance algorithm

Input: G: complete sampled graph from Sec.3.1; S: simplicial complex; O: Obstacle set,
D: distance function, Γ: density function, f : Morse values set function, %: value from
eq.(3.7), C: set of identified critical points, N: set consisting of configurations around
identified critical points, Gfcp: a graph of feasible critical points.

1: C ← null, N ← null;
2: G = GenerateGraph(); / Refer Sec.3.1
3: O = GetObjectConvexHull(G);
4: S = CollapseComplex(G); / Refer Sec.3.1
5: if S is not empty then
6: for each obstacle oi ∈ O do
7: for all sample x ∈ S do
8: D(x) = miny∈oi ||x− y|| / Refer Def. 3.3
9: for all node y ∈ oi do
10: Γ(y, %) =

⋃
||x−y||<% x ∈ G / Refer Def. 3.4

11: f(y) = D(x) · Γ(y, %)
12: if f ′(y) → 0 then
13: C = C t y
14: for all y ∈ C do
15: N = N t Γ(y, %)
16: for each neighbor n ∈ N do
17: Gfcp ← N[n]
18: return {Gfcp, C}

• 2D environment: The 2D space consists of a point robot with random obstacles in

it, as shown in Figure 3.13a (referenced [66]).

• Parking Garage: The 3D environment has a vehicle parking garage structure, as

shown in Figure 3.13e. The robot is a planar car with 3 DOF.

• Urban environment: This environment consists of buildings as obstacles in the city-

like structure, as shown in Figure 3.13b. The robot is a 6 DOF drone.

• Kuka YouBot environment: The environment consists of a tree as an obstacle and

a fixed base Kuka YouBot in it, as shown in Figure 3.13c. This robot is a simulation

replica of Kuka YouBot [72] with an extended long arm (10 DOF). The robot moves

its arm around the tree branches to grasp the fruit.

• PR2 robot environment: The environment consists of two pillar blocks placed on

the table as obstacles where the robot is required to pass through the blocks to grasp
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the stick kept on the other side, as shown in Figure 3.13d. The robot is a simulation

replica of the PR2 robot [140] with only the right-hand arm (14 DOF) and a fixed

base.

To ensure the accurate verification of our sampling condition, we integrated the compu-

tation of the reachable boundary volume of the robot as its environment boundary to meet

the sampling condition. The computation time taken for identifying critical and feasible

critical points for these robots is negligible, as empirically observed in Section 3.2.4.

(a) 2D environment
(square)

(b) Urban environment
(drone)

(c) Kuka YouBot
environment

(d) PR2 robot environment

(e) Parking Garage (car)

Figure 3.13: From left to right, the robot has 2 DOF in (a), 3 DOF in (e), 6 DOF in (b),
10 DOF in (c), and 14 DOF in (d). The created testbeds are the simulation of the
real-world robots and the environments to demonstrate the application of our algorithm.

3.2.4 Experimental Results

In this section, we discuss the results obtained using different PRM sampling strategies,

i.e., Uniform [68], Gaussian [28] and Bridge-Test [64] planners, and RRT methods in 3D

environments. We compared the results with two topology baseline RRT methods, Dynamic

Domain RRT [147] and Dynamic Region-based RRT [44]. We also show the performance

of the RRT, RRT ∗, PRM, and PRM∗ methods in the 2D environment (used by Karaman
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(a) 2D environment (b) Urban environment (c) Kuka YouBot
environment

Figure 3.14: The figure shows feasible critical points around the identified critical points of
the Cobst for three different environments. In (b), a point-size view of the drone is shown for
better visualization of feasible critical points. In (c), we see the feasible critical points of
the robot are around the branches and bark of the tree.

et al., in [66]) and average the result values over 10 experiment runs in each case, i.e.,

evaluated total 500 trials for the 3D environments and 240 for the 2D environment. We used

bi-directional RRT methods in all environments.

3.2.4.1 Topology Map

Table 3.6 shows the statistical result values computed for each sampler in each environ-

ment over ten runs. The column “Total Nodes” represents the generated density map nodes

obtained on satisfying the sampling condition from [126]. In “% Reduction,” we report the

percentage of nodes removed after a simplicial collapse, and in “% FCP,” we provide the

percentile of feasible critical points present in the topology map. The topology map contains

both the topological and geometric information of the Cspace, and its nodes are listed in the

column “Extracted Nodes.” We highlight the sampling strategy for each environment that

preserved the topological and geometric information in their map with low memory overhead

and improved the performance of existing RRT and PRM methods. Bridge-Test performed

best in the narrow passage regions of the Parking Garage and PR2 robot environments, Uni-

form (PRM) performed best in the open space region of the Kuka YouBot environment, and

Gaussian performed best in the cluttered region of the Urban environment. Our approach,

like our previous machine learning method [118], revealed the core functionality of these

sampling strategies, resulting in improved performance. So, the extracted geometric and

topological properties of Cspace aid in guiding the robot for memory-efficient path planning.
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Figure 3.14 shows the captured feasible critical points for three different environments.

Table 3.6: STATISTICS OF EXTRACTED TOPOLOGICAL AND GEOMETRIC INFORMATION

Environment Sampler Total Nodes % Reduction % FCP Extracted Nodes

Parking Garage
Uniform 30000 40 20 18084
Gaussian 30000 32 15 20616

Bridge-Test 25000 44 12 14124

Urban environment
Uniform 10000 46 9 5455
Gaussian 10000 41 12 5872

Bridge-Test 5000 34 20 3287

Kuka YouBot environment
Uniform 15000 26 46 11040
Gaussian 20000 27 47 14593

Bridge-Test 10000 28 42 7156

PR2 robot environment
Uniform 20000 28 56 14466
Gaussian 5000 36 19 3222

Bridge-Test 2000 53 1 940

The survey in [57] concluded that when combined with topology methods, SBMP

methods provide promising results for optimal coverage path planning. In this work, we

show how our approach combines the topological, i.e., the homotopy equivalent map of the

Cfree space, and the geometric, i.e., the critical points and configurations near the Cobst,
properties into a topology map. This topology map contains enough nodes to cover all sub-

regions of the Cfree in the Cspace. Our method has usefulness in determining a path that

can pass through all nodes in a given area or volume of interest while avoiding obstacles

in coverage path planning problems. This work examines the quality of paths generated

by a topology map (a Cspace coverage map). Using our topology map, we demonstrate the

convergence of the RRT and PRM methods to the near-optimal solution, i.e., produce paths

within feasible bound from Cobst using a memory-efficient roadmap.

3.2.4.2 Comparison to RRT-based algorithms

We input the topology map generated by the Uniform, Gaussian, and Bridge-Test

sampling strategies as an initial roadmap into the RRT method. Dynamic Domain RRT

could not find a path for the Parking Garage environment, and Dynamic Region-based RRT

was unsuccessful in finding a pathway for the Urban and Kuka YouBot environments. Both

methods failed to complete in the PR2 robot environment. Our topology methods, on the

other hand, finished planning paths in all four environments.
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Nodes and largest clique size: Figure 3.15 depicts the total number of nodes in the

roadmap as well as the size of the largest connected component (CC). The number of nodes

in the largest CC does not equal the total number of nodes in the topology map, indicating

that the number of nodes required to connect the start and goal configuration is less than

the total number of nodes in the topology map. Dynamic Region-based RRT and Dynamic

Domain RRT acquired all nodes from their roadmap to establish a path. Thus, our methods

require fewer nodes than baseline methods to produce a pathway to the destination.

(a) Parking Garage (car) (b) Urban environment (drone)

(c) Kuka YouBot environment (d) PR2 robot environment

Figure 3.15: The figure shows the total number of nodes present in the roadmap in the
purple-green bar and the size of the largest connected component (CC) in the purple bar
for all environments. The size of the largest CC indicates the number of nodes connected to
establish a path from start to goal position by RRT planners.

Query time and collision calls: Figure 3.16 depicts the total time required to solve a

query and the number of collision check calls made. The query time accounts for topology
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map generation time, node connection time duration, and path planning time. The collision

calls count the number of times nodes or edges are validated, and we examined their impact

on the topology map’s path planning time. Our planners used fewer collision checks, resulting

in less query time in all three environments than the baseline methods. In the PR2 robot

environment, BridgeTopologyRRT outperformed other methods.

(a) Parking Garage (car) (b) Urban environment (drone)

(c) Kuka YouBot environment (d) PR2 robot environment

Figure 3.16: The figure shows the total query time and the number of collision calls invoked
for all RRT methods.

Path Quality: Table 3.7 depicts an improvement in path quality after employing topology

maps. We discovered that BridgeTopologyRRT produced shorter paths in Parking Garage

and PR2 robot environments as explained in Section 3.2.4.1. Similar outcomes were observed

for UniformTopologyRRT in the Kuka YouBot environment and GaussianTopologyRRT in
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the Urban environment. As a result, we can conclude that our topology methods can produce

shorter paths than baseline methods, with less computation time and fewer nodes.

Table 3.7: Path cost achieved by different RRT planners

Methods Parking Garage Urban Kuka YouBot PR2 robot

Uniform Topology RRT 311.10 173.08 14.03 2.09

Gaussian Topology RRT 367.78 164.37 16.61 2.27

Bridge Topology RRT 288.3 184.5 21.56 1.86

Dynamic Domain RRT N/A 167.15 23.39 N/A

Dynamic Region-based RRT 364.7 N/A N/A N/A

3.2.4.3 Comparison to PRM-based algorithms

As initial roadmaps, we input the PRM method with two different Cspace coverage

maps: 1. a density map - nodes generated to provide complete coverage of Cspace and 2.

a topology map - nodes preserved from the density map after the collapse and geometric

feature extraction. We compare the performance of PRM with density map-based PRM and

topology map-based PRM for all three samplers in all four environments. In the plot labels,

we indicated density map methods with the prefix ’D’ and topology map methods with the

prefix ’T.’

Nodes and largest clique size: In Figure 3.17, we noticed that our topology map cap-

tured nodes in regions isolated from open free space, i.e., a space enclosed by Cobst. Given

this, we can conclude that, regardless of the sampler method used, our approach aided in

capturing nodes close to Cobst, covering enclosed sub-regions of Cfree, in the same way, that an

obstacle-based sampler captures nodes close to Cobst. Overall, we conclude that our topology

map-based methods required fewer nodes to plan paths in Parking Garage and PR2 environ-

ments than other methods. However, in the Kuka YouBot and PR2 robot environments, all

nodes were connected to form one largest CC for all planners, as shown in Figures 3.17c and

3.17d. Because the absence of enclosed regions in these environments makes the planners use

all nodes from their roadmap for the query analysis. After 400 hours of continuous running,

the uniform sampling strategy failed to find a path in the Parking Garage environment.
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(a) Parking Garage (car) (b) Urban environment (drone)

(c) Kuka YouBot environment (d) PR2 robot environment

Figure 3.17: The figure shows the total number of nodes present in the roadmap and the
size of the largest connected component (CC) for all environments. The x-axis labels with
the prefix ’D’ indicate density map methods, and the prefix ’T’ denotes the topology map
methods for PRM planners.

Query time and collision calls: Figure 3.18 shows that PRM took less time to gen-

erate a path than density map-based PRM and topology map-based PRM in Urban and

Kuka YouBot environments for all three samplers. This difference is due to the additional

pre-processing time needed for topology or density map generation. Topology map-based

methods achieved fewer collision calls with the shortest query time in complex environments

such as Parking Garage (maze-like structure) and PR2 robot environments (high DOF). As

a result, we can conclude that the computation time overhead for generating a topology map

becomes negligible for our approach when dealing with complex environments.
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(a) Parking Garage (car) (b) Urban environment (drone)

(c) Kuka YouBot environment (d) PR2 robot environment

Figure 3.18: The figure shows the total query time and the number of collision calls invoked
for all PRM methods.

Path Quality: As inferred from Table 3.8, topology map-based PRM methods produced

shorter paths than compared methods. It also demonstrates that the preserved important

nodes from the density map after the simplicial collapse and the feasible critical points

information in the topology map were crucial in bringing edges closer to Cobst. As a result,

the topology map’s path cost converges to a near-optimal value much faster.

3.2.4.4 Comparison with state-of-art methods in a 2D environment

In this environment, we compare the performance of the different planners, i.e., RRT,

RRT*, PRM, and PRM*, using our pre-processed maps with the results from [66] to show

the improvement in path quality as the sampling density increases. The methods like RRT*

and PRM* are proven to converge to an optimal solution as the number of samples increases.
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Table 3.8: Path cost achieved by different PRM planners

PRM Planners Parking Garage Urban Kuka YouBot PR2 robot

Uniform DNF 2552.5 105.2 10

Uniform with density map 12027 2495.33 92 12

Uniform with topology map 11450.6 2420.1 85 4

Gaussian 14676.7 2493.4 104.6 12

Gaussian with density map 11668.75 2278.78 89 15

Gaussian with topology map 11540 2139.8 85 5

Bridge-Test 14252 2773.4 116.1 11

Bridge-Test with density map 11812 2377.33 92 16

Bridge-Test with topology map 11307.5 2377.4 89 3

We record the behavior of these methods for our topology map to understand the difference

in the result from [66].

We performed experiments for sampling densities of 500, 1000, 2500, 5000, 10000, and

15000. We did not sample beyond 15000 nodes because the Hausdorff distance does not

change after reaching the lowest constant value, the reason explained in [126]. We analyzed

the behavior using the uniform sampling strategy density map and topology map.

Path Cost and Time: In Figure 3.19a, we observe that as the number of samples increase,

the path cost decrease and reaches a minimum cost value for the density map. On the other

hand, the methods were able to show a similar pattern, i.e., a gradual decline in path cost,

using our topology map, and, as the sampling condition gets fulfilled at the last sampling

density, the path cost attains a minimum value at an earlier stage. In Figure 3.19c, we

observe that the methods take less node connection time and fewer collision calls using our

topology map than the density map. We notice a similar trend for PRM and PRM* methods

in Figures 3.19b and 3.19d. Thus, the methods showed an early convergence to the optimal

solution using our topology map.

Path Clearance vs Path Cost: Recall that path clearance defines the offset distance of

the path from the obstacle boundary. Therefore, as the number of nodes increases, more

nodes get identified closer to the objects leading to a decrease in path cost and pathway

clearance. As expected in Figure 3.19e, the path clearance decreases with a decrease in path

cost using both maps. However, we see a consistency in the pattern as the values decline using
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(a) (b)

(c) (d)

(e) (f)

Figure 3.19: Plots showing performance of RRT, RRT*, PRM, and PRM* in the 2D envi-
ronment compared with our approach for Path cost vs. Number of Nodes in (a) and (b),
Time taken vs. Number of Nodes in (c) and (d), and Path Cost vs. Clearance in (e) and (f).

the topology map compared to the sinusoidal pattern observed using the density map. We

analyze a similar trend in Figure 3.19f. Overall, we conclude that while using our topology
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map, our methods achieve better paths with near-optimal properties at a faster convergence

rate compared to results from [66].

Hence, we observed that geometric features added to our previously constructed roadmap

in Section 3.1 improve the quality of paths, thus, showing near-optimal characteristics. The

roadmap presented the compact representation of the Cspace by capturing only the intricate

details of the space and holds potential for use in coverage path planning, diverse path

planning, etc.

