Linkages between Extreme Precipitation Events in the Central and Eastern United States and Rossby Wave Breaking

Document Type


Publication Date





Linkages between extreme precipitation events (EPEs) in the central and eastern United States and synoptic-scale Rossby wave breaking are investigated using 1979–2015 climatologies of EPEs and upper-level potential vorticity (PV) streamers. The investigation focuses on two domains over the central and eastern United States, respectively, and emphasizes widespread EPEs, events exhibiting exceptionally large precipitation volumes. The relative frequency of PV streamers is found to be significantly enhanced relative to climatology immediately upstream of each domain during widespread EPEs. Majorities of the widespread EPEs in the central (~79%) and eastern (~56%) U.S. domains co-occur with a PV streamer positioned immediately upstream. Odds ratios of EPEs for days when a PV streamer occurs upstream of each domain indicate a strong, statistically significant association between EPEs and Rossby wave breaking. The strength of the EPE–Rossby wave breaking linkage, as measured by co-occurrence fractions and odds ratios, tends to increase with increasing EPE precipitation volume, such that the strongest linkage exists for widespread EPEs. Composite analyses reveal that Rossby wave breaking can result in widespread EPEs by establishing a persistent high-amplitude synoptic-scale wave pattern, within which strong poleward water vapor transport and ascent are forced over the EPE region immediately downstream of an elongated upper-level trough. Additional analyses demonstrate that, compared to corresponding null cases, Rossby wave breaking cases resulting in widespread EPEs exhibit a significantly higher-amplitude wave pattern that favors greater poleward transport of moist, conditionally unstable air and stronger ascent over the EPE region.



Terms of Use

This article is made available under the Scholars Archive Terms of Use.