3.3 Incremental Path Planning

This work [123] combines the topological and geometric features extracted in Sec-

tions 3.1 and 3.2 for incremental path planning in a partially observable space. A partially

observable environment refers to the robot’s perspective that the robot observes at each time

step. At every time step, the robot can see only a part of the environment that is reachable

in its field of view. The work contributes a novel algorithm that incrementally glues the

simplices of partially observable space while planning routes in the configuration space. We

denote each visible sub-region of the environment as a voxel polytope. The algorithm pro-

vides a sub-optimal solution by generating a near-optimal local path in each voxel and gluing

them together to find a global route from the start to the goal positions of the robot. In

this way, it incrementally applies the topological data analysis approach to each voxel block

by preserving only necessary configurations and edges representing the unique property of

the subspace. Figure 3.20 shows a pictorial representation of different steps of our proposed

algorithm.

3.3.1 Preliminaries

Our incremental topology path planner uses the concept of voxel polyhedron [103] to

consider partially observable Cspace into sub-regions and perform metric gluing to explore

and cover the underlying planning space.
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Figure 3.20: A graph illustration of our algorithm in R2 space where S represents the start
point of the robot and G refers to the goal point.

3.3.1.1 Voxel Polytope

Different from existing incremental work on roadmap construction, whose incremen-

tal block is in the form of samples, our proposed incremental approach is in batches, and

our blocks are in the form of simplices. The batched step-by-step process generates local

roadmaps of the sub-space of Cfree decomposed as voxel polytope. The increase in the num-

ber of voxels glued together is proportional to the increase in the Cfree area covered by the

robot resulting in a higher probability of finding a solution if one exists. For each voxel

block/window, we consider the spherical boundary of radius λ given as

λ = n ∗ d, (3.8)

where n is the dimensionality of Cspace and d is the diameter of the circumscribed circle of

the robot. So, the length of the global path becomes equal to the total number of glued

voxel blocks times λ, i.e., gluing the local paths from each connecting voxel. The connection

edge between the configuration nodes in each voxel window forms at a connection length γ.

We compute the value of γ as

γ = min(log(|Vi|)/|Vi|, ε); i ≥ 0, (3.9)
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where |V | is the number of the vertices generated in each voxel window i to meet the sampling

condition from [126]. ε is the constant value provided by the user. Here, the boundary of

each voxel window gets considered as the criteria for satisfying the sampling condition. The

generated simplices in each voxel block undergo a simplicial collapse to obtain a 1-dimensional

skeleton of simplices. Our density-based discrete Morse function, from [124], applied on the

skeleton structure identifies critical points and feasible critical points in proximity of Cobst. As

a result, our method stores the topological and geometric information in the local topology

map of respective voxels. Next section, we discuss the theoretical proof of metric gluing our

local topology maps together.

3.3.1.2 Metric gluing of simplicial complexes

The work [4] proved that the Vietoris-Rips complex of two metric graphs glued together

along a sufficiently small sub-complex is homotopy equivalent to the union of the Vietoris-

Rips complexes.

In general, the term metric space refers to a set X equipped with a distance function

m : X2 → X satisfying the conventional axioms: non-negativity, symmetry, the triangle

inequality, and the property that the value 0 is achieved exactly on the pairs of the type

(x, x). Let us assume two metric spaces X1 and X2 with a set-theoretic intersection X1

⋂
X2.

We say the intersection on metric space is well-defined if the two distance functions m1 and

m2 agree on (X1

⋂
X2)

2. Notice that in general, even in this case, the distance function on

the set-theoretic union X1∪X2 is not well-defined in a natural way, and so, there can be more

than one metric on X1 ∪X2 that restricts to the given metrics on X1 and X2, but if X1 and

X2 are subsets of a larger metric space X and the metrics are the restrictions of an ambient

metric m on X then we can conclude that m gives a unique natural extension of both m1

and m2 to the restriction of m on X1

⋃
X2. When we take another perspective where m1

and m2 are path metrics as usually defined in graphs, the path metric on the union of graphs

is, in fact, a well-defined extension. Accordingly, our metric spaces are either sub-regions

of Cfree or sub-graphs of the ambient graph obtained as the 1-dimensional skeleton of the

Vietoris-Rips complex from samples on Cfree.

A Cspace is a topological space, so we apply the properties of metric gluing in it to

join the simplices of our voxel graphs. Suppose DA and DB represent the simplicial complex
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obtained after the collapse on metric spaces A and B, and H is a sub-complex on the vertices

common to both A and B metric spaces. The function diam refers to the circle diameter

that circumscribes the metric space. For a subset Q of a metric space, we define the diameter

diam(Q) as the supremum of values m(x, y) over all choices of x, y ∈ Q. Theorem 8, as

stated in [4] by Adamaszek et al., reads as follows.

Theorem 3.5 Let A and B be metric spaces with A
⋂
B = H, where H is a closed sub-

space of A and B, and let r > 0. Consider A
⋃
H B , the metric gluing of A and B along

the intersection H. Suppose that if diam(DA

⋃
DB) ≤ r for some Φ 6= DA ⊆ A\H and

Φ 6= DB ⊆ B\H, then there is a unique maximal nonempty subset σ ⊆ H such that

diam(DA

⋃
DB

⋃
σ) ≤ r. Then R(A

⋃
H B; r) ' R(A; r)

⋃
R(H;r)R(B; r). Hence if R(H; r)

is contractible, then R(A
⋃
H B; r) ' R(A; r) ∨R(B; r).

The theorem proves that gluing Vietoris-Rips complexes of finite metric spaces A and

B provides a simplex homotopy equivalent to the Vietoris-Rips complex of the A
⋃
B metric

space glued along the closed subspace H. A conclusion from Corollary 9 in [4] is as follows.

Corollary 3.1 Let A and B be metric spaces with A
⋂
B = H, where H is a closed subspace

of A and B, and A
⋃
H B is their metric gluing along H. Let r > 0, and suppose diam(H) ≤

r. Then R(A
⋃
H B; r) ' R(A; r) ∨R(B; r).

Further, the conclusion from Theorem 3.5 extends to show its use in metric graphs,

from Theorem 10 in [4], reads as follows.

Theorem 3.6 Let G = GA

⋃
GH

GB be a metric graph, where GH = GA

⋂
GB is a closed

metric subgraph of the metric graphs GA and GB. Suppose furthermore that GH is a path and

that each vertex of GH besides the two endpoints has degree 2, not only as a vertex in GH but

also as a vertex in G. Suppose the length of GH is at most l/3, where any simple loop in G

that goes through GH has a length of at least l. Let A ⊆ GA and B ⊆ GB be arbitrary subsets

such that A ⊆ GA = B ⊆ GB = A
⋂
B := H. Then R(A

⋃
H B; r) ' R(A; r)

⋃
R(H;r)R(B; r)

for all r > 0. Hence if R(H; r) is contractible, then R(A
⋃
H B; r) ' R(A; r) ∨R(B; r).

We extend this theory to high-dimensional spaces with paths greater than degree 2,

i.e., in Cspace. So, our proposition states as follows.
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Proposition 3.1 Let GA and GB be metric/voxel graphs with GA

⋂
GB = GH , where GH is

a closed sub-graph of GA and GB with vertices of degree greater than 2, and Gv = GA

⋃
GH

GB

is the metric gluing of two metric graphs along GH . Let r ≥ 2 ∗ λ > 0, the voxel radius from

Eq. 3.8, and suppose the diam(GH) ≤ r. Then R(A
⋃
H B; r) ' R(A; r) ∨R(B; r).

Proof : Let Gv, GA, GB, GH , A, B, and H satisfy the same hypotheses as in the

statement of Theorem 3.6. Let z be a vertex in GA that extends to the voxel graph GB, such

that z ∈ GA

⋂
GB and voxel B is centered at z. We claim that no point p ∈ Gv\GH is within

distance r of GH . Indeed, if there were such a point p ∈ Gv \GH satisfying d(p, u) ≤ r and

d(p, v) ≤ r where d is the Euclidean distance function and u, v ∈ GH , then we could produce

a homotopically non-trivial loop through the gluing simplex in GH with local path shorter

than λ, giving contradiction to our assumption. It follows that if the maximal non-empty

set of GA and GB has diam(σA
⋂
σB) ≤ r, then there exists a unique maximal clique σH

connecting the simplicial complexes R(A) and R(B). From Theorem 3.6, we can conclude

that R(A
⋃
H B; r) ' R(A; r) ∨R(B; r) can extend for configurations of degree greater than

2. Figure 3.21 shows an example of gluing two voxel complexes.

Figure 3.21: Illustration of voxel graph gluing for GA and GB

Our work utilizes the metric gluing property of the Rips complex to connect local paths

contributing towards a global pathway formation from the start to the goal position. The

incremental approach first constructs the local Rips complex that is topologically equivalent

to a sampled sub-space and then glues different pieces together to cover larger sections of

the sampled Cfree space.
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3.3.2 Approach to Incremental Path Planning

Algorithm 3 creates voxel polytopes by taking an extending configuration as its center

until the robot reaches/connects the goal configuration. The bounding radius of the voxel

gets computed from Eq. 3.8. At each voxel, the algorithm generates a topology map of the

local region from steps in [126, 124] and plans the local path from start to an intermediate

configuration, and so forth until it connects to the goal configuration. It constructs the

Rips complex using method ConstructComplex and performs simplicial collapse to obtain

a 1-dimensional skeleton of simplex using TopologicalCollapse method. The density-based

discrete Morse function applied on each local topological map extracts critical points in-

formation and the configurations (or feasible critical points) at proximity to Cobst using

methods IdentifyCriticalPoints and GetValidConfigurations, respectively. In line 9, the al-

gorithm considers the vertices of the simplicial complex and feasible critical points to plan

a memory-efficient route at a %-clearance from obstacles in method PlanPath.

It performs Breadth-First Search (BFS) to select a suitable configuration closest to the

goal compared to all configuration nodes from the ambient voxel graph, i.e., a goal-biased

expansion, in lines 11-13. It ensures that the selected configuration node for extension is

neither repeated nor rejected node evaluated previously. The algorithm selects a random

node in the convex hull of S of the immediate voxel polytope in lines 14-16.

The algorithm extends voxels by considering nodes from the convex hull of S of the

immediate voxel polytope. It narrows down its selection to only nodes in the semicircle of the

convex hull facing or closest to the goal position in line 11. It randomly selects a node from

N for expansion until it succeeds and discards failed configurations to avoid redundancy,

lines 12-17. It keeps performing these steps for each extended voxel and incrementally glues

simplices or the planned local path of the voxel until the query is solved or it reaches a

computation limit. As a result, the algorithm returns a global pathway P connecting the

start and goal configurations and the roadmap M .

3.3.3 Experimental Setup

We perform experiments in seven different environments with robots ranging from 3

DOF to 14 DOF, as discussed next.
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Algorithm 3 Incremental Path Planner

Input: G: A dense graph comprising of a vertex set V and edge set E where G = {V,E},
Q: A query to be solved from a start to a goal position, S: Simplicial Complex, Z: Voxel
Polytope, λ: Radius of voxel polytope, p: Local path set, P: Global path set, M: Glued
voxel graphs, N: Nodes set.

1: Let P ← null, p← null, q0 = start configuration.
2: Create a voxel polytope Z(q0, λ).
3: while Q not solved do
4: if Boundary(Z) not in collision with the robot then
5: S ← ConstructComplex(G,Z); / Refer Sec. 3.1
6: TopologicalCollapse(S); / Refer Sec. 3.1
7: C ← IdentifyCriticalPoints(S); / Refer Sec. 3.2
8: F ← GetV alidConfigurations(S,C); / Refer Sec. 3.2
9: p = PlanPath(Z, S, F)
10: if goal /∈ P then
11: N = ClosestToGoal(ConvexHull(S))
12: while N is not empty do
13: q = SelectRandomNode(N)
14: if q expands Z and q 6= q0 then
15: Create a voxel polytope Zq(q, λ).
16: else
17: N = N \ q
18: Z ← Zq
19: q0 = q
20: Zq ← null
21: else
22: λ = 2 ∗ λ
23: Create a voxel polytope Z(q0, λ).
24: P = P

⋃
p

25: M = M
⋃
S

26: return {P,M}

• Parking Garage: The 3D environment has a vehicle parking garage structure, as

shown in Figure 3.22a. The robot is a planar car with 3 DOF.

• Urban environment: This environment consists of buildings as obstacles in the city-

like structure, as shown in Figure 3.22b. The robot is a 6 DOF drone.

• Cluttered environment: Obstacles are cluttered around the room as shown in Fig-

ure 3.22c. The robot has to traverse through these obstacles successfully to reach its

goal. The robot is a 6 DOF cube.
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(a) Parking Garage
(b) Urban environment

(c) Cluttered environment

(d) Kuka YouBot environ-
ment

(e) PR2 robot environment

(f) Heterogeneous 3D
(g) 3D Tunnel

Figure 3.22: Environments Studied

• Kuka YouBot environment: An 8 DOF robot in an environment with four different

rooms, see Figure 3.22d. The robot moves through these rooms within narrow passages

and arrives at its destination, where it performs an action (grasps or puts an object

down). This robot is a simulation replica of Kuka YouBot [72].

• PR2 robot environment: The environment has two pillars and a table as the obsta-

cles where the robot is required to bypass through the pillars to grasp the stick kept

on the other side, as shown in Figure 3.22e. The robot is a simulation replica of the

PR2 robot [140] with only the right-hand arm (14 DOF) and fixed base.

• Heterogeneous 3D: A 3D maze environment with walls and narrow passages between

the walls. A robot has to pass through maze-like tunnels to reach the goal, as shown

in Figure 3.22f. The robot is a 6 DOF toroidal plus.
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• 3D Tunnel: This environment comprises a narrow passage tunnel and a set of clut-

tered cubes, as shown in Figure 3.22g. The robot is a 9 DOF articulated linkage chain

that has to pass through a hole in the wall and encounter obstacles at the other end

of the wall.

3.3.4 Result Analysis

We compare our proposed method with optimal planners k-PRM∗ [67] and LazyPRM∗ [61],

with cell decomposition methods Dynamic Domain RRT [147] and Dynamic Region-based

RRT/PRM [44, 105], and with Sampling-based RoadMap Trees (SRT) planner SparkPRM [109]

which combines a PRM and RRT approach. All results were averaged over ten randomized

seeds with an evaluation of 500 trials. The value of ε = 1 in Eq. 3.9. We used the PRM

strategy to uniformly sample configurations within each voxel.

3.3.4.1 Optimal Planners

We consider the value of k = 15 for k-PRM∗ as derived in Karaman et al. paper on

optimal path planning [67] and the connection radius as the function of random configuration

nodes in Cspace for both k-PRM∗ and LazyPRM∗ methods.

Computation Time and Total Nodes: We plot our results considering the time and

total nodes needed to solve the query as seen in Figure 3.23 and report that our method

performs faster than the optimal planners and needs fewer nodes in all the environments

except the Cluttered environment (Figure 3.23c). k-PRM∗ achieves the lowest computation

time, and LazyPRM∗ requires the least number of nodes in the roadmap. The minimal

overhead of our planner in the Cluttered environment is due to the time consumed to process

topological and geometric information at each voxel. As our results have shown, our planner

improves as the DOF of the robot increases, and the Cluttered environment comprises a

simple box robot in a uniformly distributed space.

Average Path Cost: Table 3.9 shows all methods’ average path cost with standard de-

viation (superscript) values. Compared to the extra processing time used by our planner, it

still produced the shortest path in all environments. LazyPRM∗ failed to finish finding a
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(a) Parking Garage (3 DOF car) (b) Urban environment (6 DOF drone)

(c) Cluttered environment (6 DOF cube) (d) Kuka YouBot environment (8 DOF)

(e) PR2 robot environment (14 DOF) (f) Heterogeneous 3D (6 DOF toroidal plus)

(g) 3D Tunnel (9 DOF serial chain)

Figure 3.23: The plots for each environment show the total computation time (in seconds)
and the number of nodes in a roadmap recorded for each planner averaged over ten random
runs. The error bars show the standard deviation. “*” indicates no result data available for
the respective planner or the planner failed to finish within 72 hrs.
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path in the Parking Garage and PR2 robot environments within 72 hrs. Since LazyPRM∗

continually increases the density of its approximation, the graph search eventually becomes

too expensive and fails to find solutions in complex environments. The abbreviation DNF

stands for “Did Not Finish.”

Table 3.9: Path Cost computed for Optimal Planners

Environments Our Approach k-PRM* LazyPRM*
Parking Garage 11139.5±105.5 11879±118.9 DNF

Cluttered environment 402±12.1 425±26.1 463±17.4

Urban environment 1750±4.8 1823±36.2 1758±14.8

Heterogeneous 3D 2341.4±18.5 3640±19.3 3611±9.6

3D Tunnel 293.3±3.9 337±6.5 407±17.2

Kuka YouBot environment 3601.3±24.5 9405±46.7 9211±20.9

PR2 robot environment 10±0.8 11±1.3 DNF

3.3.4.2 Cell Decomposition Methods

We compare our method with two different cell decomposition strategies that also

analyze the properties of Cspace. We combined the dynamic region sampling strategy from [44,

105] with RRT and PRM methods and performed experiments in all seven environments.

Computation Time and Total Nodes: Our method extracts the topological and geo-

metric representation of the Cspace at each voxel and metrically glues them to maintain the

topological connectivity between the voxel graphs. We can deduce from Figure 3.23 that

the overhead of approximating the Cfree information becomes negligible as the complexity

of Cspace increases. Hence, we observe a boost in the performance of our planner with the

lowest computation time and least number of nodes in six of our seven environments stud-

ied. Via Figure 3.23c, we report that Dynamic Domain RRT uses less time than other cell

decomposition methods, whereas Dynamic Region-based PRM requires fewer nodes to plan

a path in the Cluttered environment. However, Dynamic Region-based RRT/PRM could

not succeed in solving queries for the Urban environment, Heterogeneous 3D, and Kuka

YouBot environment. All three baseline methods failed to search a route in the PR2 robot

environment, and Dynamic Domain RRT could not finish finding pathways in the Parking

Garage within 72 hrs.
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Average Path Cost: Table 3.10 shows the average path cost attained by the cell decompo-

sition methods. We observe that using the topological and geometric information preserved

at each voxel does not affect the homotopy-equivalence representation of our roadmaps, and

our approach was still able to obtain edges closer to the Cobst generating the shortest path in

six of our seven environments compared to other baseline methods. Dynamic Region-based

PRM finds the shortest route compared to other planners in the Cluttered environment.

The acronym used in our table for Dynamic Region-based RRT and PRM is DRb-RRT and

DRb-PRM.

Table 3.10: Path Cost computed for Cell Decomposition methods

Environments Our Approach Dynamic Domain RRT DRb-RRT DRb-PRM
Parking Garage 11139.5±105.5 DNF 13647±19.1 16982±130.3

Cluttered environment 402±12.1 419.89±4.5 433.66±5.8 364±16.1

Urban environment 1750±4.8 1761.5±12.9 N/A N/A
Heterogeneous 3D 2341.4±18.5 3483±22 N/A N/A

3D Tunnel 293.3±3.9 336.04±6 337.69±6.1 396±7.9

Kuka YouBot environment 3601.3±24.5 3623±25 N/A N/A
PR2 robot environment 10±0.8 N/A N/A N/A

The dynamic region-based sampling strategy performs tetrahedral workspace decom-

position of the Cfree and removes the Cobst at each process, representing them as holes. Since

this strategy incrementally decomposes Cfree until it solves the query, the presence of Cobst in

a non-uniform fashion within tight gaps in the Cspace eliminates the crucial connecting regions

of Cfree while constructing the Reeb graph, which results in its failure to find a solution in

environments with non-uniformity.

As explained in Section 3.3.2, our method performs validity checks, convex hull com-

putations within sub-regions, and the distance metric test to find the closest configuration

to the goal for the next voxel polytope. Overall our method avoids heavy geometric evalu-

ation that requires Voronoi cell computation, sweep-line validity check, or pruning objects

into holes. These computational methods start degrading in their performance when dealing

with high DOF robots or cluttered/non-uniform environments. Hence, our planner becomes

more successful than the baseline methods.
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3.3.4.3 Sampling-based RoadMap Trees (SRT) Planners

We compare our approach with SparkPRM as it combines the capability of PRM and

RRT methods to find a solution in an environment similar to ours.

Computation Time and Total Nodes: From Figure 3.23g, we observe a slight difference

in computation time between SparkPRM and our method, which indicates an improvement

in the efficiency of our planner as it extracts the features of Cspace. The performance of

our method improves as the complexity of the Cspace increases with importance placed on

the preserved topology information, which influenced the generation of configurations in

proximity to Cobst, thus creating a better path.

Our method uses less time and fewer nodes to solve the query than SparkPRM in six

of the seven environments. In the Cluttered environment, SparkPRM performs better than

our approach in computation time and generates fewer nodes to solve a query, as shown in

Figure 3.23c. It indicates that the topological and geometric extraction performed along

with metric gluing by our method becomes a little time-consuming here.

Average Path Cost: Although SparkPRM finds the shortest path in the Cluttered en-

vironment, our method attains convergence to low path cost in the remaining six testbeds

due to the preserved topological and geometric information of the Cspace that influences the

formation of edges closer to the Cobst, in Table 3.11.

Table 3.11: Path Cost computed for SRT planners

Environments Our Approach SparkPRM
Parking Garage 11139.5±105.5 14915±138.6

Cluttered environment 402±12.1 336±8.3

Urban environment 1750±4.8 1964±30.8

Heterogeneous 3D 2341.4±18.5 2486±24.9

3D Tunnel 293.3±3.9 331±5.6

Kuka YouBot environment 3601.3±24.5 4648±34.8

PR2 robot environment 10±0.8 17.9±1.1

Based on our analysis, we conclude that our method outperforms the tested baseline

methods. Our approach has successfully identified the optimal route from the start to the

goal position by metric gluing the voxel blocks while retaining the topological significance.
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Hence, our findings indicate that our approach is a promising solution for planning in high-

dimensional complex environments.

In conclusion, we introduced three novel approaches for extracting topological and

geometric information about the environment. These methods involve pre-processing steps

before path planning and incremental extraction while concurrently planning the path. The

first part utilizes the Rips complex to capture topological information and discrete Morse

theory to capture geometric properties. The second part incrementally obtains topological

and geometric information while planning routes in local regions. Our proposed methods

have demonstrated substantial enhancements in the performance of sampling-based motion

planners and have generated a reusable map of the environment, thus, contributing to the

advancement of motion planning techniques. Chapter 4 will discuss the advantages of the

topology roadmap in solving some compelling motion planning problems.
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CHAPTER 4

A Topology Perspective on Motion Planning Problem

Path planning is an important function needed to successfully move autonomous robots

while satisfying numerous constraints, such as avoiding collision with obstacles or bumping

into walls in a narrow passage. This chapter discusses our topology-based solution to some

compelling problems in robot motion planning. We apply our algorithmic framework to

construct the Cspace roadmap and use topological and geometric information to find multiple

routes to overcome path planning failures in a changing environment [122, 121].

4.1 Diverse Path Planning

While path diversity is already a fruitful topic in robotics, the research in this work

points to methods for solutions to a more compelling problem of finding diverse paths that

represent distinct homotopy classes of pathways. Suppose the Cfree is two-dimensional and

not contractible. In this case, let us assume that there is at least one obstacle such that

it is homomorphically a disk, as shown in Figure 4.1. Non-homotopic path construction

is possible by successively selecting feasible critical points as goalposts near critical points

on the boundary of that same disk. Suppose one obstacle in a 2D environment is a free-

floating regular polygon (i.e., not touching a wall). We posit that an alternate selection of

feasible critical points on diametrically opposite sides of the boundary circle will result in

the generation of two paths that are not homotopic to each other. One will “touch” the

disk on one side, e.g., in the tangential clockwise direction along the boundary circle (path

P in Figure 4.1). The other is near the diametrically opposite point on the other side in the

tangential counterclockwise direction (path P′ in Figure 4.1). In the coming discussion, we

will get into details of the practical application of this idea for identifying coarsely-diverse

routes in the configuration space.
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Figure 4.1: The figure shows two coarsely diverse paths, P and P′, incident on either side of
the disk. Hence, we say P and P′ represent distinct homotopy classes of trajectories.

4.1.1 Coarsely-diverse Paths

We extend the mathematical concepts discussed in Sections 3.1 and 3.2 to define path

diversity formulation for high-dimensional planning space.

Definition 4.1 (Critical points): The set of critical points is defined as the set of non-

degenerate points on the convex hull of Cobst when the given discrete Morse function f reaches

its extreme values, i.e., local minima or maxima.

Here, we denote the vertices of Vietoris-Rips complex by S and critical points set as

C. The derived feasible critical points information near Cobst was obtained within Cfree by

essentially shifting the critical points radially at a distance % from Cobst to within S, thus

providing a set of vertices in S ⊆ Cfree. The computation of % value does not affect the

identification of feasible critical points and, thus, can be of any choice. Here, we calculate

the value of % as defined in [124].

Definition 4.2 (Feasible critical points): This set is defined as all vertices in S at

a radial clearance of % from a critical point of Cobst. In other words, it is the union of

intersections of vertices in S within the metric balls of radius % centered at some critical

point.

Let ci denote an element of the set C, i.e., ci ∈ C, and let vj denote an element of

the set S, ∀i, j > 0. We denote the list of the feasible critical points within % from ci by

F (ci) = {v0, ..., vq}, ∀q, 0 ≤ q < size(S).
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While planning the path in the Cspace, we consider the critical point information to find

the shortest route with minimum clearance to the Cobst. So, the planned path is incident on

the feasible critical points representing a different group of critical points in F .

To this end, let us consider F as a function from critical points C to the power set of S,

i.e., the set of its subsets. If all F (ci) are disjoint, which happens when all critical points

are at least 2% apart, then there is a well-defined function F−1 from feasible critical points

F (C) back to C. Even when this is not true, we can think of F−1(v) as the pre-image of v

under the multi-valued function F . For each path p, we then have F−1(p) that is the union⋃
v∈p F

−1(v) but can also be thought of as a sequence in C because it inherits the order

from p. Suppose d is the Hausdorff distance function that measures the distance between

two paths at time t. We define the path diversity as below.

Definition 4.3 (Path diversity): Given a set of paths P , two paths pa and pb in P are

diverse if pa 6= pb. They are called coarsely diverse, or more precisely %-coarsely diverse if

for some time t > 0 we have distance d(pa(t), pb(t)) > %. Two paths that are not coarsely

diverse are called fellow travelers.

The fellow travelers are assumed to be paths of the same homotopy class from Def. 2.1.

Proposition 4.1 Suppose the distance between any two critical points is at least 3%. Then

two paths pa and pb in P are coarsely diverse if F−1(pa) 6= F−1(pb).

Proof : The inequality means that for some t > 0, F−1(pa(t)) 6= F−1(pb(t)), so d(F−1(pa(t)),

F−1(pb(t))) > 3%. Since d(F−1(pa(t)), pa(t)) < % and similarly d(F−1(pb(t)), pb(t)) < %, by

the triangle inequality d(pa(t), pb(t)) > % as needed.

Proposition 4.2 The equation F−1(pa) = F−1(pb) defines an equivalence relation on paths.

All paths in the same equivalence class are pairwise fellow travelers within the bound 2%.

Proof : The first statement is clear. For the second notice that d(pa(t), pb(t)) ≤ 2% for all

t > 0 as d(pa(t), F
−1(pa(t)) ≤ %, d(pb(t), F

−1(pb(t)) ≤ %, and by the assumption F−1(pa(t)) =

F−1(pb(t)) for all t > 0.
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We can conclude that in order to obtain a collection of diverse paths, or even better,

coarsely-diverse pathways, it suffices to ensure the collection contains routes that map via

F−1 to distinct sets of critical points.

Corollary 4.1 Suppose c is in F−1(pa) but is not in F−1(pb). Then pa and pb are coarsely

diverse.

4.1.1.1 Algorithmic Development

In this algorithm, multiple paths map to a different collection of critical points incidents

to them, as defined in Def.4.3. Critical points represent the important intersection points on

the surface of Cobst, i.e., high or low curve points. These critical points are non-degenerate

and, so, do not change with a change in the dimensionality of the robot, as Cobst are rigid (non-

deformable). The number of critical points for a Cobst in 2D space, e.g., a square, will have

a small countable value. But a polyhedral representation of Cobst can have enormous critical

points due to its intricate structure in 3D space. In such a framework, the possibility of having

multiple paths increases around a single Cobst using its critical points information. So, the

pruning process removes only those critical points close to the pathway within distance 2%

from the identified critical points set. After pruning, there exists a possibility that different

paths map to the untouched critical points of the same Cobst in the future. Therefore, it

also validates the output paths to ensure they pass along different groups of Cobst using

Proposition 1.

Algorithm 4 finds coarsely-diverse paths using identified critical points information

and pre-computed simplicial complex from our previous work [126, 124], in lines 2-5. The

algorithm calls ConstructComplex method to construct simplicial complex S (Def.3.1) on

a verified Hausdorff distance measure of the dense graph G. It performs a sequence of

simplicial collapse on S in the method TopologicalCollapse. The discrete Morse function f

on S identifies critical points as the computed Morse values in eq.(3.4) reach its extrema in

method IdentifyCriticalPoints. Finally, it executes GetFeasiblePoints method to get vertices

in S at %-clearance (Def.4.2) from the critical points of Cobst. The resulting topology map is

a complete connected graph combined with necessary topological information, i.e., vertices

and edges, of the Cfree and the critical points information. The algorithm solves a query

from start to goal position and uncovers different paths using this roadmap in the Cspace. At
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each iteration (line 6), the algorithm updates the graph while pruning the sets of feasible

critical points and constituting critical points of the already found path such that no future

pathway passes through the same group set.

As a result, when the local planner begins to build a path for every updated graph com-

plex S, it provides a path incident on feasible critical points representing a different collection

of critical simplices compared to all other routes previously obtained (line 8). The algorithm

terminates on computing all possible combinations of the paths for the environment such

that solving the query further generates no new pathway with the available vertices in the S

(line 18).

Once the algorithm finishes computing all the possible paths, it performs a validation

to accept only those paths that map via F−1 to distinct sets of critical points of coarsely-

diverse path classes and lists all the Cobst a particular path covers (lines 20-25). Finally,

the algorithm outputs the total number of pathways, i.e., n, and the set of coarsely-diverse

paths, i.e., P , for a given Cspace.

In the analyzed set of paths returned from Algorithm 4 based on the different Cobst
groups they cover using critical point information, we noticed many combinations of such

paths are possible in a cluttered environment. For such a case, rather than retrieving hun-

dreds of routes for the environment, we limit the output to a threshold to determine the

retrieval number of paths. We define the threshold as the range from the shortest path

length to a length T, where T is the mean of the shortest path lengths possible in all sub-

regions of the Cfree. We discuss more details of our result in Section 4.1.3.

4.1.2 Experimental Setup

We performed experiments in three different environments, as described below. Fig-

ure 4.2 shows the start and goal positions in red and blue colors, respectively.

• 3D Cluttered environment: Obstacles are cluttered around the room as shown in

Figure 4.2a. The robot has to traverse through these obstacles successfully to reach

its goal.

• House environment: A L-shaped robot placed in a house-like space with four dif-

ferent rooms, see Figure 4.2c. The obstacles, like a box and two tables, are placed
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Algorithm 4 Planning n coarsely diverse paths

Input: G: A dense graph comprising of vertices set V and edges set E where G = {V,E},
Q: query to be solved from start to goal position, P : a set of n-distinct paths, p: vector
array of path vertices.

1: Let n = 0, P ← {φ}, p = 0.
2: S ← ConstructComplex(G); / Refer Sec. 3.1
3: TopologicalCollapse(S); / Refer Sec. 3.1
4: C ← IdentifyCriticalPoints(S); / Refer Def. 4.1, Sec. 3.2
5: F ← GetFeasiblePoints(S,C); / Refer Def. 4.2
6: while |C| > 0 do
7: if Q == false then
8: p = PlanPath(S)
9: if Q = true then
10: P = P

⊔
p

11: for all vertex x ∈ p do
12: C = C/F−1(x)
13: y = F−1(x)
14: S = S/F (y)
15: Q ← false
16: p.clear()
17: else
18: No more path exists. Assign C ← φ
19: n = |P |
20: for all i = 0 to n− 1 do
21: for all j = 1 to n do
22: if

⋃
z∈P [i] F

−1(z) 6=
⋃
z∈P [j] F

−1(z) then

23: list all Cobst covered by P [i]
24: else
25: P = P/P [i]
26: update n = |P |
27: return {P, n}

randomly in separate rooms, and the robot needs to pass through these obstacles to

reach the goal position.

• Kuka YouBot environment: An 8 DOF robot in an environment with four differ-

ent rooms, see Figure 4.2b. This robot is a simulation replica of Kuka YouBot [72].

The robot moves through different rooms within narrow passages and arrives at its

destination, where it performs a task(grasps or puts an object down).
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(a) 3D Cluttered environment (b) Kuka YouBot environment

(c) House environment

Figure 4.2: Environments Studied

4.1.3 Experimental Evaluations

This section provides a discussion on the results obtained for Uniform [68], Gaus-

sian [28], and Bridge-Test [64] planners using our approach, and compared with the Voss

method [135] which used the SPARS2 algorithm [48]. We average the result values over ten

runs for topology map generation and ten runs for diverse path planning for each method in

all environments.

4.1.3.1 Generating a Dense Topology Map

We generate a dense graph using the different sampling methods in all three environ-

ments. Table 4.1 shows the size of the maps needed to meet the sampling condition criteria

from Section 3.1.

Table 4.1: Number of samples in the topology map

Environments Uniform Gaussian Bridge-Test
3D Cluttered 5090 5918 6136

House 4985 6590 6504
Kuka YouBot 4908 6304 6601
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Figure 4.3 show the edges formed on connecting nodes in a topology map for all plan-

ning methods.

Figure 4.3: Total edges in the Topology maps

4.1.3.2 Number of Diverse Paths

Figure 4.4 gives information about the number of distinct paths returned after running

Algorithm 4 on our different environment scenarios. We used the Hausdorff distance metric

to measure the distance between the pairs of routes. We observe that the Voss method

returned fewer paths in the 3D cluttered environment (3) than our approach, which outputs

five diverse pathways for all three planners. In the House environment, the Voss returns

eight paths, while our method returns five in all planners’ cases. We increase 100 units more

for the path threshold T to obtain eight routes for all planners, as shown in Figure 4.4b.

Interestingly, the average path length of our coarse paths in all planners’ cases was lower

than Voss, as visible in Figure 4.5b. Finally, in the Kuka YouBot environment, the Voss

method failed to complete and returned 0 paths, while our approach returned four pathways

for all three planners.

Voss method was unsuccessful due to its dependency on the SPARS2, which is limited to

handling only planar and rigid body configurations (SE(2) and SE(3)), as discussed in [48].

We can also observe from Figure 4.4 that as the number of paths increases, the distance

between routes decreases, and our method in all three planners maintained good diversity
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between obtained pathways.

(a) 3D Cluttered environment (b) House environment

(c) Kuka Youbot environment

Figure 4.4: We show a decrease in the average Hausdorff distance between paths as the num-
ber of coarsely diverse paths increases. For our method, U = Uniform topological planner,
G = Gaussian topological planner, and B = Bridge-Test topological planner.

4.1.3.3 Setting a Threshold

We set a threshold for returned paths based on the range from the shortest diverse path

length to a pathway of size T , where T is the mean of all shortest path lengths returned.

It is due to the infinitely large number of diverse paths that are possible to generate in

any environment depending on the mapping of routes to the plethora of critical points

group combinations (detailed discussion available in Section 3.3.2). Table 4.2 to 4.4 gives

information about our threshold and the diverse paths returned.
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Table 4.2: Paths generated in 3D Cluttered environment

Diverse Paths Path length threshold
Uniform topological map 5 300-400
Gaussian topological map 5 350-500

Bridge-Test topological map 5 500-850
Voss method 3 N/A

Table 4.3: Paths generated in House environment

Diverse Paths Path length threshold
Uniform topological map 5 522-600
Gaussian topological map 5 500-700

Bridge-Test topological map 5 500-650
Voss method 8 N/A

Table 4.4: Paths generated in Kuka YouBot environment

Diverse Paths Path length threshold
Uniform topological map 4 1020-1500
Gaussian topological map 4 1050-2000

Bridge-Test topological map 4 1200-2500
Voss method 0 N/A

4.1.3.4 Computation Time and Average Path Length

In Figure 4.5a, we can see that the time needed to build the maps and generate the

diverse paths differ in the environments. The Voss method uses less time in the 3D cluttered

environment than our approach, but the Uniform topological planner outperforms it in the

House environment. No result was recorded for Voss in the Kuka YouBot environment

because it failed to complete. However, comparing the results of the topology methods in

the Kuka YouBot environment, we see that the Uniform topology method uses less time

than Bridge-Test and Gaussian and returns paths with a smaller average length, as seen

in Figure 4.5b. We can postulate that the Uniform planner worked best with our topology

approach due to the need to form a dense map in the environment as quickly as possible, a

strength Uniform (Basic PRM) has over the other methods. Although Gaussian and Bridge-

Test provide samples closer to the Cobst, the approaches require enormous samples to cover

the entire space, resulting in oversampling around the Cobst. Thus, Gaussian and Bridge-Test

operate effectively in maze-like situations when combined with our technique. A detailed

description of the properties of these different planners is available in the literature review.
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(a) Computation Time (b) Average Path Length

Figure 4.5: Computation Time and Average Path Length Comparisons.

4.1.3.5 Critical Points Analysis for Path Classification

We show some interesting analyses to aid an appreciation for the critical points and

their role in identifying these diverse paths. Figures 4.6a to 4.6c show examples of pathways

returned in the 3D Cluttered, House, and Kuka YouBot environments, showing the paths

that map to a different set of critical points within a close distance of %.

(a) 3D Cluttered (b) House (c) Kuka YouBot

Figure 4.6: The plots below each respective environment show the set of critical points of
Cobst that map to different coarsely diverse paths within a close distance % for a Uniform
topological planner. Different colors denote the output path’s color in these environments,
and the dots on each horizontal line represent the mapped critical points of the different Cobst
for each path, from start to goal positions.
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To better explain the relationship between the obstacles and the critical points, we cre-

ate a plot that depicts the number of Cobst in the environment v/s the diverse paths that pass

through the various groups of critical points of these obstacles, as seen in Figure 4.6. Recall

that we define our diversity based on the distinct collections of critical points each path con-

stitutes. The number of obstacles in the 3D Cluttered environment is 23, with 170 identified

critical points. The House environment has 3 Cobst, with 95 identified critical points, and

the Kuka YouBot environment has 26 obstacles, with 210 identified critical points. We also

previously proved in Proposition 1 that our critical points determine the number of coarsely

diverse paths we can generate. In summary, we have successfully provided a new methodol-

ogy to extract coarsely diverse paths from the topological and geometric information of the

Cspace and compared it with a baseline method. Our approach has successfully shown that

distinct routes of shorter lengths can be possible in high-dimensional spaces.

Hence, we can conclude that this work provides a new way to categorize paths into

homotopy classes using the geometric properties of Cobst. It also provides the set of diverse

paths computed during the single roadmap generation, thus, avoiding re-planning overhead.

4.2 Fault-tolerant Motion Planning

Designing an autonomous, fault-tolerant manipulator [84, 1] requires identifying con-

figurations that can withstand failures with minimal displacement of constraints while main-

taining the manipulator’s dependability in the event of partial mechanism failures. Such

manipulators are especially useful in complex, confined, and dynamic environments such as

disaster areas, nuclear disposal sites, and deep-sea or space exploration. Since these en-

vironments are often uncharted and dynamic, positioning robotic manipulators in optimal

configurations is critical for high fault tolerance and performance. Choosing a solution path

with fewer configurations can make fault tolerance more practical since it requires minor

adjustments in the relative configuration node when there are changes in the planning space.

When a motion planning attempt fails, the goal is to identify the cause of the failure in

order to take the appropriate recovery action [75, 29]. Geometric and topological methods

have been used to provide proof of disconnection or infeasibility by decomposing the Cfree
space, using alpha shapes and other approximations of obstacle space [87, 80, 130]. However,

the focus of this work is not on finding the cause of failures but on reacting or recovering
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from the changes in the system that occurred due to failures.

This work introduces a novel algorithm for near-optimal path planning of a robotic

system that focuses on fault tolerance and recovery applications. To reduce the number

of re-configurations in finding a feasible path, we introduce the novel Minimal Path Viola-

tion (MPV) methodology. MPV ensures that there exists a route that is collision-free and

connects to start and goal positions with minimum re-configurations required. Firstly, the

algorithm constructs the complete graph of the environment and calculates the coarsely di-

verse routes discussed in Section 4.1. Secondly, it prioritizes these paths using three ranking

measurements, i.e., path cost, the node’s visibility, and the edge’s expansiveness. Thirdly in

the event of any change in the planning space, the proposed algorithm suggests an alternate

path without recomputing topological information, thereby saving computational costs. The

ranking measures allow the identification of the adjacent best route in case of a path failure,

which does not get easily invalidated due to changes in the environment. Figure 4.7 shows

the workflow of the proposed algorithm.

Figure 4.7: The algorithm generates diverse paths and ranks them using node visibility,
edge expansiveness, and path cost. Using this information prevents the invalidation of a
path with a minimal number of configurations. The points in the (c) are in red, orange,
and green colors around obstacles based on the configuration violation detected in the new
configuration space.

4.2.1 Formal Definitions

We present the Minimal Path Violation framework and three ranking conditions uti-

lized to prioritize the diverse paths for fault-tolerance operation.
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4.2.1.1 Minimal Path Violation (MPV)

Given a sampled graph G of vertices V and edges E, i.e., G = {V,E}, such that set

V represents the configurations in the closure of Cfree and set E represents the collision-free

connections between two endpoints u, v ∈ V . Let P be a set of diverse paths, and PV and

PE define the vertices and edges covered by these paths. We say path p is feasible if PV ⊆ V

and PE ⊆ E. Let Q′ be the set of all violated configurations in changed Cspace, such that

Q′ ⊆ PV. We define the Minimal Path Violation between two endpoints s, g ∈ Cfree as below.

Definition 4.4 (Minimal Path Violation): A path p′ is collision-free and minimal (in

the changed Cspace) if and only if Q′ ∩PV(p′) = ∅ and |PV(p′)| − |PV(p)| is minimum ∀p′ ∈ P,

where PV(p) is the set of vertices covered by p, p is the straight line path between s and g,

and |.| represents the cardinality of the set.

Figure 4.8 shows a general idea of MPV. We solve the MPV problem in the changed

Cspace using our ranking measure that assures the minimum number of vertices gets connected

to find a pathway between the start and goal position. Our ranking system takes the node’s

visibility, edge’s expansiveness, and path cost to respond quickly to a changing environment

with the next shortest pathway.

Figure 4.8: An illustration of an MPV problem in a 2D Cspace where p is an unfeasible straight
line path between s and g. At least one configuration needs to be displaced to avoid the
invalidation of the route p. The solution to the MPV problem requires finding the next best
route that connects the start and goal with the minimal number of nodes’ re-configuration.
Our ranking system solves this problem by prioritizing p′ over p′′ such that the number of
nodes difference between p and p′ is minimum while it is also the shortest path.

Consider S as the Cfree topology-approximated roadmap with n diverse paths in it,

where S ⊆ G and |P| = n. A roadmap S is feasible if the number of valid paths is higher
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than the number of invalid paths in the new Cspace, i.e., (n− t) > t, where t is the count of

the number of invalid paths. We use the bound of MPV, as stated in Theorem 4.1, to assess

the validity of roadmap S.

Theorem 4.1 Given a roadmap S, with m valid configurations and r is the lower bound of

intermediate configuration nodes required to connect a path between source Sa and destination

Sb in the Cspace, where Sa, Sb ∈ Cfree; m > r. Then, the bound for finding the Minimal Path

Violation in S is r∗(m−r)!∗r!
m!

.

Proof : Let L be the set of configurations of the shortest path p, i.e., |L| = r. To invalidate

path p in Cspace, the vertices of L should be arranged so that at least one configuration c ∈ L
is either violated or collides with Cobst. So, the number of permutations of getting a config-

uration violation that invalidates the path is P (r, 1) = r, refer [139]. For m configurations

in S, the combination of finding the diverse paths with r configurations is C(m, r) = m!
(m−r)!r! ,

refer [137]. Hence, the bound for finding the Minimal Path Violation for S can be given by
P (r,1)
C(m,r)

= r∗(m−r)!∗r!
m!

.

We evaluate the feasibility of the ranked set at the time of recovery planning (in Alg. 6)

using Theorem4.1.

4.2.1.2 Ranking Measures

Here, we discuss our ranking measures to prioritize the diverse paths based on the

topology properties of the Cspace, i.e., path cost, node visibility, and edge expansiveness. We

perform these measures on a topology-approximate roadmap defined in our prior work [126,

124]. From this topology map S, we compute the diverse paths set P and perform a ranking

of the routes via the conditions described in Proposition 1 - 3.

Proposition 4.3 (Path cost): Taking P as the set of diverse paths, then a path p is given

priority if it has the shortest length compared to the n− t paths.

Recall that n is the total number of diverse paths in P and t is the total number of

invalid pathways. Here, the general idea of sorting the routes based on their lengths in P is

considered, thus, giving priority to the shortest path with feasibility, i.e., from the shortest
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path length to the longest. A route becomes the next best alternative if it connects to fewer

vertices and edges than the valid paths in the modified Cspace.

Proposition 4.4 (Node visibility): Let K define the limit of maximum visibility. If a

vertex v ∈ V has j connected neighbors where j ≤ K and j 6= 0. Then, we define the priority

of v with the rank score achieved on K – j, i.e., the higher the rank score means the highest

priority.

Here, K defines the maximum number of unique neighbors a vertex (or a configuration

node) can connect, and j is the number of successful connections made for K connection

attempts. The visibility of v depends on the number of unsuccessful connection attempts

made and computed by the parameter l = K − j where l > 0. The larger the value of l,

the lower the visibility of the v in the Cspace (existence in narrow regions). We prioritize

the low visibility nodes because they are closer to Cobst, and the path connecting it will

pass at proximity to Cobst. Moreover, the chances of finding an alternate route through low-

visibility nodes are less than through high-visibility nodes. So, the process of discarding

low-visibility nodes when they become invalid and transitioning to higher-visibility nodes

during re-configuration becomes simpler through ranking. As shown in Figure 4.9, x has a

low visibility than y and z. It is, thus, given higher priority than y and then z.

Figure 4.9: Visibility ranks of vertices. The vertices with low visibility or lying closer to Cobst,
such as x, are ranked higher than vertices with high visibility, such as y and z, respectively.

Proposition 4.5 (Edge expansiveness): Let Sa and Sb be vertices in a roadmap S of the

Cfree topology-approximation graph G. Suppose the shortest unfeasible path between Sa and

Sb in the Cspace has length D. If an edge β connects two vertices between Sa and Sb and has

length h ≤ D, then the priority of β is determined by the rank score D− h. Specifically, the

smaller the rank score, the higher the priority of the edge β.
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We can justify the proposition as follows. First, consider a straight line in Cspace
connecting Sa and Sb, which need not be collision-free. The collision-free edges between

the vertices in the roadmap S determine the safe route for the robot in Cfree. Suppose the

length of edges connecting vertices between Sa and Sb is at most hmax. Then, the collision-free

edges of length h closer to D will need fewer nodes to form a path than those further away.

Hence, longer collision-free edges are more desirable as they reduce the number of nodes

in the pathway. This property can help search for the next feasible edge with minimum

displacement from the same vertex. In particular, the priority of an edge β connecting

vertices between Sa and Sb is based on its rank score D − h. Since D is the length of the

shortest unfeasible path between Sa and Sb, edges with smaller lengths h < hmax have higher

rank scores and lower priority.

To illustrate, consider Figure 4.10, where the length of the shortest unfeasible path

between Sa and Sb is D, and hU is the edge between Sa and Sb, hV is between q to Sb, and

hW is between r to Sb along paths U , V , and W , respectively. Then, during ranking, hU has

higher priority than hV and hW , and the rank score isD−hU . Also, in general, D always takes

length as hU between a start and goal position. Therefore, the edge expansiveness property

helps efficiently find a feasible path between two vertices in the roadmap by prioritizing

longer, collision-free edges.

Figure 4.10: Ranking of edge expansiveness. It prioritizes longer collision-free edges in the
paths, such as U , over short edges in V and W .

When ranking paths, the priority sequence is determined by path cost followed by node

visibility and edge expansiveness.
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4.2.2 Algorithmic Implementation

We perform two associated steps to overcome/recover from the faulty scenario. First,

we apply propositions 4.3 - 4.5 to rank our collision-free coarsely-diverse paths. Second, we

use the ranking information to find a valid pathway in the changed Cspace realizing MPV

framework. These two algorithms are performed as the post-processing steps to the already

approximated Cfree-topology graph [126, 124].

4.2.2.1 Ranking diverse paths

Algorithm 5 aims to rank and return a set of coarsely diverse paths for a given dense

graph G while solving a query from start to goal position. The algorithm uses a combina-

tion of topological and geometric information abstracted from G, as provided by methods

introduced in previous sections 3.1 and 3.2.

To compute the diverse paths, the algorithm employs the GetPath method (lines 2-10),

which generates a set P of n-distinct paths in S, where the parameter n controls the number

of pathways to identify. Next, the algorithm computes the visibility of the configuration

nodes in S (from Proposition 4.4), using the CountNeighbors method (lines 11-17). The

visibility information prioritizes the nodes that are more likely to be part of high-quality

paths.

To further prioritize the high-quality paths, the algorithm creates a priority queue of

collision-free edges with longer lengths (as per Proposition 4.5) in lines 18-21. The algorithm

then sorts the set of diverse paths in P based on their path lengths (as per Proposition 4.3),

using the Sort method (line 24). The paths with the lowest cost are ranked first, with ties

broken by giving importance to the number of high-priority nodes and then high-priority

edges (lines 25-29). The algorithm outputs a set R of ranked paths for solving query from

the same start to a goal position in changed Cspace. Overall, Algorithm 5 combines our

various methods and techniques [126, 124, 122] to efficiently rank and generate a diverse set

of high-quality paths from a given dense graph.
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Algorithm 5 Ranking n coarsely diverse paths

Input: G: A dense graph comprising of vertices set V and edges set E where G = {V,E}, Q:
query to be solved from start to goal position, P: set of n-distinct paths, p: vector array
of path vertices, n: number of paths to be computed, K: node-reachability parameter,
D: distance b/w start and goal position, R: set of ranked paths.

1: Let i = 0, P← NULL, p = 0.
2: T = GetTopologyGraph(G); / Refer Sec. 3.1
3: M = GetCriticalPoints(T ); / Refer Sec. 3.2
4: S = T

⋃
M

5: while i < n do
6: Q = false
7: p = GetPath(S); / Refer Sec. 4.1
8: if Q = true then
9: P = P

⊔
p

10: i = |P|
11: q ← NULL
12: for all nodes x ∈ S(V ) do
13: j = CountNeighbors(x, S(V )); / Proposition 4.4
14: if j 6= K and K − j > 0 then
15: PushFront(q, x);
16: else if j == K then
17: PushBack(q, x);
18: e← NULL
19: for all edges y ∈ S(E) do
20: h = D − length(y); / Proposition 4.5
21: e.push(h, y);
22: r ← NULL
23: Sort(P); / Proposition 4.3
24: p0 ← NULL
25: for all p ∈ P do
26: if p0 6= NULL and cost(p0) == cost(p) then
27: r = Rank({p0, p}, q, e);
28: else
29: r.insert(p)
30: R = R

⋃
r

31: p0 = p
32: return R

4.2.2.2 Minimal Path Violation planning

Algorithm 6 considers the ranked paths set R ⊂ S and the environment map X of the

new Cspace as the input, where dim(S) 6= dim(X). Here, dim calculates the dimension of the

space. The Projection method maps the configuration nodes of dim(S) to dim(X) using
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transformation matrix I in lines 3-6.

Ii∗j =

1, i = j

0, i 6= j
; i = dim(S), j = dim(X). (4.1)

The algorithm evaluates the validity of the paths in the set R using the map X in line 7.

The pathway is pruned from R if the current shortest path is invalid due to new changes in

the Cspace, and the alternate shortest route from R gets selected for validation in lines 8-10.

When the number of valid nodes decreases in R ⊂ S, the number of invalid paths increases,

making the roadmap S unfeasible, i.e., R → null. The increase in the probability of MPV

(from Theorem 4.1) for R decreases the chances of finding a feasible solution in X which

tends towards 0 (line 10). The process continues until a near-optimal pathway is found in X,

else the algorithm calls a complete planner (like PRM [68], RRT [78], e.t.c.) to find a path

due to the discretization of the space.

Algorithm 6 Recovery path planner

Input: X: a new Cspace, Sa: start position, Sb: goal position, p: vector array of path vertices,
R: set of ranked paths, Γ: a complete planner.

1: x = dim(X);
2: R = GetRankedPaths(); / Algorithm 5
3: Sa ← Projection(Sa, x);Sb ← Projection(Sb, x)
4: while Sa and Sb not connected do
5: for all p ∈ R do
6: p← Projection(p, x);
7: if p is not valid in X then
8: remove(R, p);
9: if R not null then
10: p = SelectNextPath(R,X); / Theorem 4.1
11: else
12: Calls Γ(Sa, Sb)
13: else
14: Connect p with Sa and Sb
15: return p

Using Algorithm 5 to rank our diverse path and Algorithm 6 with MPV for recovery,

we reduce the re-planning time and computation cost that we evaluate in Section 4.2.4.
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4.2.3 Experimental setup

We executed experiments on a Dell Alienware Aurora desktop machine running the

Ubuntu 20.4 LTS operating system. This setup is different from our previously evaluated re-

search work. We performed experiments in 3 separate environments, as shown in Figure 4.11.

Figure 4.12 shows the start and goal positions in red and blue color, respectively.

• 3D Cluttered environment: Obstacles are cluttered around the room as shown in

Figure 4.11a. The robot has to traverse through these obstacles successfully to reach

its goal. The robots are 3 DOFs and 2 DOFs articulated linkages.

• Pick and Place environment: A shelf and an open box are placed diagonally to each

other, and three small boxes are scattered randomly in the space, see Figure 4.11b.

The robots are 7 DOFs and 10 DOFs Kuka YouBots [72].

• Object displacement environment: The surrounding has a table with two boxes

placed on either side of the table. The robot should move the stick from the table and

drop it into the box using its hands, as shown in Figure 4.11c. The robots are 14 DOFs

and 28 DOFs PR2 [140] with a fixed base.

(a) 3D Cluttered (b) Pick and Place (c) Object displacement

Figure 4.11: Environments Studied

4.2.4 Experimental Outcomes

In this section, we discuss the performance of our method in the modified Cspace and

compare its results with optimal planners, like LazyPRM∗ [61], RRT ∗-Connect [69], and

Informed RRT ∗-Connect [86]. Here, we take K = 5, whereas D is calculated empirically
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within the algorithm for ranking conditions. We performed a total of 225 executions to

generate roadmaps for each planner in all three environments, and the results were averaged

over 15 runs to get standard deviation values.

4.2.4.1 Solving MPV problem in changed Cspace

We define a “change” in the Cspace as the inclusion or exclusion of Cobst that invali-

dates the existing solution. So, when these changes occur in the Cspace, we apply our MPV

framework to find an alternate path during recovery planning.

Prioritising coarsely-diverse paths: We generate topology maps and diverse paths for

all three environments using 3 DOF articulated linkage robot, 10 DOF Kuka YouBot, and 28

DOF PR2 robot (two arms), respectively. Figure 4.12 shows an example of coarsely-diverse

pathways in each environment, and Table 4.5 shows the size of the rank set, the range of path

cost, nodes, and edges for the coarsely diverse paths derived from Algorithm 5. This table

gives the information needed for MPV, including the minimum and the maximum number

of nodes/edges present in the paths in these environments.

Table 4.5: Ranked coarsely diverse paths

Environments Total paths Cost Nnodes Nedges

Cluttered 84 280-546 10-36 14-22
Pick and Place 3 1584-1901 30-96 38-52

Object displacement 2 504-630 12-18 11-17

(a) 3D Cluttered (b) Pick and Place (c) Object displacement

Figure 4.12: An illustration of coarsely-diverse paths planned in each environment. For the
3D Cluttered environment in (a), we have shown only four routes for better visualization.
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4.2.4.2 Fault-tolerant planning in changed Cspace

Initially, we generate and rank various paths for robots with 3, 10, and 28 degrees

of freedom (DOF) in their respective environments. We then introduce dynamic behavior

in these environments by modifying the obstacles’ positions, constraining the manipulator’s

joint angles, or limiting the query evaluation time, thus, causing the existing shortest paths

to become unfeasible and the planner to fail to identify the same route. Consequently, our

approach identifies an alternative pathway with fewer DOF to serve as a recovery measure

in these environments. The aim is to find a fault-tolerant path that becomes feasible by

reducing the DOF of the robot in consideration (a subset of the original problem) for the

detected fault in the initial environment.

Cluttered environment: We add two new obstacles and plan a path using a 2 DOF

articulated linkage robot to recover from faulty Cspace. We see that the placement of the two

recent objects invalidates the current shortest path from Figure 4.13a, and as a result, our

planner looks for the next possible pathway to connect start and goal positions as shown in

Figure 4.13d.

Pick and Place environment: We add one new obstacle and restrict the joint angle of

one of the links (introduces extra computation time). The initial shortest path of 10 DOF

Kuka YouBot is shown in Figure 4.13b and the fault-tolerant pathway planned using 7 DOF

Kuka YouBot is shown in Figure 4.13e.

Object displacement environment: We restrict the forearm movement of the left hand

and limit the query evaluation to 10 seconds. The faulty scenario of the PR2 robot is

captured in Figure 4.13c, where it is unable to find a path due to restricted movement of

the left hand, and Figure 4.13f shows the recovery path planned using 14 DOF PR2 robot

(one arm). In the changed Cspace, the right-hand picks both the sticks, which were initially

picked separately by each hand. Hence, we have two paths planned for the right hand that

performs one stick displacement initially and two sticks displacement for the changed Cspace.

Table 4.6 shows the number of configuration nodes in the shortest path (PathA) and

the new shortest path (PathB) in changed Cspace at the time of recovery planning. PathA
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refers to the initial route before invalidation, and PathB is the new path obtained using the

ranking measures that solve the MPV problem.

Table 4.6: MPV solution in new Cspace

PathA PathB
Environments Nodes Cost Nodes Cost

Cluttered 10±10.76 280±2.79 13±9.45 286±3.4

Pick and Place 30±5.11 1584±11.23 36±2.76 1848±9.83

Object displacement 12±1.34 504±1.0 18±1.98 630±0.67

From Tables 4.5 and 4.6, we observe that the re-configuration of nodes during recovery

planning maintains the minimality of the MPV problem. Our method selects the adjacent

best route within the ranked paths with a minimum re-configuration of 2 to 6 nodes in all

three environments. Hence, we can conclude that our method efficiently solved the MPV

problem to find a valid path by using the ranking measure that guaranteed minimum node

re-configuration from the invalid pathways.

Table 4.7 shows the displacement distance between the initial and re-planned paths in

the changed Cspace. We compare the results of our method with optimal planners LazyPRM∗,

RRT ∗-Connect, and Informed RRT ∗-Connect. We use the Hausdorff distance to measure

the distance between two paths. We observed that our method identifies a feasible pathway

in new Cspace with the smallest displacement distance between initial and re-planned routes

compared to the paths generated by other methods in all three environments.

Table 4.7: Distance b/w initial and re-planned paths

Environments Our Approach LazyPRM∗ RRT ∗-Connect Informed RRT ∗-Connect
Cluttered 1.07±0.08 2.68±1.06 2.02±0.95 1.27±0.27

Pick and Place 13.39±0.14 18.85±1.99 16.63±1.32 DNF
Object displacement 0.01±0.007 DNF 0.08±2.65 DNF

We conclude that using the MPV probability and ranked diverse paths information

can aid in finding the next feasible solution with minimum re-configurations.

4.2.4.3 Analysing the Recovery Solution

The goal is to ensure a nearly optimal solution while recovering from a faulty sce-

nario. We evaluate our recovery solution against optimal planners in time, cost, and nodes
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(a) (b) (c)

(d) (e) (f)

Figure 4.13: Figures (a) and (b) show the initial paths for 3 DOF articulated linkage robot
and 10 DOF Kuka YouBot, respectively. Figure (c) shows the faulty scenario for the PR2
robot with a restricted left hand. Figures (d), (e), and (f) show fault-tolerant paths for 2
DOF articulated linkage robot, 7 DOF Kuka YouBot, and 14 DOF PR2 robot, respectively.

to analyze resource consumption. Using Algorithm 5 and 6, we compute diverse paths and

re-use information across three environments through a ranking system. Our planner’s com-

putation time includes roadmap generation, ranking, and recovery evaluation. We compare

our results with LazyPRM∗, RRT ∗-Connect, and Informed RRT ∗-Connect, in initial and

changed Cspace, taking average values for planned and re-planned roadmap nodes and path

cost. Our method, as seen in Figure 4.14, outperforms in computation time and path cost

without the need to re-generate a roadmap while generating more nodes than RRT ∗-Connect

and Informed RRT ∗-Connect due to building a complete graph of Cspace. LazyPRM∗ failed

to find a path for the PR2 robot due to query resolution, whereas, Informed RRT ∗-Connect

fails to provide valid configurations within the ellipsoidal curve for Kuka YouBot and PR2

robots (computed from [58]).
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(a) Computation Time

(b) Path Cost
(c) Total Nodes

Figure 4.14: The computation time comprises the total time taken to compute a path in the
initial and the new Cspace. We take the average of planned and re-planned roadmap values
for the path cost and the total number of nodes. The “x” in the plots refers to DNF (did
not finish).

Path Metric Evaluation: We also evaluate the path metrics of the initial and new paths

by comparing the average number of nodes in the routes, the average minimum clearance

from the Cobst, and the deviation of the new pathway from the initial path using smoothness

measure (in radians). Figures 4.15a and 4.15c show that our method-planned optimal path-

ways have fewer nodes and minor deviations in all environments compared to other planners.

In Figure 4.15b, we noticed a smaller clearance in the Cluttered environment and a higher

clearance value for Kuka YouBot and PR2 robot for our planner, which shows its ability to

adapt to safety measures in high-dimensional Cspace.

As a result, we conclude that our method provides a novel way for recovery path

planning by utilizing the ranking measure of coarsely-diverse paths and the Minimal Path

Violation framework to overcome the re-planning time and computation cost overhead for
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(a) Path Nodes

(b) Minimum Clearance (c) Path Smoothness

Figure 4.15: The plots show an average of the planned and re-planned roadmap values for
the path nodes, clearance from obstacles, and path smoothness (in radians). The “x” in the
plots refers to DNF.

fault-tolerant scenarios.

In conclusion, we have presented two innovative approaches that leverage the informa-

tion of the topology roadmap to address the challenges of path or motion failures during path

planning. These methods demonstrate an intelligent way to utilize the configuration space’s

topology and exhibit consistent performance across various robot types and environments.
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CHAPTER 5

Application to Computational Biology

Molecular modeling is a field that deals with predicting the binding conformation of protein-

ligand or protein-protein complexes. This problem commonly gets solved through compu-

tational methods that accurately predict the 3D structure of the bio-molecule upon binding

to the target protein receptor. It is a crucial aspect of drug discovery and development and

requires precision and accuracy in its approach. This chapter discusses the application of

our motion planning technique to study and analyze the binding behavior of bio-molecules

during their interaction with others which leads to their structural changes [125, 119, 120].

In this chapter, “conformation space” is used interchangeably with “configuration

space.” The biomolecule’s conformation has similar representations as the robot’s config-

uration. We treat macro-molecules as stationary objects and view a binding bio-molecule,

such as a ligand or Intrinsically Disordered Protein (IDP), as a moving articulated linkage

robot.

5.1 Protein-ligand Interactions

Protein-ligand interactions are crucial to a wide range of biological activities and func-

tions in any organism, including cell metabolism, signal transduction, muscle contraction,

and immune systems. Many essential cellular processes, e.g., controlling the functioning

of enzymes, transport, and most regulatory mechanisms, rely on physical interactions be-

tween proteins. Therefore, protein-ligand interactions network analysis is essential to gain

comprehensive knowledge of the control mechanism and its organization in a living cell.

Analyzing and extracting useful information from the molecular surface of bio-molecules

is a fundamental problem in structural biology [150]. These surfaces contain essential bio-

logical information that helps us understand properties such as the geometrical organization

of interacting residues, precise identification of the borders of each interaction site, energy

potential at interaction sites that allow for strong versus weak binding, and the locations

where artificial molecules (e.g., drugs) can best bind.
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Understanding these properties has life-saving biological implications, including aiding

in therapeutic drugs, vaccines, and point-of-care technology development. However, pre-

dicting these protein-ligand interactions solely from structure remains a challenge. Recent

studies have proposed various approaches to capture molecular surface patterns with func-

tional relevance, such as 3D Zernike descriptors [41, 151] and geometric invariant fingerprint

descriptors [149]. These approaches have limitations, as they rely on hand-crafted descriptors

and manually optimized protein surface features. Therefore, determining the appropriate set

of features for a given task becomes difficult.

In this work, we use our motion planning-inspired framework to extract the geometric

features of the protein surface model. The work utilizes the critical points information to

provide different conformations of the ligand molecule around the protein surface, which help

in planning the feasible trajectory of the ligand to a protein’s active binding site. Before going

to the details of our approach, we will focus our discussion on the mathematical definitions

of our algorithmic framework related to ligand and protein bio-molecules.

5.1.1 Algorithmic Design

5.1.1.1 Mathematical Concepts

We define the principal mathematical concepts, i.e., abstract simplicial complex, Vietoris-

Rips complex, and discrete Morse theory w.r.t. the protein and ligand bio-molecules. The

elements of the simplicial complex set S are called vertices, and these vertices refer to ligand

conformations in the conformation space.

We perform steps discussed in Section 3.1 to generate a simplicial complex using

Vietoris-Rips complex R(S) to capture the topological structure of the protein surface, i.e.,

vertices, edges, triangles, etc. We apply the discrete Morse function, discussed in Section 3.2,

on the same simplicial complex to extract the critical points information of the surface. The

discrete setting of Morse theory avoids the overhead of differential topology, thus reducing

the computation complexity for high dimensional structures.

We model the protein surface as a rigid object. Here, S is the set of all ligand confor-

mations that connect to form a simplicial complex R(S). These conformations are generated

at a radial distance 2% away from the surface to avoid collisions, such that S ⊆ Cfree. We
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take % as the diameter of the circumscribed circle of the ligand molecule. Considering the

above parameters, we define the discrete Morse function as follows.

Definition 5.1 (Distance function in Conformation Space): Let D be the Euclidean

distance function that measures the distance between the point x ∈ Cfree and the nearest point

y on the protein surface P , i.e., D(x) = miny∈P ‖x− y‖.

Definition 5.2 (Density function in Conformation Space): Let Γ(y, %) be a density

function where % > 0 and y is the point on the protein surface. The function Γ counts all

neighbors close to y in S within distance %.

Definition 5.3 (discrete Morse function): Let f be a discrete Morse function on R(S)

restricted to the vertices of the Vietoris-Rips complex. It is formally defined at any point in

conformation space by

f(x) = D(x)× Γ(y, %). (5.1)

Please refer to Section 3.2 for our expanded definitions and theorems.

Definition 5.4 (Critical points): The set of critical points is defined as the set of non-

degenerate points on the surface of protein when the given discrete Morse function f reaches

its extreme values, i.e., local minima or maxima.

Definition 5.5 (Feasible critical points): This set is defined as all possible ligand con-

formations in S at a radial distance of % from a critical point on the protein surface. In

other words, it is the union of intersections of vertices in S within the metric balls of radius

% centered at some critical point.

5.1.1.2 Extraction of Protein surface’s Geometric Features

Algorithm 7 describes how we construct a simplicial complex around the protein surface

by sampling and connecting ligand conformations in method ConstructComplex. Using the

sampling condition from [126], the algorithm performs simplicial collapse to remove redun-

dant topological information, i.e., vertices and edges, and provides a 1-dimensional skeleton
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of the simplicial complex around the protein surface in line 3, i.e., a surface mesh. It ap-

plies discrete Morse function f to this simplicial complex to identify the local maxima and

minima curvatures on the protein surface model in line 4. The identified critical points of

the surface structure are the highest and the lowest peak points at which function f reaches

its extremum, i.e., protrusions and cavity. For function f , the distance becomes an equal-

izer, and the density becomes an essential factor affecting the Morse value at the surface

curvatures.

Algorithm 7 Path planning to protein binding site

Input: P : Protein surface model, Query: query to be solved from start conformation to
the binding site conformation of the ligand, R: Planned path to the binding site, H: a
set of ligand conformations around the protein surface.

1: Let R← {φ}.
2: S ← ConstructComplex(P ); / Refer Def. 3.1
3: TopologicalCollapse(S); / Refer Sec. 3.1
4: C ← IdentifyCriticalPoints(S); / Refer Def. 5.3, 5.4
5: F ← GetFeasiblePoints(S,C); / Refer Def. 5.5
6: H = S

⋂
F

7: R = Query(H)
8: return {H,R}

The algorithm extracts the feasible critical points at radial distance % from the identified

critical points of the protein surface in line 5. These conformations are determined near

the protein surface and are part of the simplicial complex R(S), refer to Def.7. It then

uses the extracted geometric information map to plan a path for the ligand from the start

conformation to the binding site conformation in lines 6-7. The output of our algorithm is

an extracted geometric information map consisting of critical points, feasible critical points,

and a trajectory from the start conformation to the binding site conformation.

5.1.2 Model Transformation

We obtain protein data from the Protein Data Bank (PDB) [18, 19] and construct their

geometric structure using CHIMERA [97]. Figure 5.1 shows the graphical representation of

4JNO protein, its high-dimensional surface model, and the extracted geometric map.

We consider ten proteins and two ligand bio-molecules to study and understand the

protein surfaces and their geometries. We use the high dimensional surface models of proteins
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(a) 4JNO protein (b) Surface model

(c) Geometric information map

Figure 5.1: The figure shows the multiscale surface model of the 4JNO protein and the geo-
metric features (critical points) detected on the protein surface. The geometric information
map provides the point size view of the ligand molecule conformation around the surface.

as a stationary rigid body in the conformation space. The protein studied ranges from 36 to

1708 residues. We construct a flexible linkage model of the ligand using the covalent bond

length and angle measurement derived from CHIMERA. Figure 5.2 shows the backbone

structure of the SIA ligand molecule and our corresponding model. Each covalent bond

simulates one link of the robot of length 1.53 Å, and a sphere of radius 2.7 Å surrounds the

part of the C-N bond of the molecule. Similarly, we perform the transformation for SO4

ligand where the covalent bond length is 1.47 Å, and the angle between the pair of S-O bonds

is 120◦ each, as shown in Figure 5.3.

We used 1SQ6 (225 residues), 1TQX (442 residues), 1ZRL (583 residues), 3NTJ (1544

residues), 4JNO (586 residues), 5JBE (1708 residues), 5ZT1 (669 residues), 6E02 (153

residues), 6JMI (375 residues), and 7OXS (36 residues) as protein models; and SO4 and

SIA as ligand molecules for the analysis. The proteins selected include three Plasmodium

Falciparum (PF) pathogen proteins, i.e., 1SQ6, 1TQX, and 3NTJ, and one DNA protein

(7OXS). PF inflicts the most damage and is responsible for many malaria-related deaths.

The high mutational capacity, coupled with the changing metabolism of the pathogen, makes
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(a) Ligand SIA
(b) SIA with backbone
structure

(c) Corresponding robot
model

Figure 5.2: Robot transformation of SIA ligand. The blue sphere encloses the C-N bond
part of the ligand.

malaria drug treatment development an evolving problem.

(a) Ligand SIA
(b) Corresponding robot model

Figure 5.3: SO4 ligand into a robot transformation.

We follow the same steps of transformation for all protein and ligand bio-molecules to

avoid the loss of biological significance. We transform the coordinates of the known binding

site provided in the PDB file of each protein into the goal conformation for our ligand model

in the conformation space. The start and goal positions are highlighted in red and blue,

as shown in Figure 5.4. The caption of each protein surface model represents the ligand

molecule used for the protein-ligand interaction experiment. In particular, protein 4JNO

binds with ligand SIA, and the rest binds with ligand SO4.

5.1.3 Experimental Analysis

We perform experiments in 10 different protein conformation spaces and average the

results over five random trials for geometric map generation and five random trials for tra-

jectory planning time in each protein’s conformation space.
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(a) 1SQ6 (SO4) (b) 1TQX (SO4) (c) 3NTJ (SO4)

(d) 5ZT1 (SO4) (e) 6E02 (SO4) (f) 6JMI (SO4)

(g) 1ZRL (SO4) (h) 4JNO (SIA)

(i) 5JBE (SO4) (j) 7OXS (SO4)

Figure 5.4: Protein surface models studied

5.1.3.1 Computing surface complexes

We compare the performance of our method with the Delaunay-refinement-based method

from the TetGen library due to its relevance to our approach, as seen in [54]. We record the

computation time and total complexes generated to capture the topological structure of the

protein surface, i.e., a surface mesh.
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In Figure 5.5, we observe that the Delaunay method requires a longer duration to

generate complexes for all proteins than our strategy. The number of complexes generated

by the Delaunay method for proteins 3NTJ and 5JBE are equivalently highest among all

proteins, but the computation time difference between them is significant and inconsistent.

On the other hand, to maintain the skeleton structure of the simplicial complex, our method

shows a consistent relation between the computation time and the total generated complexes.

The calculation performed to construct complexes around the surface does not affect the

overall performance resulting in less memory overhead. Thus, our method is more reliable

and faster in capturing the topological structure of the protein surface by generating fewer

complexes in low computation time than the baseline method.

(a) Total computation time (in seconds)
(b) Total complexes generated

Figure 5.5: Qualitative performance analysis of generated surface complex.

On the generated surface complex, the work [54] performed numerical calculations to

identify the surface curvatures. Instead, our method provides an automated framework for

determining the minimum and maximum curvatures of the protein surfaces, i.e., critical

points, and generates feasible critical points around them, as discussed next.

5.1.3.2 Motion planning towards a binding site

Our method generates a geometric information map for all proteins, similar to that

shown in Figure 5.1c. We input the map to PRM [68] method as an initial graph to solve

the query from start conformation to the binding site conformation. We show the distribution

of time taken to construct a simplicial complex, compute a geometric map, and plan a path
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to the binding site. Figure 5.6a shows the total computation time taken by our method to

capture protein surface topological and geometric information. And Figure 5.6b provides

the time consumed to plan a successful path to the goal conformation over five trials. We

observe that for large protein structures, i.e., 1ZRL, 3NTJ, 4JNO, 5JBE, and 5ZT1, the

computation of geometric information is higher than the complex construction time. On the

other hand, the ligand conformations generated around the identified curvatures of protein

surfaces contribute to the smooth navigation of the ligand to the goal conformation at a safe

distance from the protein. The path planning time for all proteins becomes negligible, and

the highest planning time recorded was 150 seconds for the SIA ligand around the 4JNO

protein surface.

(a) Total time taken to construct the
simplicial complex and extract geomet-
ric features of the protein surface.

(b) Path planning time range shown
over mean and standard deviation val-
ues for all proteins.

Figure 5.6: Quantitative time analysis of our algorithm.

Figure 5.7 shows screenshots of the planned pathway for the ligand SIA around the

4JNO protein surface to the goal conformation. The different view angles reflect the motion

of the ligand biomolecule around the protein surface using the ligand conformation generated

by our method. Hence, we noticed that our algorithm could capture the biological aspect of

the protein-ligand interaction using the geometric information map. We produce the same

results for the remaining nine proteins.
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(a) Top view of the Path (b) Side view
(c) Backward view

Figure 5.7: Trajectory planned using feasible critical points information (ligand conforma-
tions generated around 4JNO protein surface) to the binding site. The side and backward
views show intermediate ligand conformations of the path.

5.1.3.3 Binding affinity of goal conformation

We are interested in analyzing the relevance of our goal conformation with known asso-

ciation sites for the ligand. We validate the identified ligand conformations for each protein

with the native binding pose using the binding affinity measure. We use the molar Gibbs

free energy ∆G (binding affinity) to determine the relevance for the binding pose. Gibbs free

energy is a thermodynamic potential that measures the capacity of a thermodynamic sys-

tem to do maximum or reversible work at a constant temperature and pressure (isothermal,

isobaric) [59]. The protein-ligand binding occurs only when the change in Gibbs free energy

∆G of the system is negative, i.e., when the system reaches an equilibrium state at constant

pressure and temperature. Table 5.1 shows the ∆G value for the ligand at our predicted

goal conformation compared with the known ∆G value at the native binding site for all ten

proteins.

Table 5.1: Binding Affinity (Kcal/mol) for the ligand at goal conformation compared to
ligand native pose for each protein.

1SQ6 1TQX 1ZRL 3NTJ 4JNO 5JBE 5ZT1 6E02 6JMI 7OXS

Our method -5.6 -5.2 -5.3 -5.4 -7.0 -5.2 -5.2 -5.2 -5.2 -5.2

Native poses -5.4 -5.4 -5.2 -5.2 -7.0 -5.2 -5.3 -5.2 -5.2 -5.7

We observe that our method provides a closely relevant binding affinity for our ligand

goal conformation compared with the native binding poses of the ligand for each protein.

Overall, we conclude that our method successfully captures the geometric features of the

protein surfaces and plans a path for ligand biomolecule to the binding site without losing

its biological significance.
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5.2 Protein-Protein Interactions

This work studies the binding behavior between a structured protein and a disor-

dered/misfolded protein during protein-protein interaction. The disordered proteins are also

known as Intrinsically Disordered Proteins (IDPs). IDPs do not have distinct, well-defined

secondary and tertiary structures because of their remarkable backbone flexibility [142].

When an IDP binds to a macromolecule (usually another protein), large interfaces get in-

volved, resulting in specific but comparatively weak interactions. IDPs common in genomes

and proteomes of a living organism have many occurrences in eukaryote groups. They are

prevalent in various human diseases and enriched in cardiovascular disease, diabetes, can-

cer, and neuro-degenerative disease-related proteins [73]. The disordered region can happen

spontaneously because millions of copies of proteins get generated during the lifetime of a liv-

ing organism, making humans become an easy target for many infectious diseases, precisely

through host-pathogen interactions [35, 114].

Pathogen like Plasmodium Falciparum (PF) is a protozoan parasite of humans that

inflicts damage to the human immune system and is responsible for most malaria-related

deaths [63]. Plasmodium infection of mammals begins with the injection of the sporozoite

into the skin of the vertebrate host during the bite of a female Anopheles mosquito. This

results in growth and multiplication first in the liver cells and then in the red blood cells

leading to kidney failure, severe anemia, and many more [154]. We consider host-pathogen

interaction between PF pathogen and the human/mice IDPs to study and analyze the binding

behavior of IDPs in structure-based molecular interactions.

The intrinsic disorder poses a challenge for both experimental analyses of the conforma-

tion and computational modeling due to the lack of stable structure. Despite the instability,

it is critical to understand the biological functionality during protein-protein interactions.

To mitigate this, we propose a topology-based rigid-body docking algorithm that takes the

protein surface models of the globular proteins to predict a binding conformation for the

interacting IDPs. Our approach extracts the topological and geometric properties of the

protein surface to generate random IDP conformation ensembles around it. It then ranks

the conformation ensembles based on the docking score to find the geometrically favorable

pose. The algorithm examines the score values to select the geometrically-favorable binding

position and plans a feasible trajectory from IDP’s initial location to it. Our method can
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be used, as a tool, to find the best docking position that is geometrically fitting on the

protein surface model when no information other than the individual structures is available.

Figure 5.8 shows an overview of our algorithm.

Figure 5.8: Workflow of our approach.

5.2.1 Method

We use the similar mathematical definitions discussed in Section 5.1.1.1 where the

vertices of simplicial complex S are IDP conformations instead. We apply our algorithmic

framework to predict the geometrically-favorable binding pose for IDPs around the studied

structured/globular proteins.

5.2.1.1 Finding a suitable docking conformation

Algorithm 8 constructs a simplicial complex around the protein surface by sampling

and connecting IDP conformations in method ConstructComplex. On satisfying the sam-

pling condition from [126], the algorithm performs simplicial collapse to remove redundant

topological information, i.e., vertices and edges, and provides a skeleton of the simplicial

complex around the protein surface in line 3, i.e., a surface mesh. Recall that we refer to

vertices as the IDP conformations, and the edges are the lines that connect the to/fro move-

ments of IDP between two conformations. It applies discrete Morse function f from [124]

to this simplicial complex to identify the local maxima (protrusions) and minima (cavity)

curvatures of the protein surface, i.e., critical points, in line 4. The identified critical points

are the highest and the lowest peak points on the surface at which function f reaches its

extremum.
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Algorithm 8 Sampling and planning path to binding pose

Input: P : Protein surface model, R: A planned pathway to the binding site, s: initial IDP
conformation, H: set of closest IDP conformations around the protein surface, g: best binding
pose.

1: Let R← {φ}.
2: S ← ConstructComplex(P ); / Refer Def. 3.1
3: TopologicalCollapse(S); / Refer Sec. 3.1
4: C ← IdentifyCriticalPoints(S); / Refer Def. 5.3, 5.4
5: F ← GetFeasiblePoints(S,C); / Refer Def. 5.5
6: for all x ∈ F do
7: for all c ∈ C do
8: if x closest to c then
9: H[x] = dpose(x, c) / Refer Eq. 5.2
10: g = ∀x∈Hmin(H)
11: R = PlanPath(s, g) / Refer Sec. 3.3
12: return {S

⋂
F,R}

The algorithm then extracts the feasible critical points at radial distance % from the

identified critical points of the protein surface in line 5. These feasible critical points are

the conformations close to the protein surface and are part of the simplicial complex R(S),

refer to Def. 5.5 in Section 5.1.1.1. Next, we consider the closest conformations as the set of

predicted conformations for an IDP and use it to evaluate and determine the ranks of the

conformations using Eq. 5.2. From the predicted conformations, a geometrically favorable

binding position of the IDP gets selected such that the conformation is closest to protein

surface curvature in lines 9-14. We use the Hausdorff distance to measure the distance

between the protein surface (P) and the IDP conformation (I) to find the geometrically

suitable docking position, as discussed below.

dpose(P, I) = max{sup
p∈P

inf
i∈I

d(p, i), sup
i∈I

inf
p∈P

d(p, i)}. (5.2)

It takes the conformation with the minimum Hausdorff distance as the final docking position

from all the possibly generated conformations. Finally, a path is planned for the IDP from

the start conformation to the binding pose conformation taking the other predicted IDP

conformations as waypoints (line 14). The process of selecting a binding pose happens

internally, where our method ranks and automatically chooses the binding conformation to

plan the path during the interaction of protein-protein complexes. As a result, our algorithm

outputs an extracted geometric information map consisting of critical points, feasible critical
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points (predicted IDP conformations), and a pathway from the start conformation to the

binding pose conformation.

5.2.2 Experimental Data

We obtain protein data from the Protein Data Bank (PDB) [18, 19] and construct

their tertiary structure using CHIMERA [97]. We obtain IDP data from PDB and Al-

phaFold Protein Structure Database (AlphaFold DB) [129]. We consider nine proteins and

six IDP bio-molecules to study and understand the biological binding mechanism of IDPs us-

ing protein surface geometries. The high-dimensional surface models of proteins represent a

stationary rigid body in the conformation space. Figure 5.9 shows the tertiary-structure rep-

resentation of 3SRI protein, its high-dimensional surface model, and the IDP conformation

ensembles around it.

(a) 3SRI protein (b) Surface model

(c) IDP conformation ensembles

Figure 5.9: The figure shows the multiscale surface model of the 3SRI protein and the
predicted IDP conformations around detected geometric features (critical points) of the
protein surface. The conformations viewed in (c) are the top 10 predicted 1KRN
bio-molecule conformations around the surface model.

The proteins selected include nine Plasmodium Falciparum (PF) pathogen proteins,
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i.e., 1SQ6, 1TQX, 2MU6, 3NTJ, 3SRI, 4JUE, 4M1N, 6ZRY and 7F9K, as shown in Fig-

ures 5.10 and 5.11. PF is responsible for most malaria-related deaths and forms part of

our ongoing research into identifying feasible protein drug targets. The high mutational

capacity, coupled with the changing metabolism of the pathogen, makes the development of

malaria drug treatments an evolving problem. In this work, we are interested in studying

and analyzing the behavior of PF pathogens in the PPI network. Hence, these proteins were

selected as they are the potential targets for malaria inflicts.

(a) 2MU6 (b) 3SRI (c) 4JUE

(d) 4M1N (e) 6ZRY
(f) 7F9K

Figure 5.10: The figure shows the tertiary structure of PF pathogen proteins taken into
consideration for the experiment analysis.

We selected 1KRN (88 residues), 2LE3 (42 residues), 5EJW (91 residues), and 7KPI

(142 residues) proteins as IDP based on their high disorder behavior shown in the protein fea-

ture view plot available on the PDB database. The other IDP bio-molecules, AF-I1E4Y1-F1

(117 residues) and AF-P59773-F1 (190 residues), from AlphaFold DB, are of mus-musculus

and homo sapiens species, respectively. The mean per-residue confidence score (pLDDT) for

AF-I1E4Y1-F1 is 48, and for AF-P59773-F1 is 59. The pLDDT measure estimates whether

the predicted residue has similar distances to neighboring C-α atoms (within 15 Å) in agree-

ment with the naive structure and scored between 0 and 100. The score assesses the local

108



model quality of the structure, i.e., a lower score refers to the existence of more disordered re-

gions in a bio-molecule. The selected IDPs are bio-molecules of humans and mice susceptible

to malaria.

(a) 1SQ6 (2LE3)

(b) 1TQX (1KRN) (c) 3NTJ (AF-I1E4Y1-F1)

Figure 5.11: The figure captures a random combination of a globular protein surface model
and an IDP from the experimental analysis, with IDP names mentioned in the brackets.
The red color conformation refers to the start position, and the docking position is in blue.

Figure 5.10 shows the surface model of six PF pathogen proteins, and Figure 5.11

shows a random combination of IDPs interacting with the remaining three proteins in their

start (red) and goal (blue) positions. We conduct tests on every PF protein complex with

all 6 IDPs, resulting in a total combination of 54 protein-protein complexes.

5.2.3 Result Evaluations

We evaluate performance using quantitative and qualitative measures for all IDPs

with each PF protein for geometric feature extraction, path planning to dock position, and

binding affinity measure. Overall we executed 1250 experiments and averaged the result
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values over ten runs. We compare our method’s performance with two baseline methods,

i.e., HawkDock [136] and HDOCK [145].

5.2.3.1 Quantitative Analysis

Extracting geometric features of the protein surface: Recall that our method con-

structs a surface mesh (or simplicial complex) around the considered protein surface models

to abstract the topological and geometric information. During the execution, it randomly

samples the IDP conformations around the protein surface model, thus, constructing a man-

ifold mesh representation to capture the topology of the protein’s surface. These topological

features aid in identifying the geometric properties of the protein surface, i.e., minima or

maxima, for better approximation, as shown in Figure 5.8. Next, our method uses geometric

information to find possible binding conformations around the protein surface and apply the

scoring function from equation 5.2 to get the top 10 geometrically-fitting docking conforma-

tions for an IDP. Figure 5.1c shows the top 10 predicted association conformations of 1KRN

IDP around the 3SRI protein surface model. We observed that the feature extraction process

is independent of the globular protein’s size and has minimal effect on the performance of

our algorithm, making it suitable for macro-molecules, as discussed next.

Computational time: We analyze the computation time (in seconds) required for feature

extraction and prediction of geometrically favorable docking conformations in these IDP-

protein interactions. This study includes all IDPs in nine PF pathogen protein conformation

spaces. The feature extraction time measures the duration of extracting topological and

geometric features from the globular protein surface, while the ranking time finds the top 10

conformations. To assess our algorithm’s performance efficiency, we compare our total time

to output the top 10 docking conformations with HawkDock and HDOCK, as depicted in

Figure 5.12.

Our method demonstrates the faster prediction of IDP binding conformations compared

to HawkDock and HDOCK in all PF pathogen protein conformation spaces except for 2LE3.

The smaller size of the 2LE3 IDP leads to a longer conformation sampling time necessary

for accurate feature capture in large or complex-size proteins. Proteins like 1SQ6, 6ZRY,

and 7F9K have tetrahedral polygonal shapes rather than spherical surface structures, thus,
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allowing the sampling of conformation ensembles in various fitting positions. As a result,

it takes extra time in the case of the 2LE3 IDP within the conformation space of these

proteins. However, this difference does not affect our method’s performance significantly

and results in less time overhead compared to the baseline methods. Figure 5.12 highlights

that our method outperforms the baseline methods in most protein conformation spaces,

despite minimal time overhead.

In particular, HawkDock fails to find docking conformations for the 3NTJ protein due

to its limitation to proteins with fewer than 1000 amino acids.

(a) 1SQ6 (b) 1TQX (c) 2MU6

(d) 3NTJ (e) 3SRI (f) 4JUE

(g) 4M1N (h) 6ZRY (i) 7F9K

Figure 5.12: The plots show the total computation time taken (in seconds) by all three
methods to predict the top 10 IDP docking conformation ensembles around the protein
surface model.

We analyzed that using the geometric information of protein surface, it is still possible
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to predict multiple structural arrangements of IDPs around the proteins to find the closest

interacting binding pose between two bio-molecules without declining computation perfor-

mance. Thus, we can conclude that the amount of data assessed by our method does not

impact its surface approximation and still provides a quantitatively good performance.

5.2.3.2 Qualitative Analysis

Selecting the suitable binding conformation: As initially mentioned, our method

predicts the top 10 docking conformations for an IDP across all PF pathogen protein con-

formation spaces. This process iterates over ten times, and for each iteration, we record

the top 10 conformations to assess the likelihood of obtaining the same conformation from

ten random iterations. The recorded outputs are then further analyzed to identify the IDP

conformation with the highest frequency as the most suitable docking position among the

ten experimental runs. This selected conformation is then subsequently utilized as input for

path planning. In Figure 5.11, examples of best binding poses (goal positions) for 3 IDPs are

depicted in blue. To validate the quality of the chosen binding pose for protein-protein inter-

actions, we examine the binding affinity before proceeding with path planning, as elaborated

in the subsequent discussion.

Binding affinity measure: We compare the binding affinity of our IDP binding conforma-

tion with the binding affinity computed for the IDP conformations predicted by HawkDock

and HDOCK methods across all PF pathogen proteins. The molar Gibbs free energy ∆G

is used to assess the relevance of the binding pose. Gibbs free energy is a thermodynamic

potential that quantifies the maximum reversible work capacity of a thermodynamic sys-

tem under constant temperature and pressure (isothermal, isobaric) conditions [59]. Protein

binding occurs when the change in Gibbs free energy ∆G is negative, indicating equilibrium

at constant pressure and temperature.

We utilize the molar Gibbs free energy ∆G to calculate the binding affinity of the top-

ranked IDP conformation ensemble predicted by all three methods. Figure 5.13 illustrates

the binding affinity measure of our predicted IDP binding pose for each protein compared

to the binding affinity measures obtained for the IDP conformations predicted by Hawk-

Dock and HDOCK methods. HawkDock exhibits a positive binding affinity for the 7KPI
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IDP conformation when interacting with 1SQ6 and 4JUE proteins. In contrast, our algo-

rithm consistently predicts IDP conformations with negative binding affinities for all IDPs

interacting with PF pathogen protein complexes. This evidence indicates a stronger asso-

ciation displayed by our geometrically-favorable docking positions and consistency achieved

in identifying favorable binding conformations through our method.

As mentioned previously, HawkDock failed to predict the docking conformation for the

3NTJ protein, resulting in the absence of a binding affinity measure for this case.

(a) 1SQ6 (b) 1TQX (c) 2MU6

(d) 3SRI (e) 3NTJ (f) 4JUE

(g) 4M1N (h) 6ZRY (i) 7F9K

Figure 5.13: The plot shows the Binding Affinity measure for the top-most IDP docking
conformation predicted by the three methods.

Based on the observations in Figure 5.13, we consistently find that our predicted dock-

ing conformations exhibit a negative binding affinity for all IDPs, surpassing the binding

affinity of the IDP conformation ensemble generated by the baseline methods. Additionally,
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we deduce that our method performs well even for macro-molecule proteins, such as 3NTJ,

surpassing HDOCK and not being limited to small bio-molecules. Overall, our experimental

conformations demonstrate better binding affinity in 95% of the compared cases, highlight-

ing the significance of utilizing protein surface model features in generating conformations

with favorable binding affinity outcomes. Consequently, we can conclude that the quality of

our binding conformations competes favorably with the binding conformations predicted by

existing approaches utilizing coarse-grained force field docking (HawkDock) and knowledge-

based template-free docking (HDOCK).

Affinity comparison for known IDPs: We analyzed the binding affinity of protein-

protein complexes specifically by focusing on folding-upon-binding [106]. To validate our

method-predicted docking conformation, we compared our results with the work done in [11,

37, 43], which studied the interaction mechanism of IDPs in terms of structure, dynamics,

affinity, and kinetics. To examine our results, we considered the same protein complex com-

pounds as those studied in the aforementioned work, i.e., 4HTP, 3W1G, 3ALO, and 1SB0.

Table 5.2 displays the binding affinity of the known and our predicted docking conformations

for these protein complexes. Our findings revealed that our geometrically-fitting binding con-

formation exhibited a closely similar binding affinity to the known binding affinity of these

protein complexes.

Table 5.2: Binding Affinity comparison for known IDPs

Protein complex IDP PDB compound ∆Gknown ∆Gpred

Artemis457−502 DNA Ligase-IV 4HTP -7.7 -8.1
Artemis593−621 DNA Ligase-IV 3W1G -6.9 -5.9

p38 peptide MKK4 3ALO -3.7 -5.11
KIX domain of CBP c-Myb 1SB0 -7.3 -7.5

5.2.3.3 Path planning to geometrically-favorable binding position

In addition to predicting binding conformations for rigid-body docking, our method

also includes feasible trajectory planning toward the selected finalized binding pose during

re-scoring. We assess the total time required for path planning to the predicted binding pose

for all IDPs in the nine globular protein conformation spaces, as presented in Figure 5.14.
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The path planning time represents the duration incurred for an IDP to transition from its

initial conformation to the binding conformation while moving closer to the protein surface.

(a) 1SQ6 (b) 1TQX (c) 2MU6

(d) 3NTJ (e) 3SRI (f) 4JUE

(g) 4M1N (h) 6ZRY (i) 7F9K

Figure 5.14: The total time taken (in seconds) to plan a path for all IDPs in each protein’s
conformation space.

Figure 5.14 illustrates the distribution of path planning times for all IDPs across dif-

ferent protein conformation spaces. The y-axis represents the averaged path planning time

over ten runs, while the x-axis represents the IDPs interacting with the respective proteins.

The plot showcases the variability in path planning time, depicting the duration needed to

move IDPs from their initial positions to the docking positions around the protein surface.

In several protein conformation spaces, the difference between the minimum and maximum

planning times is small or negligible for IDPs exhibiting a lower deviation, indicating that

the planner consistently finds a similar route majority of times out of the ten runs. How-

ever, the 1KRN and 7KPI IDPs in the 1SQ6 protein’s conformation space take longer time
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spans. This behavior can be attributed to the broader structure of these IDPs, affecting their

movement near the 1SQ6 protein surface and resulting in varying time values. Among all

the studied IDPs, AF-P59773-F1 demonstrates the vast structure and highest disordered re-

gions, making it challenging to plan its path while considering its structural transformations.

Thus, we deduce from Figure 5.14 that the path planning period for the AF-P59773-F1 IDP

is generally higher than other IDPs in most protein conformation spaces.

The unpredictable behavior of IDPs around the studied proteins enables us to analyze

the feasibility of their interaction with specific proteins, particularly how easy they align

around a protein structure for association. Path planning time provides insights into the

locomotion of IDPs around proteins as they search for the most suitable binding pose for

rigid-body docking. When used in conjunction with other tools to examine the conforma-

tional flexibility of IDPs during their motion around proteins can simplify flexible docking

tasks by focusing computational methods solely on the dynamic structure of IDP conforma-

tions as they traverse the planned trajectory, facilitating future biological studies.

(a) Association in tertiary structure (b) Front view

(c) Top view

Figure 5.15: The figures display a path planned for 2LE3 IDP around the 1SQ6 protein
surface model using the geometrically favorable conformation ensembles. The start
conformation is in red, and the binding goal position is in dark blue.
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Figure 5.15 displays screenshots of the planned path for the 2LE3 IDP around the

1SQ6 protein surface, depicting the motion of the IDP biomolecule from its initial position

to the experimentally predicted binding pose conformation. Different view angles illustrate

the IDP’s movement around the protein surface, and the intermediate conformations rep-

resent the IDP conformations generated during feature extraction, serving as waypoints.

These intermediate conformations between the starting and goal positions demonstrate the

structural transformations of the 2LE3 IDP as it moves in the vicinity of the 1SQ6 protein

surface. Similar movements and structural arrangements occur for remaining IDPs across

different protein conformation spaces.

We conclude that our approach successfully captures the geometric features of the

protein surfaces and plans a path for IDP bio-molecule to the geometrically favorable binding

pose showing a higher affinity compared to affinity measures by baseline methods. Thus,

our results show the significance of our topology approach for future biological studies.
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CHAPTER 6

Conclusion

This work presents a novel framework that aims to extract topological and geometric prop-

erties of the configuration space or a protein surface model. Our approach leverages the

application of Topological Data Analysis methods such as Vietoris-Rips complex and dis-

crete Morse theory to capture the properties of the underlying space in low computation time

and less memory usage. We demonstrated that our framework applies to various sampling-

based planners and complex robot systems. Through this research, we saw the immense

benefit of these properties. Our methodologies have revealed the impacts of these features

in multiple domains, including robotics and structural biology.

Specifically, we designed, developed, and evaluated the heterogeneity of the planning

space to motivate further study into topology-aware sampling-based approaches. In Chap-

ter 3, we introduced the mathematical definitions of topology, i.e., topological and geometric

features, and the tools used to capture this information. We provided a theoretical foundation

for our algorithm and experimentally showed its significance in performance improvement.

We showed the usage of our framework for graph-based and tree-based methods and en-

hanced our framework into an incremental batch-based approach. Finally, we showed that

our framework has various interesting applications in motion planning problems (Chapter 4).

Firstly, the knowledge of critical points can help classify and identify different paths in high-

dimensional spaces. Secondly, the ranked distinct routes can solve the MPV problem for

fault-tolerant path planning of articulated linkage robots. Additionally, we demonstrated an

application of our framework in computational biology (Chapter 5), where extracting the

geometric features of a biomolecule’s topological surface structure can assist in finding a

geometrically-fitting pose for an interacting bio-molecule.

To further explore the beneficial use of the environment’s properties, we believe that

combining topology roadmap and machine learning techniques could be a game-changer.

One idea that we’re interested in investigating further is the use of these tools together to

learn environment features that assist robots with dynamic path planning. This approach
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could help us weigh the pros and cons of creating a new roadmap whenever there is minimal

change. Additionally, we are interested in advanced automation heuristics development that

can simultaneously learn semantic features of the environment through topology roadmap

and predict waypoints using active learning for feasible path planning.

In addition, we also plan to extend our topology-aware framework in various other

ways. Firstly, we believe that our framework extension to the Task and Motion Planning

(TAMP) problem can be fruitful, where the articulated linkage robot’s arms control mech-

anism can be studied using topology features to determine infeasibility or failure in the

symbolic search graphs at the task planning level. Secondly, the approach can extend to

multi-agent cooperation for disaster-relief scenarios and warehouse settings. Our framework

could provide a general path for each agent to follow in the planning space and subsequently

utilize this information to communicate within the agent group to derive precise motions.
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Glossary

Cfree A set of all collision-free configurations. 23

Cspace A space consisting of all possible robot configurations. 8, 14, 23, 36

conformation The spatial arrangements that the atoms in a molecule may adopt and freely

convert between, especially by rotation about individual single bonds. 94, 112

convex hull The smallest convex polygon that encloses all of the configuration points in

the set. 28, 39, 64, 68

critical points A set of non-degenerate points that define the convexity and concavity of

a polygon. 55, 58, 67, 95, 105, 118

discrete Morse theory The discrete analog of classical smooth Morse theory. 118

Hausdorff distance The measure of distance between two subsets of a metric space from

each other. 28, 69, 90, 106

homotopy classes It is a way of classifying geometric regions by studying the different

types of paths that can be drawn in the region. 67

simplex The notion of the simplest possible polytope in any given dimension. 28

simplicial collapse It is an operation that shrinks simplicial complexes to homotopy-

equivalent sub-complexes. 28, 34, 96, 105

simplicial complex It is a generalization of a graph representing higher-than-pairwise con-

nectivity relationships. 55, 95, 105

Vietoris-Rips complex It is a way of forming a simplicial complex from distances using

a set of points. 13, 23, 36, 55, 68, 95, 118
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Acronyms

CBP CREB-binding Protein. 114

CREB cAMP-response element binding. 121

DMT discrete Morse theory. 36

IDPs Intrinsically Disordered Proteins. 105, 109, 110, 114

MKK4 dual specificity Mitogen-activated protein Kinase Kinase 4. 114

MPV Minimum Path Violation. xiii, xvi, 80, 84, 86, 88, 90, 118

PRM Probabilistic RoadMap. 8, 28, 35, 40, 43, 61, 101

RRT Rapidly exploring Random Trees. 9, 43

SBMP Sampling-Based Motion Planner. 45

TDA Topological Data Analysis. 4, 5, 7
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Kavraki. Structure-based methods for binding mode and binding affinity prediction

for peptide-mhc complexes. Current topics in medicinal chemistry, 18(26):2239–2255,

2018.

[11] Munehito Arai, Kenji Sugase, H Jane Dyson, and Peter E Wright. Conformational

propensities of intrinsically disordered proteins influence the mechanism of binding

and folding. Proceedings of the National Academy of Sciences, 112(31):9614–9619,

2015.

[12] Prasad N Atkar, Howie Choset, Alfred A Rizzi, and Ercan U Acar. Exact cellular de-

composition of closed orientable surfaces embedded in R3. In Proceedings 2001 ICRA.

IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164),

volume 1, pages 699–704. IEEE, 2001.
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viding explanations for robot motion planning. In 2021 IEEE International Conference

on Robotics and Automation (ICRA), pages 3927–3933, 2021.

[30] Michael S Branicky, Ross A Knepper, and James J Kuffner. Path and trajectory

diversity: Theory and algorithms. In 2008 IEEE International Conference on Robotics

and Automation, pages 1359–1364. IEEE, 2008.

[31] Glen E Bredon. Sheaf theory, volume 170. Springer Science & Business Media, 2012.

[32] Patrick Bryant, Gabriele Pozzati, and Arne Elofsson. Improved prediction of protein-

protein interactions using alphafold2. Nature communications, 13(1):1–11, 2022.

[33] Tauã M Cabreira, Lisane B Brisolara, and Paulo R Ferreira Jr. Survey on coverage

path planning with unmanned aerial vehicles. Drones, 3(1):4, 2019.

[34] Zixuan Cang, Lin Mu, and Guo-Wei Wei. Representability of algebraic topology for

biomolecules in machine learning based scoring and virtual screening. PLoS computa-

tional biology, 14(1):e1005929, 2018.

[35] Arturo Casadevall and Liise-anne Pirofski. Host-pathogen interactions: basic con-

cepts of microbial commensalism, colonization, infection, and disease. Infection and

immunity, 68(12):6511–6518, 2000.

[36] Erin W Chambers, Vin De Silva, Jeff Erickson, and Robert Ghrist. Vietoris–Rips

complexes of planar point sets. Discrete & Computational Geometry, 44(1):75–90,

2010.

125



[37] Cyril Charlier, Guillaume Bouvignies, Philippe Pelupessy, Astrid Walrant, Rodrigue

Marquant, Mikhail Kozlov, Pablo De Ioannes, Nicolas Bolik-Coulon, Sandrine Sagan,

Patricia Cortes, et al. Structure and dynamics of an intrinsically disordered protein

region that partially folds upon binding by chemical-exchange nmr. Journal of the

American Chemical Society, 139(35):12219–12227, 2017.

[38] Theodoros Chondrogiannis, Panagiotis Bouros, Johann Gamper, Ulf Leser, and

David B Blumenthal. Finding k-dissimilar paths with minimum collective length.

In Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances

in Geographic Information Systems, pages 404–407, 2018.

[39] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Bur-

gard, Lydia E. Kavraki, and Sebastian Thrun. Principles of Robot Motion: Theory,

Algorithms, and Implementations. MIT Press, Cambridge, MA, June 2005.

[40] Veronika Csizmok, Ariele Viacava Follis, Richard W Kriwacki, and Julie D Forman-

Kay. Dynamic protein interaction networks and new structural paradigms in signaling.

Chemical reviews, 116(11):6424–6462, 2016.

[41] Sebastian Daberdaku and Carlo Ferrari. Antibody interface prediction with 3d Zernike

descriptors and SVM. Bioinformatics, 35(11):1870–1876, 2019.

[42] Sjoerd J de Vries, Christina EM Schindler, Isaure Chauvot de Beauchêne, and Mar-
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